

TECHNICAL REPORT GEOLOGICAL POTENTIAL, MINERAL RESOURCE ESTIMATE, AND PRELIMINARY ASSESSMENT TULLY GOLD PROPERTY

TULLY TOWNSHIP, PORCUPINE MINING DIVISION, ONTARIO FOR SGX RESOURCES INC. AND SAN GOLD CORPORATION

Peter T. George, P. Geo., Toronto, Ontario, Canada October 2010

Date Issued:October 19, 2010Effective Date:August 1, 2010

Clients Reference: SGX Resources Inc. and San Gold Corporation

TECHNICAL REPORT, GEOLOGICAL POTENTIAL, MINERAL RESOURCE ESTIMATE AND PRELIMINARY ASSESSMENT OF THE TULLY GOLD PROPERTY, TULLY TOWNSHIP, PORCUPINE MINING DIVISION, ONTARIO, FOR SGX RESOURCES INC. AND SAN GOLD CORPORATION

Author:

Peter T. George, P. Geo.

Consulting Geologist

This report has been prepared by Geoex Limited with all skill, care and due diligence, within the terms of the contract with the Client.

TABLE OF CONTENTS

	Page
SUMMAKY	
1.0 INTRODUCTION	0 6
1.1 General	0
1.2 Fournos of Information	0 6
1.5 Sources of information	0 7
1.4 Sile visit	······ / 7
2.0 DELIANCE ON OTHER EXPERTS	······ / 7
2.0 RELIANCE ON OTHER EXPERTS	······ / o
2.1 Property Description	••••••
2.2 Property Leastion	o o
3.2 Property Other Obligations	o o
A A ACCESSIBILITY OF IMATE LOCAL DESCHOCES INEDASTDUCTUDE DEVSIOCDADEV	0
4.0 ACCESSIBILITT, CLIVIATE, LOCAL RESOURCES, INFRASTRUCTURE, PHISIOGRAPHT	9
4.1 Accessionity	9
4.2 Chinate and Filyslography	9
4.5 LOCAI RESOURCES AND INITASTRUCTURE	9
5.1 Deriod 1064 to 2010	10 10
	10 11
6.1 Designal and Level Coolesial Setting	11
6.1 Regional and Local Geological Setting	11
0.2 Property Geology	12 14
7.0 DEPOSIT TIPES	••••• 1 4
7.2 Deposit Models	14
7.2 Deposit Wodels	14 17
8.0 MINERALIZATION ON PROPERTY	1/ 17
8.1 Willefallzed Zolles.	1/ 17
8.2 Longth Width Donth and Continuity of Minaralization	17
8.5 Lengui, whuli, Depui and Continuity of Mineralization	1/ 10
0.4 Significant Assay Results	10 19
9.0 EAFLOKATION	10 19
10.1 Historical Drilling on the Droiget	10 10
10.1 Historical Drilling on the Project	10
11.0. SAMDI INC METHOD AND ADDOACH	10
11.0 SAMIFLING METHOD AND AFFROACH	19 10
11.1 Sampling Methods	19
11.2 Sampling of Recovery Factors	19
11.5 Sample Quality	····. 19 20
12.0 SAMIFLE FREFARATION, ANALISIS AND SECURITI	····· 20 20
14.0 ADIACENT DOODEDTIES	
15.0 MINEDAL DDOCESSING AND METALLIDCICAL TESTING	····· 21 21
16.0 CEOLOCICAL DOTENTIAL AND MINEDAL DESCLIDE ESTIMATES	·····21
16.1 Introduction	····· 44 22
16.2 Background Considerations re Estimation of Geological Potential	22
16.2 Geological Potential Methodology	22
16.3 1 Geological Tonnage Potential	25
16.3.2 Geological Foundation	25
16.4 Resource Estimate	20 27
16.4.1 Resource Criteria	∠ı 27
16.4.2 Mineral Resource Estimate	י∠ רר
17 A OTHED DELEVANT INFORMATION	י∠י. סר
17.0 ΟΤΠΕΚ ΚΕΙΕΥΑΝΤΙΝΤΟΚΝΑΠΟΝ	
18.1 Introduction	<u>⊿o</u> ∕2
18.2 Assumptions	∠0 28
10.27 (ssamptions	

$GEOE^{X} \text{ limited}$

18.3 Environmental Considerations	29
18.4 Preliminary Economic Assessment	29
19.0 INTERPRETATION AND CONCLUSIONS	
20.0 RECOMMENDATIONS	
21.0 REFERENCES	
22.0 DATE AND SIGNING PAGE	
23.0 CERTIFICATE	
23.0 CERTIFICATE	

FIGURES

Figure 1 Regional Location M	ap	Appendix 1
Figure 2 Property Location an	d Local Infrastructure	Appendix 1
Figure 3 Drill Plan		Appendix 1
Figure 4 Longitudinal Section	with drill hole pierce points	Appendix 1
Figure 5 Typical Level Plan		Appendix 1
Figure 6 Typical Cross Section	n	

TABLES

Table 1 Leased Claims, Timmins G	old Project	8
Table 2 Summary of Drilling Comp	leted on Timmins Gold Project	
Table 3 Volumetric Issues re Sampl	ing Vein Systems by Drilling	
Table 4 Drill Indicated Geological	Fonnage Potential	
Table 5 Tonnage and Grade Bell Cr	eek-Hoyle Pond Trend, Timmins, Ontario	
Table 6 Mineral Resource Estimate	-	
Table 7 Preliminary Economic Asse	essment	
Table 8 Summary of Resource and	Geological Potential Estimates	

APPENDICES

Appendix 1	Figures
Appendix 2	National Instrument 43-101 Mineral Resource and Mineral Reserve Definitions
Appendix 3	Summary of Significant Composite Intersections
Appendix 4	Working Notes re Geological Potential Estimates
Appendix 5	Working Notes re Resource Estimates
Appendix 6	Scoping Study Costs for an Exploration Project Near Timmins, Ontario (adjusted to 2010)

SUMMARY

This technical report has been prepared by Geoex Limited at the request of Mr. Hugh Wynne, Chief Executive Officer of SGX Resources Inc. ("the Company"). The report was authored by Mr. Peter George, B.Sc., P.Geo. Mr. George ("the Author") has over 40 years experience in the mining industry including extensive experience in the gold exploration and mining sector in Canada.

The purpose of this report ("the Report") is to evaluate the geological potential, to provide an initial mineral resource estimate and to prepare a preliminary assessment of the Tully Gold Project ("the Property") (formerly know as the Nickel Offsets property) in order to provided the management and boards of directors of the Companies with technical information that will allow corporate decisions to be made with regard to the future exploration and development of the Property.

The Company and San Gold Corporation ("SGC") (jointly, "the Companies") acquired a 100% interest in the Property from Canadian Lithium Corp. (a successor company to Black Pearl Consolidated Inc.) by agreement dated August 9, 2010. The Company and SGC each hold a 50% interest in the Property. The Company is the operator and must contribute the first \$233,000 in exploration expenditures on the Property. Following the initial expenditure by the Company, future expenditures will be shared 50:50 by the Company and SGC. The acquisition cost was \$200,000 in cash, 600,000 shares of the Company, and 150,000 common shares of SGC.

The format and content of the report are intended to conform to Form 43-101F1 of National Instrument 43-101 ("NI 43-101") of the Canadian Securities Administrators.

There has been no exploration work done on the Property since the Author completed a NI 43-101 compliant report dated January 22, 2008 and titled "TECHNICAL REPORT, GEOLOGICAL POTENTIAL, MINERAL RESOURCE ESTIMATE, AND PRELIMINARY ASSESSMENT OF THE TIMMINS GOLD PROJECT, TULLY TOWNSHIP, PORCUPINE MINING DIVISION, ONTARIO, FOR BLACK PEARL MINERALS CONSOLIDATED INC."

The mineral resource and geological potential estimates contained in the Report are taken directly from the January 22, 2008 report. The preliminary assessment has been updated to reflect current gold prices and operating and capital costs inflated (5%) to 2010.

Drilling completed to date on the Property has provided sufficient data for the Author to complete an initial interpretation of the geometry of the vein system in plan and sectional views.

The Author concludes that the data density and the reliability of the drilling database is sufficient to complete an estimate of the indicated and inferred resources on the Property and as well, to make an estimate of the overall geological potential of the Property.

In the Author's opinion, the geological setting of the Property is sufficiently well defined to conclude that there is a valid comparison to be made between the Property and the mines that occur in the Bell Creek-Hoyle Pond trend of the Timmins gold camp.

The Author concludes that the in-situ grade potential of the Property will ultimately be in the range from 8 to 10 grams gold per tonne, based upon (1) a comparison of the assay database to the Dome Mine (Rogers 1982), (2) the average grades of mines in the Bell Creek-Hoyle Pond trend, and (3) the results of the initial resource estimate that has been completed for the Property.

The Author concludes that the work completed to date on the Property has demonstrated the presence of a significant gold resource that warrants an underground exploration and development

program with the objective to confirm the geometry and continuity of the vein structures and to confirm sufficient measured and indicated mineral resources to warrant completion of a feasibility study. The author further concludes that additional drilling is warranted to extend the depth potential as well as the potential along strike to the east and west.

A preliminary economic assessment of the Project indicates that the Property has economic potential. The fact that there are currently operating mines in the Timmins gold camp also supports the conclusion that Timmins-type gold mineralization can be operated on a sound economic basis.

The following table summarizes the geological potential estimate and the mineral resource estimate that the Author has completed.

The Author recommends that the Company initiate planning for an underground exploration program on the Property with the objective to confirm the geometry and continuity of the vein structures and to confirm sufficient measured and indicated mineral resources to warrant completion of a feasibility study.

Summary of Mineral Resource and Geological Potential Estimates as of January 2008

	Tonnes	Grade Grams/tonne	Contained Gold troy ounces
Indicate Mineral Resource (to 350m)	362,090	8.0	93,140
Inferred Mineral Resource			
Drill Inferred (to 350m) Inferred Extensions (350 to 650m)	114,990 477,080	6.3 7.6	23,290 116,590
Total Inferred Mineral Resources	592,070	7.3	139,880
Geological Potential (to 650m)	6 to 7.8 million	8.0 to 10	1.5 to 2.5 million

The Geological Potential quantity and grade is conceptual in nature as there has been insufficient exploration to define a "Mineral Resource" as defined in NI 43-101 (see Appendix 1 for NI 43-101 Mineral Resource and Mineral Reserve Definitions), and it is uncertain if further exploration will result in the geological potential being delineated as a Mineral Resource".

Subject to completion of a positive feasibility study, the Author also recommends that the Company initiate planning for possible future mining on the Property by starting a program of environmental monitoring and other related work that may be required for the ultimate granting of operating permits by the various regulatory authorities.

Based on the preliminary scoping study prepared for this Report (Buck 2007) the following program and budget (adjusted for 5% inflation to 2010) is recommended:

- 1) Upgrade the gravel road access to the site and extend it to the area where the proposed ramp will be collared.
- 2) Establish a ramp from surface to the 150 metre level below surface and establish exploration drifts and crosscuts. It is recommended that the Company orient the ramp in order to access the area around UTM co-ordinate 486 250 E (NAD 83 datum).
- 3) Complete an underground drilling program and bulk sampling program with the objective to confirm sufficient measured and indicated mineral resource to warrant completion of a feasibility study.
- 4) Complete preliminary permitting work in preparation for Phase 2 Program.

5) Complete additional drilling, to further assess the depth and along strike potential of the resource, 17 holes totalling 6,000 metres.

Phase 1 Budget

TC	DTAL PHASE 1 BUDGET	24,050,000
5)	Additional Surface drilling (6,000 metres @ \$150/m all inclusive)	900,000
4)	Preliminary Permitting Work	525,000
3)	Bulk Sample (50,000 tonnes @ \$100/tonne)	5,250,000
2)	Underground drilling (10,000 metres @ \$150/metre)	1,575,000
1)	Items 1 and 2 above (Buck 2007)	15,800,000

1.0 INTRODUCTION

1.1 GENERAL

This technical report has been prepared by Geoex Limited at the request of Mr. Hugh Wynne, Chief Executive Officer of SGX Resources Inc. ("the Company"). The report was authored by Mr. Peter George, B.Sc., P.Geo. Mr. George ("the Author") has over 40 years experience in the mining industry including extensive experience in the gold exploration and mining sector in Canada.

The Company and San Gold Corporation ("SGC") acquired a 100% interest in the Property from Canadian Lithium Corp. (a successor company to Black Pearl Consolidated Inc.) by agreement dated August 9, 2010. The Company and SGC each hold a 50% interest in the Property. The Company is the operator and must contribute the first \$233,000 in exploration expenditures on the Property. Following the initial expenditure by the Company, expenditures will be shared 50:50 by the Company and SGC. The acquisition cost was \$200,000 in cash, 600,000 shares of the Company, and 150,000 common shares of SGC.

The Company has accepted that the qualifications, expertise, experience, competence and professional reputation of Mr. George are appropriate and relevant for the preparation of this Report.

1.2 TERMS OF REFERENCE

The purpose of this report ("the Report") is to evaluate the geological potential, to provide an initial mineral resource estimate and to prepare a preliminary assessment of the Tully Gold Project ("the Property") (formerly know as the Nickel Offsets property) in order to provided the management and boards of directors of the Companies with technical information that will allow corporate decisions to be made with regard to the future exploration and development of the Property.

The format and content of the report are intended to conform to Form 43-101F1 of National Instrument 43-101 ("NI 43-101") of the Canadian Securities Administrators.

There has been no exploration work done on the Property since the Author completed a NI 43-101 compliant report dated January 22, 2008 and titled "TECHNICAL REPORT, GEOLOGICAL POTENTIAL, MINERAL RESOURCE ESTIMATE, AND PRELIMINARY ASSESSMENT OF THE TIMMINS GOLD PROJECT, TULLY TOWNSHIP, PORCUPINE MINING DIVISION, ONTARIO, FOR BLACK PEARL MINERALS CONSOLIDATED INC."

The mineral resource and geological potential estimates contained in the current Report are taken directly from the January 22, 2008 report. The preliminary assessment has been updated to reflect current gold prices and operating and capital costs inflated (5%) to 2010.

1.3 SOURCES OF INFORMATION

Geoex has been provided access to all technical data available for the project, including but not limited to, digital files on all historical drilling and all recent technical reports on the Property.

The Author has also relied on his personal, in-depth knowledge of the general geological setting and mineral deposits of the Timmins area, which is based upon over 20 years of experience in the area.

1.4 SITE VISIT

The Author visited the site most recently on August 16, 2010 and on November 1, 2007. There is no outcrop on the property and significant portions of all core acquired since 1996 are stored in Timmins. The primary purpose of the site visit was to inspect current access into the property and distances to power and water, as well as meeting the requirements of NI 43-101 for a current site visit. The most recent exploration on the property was in 2004-5 by Argent Resources Ltd. (13 drill holes, 4,657 metres). The Author did not visit the property during the Argent period of drilling, however, the results of the Argent program did not materially impact on the resource potential of the Property.

In November 1998 following completion of the major drilling program that was completed by Canadian Lithium (then know as Black Pearl Minerals Consolidated Ltd, the Author visited the core logging facilities of Black Pearl. The Author reviewed core logging methods, sample preparation and analysis procedures, data verification, and quality control procedures and discussed the results of the drilling program with geologists responsible for that program.

1.5 UNITS OF MEASURE AND CURRENCY

All units of measurement used in this Report are Metric unless otherwise stated. In this Report gold values are reported in grams per metric tonne unless it is clearly stated otherwise. The Canadian dollar is used throughout this Report unless otherwise stated. At the time of writing this report exchange rate for conversion of U.S. dollars to Canadian dollars was C\$1: US\$0.97.

2.0 RELIANCE ON OTHER EXPERTS

In order to complete a preliminary assessment of the economic potential of the Property, the Author has relied upon a scoping study level estimate of operating and capital costs to develop and operate a gold mining operation of the type that would be considered applicable to the Property (Buck 2007). The scoping study was completed for Geoex Limited by Mr. Malcolm Buck, P. Eng., of P. & E Mining Consultants of Brampton, Ontario. Mr. Buck is an independent qualified person as defined in NI 43-101.

The Author has relied upon the Ontario Ministry of Northern Development and Mines ("MNDM") for information on mining claim location and mining claim status. The MNDM disclaims any guarantee or warranty that their information is accurate, complete or reliable.

The Author has relied upon the Company, its management and legal counsel for information related to underlying contracts and agreements pertaining to the historic acquisition of the mining claims and their status.

The Author has no reason to believe that there are any deficiencies in information that has been received from other experts that would have a material impact on the opinions, conclusions and recommendations expressed by the Author in this Report

3.0 PROPERTY DESCRIPTION AND LOCATION

3.1 PROPERTY DESCRIPTION

The Property is comprised of Lease #106606 (formerly #102554), Parcel #469, equivalent to 16 contiguous claim units covering 261 hectares (645 acres). The Lease includes both surface and mining rights, is in good standing, and is renewable for an additional 21 years on or before May 31, 2013. The Companies are the recorded owner of the lease.

The cost of maintaining tenure of the lease is comprised of Provincial Land Tax of \$38.70 per year and Provincial Mining Tax of \$1,935 per year.

Claim	Units	Parcel	Lease	Lease Period	Expiry Date	Registered Owner
P57463	1	469	106606	21 years	May 31, 2013	Black Pearl Minerals Consolidated Inc
P57464	1	469	106606	21 years	May 31, 2013	Black Pearl Minerals Consolidated Inc
P57467	1	469	106606	21 years	May 31, 2013	Black Pearl Minerals Consolidated Inc
P57468	1	469	106606	21 years	May 31, 2013	Black Pearl Minerals Consolidated Inc
P57471	1	469	106606	21 years	May 31, 2013	Black Pearl Minerals Consolidated Inc
P57472	1	469	106606	21 years	May 31, 2013	Black Pearl Minerals Consolidated Inc
P57473	1	469	106606	21 years	May 31, 2013	Black Pearl Minerals Consolidated Inc
P57474	1	469	106606	21 years	May 31, 2013	Black Pearl Minerals Consolidated Inc
P57475	1	469	106606	21 years	May 31, 2013	Black Pearl Minerals Consolidated Inc
P57476	1	469	106606	21 years	May 31, 2013	Black Pearl Minerals Consolidated Inc
P57479	1	469	106606	21 years	May 31, 2013	Black Pearl Minerals Consolidated Inc
P57480	1	469	106606	21 years	May 31, 2013	Black Pearl Minerals Consolidated Inc
P57485	1	469	106606	21 years	May 31, 2013	Black Pearl Minerals Consolidated Inc
P57486	1	469	106606	21 years	May 31, 2013	Black Pearl Minerals Consolidated Inc
P102250	1	469	106606	21 years	May 31, 2013	Black Pearl Minerals Consolidated Inc
P102251	1	469	106606	21 years	May 31, 2013	Black Pearl Minerals Consolidated Inc

Table 1 – Leased Claims, Timmins Gold Property

3.2 PROPERTY LOCATION (Figures 1 and 2).

The Property is located in the southwestern corner of Tully Township, Porcupine Mining Division, District of Cochrane, in Lots 10 and 11, Concessions I and II, approximately 20 kilometres north-northeast of the Timmins airport and 30 kilometres north-northeast of downtown Timmins, Ontario.

3.3 PROPERTY, OTHER OBLIGATIONS

The Company andSGC acquired a 100% interest in the Property from Canadian Lithium Corp. (a successor company to Black Pearl Consolidated Inc.) by agreement dated August 9, 2010. The Company and SGC each hold a 50% interest in the Property. The Company is the operator and must contribute the first \$233,000 in exploration expenditures on the Property. Following the initial expenditure by the Company, expenditures will be shared 50:50 by the Company and SGC. The acquisition cost was \$200,000 in cash, 600,000 shares of the Company, and 150,000 common shares of SGC.

Talisman Energy Inc., successor to BP Resources Canada Limited (Selco Division), holds a 5% net profits interest in the property. Negotiations are in progress to acquire this net profits interest.

To the Author's knowledge there are no current or pending challenges to the lease title as revealed by a title search in the Cochrane Land Registry Office. There are no environmental liabilities or significant issues related to previous exploration work on the property. Future underground

exploration on the property will require a variety of permits related to establishing underground access, including but not limited to, mining permits, on-site fuel and explosives storage, and water use permits, environmental and closure permitting, etc..

4.0 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPY

4.1 ACCESSIBILITY

The Property is located in the southwestern part of Tully Township, approximately 30 kilometres north-northeast of the City of Timmins, Ontario (Figure 1). Surface access to the Property from Timmins is easily gained via Highway 655 and an all-weather gravel road that turns east off Highway 655, 11.5 kilometres north of the Kidd Creek Mine access road. The gravel access road extends approximately 11 kilometres and terminates near the common boundary between Prosser and Tully Townships. A 3 kilometre long drill road turns south from this point and provides access to the Property. The gravel access road would have to be extended into the Property if an underground exploration program was initiated. Alternate access to the Property is by helicopter charter service from Timmins.

4.2 CLIMATE AND PHYSIOGRAPHY

The property is situated on the northern edge of the Gowan marsh, a regional-scale swamp, which dominates the topography of the area. The base elevation on the Property is approximately 290 metres above sea level. The topography is generally flat, with only a few feet of relief permitting dry clay ridges to rise above the open and forested swampy areas.

Vegetation consists of poorly developed black spruce, patches of alders and low shrubs. The immediate vicinity of the deposit has been cleared of trees, due to previous forest harvesting operations and numerous diamond drilling campaigns over the years.

The climate is typical of northern boreal forest areas, with extended periods of sub zero temperatures through the winter months of November through March. Moderate temperatures prevail during the summer months with temperatures in the range of 10-27°C accompanied by moderate precipitation. Exploration, development and production programs can be executed during all seasons of the year.

4.3 LOCAL RESOURCES AND INFRASTRUCTURE

All-weather road access could be achieved by constructing approximately 3 kilometres of new road to the existing gravel road network. Electrical power can be obtained from a transmission line located approximately 14 road-kilometres west of the Property. The Buskegau River, located immediately east of the Property offers an abundant source of process water. Large quantities of aggregate resources are located adjacent to Highway 655, approximately 14 kilometres west of the Property.

The City of Timmins, about 30 kilometres to the south-southwest, is the nearest source of mining related commercial and social services with an abundant pool of managerial and skilled labour.

The Companies own the surface rights on the leases sufficient for the construction of a mining and milling operation.

Custom milling of gold ore from the Property would be available in the Timmins area at a number of sites and could be an alternative to constructing a mill at the Property site in the event a production decision was made.

5.0 **PROJECT HISTORY**

5.1 PERIOD 1964 TO 2010

The following reviews the general exploration history of the Property. The drilling results which form the basis for this Report are discussed in Sections 10 and 16.

Nickel Offsets, Limited ("Nickel Offsets") staked the property in 1964, following the discovery of the Kidd Creek base metal deposit, located approximately 14 kilometres to the west. McIntyre Mines Limited ("McIntyre") optioned the property in 1968 to test airborne conductors thought to be indicative of base metal mineralization. The conductive horizon was found to be a thin graphitic unit in an auriferous shear zone. Gold-bearing quartz veins hosted in sheared mafic volcanic rocks were drill tested over a strike length of 300 metres, and to a depth of 215 metres by 25 drill holes (4,473 metres). McIntyre returned the property to Nickel Offsets in 1979.

In 1980, Nickel Offsets drilled 17 holes (3,080 metres), generally within the area previously drilled by McIntyre. In 1981, Nickel Offsets drilled 16 holes (3,334 metres), increasing the strike length of the deposit to 380 metres, the depth to 345 metres and widths in the range of 1.5 to 5.5 metres.

In 1987 and 1988, Noranda Exploration Company Ltd. ("Noranda") and partner Golden Princess Mining Corporation, optioned the Property and explored the Property and other staked properties in the southwestern part of Tully Township. Work on the Property included a magnetometer survey, a few lines of induced polarization surveying and 44 drill holes (9,113 metres) in the deposit area. The drill program extended the strike length of the deposit to 458 metres, and indicated that the deposit to be open to depth (Graham, 1987). With the demise of flow through funding, Noranda relinquished the option before completing a revised inferred resource calculation for the deposit.

Reports prepared for Canhorn Mining Corporation (1991) and Canhorn Chemical Corporation (1995) by A.C.A. Howe and Roscoe Postle Associates Inc., respectively, recommended further drilling to enhance the understanding of deposit. The recommended drilling was never completed.

In 1996, Black Pearl optioned the property, and commenced exploration in February 1997. A total of 61 drill holes (14,253 metres) were completed by the end of the three drilling campaigns conducted in 1997. The diamond drilling succeeded in verifying the previous drill intersections of gold mineralization, and significantly expanded the dimensions of the gold mineralized structure. All data was archived in Access 97, Drillpad or Surpac formats. In addition to drill collar surveys, drill logs and assays, the database also includes 750 specific gravity determinations. Drill core from Black Pearl and some of the Noranda drilling campaigns is stored in South Porcupine.

Exploration work in 1997 also included 40.5 miles of line cutting, magnetic, induced polarization and resistivity surveys over the main portion of the deposit. The magnetic data clearly shows a relative magnetic low coincident with the east trending shear zone that hosts the auriferous veins. Chargeability and resistivity data are censored by the conductive overburden in the survey area, however, in general there is a moderate chargeability response and a coincident high resistivity response over the main tuff horizon (shear zone) that hosts the auriferous veins.

In 2003 the Argent Resources Ltd. ("Argent") optioned the Property from Black Pearl. Karvinen (2003) reviewed the historical work on the property and Argent, based on Karvinen's review and recommendations, completed 13 drill holes (4,657 metres) that in Argent's opinion did not further enhance the potential of the property. The option agreement was terminated in 2006.

Other than the Author's report (George 2008) there has been no work done on the property since 2006.

6.0 GEOLOGICAL SETTING

The following description of the geological setting is modified after Harron (2003).

6.1 REGIONAL AND LOCAL GEOLOGICAL SETTING

Tully Township, situated in the Abitibi Greenstone Belt ("AGB"), is underlain by Neoarchean supracrustal rocks of the Abitibi Subprovince of the Canadian Shield. Supracrustal rocks are divided into tectonostratigraphic units called assemblages for descriptive purposes. The reader is referred to Jackson and Fyon (1991) for a full discussion of the Archean geology of the Superior Province and Ayer et al. (2000) for a more recent interpretation of the AGB geology. Gold deposits are structurally controlled and are widely distributed within the AGB, but all of the large deposits occur within 2 km of the Destor-Porcupine Fault Zone, the Pipestone Fault Zone and the Cadillac-Larder Lake Shear Zone. As of 1990, 70% of all gold production in Canada has come from the AGB. Gold production plus reserves for Abitibi deposits (Ontario and Quebec) calculated in 1991 were estimated at about 678,000,000 tons grading 0.22 ounces gold per ton.

Two predominantly volcanic assemblages and one predominantly sedimentary assemblage underlie Tully Township (Ayer and Trowell, 2001). To the west of the northwest-trending Buskegau River Fault, the Porcupine (sedimentary) assemblage (2696-2675 Ma) underlies the extreme southwestern corner of the township. The upper parts of the Porcupine assemblage unconformably overlies the Kidd-Munro (volcanic) assemblage (2719-2711 Ma), however, locally the lower part of the Kidd-Munro assemblage and lower part of the Porcupine assemblage inter-finger and are stratigraphic equivalents of one another. This is particularly notable in the Hoyle Township area along the Bell Creek-Hoyle Pond gold mining trend in the Timmins gold camp. The Kidd-Munro assemblage underlies the central part of Tully Township and is overlain to the northwest by the upper Tisdale (volcanic) assemblage (2710-2703 Ma). To the east of the Buskegau River Fault Kidd-Munro assemblage rocks underlie the extreme southeastern corner of the township.

The Kidd-Munro assemblage is divisible into two distinct suites. A lower tholeiitic to komatiitic portion, which consists of komatiites, magnesium- and iron-rich tholeiites; and a calc-alkaline portion consisting of intermediate to felsic pyroclastic rocks, including FIIIb type rhyolites (Lesher, et al, 1986). Rare sedimentary rocks are generally confined to narrow interflow units within the mafic volcanic rocks. Synvolcanic felsic intrusions and later diabase dykes intrude the sequence. The calc-alkaline portion of the assemblage is host to the Kidd Creek VMS deposit and several smaller VMS deposits in Munro Township. The ultramafic / mafic portion is host to the gold deposit on the Property and other gold occurrences within Tully Township.

An airborne magnetic survey shows considerable relief within the Kidd-Munroe assemblage (Dumont et al. 2002a, b). Magnetic highs appear to be coincident with unaltered ultramafic flows and magnetic lows appear to be coincident with mafic flows and altered ultramafic flows. The

magnetic patterns also appear to define west verging folds, or possibly transposed stratigraphy along contact parallel faults. Airborne electromagnetic patterns appear to be following stratigraphic horizons, and drill hole data indicates that most conductive horizons are graphitic responses.

The upper Tisdale (volcanic) assemblage occurs east and west of the Buskegau River Fault in the northeastern part of the township and remote from the Property. The basal mafic / ultramafic portion of this assemblage is host to the major gold deposits of the Timmins camp, such as the Hollinger, McIntyre and Dome mines. The upper Tisdale assemblage disconformably overlies the Kidd-Munro assemblage and is comprised of intermediate and felsic, epiclastic and pyroclastic volcanic rocks of calc-alkaline affinity. The magnetic pattern over this assemblage is subdued, with low amplitude magnetic responses over stratiform gabbroic sills. Electromagnetic responses within this assemblage are diffuse and of low conductivity. In the northwestern part of the township a zone of high conductivity EM responses caused by graphite and massive pyrrhotite marks the contact between the Tisdale and Kidd-Munro assemblages.

Porcupine assemblage rocks overlie the Kidd-Munro assemblage in the vicinity of the property. The sedimentary rocks are composed predominantly of fine-grained turbiditic sedimentary rocks with minor graphitic argillite and conglomerate horizons. A detrital zircon U/Pb age of 2698 Ma (Heather et al., 1995) for similar sediments at the Kidd Creek Mine defines a maximum age of the assemblage. Porcupine assemblage rocks are also thought to occur east of the Buskegau River Fault in the east central part of the Tully township (Berger, 2000). The magnetic pattern associated with this assemblage is subdued with stratiform electromagnetic responses.

Structural features of the bedrock are mainly interpreted from airborne magnetic surveys. Stratigraphic units as represented by their magnetic signatures generally trend east-northeast within the Kidd-Munro assemblage. This direction is mimicked by a well-developed penetrative foliation. Fold axes also appear to trend east-northeast as noted by reversals in younging directions determined from flow features. Stratigraphy parallel shear zones, such as at the Property are developed at some lithological contacts. Extensional lineations developed in the shear zones are moderately northeast plunging, a direction that is similar to lineations observed in the Timmins area (Pyke, 1982) and Hoyle Pond gold mines geology (Berger, 2000). This observations implies a similar and contemporaneous geodynamic process and possibly a similar metallogenic connotation, suggesting an untested gold potential along these structures in Tully Township.

Within the upper Tisdale assemblage magnetic patterns indicate northwest-trending lithologies cut by east-northeast-trending late faults. Stratigraphic facings indicate younging directions towards the northeast within this assemblage. The distribution of EM conductors in the northwestern part of the township suggests large amplitude northwest-trending folds.

Generally, the contact of the Porcupine assemblage with older rocks is an unconformity. However, in southwestern Tully township the contact with Kidd-Munro rocks is predominantly a zone of shearing. At the Property, sheared sediments form the structural hanging wall of the mineralized shear zone.

6.2 **PROPERTY GEOLOGY**

The Property is completely covered by Quaternary sediments and Holocene organic deposits. Cochrane Till overlies varved silts and clays of the Barlow-Ojibway Formation, which overlie the older Matheson Till. Details of the Quaternary geology of the area are described by Richards (1983).

There are no outcrops on the Property. The description of the bedrock geology is derived from drill core descriptions, geophysical interpretations and geological compilations. These studies suggest that the property is underlain by the Kidd-Munro assemblage and the Porcupine assemblage.

Komatiites and lesser amounts of mafic volcanic rocks underlie the extreme northwestern corner and the central portion of the property. Porcupine assemblage clastic sediments underlie the balance of the property. Historical and Black Pearl drill logs refer to the mafic volcanic rocks as "tuffs" due to the well developed schistosity imparted by shearing.

Drill core logging by Polk (1998) provides very detailed descriptions of the lithologies in the vicinity of the known mineralization on the Property.

6.2.1 Lithology

Porcupine assemblage rocks consist of fine-grained, grey to black, carbonaceous argillites, siltstones and greywackes occurring in the structural hanging wall (north side) of the deposit. Carbonaceous argillites containing layers of semi-massive to massive pyrite commonly occur at the sedimentary-volcanic contact and account for the electromagnetic response associated with the deposit. Thin units of sericitic schistose sediments containing appreciable amounts of pyrite also occur within 10-40 feet of the sedimentary - volcanic contact indicating lateral facies equivalent deposition of Porcupine assemblage rocks during the waning stage of Kidd-Munroe assemblage volcanism.

Kidd-Munro assemblage volcanic rocks host the bulk of the gold-bearing quartz-carbonate veins. The upper portion of the volcanic stratigraphy (approximately 40 metres) is typically light grey green and moderately foliated tuff, with a discontinuous cataclastic texture. The lower part of the stratigraphy is dominated by dark green massive basalt and pale green pillow structures with chloritic selvedges.

A thin discontinuous graphitic argillite layer marks the contact between the mafic volcanic rocks and the underlying komatiites. This unit is highly altered by carbonate minerals, silica and pyrite, and contains anomalous gold values.

Basaltic komatiite flows occur as a thin layer stratigraphically below the graphitic argillite. The flows are dark green to black with a medium-grained texture. The komatiite and the overlying graphitic argillite host the "Footwall Zone" gold-bearing quartz-carbonate veins.

Blue-black peridotitic komatiites are separated from the overlying basaltic komatiites by either a sharp contact or a talc-chlorite fault zone. These rocks are variably altered to serpentine, talc-chlorite rock and contain 2-4% disseminated magnetite and minor amounts of pyrite and pyrrhotite.

Several drill holes intersected narrow dykes of siliceous porphyry composed of 5-15% euhedral feldspar porphyroblasts with rare quartz porphyroblasts set in a black matrix. The porphyry is mineralized with magnetite and 3-4% disseminated pyrite / sphalerite, and trace amounts of chalcopyrite.

6.2.2 Alteration

Hydrothermal alteration varies systematically across the sedimentary and volcanic sequence. The Porcupine sediments are essentially unaltered except for a few barren quartz carbonate veins enveloped by silicification and minor sericite. The upper tuff hosted in the sediments is intensely pyritized, sericitized and locally silicified, imparting a bright green colour and a waxy texture to the unit.

The graphitic argillite at the top of the volcanic sequence is associated with intense silicification and carbonatization hosting quartz veins and foliation parallel quartz stringers. The tuffaceous and massive / pillowed mafic volcanic rocks exhibit pervasive carbonatization (ankerite-dolomite), chloritization and silicification. Komatiitic volcanics are pervasively carbonatized (ankerite-dolomite) and often exhibit some silicification and chlorite development. Fuchsite alteration occurs in the eastern end of the vein system and appears to correlate with higher gold values (Polk, 1998).

Alteration minerals associated with quartz-carbonate veins also vary across the shear zone, Hanging wall veins adjacent to the sedimentary rocks show varying degrees of "grey alteration" imparted by reduced carbon included in the quartz. Main zone veins are mainly white quartz with pyrite, ankerite, chlorite and minor sericite. Footwall veins are dominantly white quartz with pyrite, ankerite, dolomite and minor hematite.

6.2.3 Structure

Property scale structures derived from drill core observations and geophysical data indicate that the deposit is situated on the 80-85° north dipping southern limb of an east-northeast trending overturned synclinal structure. The northern limb of this syncline is located near the northern boundary of the property. Given the style of folding, a complementary anticlinal structure is postulated to occur to the south of the synclinal structure on the property. This suggests that additional favourable structures are present, and are untested.

The mineralized vein systems on the property are primarily located within shear and tensional fracture zones developed within the more competent mafic volcanic strata, along the contacts between the adjacent, less competent ultramafic volcanic and sedimentary units and in structures cross-cutting the mafic volcanic unit.

Post mineralization faults occur in two main trends. North-northwest striking sub-vertical late faults locally offset the vein system in a north-south direction. East striking moderate to shallow north dipping faults with a dextral sense of displacement cause horizontal displacement of the vein system. These offsets are estimated to be in the order of 1 to 5 metres.

7.0 **DEPOSIT TYPES**

7.1 EXPLORATION TARGETS

The exploration target on the Property is a zone of gold mineralization hosted in structurally controlled zones of quartz-carbonate veins. The exploration model is described in Section 7.2.

Because of the small quantities of gold per tonne that are required to make an economic gold deposit, and further because the gold in this type of mineralization is seldom uniformly distributed throughout the vein structure and is most commonly either in small clusters of fine grained gold or in relatively large pieces of coarse free gold, it is very difficult to achieve representative sampling of the vein structure by drilling. See Section 16.2 for a thorough discussion of the sampling issues.

7.2 **DEPOSIT MODELS**

Roberts (1998) has provided an updated statement of the geological characteristics of Archean gold deposits (update of Roberts 1996).

Roberts has concluded that a close examination of the geological characteristics of Archean worldclass gold deposits reveals a significant diversity in the nature and chemistry of the ore, hydrothermal alteration, and lithological or structural associations. Several geological styles of deposits can be distinguished:

- Quartz-carbonate veins in shear zones, faults and folds, and related extensional structures;
- Zones of stockwork veinlets and disseminated sulphides associated with small porphyry intrusions;
- Sulphide-rich veins and vein arrays;
- Gold-rich volcanogenic massive sulphide ("VMS") lenses in felsic volcanic rocks; and
- Rare carbonate-rich veins and siliceous replacements.

Geological relationships suggest that the porphyry-style, gold-rich VMS and possibly epithermalstyle deposits have formed during the stages of construction (volcanic-plutonic activity) of the greenstone belts at depths of less than 5 kilometres, whereas orogenic deposits have formed during deformation at depths in excess of 5 kilometres.

These different styles of gold deposits commonly occur within the same districts or along the same fault zones, indicating that gold deposits within a given district formed at different crustal levels, at different times, and by different processes, and have been juxtaposed by successive episodes of burial, uplift, and deformation that have been focussed in certain areas.

With specific reference to the southern Abitibi Greenstone Belt, where the Property is located, Roberts notes that development begins with the accumulation of volcanic rocks in one or more cycles and the emplacement of coeval igneous intrusions. This represents the main phase of construction of volcanic plutonic edifices, which is partly accompanied by, but mostly followed by, turbidite (greywacke, shale and siltstone) sedimentation. This main phase of construction was followed by a first episode of deformation (D1) tilting, folding and overthrusting of supracrustal units, accompanied by diorite-tonalite intrusions. Subsequent uplift and erosion led to the deposition of alluvial-fluvial Temiskaming-type sedimentary rocks above an angular unconformity. This Timiskaming-stage can be regarded as a renewed stage of volcano-plutonic construction as it was accompanied by the emplacement of high level intrusives and volcanic rocks of alkalic composition. The Timiskaming stage was followed by the main period of deformation of the volcanic-plutonic edifices, beginning with regional D2 shortening across the belt and evolving into D3 transcurrent deformation.

Quartz-carbonate vein deposits consist of networks of quartz-carbonate veins in moderately to steeply dipping brittle-ductile shear zones and related extensional veins and vein arrays and breccia veins in relatively competent lithologic units. The deposits are spatially associated with major shear zones but have a tendency to be hosted by second and third-order structures and splays. In the larger deposits, the vein networks have a surface footprint exceeding 1 kilometre of strike length and generally extend vertically to depths of 1 kilometre or more (McIntyre deepest levels were at approximately 2.5 kilometres below surface.

Robert (op cit) further noted that there is a strong association of world-class deposits with districts that contain a large proportion of mafic and ultramafic volcanic rocks.

As an aside the Author would point out that the mafic and ultramafic volcanic rocks of the lower part of the Kidd-Monroe assemblage, and its stratigraphic equivalents elsewhere in the Abitibi Greenstone Belt, are clearly spatially associated with all of the major gold deposits in the area.

An important implication of Robert's findings is that successful gold exploration in these belts must be based on multiple models and multiple sets of exploration criteria.

In the Timmins gold camp, all of the above-mentioned styles of mineralization can be found, and multiple styles can be found within a single mine, for example the Dome and Hollinger-McIntyre mines.

In quartz-carbonate vein deposits gold mineralization occurs in both the veins and in adjacent altered wall rocks, with the bulk of the gold found in the veins. The mineralized veins consist of quartz and carbonate minerals, with subordinate amounts of pyrite, arsenopyrite, pyrrhotite, native gold, base metal sulphides, tournaline, scheelite, talc, sericite and chlorite. Alteration envelopes, a few metres to tens of metres thick surround the veins, and may consist of reduced carbon, carbonatization, potassium metasomatism, sodium metasomatism, sulphidization and silicification (Card et al, 1988).

Carbonatization is the most common and most extensive type of alteration. This type of alteration involves the progressive replacement of Ca, Fe and Mg silicate minerals by carbonate species through the addition of carbon dioxide and is inwardly zoned from calcite to ankerite and dolomite. Potassium metasomatism is found in close proximity to the veins as sericitization of chlorite and plagioclase, the development of K-feldspar and biotite and the presence of fuchsite in ultramafic rocks. Sulphidation is restricted to the immediate wall rocks of the veins. Pyrite is the dominant sulphide with lesser amounts of pyrrhotite and arsenopyrite, but the volume of total sulphide minerals is generally less than 10%. Sodium metasomatism results in the formation of albite and paragonite. Silicification results in quartz-flooding of the host rocks and an abundance of quartz veinlets and stockworks.

At the district and property scale, exploration for quartz-carbonate lode gold deposits focuses on broad transpressional shear zones located along lithologic boundaries. The gold mineralization tends to occur within structures measuring hundreds to thousands of metres long that are subsidiary to major fault zones. At a more local scale mapping of alteration mineral assemblages can delineate favourable portions of shear zones. Even though the sulphide content of the quartz veins and the associated wall rock alteration is low, induced polarization and resisitivity geophysical methods result in a recognizable chargeability response, while the increased quartz content is recognized as an increase in resistivity. Carbonitization causes destruction of magnetic minerals in mafic rocks, creating a negative magnetic feature coincident with alteration surrounding the lode deposits. In glaciated areas, geochemical surveys using heavy mineral concentrates derived from sampling till can be used to define areas of potential lode gold mineralization. In addition, Mobile Metal Iontype soil geochemical surveys have proven to be applicable in overburden covered areas.

The geological setting of the Company's Tully Gold Project is very similar to the Bell Creek to Hoyle Pond mine trend, known as the "New Mine Trend" in Timmins as it was first developed in the 1970's. The Hoyle Pond mine has been the subject of a recent and very informative NI 43-101 report (Roque et al 2006).

8.0 MINERALIZATION ON PROPERTY

8.1 MINERALIZED ZONES

Lode gold mineralization, typical of gold deposits found in the Timmins area has been found on the Property. The gold-bearing vein structure is hosted in a sheared "tuffaceous" facies of a mafic volcanic sequence between hanging wall (north side) metasedimentary rocks and footwall (south side) ultramafic volcanic rocks, as described in Section 6.2 of this report.

Native gold is associated with quartz carbonate (ankerite, dolomite) veins with 3-5% subhedral to euhedral pyrite along vein margins. Accessory minerals include sphalerite, chalcopyrite, tellurides, arsenopyrite, siderite fuchsite and hydromuscovite.

8.2 HOST ROCKS, STRUCTURES AND ALTERATION

The host rocks, structures and alteration are described in Section 6.2.

8.3 LENGTH, WIDTH, DEPTH AND CONTINUITY OF MINERALIZATION

As discussed further in Section 16.2, it is important to determine the potential tonnage of the mineralized zone in assessing the geological potential of the mineral resource on a gold property of this type.

The author evaluated the vein system geometry and continuity based upon level plans and cross sections spaced 25 metres apart.

The digital drill hole database contained detailed information relating to % quartz veining in the core and this data was used to estimate vein system geometry on individual level plans and cross sections. The area of the vein system was determined on each plan and section.

As had been concluded by site geologists who have previously worked on the property, the Author's interpretation indicates the presence of vein structures that are subparallel to the hanging wall and footwall contacts of the mafic volcanic unit as well as vein structures that cross cut the mafic volcanic unit. The cross cutting vein structures appear to have a north westerly strike trend and northeast dip which suggests the secondary stress field was oriented west northwest and plunging 10 to 20 degrees to the west (that is, left lateral horizontal movement along the contacts with the south side down).

The width of the vein structures increase in areas where the two orientations of vein structures intersect.

It is the Author's opinion that the development of these complex vein structures was caused by progressive deformation, comprised of both brittle fracture and ductile shearing during multiple phases of regional deformation.

Typically, the final stage of mobilization or remobilization of gold into the vein system, is into late stage brittle fractures in the competent highly siliceous vein structures.

Based on the Author's level plan and cross section evaluation of the vein structure, the structure pinches out to the west, plunges steeply to the east, is present along a known strike length of approximately 400 metres and is open to the east and at depth. The known vertical extent from the bedrock surface (approximately 30 metres below surface) is approximately 300 metres.

8.4 SIGNIFICANT ASSAY RESULTS

Significant assay results are presented in Appendix 3.

9.0 EXPLORATION

9.1 HISTORICAL EXPLORATION ON THE PROJECT

The history of exploration on the Property has been described in Section 5.0.

There is no outcrop on the Property and initial exploration of the Property was focussed upon evaluation of airborne electromagnetic anomalies for base metals, following discovery of the Kidd Creek Mine, located approximately 14 kilometres to the west of the Property.

Drilling completed on the Property since 1968 forms the basis for this Report on the Property.

10.0 DRILLING

10.1 HISTORICAL DRILLING ON THE PROJECT

10.1.1 Type and Extent of Drilling

All drilling on the property has been core drilling, with the majority being BQ-size (3.64 centimetres diameter). Table 10.1 summarizes the drill holes that have been completed to date in the vicinity of the gold mineralization and that have been used in this Report. Drill Plans and Drill Sections are presented in following sections of this Report.

		Table 2				
Summary of Drilling, Timmins Gold Project						
Company	Years	Hole ID	Total Holes	Total Metres		
McIntyre Mines Limited	1969	69-01 to 69-21	21	4,105		
Nickel Offsets, Limited	1980-81	80-01 to 80-15	31	5,782		
		81-01 to 81-16				
Noranda Exploration Co. Ltd.	1987-88	87-01 to 87-24	44	9,113		
		88-25 to 88-43				
Black Pearl	1997	97-01 to 97-61	61	14,253		
Argent Resources Ltd.	2004	A-01 to A-14	13	4,657		
Total			170	37,910		

During Black Pearl drilling program in 1997, an attempt was made to archive historic core from the property. None of the core from the 1969 drilling was salvageable, however, holes from 1987-88 drilling were sorted and reboxed with important intersections stored at the Company's storage facility in Timmins. Core from the Noranda Exploration program is stored at the Noranda storage facility in Timmins.

Important intersections from the 1997 and 2003-2006 programs are also stored at the Company's storage facility in Timmins.

10.2 CURRENT DRILLING ON THE PROJECT BY THE COMPANY

There is no current drilling on the Project. The last drilling by Black Pearl was in 1997 and the most recent drilling on the property was by Argent Resources Limited in 2003-2006.

11.0 SAMPLING METHOD AND APPROACH

The following descriptions are based upon the drilling completed since 1988. Historic sampling methods and approach are not available, however, the Author lived and worked in Timmins during the 1970's and is familiar with the personnel and operations of that era in the Timmins area. The author is of the opinion that the geologists of that era followed procedures related to the logging and sampling of core that would meet current NI 43-101 standards.

11.1 SAMPLING METHODS (Black Pearl)

Diamond drill core is placed in labelled wooden trays and localized by depth locks inserted by the drill contractors personnel prior to removal of the core from the drill site by the drill geologist. Upon arrival at the secure core logging facility the core boxes are sequentially placed in a core rack. Spatial information related to each box of core is checked for accuracy and consistency at this point. Remedial actions are undertaken, if necessary, to correct deficiencies in the spatial information prior to entry into a database.

An experienced contract geologist completed logging of the core and the observations are entered into a drill log database prior to selecting samples for analyses. Selected portions of the core were marked and measured for sampling and are identified with one part of a three part assay tag, placed at the end of the sample interval. Samples were produced by sawing the core perpendicular to the foliation, with one half of the core returned to the core box and the other half placed in a clean plastic bag along with part two of the three part assay tag. Information on the third part of the assay tag is entered into the database and the drill log, at which time accuracy and consistency are again reviewed and remedied, if necessary.

Polk (1998) indicates that when half core samples containing visible gold were selected for assay, the half core with the largest concentration of visible gold was submitted.

The entire volcanic rock section from the sediments in the upper portion of the drill core to the ultramafic rocks in the lower portion of the drill core was sampled. Generally 1.5 metre (5 ft.) intervals of un-mineralized rock constituted a single sample. Sample lengths in mineralized portions of the core characterized by silicification, carbonate alteration, sulphide minerals, quartz veins and visible gold are variable and were based upon geological considerations.

Sealed sample bags were transported to the analytical laboratory in a timely fashion by the analytical laboratory personnel, and transferred to the laboratories chain of custody procedures and protocols.

11.2 SAMPLING OR RECOVERY FACTORS

Core recovery is generally good in the Project area and the Author is confident that there are no sampling or recovery factors that would negatively impact the sampling procedures.

11.3 SAMPLE QUALITY, REPRESENTATIVENESS, AND SAMPLE BIAS

The sampling methods are to industry standards for mineralization of this type, recognizing that there are serious issues relating in general to sampling of gold deposits because of the low quantities of gold that are needed to make an economic deposit (See discussion in Section 16.2).

The author is of the opinion that the sampling methods meet NI 43-101 standards.

12.0 SAMPLE PREPARATION, ANALYSES AND SECURITY

All Black Pearl sample preparation and analyses were conducted by Swastika Laboratory, Swastika, Ontario, P0K 1T0.

Samples without visible native gold were subjected to normal analytical procedures. Sample preparation procedures involve jaw crushing to -1/2 inch, with further size reduction to -10 mesh by a roller mill. A 350 gm sample is riffled from the -10 mesh sample and pulverised to >90% -200 mesh. The gold concentration is determined in a homogenized 30 gm sample using a fire assay collector and atomic absorption techniques.

Swastika voluntarily re-assays every 10th pulp (on average) as a check on laboratory precision, and at their discretion frequently assays a second pulp.

Samples with visible gold were subjected to metallic sieve analyses. The total submitted sample was screened through a -100 mesh sieve. The +100 mesh portion (including the sieve cloth) is fire assayed in its entirety to determine the coarse gold content. The -100 mesh portion is fire assayed in duplicate to determine the non-coarse gold content. A weighted average is then calculated to determine the overall gold content of the entire submitted sample.

Black Pearl also completed third party laboratory check samples, which confirmed the validity of the Swastika Laboratory results.

The Author is of the opinion that all potential gold mineralized zones in drill core have been sampled. Security of the samples both at the core logging facility and the analytical laboratory appear to be adequate to ensure the integrity of the samples. The use of the metallic sieve method of assaying samples containing coarse visible gold provides a more accurate measure of the gold concentration in the core samples. The bias introduced into the sampling technique by submitting the half core with the largest amount of visible gold is noted but not quantified. In general terms this sampling technique would accentuate the "nugget effect".

No standards or blanks were inserted in the batches of samples sent to the assay laboratories except for the assaying done for the 2004 drilling by Argent.

13.0 DATA VERIFICATION

The author did not undertake any check sampling and assaying. The assay data was reviewed in detail and cross-checked against drill logs and assay sheets by Harron (2003) and no material errors or omissions were noted. All assaying was by reputable assay companies with long histories of quality work.

Swastika Laboratory was the principal assay laboratory during Black Pearl's drill program in 1997 and as a standard practice re-assayed approximately every 10th sample as well as frequently carrying out a re-assay of a second pulp as an internal check on their own analyses. Black Pearl also completed third party laboratory check samples, which confirmed the validity of the Swastika Laboratory results.

There is no way to verify the quality of historic assays pre 1997, however, the exploration groups that previously explored the Property had significant experience in the Timmins area and the Author has no reason to question the validity of the data that they produced.

The Author compiled all of the drill hole information into a digital database for use in Geosoft Target software in order to prepare current drill sections, level plans, and longitudinal sections for the evaluation of the geological potential and mineral resource potential of the Project. During the data compilation the Author found no material errors or omissions in the numerous sources of information compiled into the current digital database.

The Author is of the opinion that the assay data base for the Project is of sufficient quality to provide the basis for the conclusions and recommendations reached in this Report.

14.0 ADJACENT PROPERTIES

The reader is cautioned that information presented on adjacent properties in this section is not necessarily indicative of the mineralization on the Property that is the subject of this Report.

There are eight gold occurrences in Tully Township (Berger 2000) of which two are proximal to the Property. The Texmont deposit and the Frankfield deposit (the fault offset extension of the Texmont deposit) are approximately 1.6 kilometres north of the Property. The geological setting is similar to the geological setting of the mineralization on the Black Pearl property and indicative of widespread gold potential in the immediate area of the Property.

The Texmont was discovered in 1968 by diamond drill testing of an electromagnetic conductor and the Frankfield deposit was discovered in 1974, also by drill testing of an electromagnetic conductor 4,000 feet east of the Texmont deposit. No resource estimates have been made for these properties. The Texmont and Frankfield deposits occur in Kidd-Munroe assemblage mafic and ultramafic volcanic rocks adjacent to a shear zone contact with Porcupine assemblage sedimentary rocks. The mineralization is primarily structurally controlled quartz-pyrite-arsenopyrite veins and stringer zones but at the Frankfield deposit there is also disseminated pyrite-arsenopyrite mineralization in silicified graphitic mudstone and mafic tuff adjacent to the mafic volcanic-ultramafic volcanic contact. Silicification, carbonatization, sericitization, and hematization are associated with both types of mineralization.

The Author has also relied upon information on other gold deposits in the Timmins area in his assessment of the geological potential of the Property, specifically a recent detailed report (Roque et al 2006), which provides in depth information on current operations at the Dome, Hoyle Pond, and Pamour mines, currently all owned by Goldcorp Inc.

15.0 MINERAL PROCESSING AND METALLURGICAL TESTING

Neither the Company or any of the other companies that have worked on the Property have completed any mineral processing or metallurgical testwork on samples from the Property.

The mineralization on the Property is visually very similar to that which occurs in operating mines in the Timmins area and the Author is of the opinion that there will be no technical issues with milling of mineralization from the Property.

16.0 GEOLOGICAL POTENTIAL AND MINERAL RESOURCE ESTIMATES

16.1 INTRODUCTION

The primary objective of this report is to provide an estimate of the geological potential of the Property. Secondarily an initial resource estimate is made for portions of the property where the Author is of the opinion that there is sufficient evidence of continuity of vein structure coupled with assay values that would be considered economic on the basis of the preliminary assessment contained in Section 18.

Opinions on the geological potential of a property are permitted under Sections 2.3(2) and 2.3(3) of National Instrument 43-101 ("NI 43-101") provided that it is clearly stated that "the potential quantity and grade is conceptual in nature, there has been insufficient exploration to define a "Mineral Resource" as defined in NI 43-101 (see Appendix 1 for NI 43-101 Mineral Resource and Mineral Reserve Definitions), and it is uncertain if further exploration will result in the target being delineated as a Mineral Resource".

16.2 BACKGROUND CONSIDERATIONS RE ESTIMATION OF GEOLOGICAL POTENTIAL

Geological and management personnel of the Archean gold mines of the gold districts of Ontario (Timmins, Kirkland Lake, Red Lake, etc., have intuitively understood for over a century, the issues of assessing the gold content of gold bearing structures using diamond drilling. The standard operating procedure for decades has been "drill for structure" and "drift for grade". This was basically the standard operating procedure for all of the Archean gold mines that have been historically opened in Canada. Most were discovered on the basis of significant surface showings and were initially explored by shallow shafts and drifting on the vein. As districts became well established in the post World War 2 era, drilling of small surface showings along trends within and along strike from established districts became a favoured exploration methodology.

Exploring for new Archean gold mines in overburden or water-covered areas must rely completely on drilling to define new zones of subcropping gold mineralization. Similarly, in-mine exploration at depth and along strike commonly must rely on drilling of wide-spaced holes to provided indications of lateral or vertical extensions of known ore bodies.

Rogers (1982), in his analysis of drilling as an aid in ore definition at the Dome Mine in Timmins, clearly substantiated the sampling problem. Drawing on more than 72 years of mining history at the Dome and an analysis of 20,000 drill holes totalling over 1,215,000 metres (756 miles), Rogers states that:

"Diamond drilling plays an important role in the evaluation of the stratigraphic and structural features which control ore deposition. The main function of diamond drilling is to locate favourable areas of mineralization. Needless to say, a great many significant intersections, carrying a wide range of gold values, have resulted, however, the term "significant" takes on new meaning in light of the experience of diamond drilling in a number of ore-type situations at the Dome Mine. Drilling through individual ore veins such as the Fuchsite Vein, or the Quartz-Tourmaline Vein, often intersect the vein structure; however, assays from the veins frequently fail to yield any ore grades. Similarly, drill cores through stringer-type occurrences, when assayed, fail to indicate the true size or grade of the ore body finally mined." Rogers further noted that "those who explore for gold and those

who have the slightly less fickle task of actually mining gold have shared a common dilemma. That dilemma lies in the failure to relate the results of diamond drilling to a positive ore situation, or ultimately to reconcile the "diamond drill indicated ore" to actual ore reserve tonnages."

Rogers concluded that, "the role of diamond drilling is paramount to success or failure in the "making of a mine". Once a discovery is made, some appreciation of the size of the deposit must be understood before the economic viability of further development can be ascertained. To that end diamond drilling is asked to play its conventional role. However, at the Dome Mine, in the exploration and development of gold-bearing deposits, diamond drilling results are often misleading when consideration is given only to the economic value of the drill core assays themselves."

From his review of the Dome drilling Rogers further noted that 40 to 60% of holes completed through multi-vein gold structures and 50 to 80% of holes completed through single vein structures areas failed to return any gold values in excess of 1.7 grams per tonne in areas that were ultimately mined. The majority of this drilling was short, close-space holes, drilled from levels and sublevels to evaluate ore blocks that were planned to be stoped.

At the time of Rogers (1982) analysis, the Dome Mine had produced 42.7 million tons of ore and 11.1 million ounces of gold (Atkinson 1985), which is equivalent to 38.3 million tonnes of in-situ resource grading 10.3 grams gold per tonne (based on 10% mining dilution, 90% mine recovery, and 95% mill recovery).

Also, if one reviews the annual production and reserve information for the Dome Mine over its long history, rarely did the proven reserve base ever exceed 3 years of future production until the 1990's when the bulk mining open pit was developed.

Clearly, based on the above analysis, in the evaluation of the geological potential of a predevelopment-stage gold property such as the Property that is the focus of this Report, emphasis must be placed upon the tonnage potential of the vein structures, and a review of the overall hit and miss ratio of the gold intersections obtained during the exploration stage drill program.

None of the great gold mines of the Timmins camp would ever have achieved production if a requirement of financing of the initial development had been to demonstrate 7 to 8 years of proven plus probable mineral reserves as defined in NI 43-101.

In the past 4 years, as a result of corporate needs, there have been NI 43-101 reports prepared (a) for the Dome, Hoyle Pond, and Pamour mines in the Timmins camp, Ontario (Rocque et al 2006, Couture 2003), (b) for the Campbell and Red Lake Mines in the Red Lake camp, Ontario (Crick et al, 2006), and (c) the Musselwhite Mine in the Pickle Crow area, Ontario (Mah 2006). The aforementioned reports provide significant information relating to grade estimation issues in typical Archean vein-type gold deposits in Ontario. The information is very relevant to the issues relating to sampling this type of gold deposits by drilling.

All of these operations have sampling issues relating to reconciliation of grades indicated by all manner of sampling (drill core, chip samples, muck samples from ore cars and trucks, and belt samples from various points in the mill). Most of these operations treat each vein-type or stoping area as individual projects and use sophisticated geostatistical software to determine assay indicated grades, capping grades, etc in order to reconcile resource and reserve estimates with mill production.

Over the past several decades, geostatisticians (Pitard, 1993a,b, 1998, 2002, Ingamells and Pitard, 1986) have published extensively on gold sampling theory and all recognize that the primary and most problematic issue is "Nugget Effect".

Typically, in Archean vein-type gold deposits, gold is very rarely uniformly distributed throughout the vein structure but rather, occurs as clusters of small particles or single masses of spectacular "nuggety" gold. This random, unpredictable distribution of gold influences all sampling of gold mineralization, whether it be (1) exploration drill core, (2) close-spaced underground stope planning drill core, (3) channel sampling of drift faces, development raises and sublevels, (4) sampling of mined ore by underground car or truck sampling or belt sampling after primary crushing in the mill. This problematic sampling issue is what is known as the "Nugget Effect".

These same statisticians also point out that once the sample is acquired and sent to an assay laboratory where it is crushed and then subdivided into a smaller sub-sample for fine grinding from which is ultimately take a smaller sample that is submitted to the assay laboratory (commonly 30 grams of material, know as one-assay-tonne). The whole process, which has been industry standard for decades, has a high risk that the final one-assay-tonne sample will not be representative of the material originally sampled.

When one considers (a) the small number of grams of gold that are required to produce economic grades in a tonne of ore, then considers (b) the small volume of that small amount of gold, compared to the volume of one tonne of ore and (c) further considers the volume of core in a single diamond drill hole passing through that tonne of ore, the issues implicit in sampling with drilling for grade becomes apparent. Table 16.1 provides a simple summary of the above facts.

Core Size	Core Diam (cm)	Core Vol. (cm ³ /m of core)	Grade (Au g/t)	(Au oz/T)	Au Vol. (cm ³)	Ore Vol./tonne (cm ³)@SG 2.8
BQ	3.637	1,870	4	0.117	0.25	357,615
NQ	4.763	3,207	8	0.233	0.50	357,615
HQ	6.350	5,700	16	0.467	1.01	357,615
-			32	0.933	2.01	357,615
			64	1.867	4.03	357,615

Table 3Volumetric issues regarding sampling vein systems by drilling

The ratio of the volume of gold per volume of a tonne of ore is in the range of 1:90,000 to 1:1,430,000 depending on the gold grade.

The ratio of the volume of one drill hole through the volume of one tonne of ore is in the range of 1:60 to 1:190 depending upon the diameter of the drill core.

Close-spaced, production planning, stope definition drilling is generally on 5 to 10 metres spacing, therefore a 2-metre wide shrinkage or cut and fill stope has one drill intersection per 140 to 560 tonnes of ore. As noted by Rogers (1982) over half the holes drilled for stope planning returned less than 1.7 grams per tonne (the Dome mine consistently averaged over 10 grams per tonne of annual underground production for decades). These facts substantiate the issues and problems with sampling gold ore bodies by drilling regardless of whether it is in the exploration of the production phase.

In the Author's opinion it is demonstrably valid to assess the geological potential of an undeveloped gold zone by establishing the volume of vein zone or mineralized structure as a basis for estimating

tonnage potential, and, assessing the grade potential based upon the grade of similar deposit types, and where available, the statistics of the assay data for such deposits.

Major financings for underground exploration and development of Archean gold deposits should be based on well-defined geological potential, otherwise, there is a high probability that Ontario will miss out on significant gold production.

In addition to the standard operating procedure "drill for structure" and "drift for grade" that was common to the major Archean gold mining operations in Canada, the other commonly accepted parable was that "gold mines are made, not discovered".

16.3 GEOLOGICAL POTENTIAL METHODOLOGY

16.3.1 Geological Tonnage Potential

The Author's initial step in determining the geological potential of the Property was to prepare a complete set of level plans and cross sections, which illustrate major geological contacts, percent quartz veining observed in the drill core, and gold assay information.

Subsequently, level by level and section by section interpretation of the outline of the mineralized zone was completed and the area in square metres of the vein structure on each level and section was determined. The volume and tonnage estimates based on levels and sections were determined separately and are presented in Table 4.

Level asl	Vein Area	Volume	tonnes	Section	Vein Area	Volume	tonnes
	sq. m	cu. m			sq. m	cu. m	
300 m				5975 E			
275 m				6000 E	281	7,025	19,670
250 m	2,775			6025 E	87	2,175	6,090
225 m	4,718	58,975	165,130	6050 E	103	2,575	7,210
200 m	4,234	105,850	296,380	6075 E	71	1,775	4,970
175 m	5,932	148,300	415,240	6100 E	1,787	44,675	125,090
150 m	4,692	117,300	328,440	6125 E	1,634	40,850	114,380
125 m	5,787	144,675	405,090	6150 E	4,256	106,400	297,920
100 m	4,927	123,175	344,890	6175 E	1,715	42,875	120,050
75 m	3,997	99,925	279,790	6200 E	1,131	28,275	79,170
50 m	4,898	122,450	342,860	6225 E	2,535	63,375	177,450
25 m	4,616	115,400	323,120	6250 E	1,689	42,225	118,230
0 m	5,173	129,325	362,110	6275 E	2,986	74,650	209,020
- 25 m	4,316	107,900	302,120	6300 E	1,983	49,575	138,810
- 50 m	3,117	77,925	218,190	6325 E	1,386	34,650	97,020
				6350 E	2,385	59,625	166,950
	Total tonnes		3,783,360	6375 E	2,440	61,000	170,800
				6400 E	1,943	72,863	204,015
				6425 E		No drilling or	section
				6450 E	2,789	104,588	292,845
				6475 E	2,895	72,375	202,650
				6500 E	2,605	65,125	182,350
				6525 E	1,725	43,125	120,750

 Table 4

 Drill Indicated Geological Tonnage Potential - Surface to 350 Metres Below Surface

6550 E	588	22,050	61,740
6575 E		No drilling on	section
6600 E	333	12,488	34,965

Total tonnes 2,952,145

Figures 5 and 6 present typical Level and Cross Sections.

The drill indicated tonnage to the a depth of 350 metres below the surface is in the range of 3.0 to 3.9 million tonnes, or 10,000 to 13,000 tonnes per vertical metre (taking into consideration overburden and a crown pillar beneath the overburden).

The mineralized zone is open at depth and the Author is of the opinion that it is reasonable to conclude that the zone should continue for at least an additional 300 metres.

The Author therefore concludes that the geological potential of the Property is in the range of 6.0 to 7.8 million tonnes to a depth of 650 metres below the surface.

16.3. 2 Geological Grade Potential

The Author reviewed all assay data for the project in detail and prepared a new set of composite intercepts. The statistics of the composites making up the database are very similar to the statistics of the Dome Mine (Rogers 1982).

Approximately 63% of intercepts through the vein structure return less than 1.7 grams gold per tonne, the average for all composites greater than 1.7 grams gold per tonne is 5.5 grams gold per tonne, and the average of the upper 25 % of the intercepts is 8 grams gold per tonne. The vein intercepts that returned less than 1.7 grams gold per tonne generally display geochemically anomalous assay results.

The geological setting and mineralization on the Property is similar to the mineralization in the Bell Creek-Hoyle Pond trend of the Timmins Camp. In that area, structurally controlled gold vein systems occur primarily within mafic volcanic rocks with Porcupine assemblage sedimentary rocks on the hanging wall side of the mafic volcanics and Kidd-Munro assemblage ultramafic volcanic rocks on the footwall side. Average grades for producing and past producing mines along that trend are as follows:

Table 5 Comparable Producers

	Tons	Ounces Broducod	In-situ	In-situ
		Produced	0Z./1011	grams/tonne
Bell Creek (Underground)	576,017	112,739	0.24	8.2
Owl Creek (Open Pit)	1,984.000	236,880	0.14	4.8
Hoyle Pond (Underground)	6,087.040	2,316,346	0.44	15.1

Based on the assay data base for the Property, comparison to other gold deposits in the area in similar geological settings, and the results of the resource estimates contained in this Report, the Author assumes that the average gold grade for the Property will be in the range of 8 to 10 grams per tonne. The Author concludes that the geological potential of the property to a depth of 650 metres below surface is in the range of 1.5 to 2.5 million ounces of contained gold.

The reader is cautioned that information presented on similar properties in this section is not necessarily indicative of the mineralization on the Property that is the subject of this Report.

16.4 RESOURCE ESTIMATE

16.4.1 Resource Criteria

The mineral resources are defined in terms of the NI-43-101 regulations (See Appendix 2). Only indicated and inferred mineral resources are considered in this estimate.

The mineral resource estimate was carried out using industry standard polygonal longitudinal section methodology. The mineral resources are undiluted and none of the high assays have been capped.

Indicated Mineral Resource estimates were based upon a 12.5 metre radius of influence around drill hole intercepts, whereas Drill Inferred Resource estimates were based upon a 25 metre radius of influence around drill hole intercepts. A specific gravity of 2.8 was used for tonnage calculations

Appendix 5 contains details of the resource estimate, including the longitudinal section drawing and Appendix 3 presents all of the significant drill hole intercepts.

16.4.2 Mineral Resource Estimates

Table 6 presents a summary of the mineral resource estimate for the Property.

Table 6Mineral Resource Estimate as of January 2008

	Tonnes	Grade Grams/tonne	Contained Gold troy ounces
Indicate Mineral Resource (to 350m)	362,090	8.0	93,140
Inferred Mineral Resource			
Drill Inferred (to 350m)	114,990	6.3	23,290
Inferred Extensions (350 to 650m)	477,080	7.6	116,590
Total Inferred Mineral Resources	592,070	7.3	139,880

17.0 OTHER RELEVANT INFORMATION

There is no other relevant information known to the Author that if undisclosed would make this Report misleading or would make this Report more understandable.

18.0 PRELIMINARY ASSESSMENT, TULLY GOLD PROJECT

18.1 INTRODUCTION

Pursuant to NI 43-101, Section 2.3, an Issuer may report in writing a preliminary assessment that includes inferred resources if the results of the preliminary assessment are a material change or a material fact with regard to the Issuer and the disclosure includes appropriate cautionary statements.

The objective of this preliminary assessment is to determine the potential economic viability of the Property.

The following Preliminary Assessment is preliminary in nature, and includes inferred resources that are considered too speculative geologically to have economic considerations applied to them that would allow them to be categorized as mineral reserves and thus there is no certainty that the preliminary assessment will be realized.

18.2 ASSUMPTIONS

The Author retained P&E Mining Consultants ("P&E") to prepare Scoping Costs for underground exploration and predevelopment of the Property (Buck 2007). The estimates cover preproduction expenditures for an exploration ramp from surface and development on the ore zone; capital and operating costs for a 1,000 tonne per day mining operation and mill; and custom processing and transportation costs for the scenario where the production from the operation is custom milled.

The P&E report is presented in its entirety in Appendix 6. The P&E report includes a thorough review of all assumptions made relating to the predevelopment underground exploration program and ultimately development of an operating mine and mill.

The P&E data was used in the Author's earlier report on the Property (George 2008). For purposes of this Report the P&E operating and capital costs as tabulated in Appendix 6 have been increased by a factor of 5% to allow for three years of inflation to 2010 dollars.

For purposes of evaluation of a 500 tonne per day mining operation the costs in the P&E report have been adjusted accordingly.

18.2.1 Predevelopment Costs

Predevelopment costs are based upon the P&E report plus 5%.

18.2.2 Development Costs

Development costs are based upon a 350,000 tonne per year mining and milling operation and are taken from the P&E report. Development costs for a 150,000 tonne per year operation would be lower, however, the Author has retained the P&E development costs (plus 5%) for purposes of this preliminary assessment.

18.2.3 Production Forecast

Production is based on a 500 tonne per day milling operation with the mill operating 300 days per year, for a total of 150,000 tonnes per year of mill feed.

For purposes of this preliminary assessment, the average estimated grade of the resource is used for all production years. In reality the grade will vary from stope to stope and annually will vary depending on where mining is occurring within the mineralized zone.

It is assumed that only 90% of the resource will be recovered and that mill recovery will be 95% of contained gold. Mining dilution is estimated at 10%.

18.2.4 Gold Price, Exchange Rate, and Inflation

A base case gold price of US\$ 1,200 per ounce is assumed. In the preliminary assessment, a sensitivity analysis is presented for a range of gold prices.

Inflation is ignored and the cash flow is assumed to be in constant year 2010 Canadian dollars. This is a common assumption in the evaluation of mining assets.

18.2.5 Operating Costs

Operating costs are based upon the P&E report and assume contract mining and custom milling. Mining costs are estimated to be \$54.60 per tonne based upon 30% long hole stoping (\$35.70 per tonne) and 70% shrinkage stoping (\$63 per tonne). Indirect costs from the P&E estimates have been reduced by reducing power, indirect materials, and indirect labour by 75% to reflect lower power, material and indirect labour at a 500 tonne per day mining rate.

Custom milling costs (including trucking) are estimated to be \$32.25 per tonne.

The reduced indirect cost per tonne mined is \$26.43 versus \$30.73 in the P&E report.

18.2.6 Capital Costs

Capital costs are based upon the P&E report plus 5% and exclude construction of a mill on site.

No working capital was included in the P&E report. For purposes of this preliminary assessment the Author has assumed that the initial 6 months of operating costs will have to be covered by working capital and basically not be recovered until closure of the operations. At an operating cost of \$114.00 per tonne the working capital costs (6 months) will be approximately \$9,665,000.

No closure costs were included in the P&E report. For purposes of this preliminary assessment the Author has assumed that the salvage value of site equipment will cover the closure costs.

18.2.7 Federal, Provincial, and Municipal Taxes

The preliminary assessment assumes a total tax burden of 35% with no taxes payable until recovery of 100% of preproduction capital pools.

18.3 ENVIRONMENTAL CONSIDERATIONS

It is beyond the scope of this report to fully examine all environmental considerations, however, any future mining development on the Property, including an underground exploration program, will have to meet all of the current regulatory requirements for mining operations in Ontario.

There are no current environmental liabilities on the Property.

No Closure and Rehabilitation Plan has been developed for the proposed underground exploration program.

18.4 PRELIMINARY ECONOMIC ASSESSMENT

The following Preliminary Assessment is preliminary in nature, and includes inferred resources that are considered too speculative geologically to have economic considerations applied to them that would allow them to be categorized as mineral reserves and thus there is no certainty that the preliminary assessment will be realized.

Table 7 summarizes a 6-year life-of-mine economic analysis based upon the assumptions contained in Section 18.2. Subject to confirmation of measured and indicated resources that can be categorized as proven and probable reserves, the Author concludes that the Property has economic potential.

18.4.1 Payback and Breakeven

At US\$1200 gold price, payback will be achieved in 2.2 years from start of production or 3.2 years from start of underground exploration and development program. Operational breakeven US\$ gold price is US\$470 per ounce and breakeven US\$ gold price for recovery of capital is US\$635 per ounce.

18.4.2 Mine Life

A minimum 6.5-year mine life is projected based on indicated and inferred resources.

18.4.3 Sensitivity Analysis

A Sensitivity Analysis table is presented at the bottom of Table 7. The project is economically robust based on current cost factors assumed as well as over the +/- 30% sensitivity range for major economic factors (gold price, operating costs, and capital costs).

TABLE 7 - PRELIMINARY ECONOMIC ASSESSMENT TULLY GOLD PROJECT

PRELIMINARY ASSESSMENT - SGX RESOURCES INC. - TULLY GOLD PROJECT - 500 TONNES PER DAY - CONTRACT MINING - CUSTOM MILLING - CONSTANT 2010 CANADIAN DOLLARS

Effective Date August 1, 2010 Geoex Limited				Go	old Price US\$ 1US\$=	\$ \$	1,200.00 1.05	Ca	nadian dollars												
RESOURCES Year-end Indicated Mineral Resources	Units tonnes				2011 362,090		2012 312,090		2013 162,090 8 0		2014 12,090 8 0		2015		2016		2017		2018		2019
Year-end Inferred Mineral Resources In Situ Grade	tonnes g/t				592,070 7.3		592,070 7.3		592,070 7.3		592,070 7.3		454,160 7.3		304,160 7.3		154,160 7.3		4,160 7.3		7.3
PRODUCTION Preliminary Bulk Sample In-Situ Grade			50,000				50,000 8.0														
Annual Production Indicated Resource In Situ Grade			312,090						150,000 8.0		150,000 8.0		12,090 8.0								
Inferred Resource In Situ Grade			592,070								7.3		137,910 7.3		150,000 7.3		150000 7.3		150000 7.3		4,160 7.3
Mining Dilution Mill Call Factor Mill Recovery	% % %				10% 90% 95%		10% 90% 95%		10% 90% 95%		10% 90% 95%		10% 90% 95%		10% 90% 95%		10% 90% 95%		10% 90% 95%		10% 90% 95%
Tonnes Milled Gold Produced Gold Produced	grams ounces		944,618 6,789,311 218,304				49,500 376,200 12,096		148,500 1,128,600 36,289		148,500 1,128,600 36,289		148,500 1,037,807 33,370		148,500 1,029,848 33,114		148,500 1,029,848 33,114		148,500 1,029,848 33,114		4,118 28,561 918
GOLD PRICE	\$ CDN	\$	1,260.00	\$	1,260.00	\$	1,260.00	\$	1,260.00	\$	1,260.00	\$	1,260.00	\$	1,260.00	\$	1,260.00	\$	1,260.00	\$	1,260.00
GROSS PRODUCTION INCOME		\$	275,063,040			\$	15,240,960	\$	45,724,140	\$	45,724,140	\$	42,046,200	\$ 4	41,723,640	\$	41,723,640	\$	41,723,640	\$	1,156,680
OPERATING COSTS Contract Mining (per tonne mined) Contract Milling (per tonne milled) Indirect (per tonne mined)	\$ 54.60 \$ 32.25 \$ 26.50	\$ \$ \$	52,097,136 30,463,943 25,285,240			\$ \$ \$	2,730,000 1,596,375 1,325,000	\$ \$ \$	8,190,000 4,789,125 3,975,000	\$ \$ \$	8,190,000 4,789,125 3,975,000	\$ \$	8,190,000 4,789,125 3,975,000	\$ \$ \$	8,190,000 4,789,125 3,975,000	\$ \$ \$	8,190,000 4,789,125 3,975,000	\$ \$ \$	8,190,000 4,789,125 3,975,000	\$ \$ \$	227,136 132,818 110,240
Total Operating Costs Operating Cost per ounce Operating Cost per tonne		\$ \$ \$	107,846,319 494 114			\$ \$ \$	5,651,375 467 114	\$ \$ \$	16,954,125 467 114	\$ \$ \$	16,954,125 467 114	\$ \$ \$	16,954,125 508 114	\$ 1 \$ \$	16,954,125 512 114	\$ \$ \$	16,954,125 512 114	\$ \$ \$	16,954,125 512 114	\$ \$ \$	470,194 512 114
CASHFLOW FROM OPERATIONS (EBIT	ſDA)	\$	167,216,721			\$	9,589,585	\$	28,770,015	\$	28,770,015	\$	25,092,075	\$ 2	24,769,515	\$:	24,769,515	\$	24,769,515	\$	686,486
ROYALTIES Talisman						\$	479,479	\$	1,438,501	\$	1,438,501	\$	1,254,604	\$	1,238,476	\$	1,238,476	\$	1,238,476	\$	34,324
CAPITAL COSTS																					
Ramp and Underground Development		\$	15,800,000	\$	7,900,000	\$	7,900,000														
Drilling Permitting and Feas. Study Production Infrastructure (excluding mill and tailings)		\$ \$ \$	1,575,000 1,575,000 6,300,000	\$ \$	1,575,000 787,500	\$ \$	787,500 6,300,000														
Replacement Capital		\$	10,500,000					\$	2,100,000	\$	2,100,000	\$	2,100,000	\$	2,100,000	\$	2,100,000	\$	-	\$	-
Working Capital Total Capital Costs		\$ \$	- 35,750,000	\$	10,262,500	\$ \$	9,665,000 24,652,500	\$	2,100,000	\$	2,100,000	\$	2,100,000	\$	2,100,000	\$	2,100,000	\$	-	-\$ -\$	9,665,000 9,665,000
CASH SURPLUS PRETAX CUMULATIVE CASH SURPLUS		\$	123,105,885	-\$ -\$	10,262,500 10,262,500	-\$ -\$	15,542,394 25,804,894	\$ -\$	25,231,514 573,380	\$ \$	25,231,514 24,658,134	\$ \$	21,737,471 46,395,606	\$2 \$6	21,431,039 67,826,645	\$ \$	21,431,039 89,257,684	\$ \$`	23,531,039 112,788,723	\$ \$	10,317,161 123,105,885
INCOME TAX PAYABLE CASH SURPLUS AFTER TAX CUMULATIVE CASH SURPLUS		\$ \$	42,390,332 80,715,552	-\$ -\$	10,262,500 10,262,500	\$ \$ \$ \$	9,589,585 - 15,542,394 25,804,894	\$ \$ \$ \$	28,770,015 - 25,231,514 573,380	\$ \$ \$ \$	28,770,015 - 25,231,514 24,658,134	\$ \$ \$ \$	25,092,075 - 21,737,471 46,395,606	\$2 \$2 -\$2 \$4	24,769,515 25,786,672 4,355,633 42,039,973	\$ \$ \$ \$	24,769,515 7,934,330 13,496,709 55,536,682	\$\$\$\$	24,769,515 8,669,330 14,861,709 70,398,391	\$ \$ \$ \$	686,486 - 10,317,161 80,715,552
DCF-ROR			62%																		

This Preliminary Assessment is preliminary in nature, and includes inferred resources that are considered too speculative geologically to have economic considerations applied to them that would allow them to be categorized as mineral reserves and thus there is no certainty that the preliminary assessment will be realized.

Capital Pools - Opening	\$ -	\$	10,262,500	\$	34,915,000	\$	27,425,415	\$	755,400	-\$ 25,914,615	-\$ 48,906,690	\$	2,100,000	\$	-
Additions Write-offs Used	\$ 10,262,500	\$ \$	24,652,500	\$ \$	2,100,000 9,589,585	\$ \$	2,100,000 28,770,015	\$ \$	2,100,000 28,770,015	\$ 2,100,000 \$ 25,092,075	\$ 2,100,000 -\$ 48,906,690	\$ \$	- 2,100,000	-\$ \$	9,665,000
Capital Pools - Year End	\$ 10,262,500	\$	34,915,000	\$	27,425,415	\$	755,400	-\$	25,914,615	-\$ 48,906,690	\$ 2,100,000	\$	-	-\$	9,665,000
Income	\$ -	\$	9,589,585	\$	28,770,015	\$	28,770,015	\$	25,092,075	\$ 24,769,515	\$ 24,769,515	\$	24,769,515	\$	686,486
Write offs	\$ -	\$	9,589,585	\$	28,770,015	\$	28,770,015	\$	25,092,075	-\$ 48,906,690	\$ 2,100,000	\$	-	\$	-
Taxable Income	\$ -	\$	-	\$	-	\$	-	\$	-	\$ 73,676,205	\$ 22,669,515	\$	24,769,515		
Tax Payable 35%	\$ -	\$	-	\$	-	\$	-	\$	-	\$ 25,786,672	\$ 7,934,330	\$	8,669,330	\$	-

EBITDA (Cashflow from Operations)													
VARIABLE	+30%	+20%		+10%		0%		-10%	-20%	-30%			
Gold Price	\$ 249,735,633	\$ 222,229,329	\$	194,723,025	\$	167,216,721	\$	139,710,417	\$ 112,204,113	\$ 84,697,809	1.0		
Operating Costs	\$ 134,862,825	\$ 145,647,457	\$	156,432,089	\$	167,216,721	\$	178,001,353	\$ 188,785,984	\$ 199,570,616	1.0		
Capital Costs	\$ 167,216,721	\$ 167,216,721	\$	167,216,721	\$	167,216,721	\$	167,216,721	\$ 167,216,721	\$ 167,216,721	1.0		

Г

VARIABLE	+30%	+20%	+10%	0%	-10%	-20%	-30%							
Gold Price	\$ 201,498,851	\$ 175,367,862	\$ 149,236,873	\$ 123,105,885	\$ 96,974,896	\$ 70,843,907	\$ 44,712,918							
Operating Costs	\$ 92,369,684	\$ 102,615,084	\$ 112,860,484	\$ 123,105,885	\$ 133,351,285	\$ 143,596,685	\$ 153,842,086							
Capital Costs	\$ 112,380,885	\$ 115,955,885	\$ 119,530,885	\$ 123,105,885	\$ 126,680,885	\$ 130,255,885	\$ 133,830,885							
SENSITIVITY ANALYSIS - Breakeven Gold Price vs Operating Costs, and Capital Costs														
VARIABLE	+30%	+20%	Breakeven Golo +10%	d Price US\$ for Re 0%	ecovery of Capital -10%	-20%	-30%							
Operating Costs	\$ 775	\$ 730	\$ 680	\$ 635	\$ 590	\$ 540	\$ 495	\$	1,200					
Capital Costs	\$ 685	\$ 670	\$ 650	\$ 635	\$ 620	\$ 600	\$ 585							
Operating and Capital Costs	\$ 825	\$ 760	\$ 700	\$ 635	\$ 570	\$ 510	\$ 445							

Cash Surplus Pretax

19.0 INTERPRETATION AND CONCLUSIONS

Drilling completed to date on the Property has provided sufficient data for the Author to complete an initial interpretation of the geometry of the vein system in plan and sectional views.

The Author concludes that the data density and reliability of the drilling database is sufficient to complete an estimate of the indicated and inferred resources on the Property and as well, to make an estimate of the overall geological potential of the Property.

In the Author's opinion, the geological setting of the Property is sufficiently well defined to conclude that there is a valid comparison to be made between the Property and the mines that occur in the Bell Creek-Hoyle Pond trend of the Timmins gold camp.

The Author concludes that the in-situ grade potential of the Property will ultimately be in the range from 8 to 10 grams gold per tonne, based upon (1) a comparison of the assay database to the Dome Mine (Rogers 1982), (2) the average grades of mines in the Bell Creek-Hoyle Pond trend, and (3) the results of the initial resource estimate that has been completed for the Property.

Table 8 summarizes the geological potential estimate and the mineral resource estimate that the Author has completed.

A preliminary economic assessment of the Project indicates that the Property has economic potential. The fact that there are currently operating mines in the Timmins gold camp also supports the conclusion that Timmins-type gold mineralization can be operated on a sound economic basis.

The economics of the project, as is the case with all mineral deposits, is sensitive to commodity prices, inflation, operating costs, capital costs and unforeseen international economic conditions.

The Author concludes that the work completed to date on the Property has demonstrated the presence of a significant gold resource that warrants an underground exploration and development program with the objective to confirm the geometry and continuity of the vein structures and to confirm sufficient measured and indicated mineral resources to warrant completion of a feasibility study. The author further concludes that additional drilling is warranted to extend the depth potential as well as the potential along strike to the east and west.

Table 8 Summary of Mineral Resource and Geological Potential Estimates as of January 2008

	Tonnes	Grade Grams/tonne	Contained Gold troy ounces
Indicate Mineral Resource (to 350m)	362,090	8.0	93,140
Inferred Mineral Resource			
Drill Inferred (to 350m)	114,990	6.3	23,290
Inferred Extensions (350 to 650m)	477,080	7.6	116,590
Total Inferred Mineral Resources	592,070	7.3	139,880
Geological Potential (to 650m)	6 to 7.8 million	8.0 to 10	1.5 to 2.5 million

20.0 RECOMMENDATIONS

The Author recommends that the Company initiate planning for an underground exploration program on the Property with the objective to confirm the geometry and continuity of the vein structures and to confirm sufficient measured and indicated mineral resources to warrant completion of a feasibility study.

The author further recommends that additional drilling is warranted to extend the depth potential as well as the potential along strike to the east and west.

Subject to completion of a positive feasibility study, the Author also recommends that the Company initiate planning for possible future mining on the Property by starting a program of environmental monitoring and other related work that may be required for the ultimate granting of operating permits by the various regulatory authorities.

Based on the preliminary scoping study prepared for this Report (Buck 2007) the following program and budget (adjusted for 5% inflation to 2010) is recommended:

Phase 1 Program

- 1) Upgrade the gravel road access to the site and extend it to the area where the proposed ramp will be collared.
- Establish a ramp from surface to the 150 metre level below surface and establish exploration drifts and crosscuts. It is recommended that the Company orient the ramp in order to access the area around UTM co-ordinate 486 250 E (NAD 83 datum).
- 3) Complete an underground drilling program and bulk sampling program with the objective to confirm sufficient measured and indicated mineral resource to warrant completion of a feasibility study.
- 4) Complete preliminary permitting work in preparation for Phase 2 Program.
- 5) Complete additional drilling, to further assess the depth and along strike potential of the resource, 17 holes totalling 6,000 metres.

Phase 1 Budget

1)	Items 1 and 2 above (Buck 2007)	15,800,000								
2)	Underground drilling (10,000 metres @ \$150/metre)	1,575,000								
3)	Bulk Sample (50,000 tonnes @ \$100/tonne)	5,250,000								
4)	Preliminary Permitting Work	525,000								
5)	Additional Surface drilling (6,000 metres @ \$150/m all inclusive)	900,000								
TC	FOTAL PHASE 1 BUDGET24,050,000									

Phase 2 Program

- 1) Complete Feasibility Study and Permitting
- 2) Install all site services and infrastructure (Buck 2007).

Phase 2 Budget (Assuming a decision is made to build mill and tails facility)

1)	Con	nple	te	Feasibility	^v Study	and	Permitting		1,	575,000
	_						(— 4	 		

2) Install all site services and infrastructure (Buck 2007)45,500,000

47,075,000

TOTAL PHASE 2 BUDGET

The Author is of the opinion that the proposed Phase 1 program is warranted in order to bring the Property to the feasibility study phase. The Phase 2 budget is preliminary in nature and is provided in order to indicate to the Company approximate future project costs.

21.0 REFERENCES

Atkinson, B. L., 1985, Annual Report 1984, Timmins District Resident Geologists Office, Ontario Geological Survey, MP134, Table 6-3, p. 148.

Atkinson, B. L. et al, 2007, Annual Report 2006, Timmins District Resident Geologists Office, Ontario Geological Survey Open File Report 6203, p. 17.

Ayer, J. A. and Trowell, N. F., 2001, Project Unit 95-24, The Abitibi Greenstone Belt: A Program Update. In Summary of Field Work and Other Activities 2001, Ontario Geological Survey, OFR 6070, p. 4-1 to 4-9.

Berger, B. R., 2000, Geology of Tully and Little Townships, District of Cochrane, Ontario Geological Survey, OFR 6025, 73 p., Map P3351, Scale 1:20,000.

Buck, M., 2007, Scoping Study Costs for Exploration Property Near Timmins, Ontario, report prepared for Geoex Limited by P & E Mining Consultants Inc., 15p.

Card, K. D., Poulsen, K. H., and Robert, F., 1988, The Archean Superior Province of the Canadian Shield and Its Lode Gold Deposits, p. 19-36; in Economic Geology Monograph 6: The Geology of Gold Deposits; the Perspective in 1988, edited by R. R. Keays, W. R. H. Ramsey, and D. I. Groves, Economic Geology Publishing Company, 667p.

Couture, J-F, 2000, Independent Technical Report on the Porcupine Joint Venture for Kinross Gold Corporation, NI 43-101 Technical Report prepared by Steffen, Robertson and Kirsten (Canada) Inc, report published on SEDAR, March 2003, 145p.

Crick, D., et al., 2006, The Red Lake Gold Mines Property, Red Lake Mining Division, Ontario, NI 43-101 Technical Report prepared by Goldcorp Inc., report published on SEDAR, November 2006, 203p.

Dumont R., Coyle, M., Oneschuk, D., and Potvin, J., 2002a, Residual Total Magnetic Field and Electromagnetic Anomalies, Buskegau River, Ontario, NTS 42A14, Geological Survey of Canada Open File 4444, Ontario Geological Survey Map 81749, Scale 1:50,000.

Dumont R., Coyle, M., Oneschuk, D., and Potvin, J., 2002b, Residual Total Magnetic Field and Electromagnetic Anomalies, Pamour, Ontario, NTS 42A11, Geological Survey of Canada Open File 4456, Ontario Geological Survey Map 81737, Scale 1:50,000.

George, P. T., 2008, Technical Report, Geological Potential, Mineral Resource, and Preliminary Assessment of the Timmins Gold Project, Tully Township, Porcupine Mining Division, Ontario, for Black Pearl Minerals Consolidated Inc., dated January 22, 2008.

Harron, G. A., 2003, Qualifying Report on the Nickel Offsets Property, Porcupine Mining Division, Ontario, for Argent Resources Limited.
Heather, K. B., Percival, J. A., Moser, D., and Bleeker, W., 1995, Tectonics and Metallogeny of Archean Crust in the Abitibi-Kapuskasing-Wawa Region, Field Guidebook, Geological Survey of Canada, OFR 3141, 147 p.

Ingamells C. O. and Pitard, F. F., 1986, Applied Geochemical Analysis, Wiley Interscience Division, John Wiley and Sons, Inc., New York, 733 pages.

Jackson A. L. and Fyon A. J., 1991, The Western Abitibi Subprovince in Ontario; in Geology of Ontario, Ontario Geological Survey, Special Volume 4, Part 1, p. 405-484.

Lesher, M. C., Goodwin, A. W., Campbell, I. H., and Gordon, M. P., 1986, Trace Element Geochemistry of Ore-Associated and Barren Felsic Metavolcanic Rocks in the Superior Province, Canada, Canadian Journal of Earth Sciences, v. 23, p. 222-237.

Mah, S., et al, 2006, Review of the Musselwhite Mine Operation, Ontario, Canada, NI 43-101 Technical Report prepared for Goldcorp Inc., by AMEC Americas Limited, report published on SEDAR, August 2006, 216p.

Pitard, F. F., 1993a, "Pierre Guy's Sampling Theory and Sampling Practice", Short Course Published by CRC Press Inc., Second Edition.

Pitard, F. F., 1993b, "Exploration of the Nugget Effect", Geostatistics for the Next Century, An International Forum in Honour of Michel David's Contribution to Geostatistics, Montreal, 19993, Edited by Roussos Dimitikopoulus, McGill University, Kluwer Academic Publishers, Boston, MS, USA.

Pitard, F. F., 1998, "A Strategy to Minimise Ore Grade Reconcilation Problems Between the Mine and the Mill", Mine to Mill 1998 Conference, Brisbane, Australia, The Australian Institute of Mining and Metallurgy.

Pitard, F. F., 2002, "Practical and Theoretical Difficulties When Sampling Gold", Mineral Processing Plant Design, Control and Practice Conference, Vancouver, BC, Canadian Institute of Mining and Metallurgy.

Polk, B. K., 1998, Summary Report of the 1997 Exploration Activity, Phase I, II, and III Diamond Drilling for Black Pearl Minerals Inc., Nickel Offsets Deposit, Tully Township, Ontario.

Pyke, D. R., 1982, Geology of the Timmins Area, District of Cochrane, Ontario Geological Survey Report 219, 141p., accompanied by Map 2455, Scale 1:50,000.

Richards, J. A., 1983, Quaternary Geology of the Pamour Area, District of Cochrane, Ontario Geological Survey, Map P2680, Scale 1:50,000.

Robert, F., 1996, Quartz-carbonate vein gold; in Geology of Canadian Mineral Deposit Types, edited by O. R. Ekstrand, W. D. Sinclair, and R. I. Thorpe, Geological Survey of Canada, Geology of Canada, No 8, p 350-366.

Robert, F., 1998, An Overview of World Class Archean Gold Deposits; in The First Age of Giant Ore Formation; Stratigraphy, Tectonics, and Mineralization in the Late Archean and Early Proterozoic; papers presented in a technical session at the Annual Convention and Trade Show of the Prospectors and Developers Association of Canada, Sunday March 8, 1998, p.137-162.

Rogers, D. S., 1982, Drilling as an aid in ore definition at the Dome Mine, Canadian Institute of Mining and Metallurgy Bulletin, Vol 75, No. 842, June 1982, p, 98-104.

GEOEX LIMITED

Roque, P., et al, 2006, Review of the Porcupine Joint Venture Operation, Ontario, Canada, NI 43-101 Technical Report prepared for Goldcorp Inc., by AMEC Americas Limited, report published on SEDAR, August 2006, 240p.

Sibson, R. H., Robert, F., and Poulsen, K. H., 1988, High-Angle Reverse Faults, Fluid Pressure Cycling, and Mesothermal Gold Quartz Deposits, Geology, V 16, p. 551-555.

22.0 DATE AND SIGNATURE PAGE

The undersigned prepared this Report, titled Technical Report on the Geological Potential, Mineral Resource Estimate and Preliminary Assessment of the Tully Gold Property, Tully Township, Porcupine Mining Division, Ontario for SGX Resources Inc. and San Gold Corporation, dated October 19, 2010, with and effective date of August 1, 2010, to provided the management and boards of directors of the Companies with technical information that would allow corporate decisions to be made with regard to the future exploration and development of the Property. The format and content of the report are intended to conform to Form 43-101F1 of National Instrument 43-101 of the Canadian Securities Administrators.

Signed

felen 14 "Peter T. George"

Peter T. George, P.Geo. Consulting Geologist October 19, 2010 Original sealed by Peter T. George, P. Geo., Ontario #620

23.0 CERTIFICATE

I, Peter T. George of Suite 1605, 250 Queens Quay West, Toronto, Ontario, Canada, M5J 2N2, hereby certify that:

- 1. I am a self-employed consulting geologist.
- 2. I am a graduate of Queen's University, Kingston, Ontario with an Honours Bachelor of Science (1964) degree in geology and I completed two years of graduate study in geology at Queen's University (1964-66).
- 3. I am a Fellow of the Society of Economic Geologists, a Fellow of the Geological Association of Canada and a Member of the Association of Professional Geologists of Ontario (Member #620).
- 4. I have worked as a geologist for 44 years, with continuous experience as a geologist in the mining industry. I have been directly involved in the preparation of technical reports on numerous gold and base metal mining operations. In the past 5 years I have participated in evaluation reports relating to the Hudson Bay Mining and Smelting mining, smelting and refining operations in Flin Flon, Manitoba, Canada; the Balmat zinc mine located in northern New York State, United States of America, the Scotia Mine project located in Nova Scotia, Canada, the East Tennessee zinc mining operations of Asarco, the Golden Grove base metal operations of Newmont in Western Australia, and the Bissett gold mining operations located in Manitoba, Canada. I have completed or have been engaged to complete resource and reserve estimates for the San Gold Corporation gold mining operations in Bissett, Manitoba, the Gold Eagle gold project in the Red Lake area, Ontario, and the Valgold Resources Ltd. gold project in Garrison Township, Ontario
- 5. I have read the definition of "qualified person" set out in National Instrument 43-101 ("NI 43-101") and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purposes of NI 43-101.
- 6. I am fully responsible for the preparation of this technical report titled "TECHNICAL REPORT, GEOLOGICAL POTENTIAL, MINERAL RESOURCE ESTIMATE, AND PRELIMINARY ASSESSMENT OF THE TIMMINS GOLD PROJECT, TULLY TOWNSHIP, PORCUPINE MINING DIVISION, ONTARIO, FOR SGX RESOURCES INC. AND SAN GOLD CORPORATION", dated October 19, 2010 (the "Report"). I recently visited the property on August 16, 2010, November 1, 2007 and in addition visited the core shack and reviewed drill core, sampling procedures and database compilation procedures with site geologists in November 1998 after the 1997 drill program had been completed.
- 7. I was an independent director of Black Pearl Resources Consolidated Inc. from 2004 to mid 2007. I neither hold any shares in nor have I ever held any shares in Black Pearl. I prepared a technical evaluation of the Property for Blackhawk Mining in 1996 and a technical report on the Property for Black Pearl in January 1998.
- 8. As of the date of the certificate to the best of my knowledge, information and belief, the technical report contains all scientific and technical information that is required to be disclosed to make the technical report not misleading.
- 9. I am independent of the Company pursuant to Section 1.4 of National Instrument 43-101.
- 10. I have read National Instrument 43-101 and Form 43-101F1, and the Technical Report covers the appropriate technical matter required by NI 43-101.
- 11. I consent to the use of this Technical Report for filing with regulatory agencies and posting on SEDAR and as may be required by the Company for financing or other regulatory purposes or for presentation to financial advisors of the Company.

Dated this 19 Day of October, 2010

Signed by

" Peter T. George" Signature of Qualified Person

Peter T. George, P. Geo. Print name of Qualified Person

Original sealed by 0 PRETERGEORGEORGEO Ontario #620 PRACTISING MEMBER 0620 NTAR

Tully Gold Project, October 2010

APPENDIX – 1

FIGURES

Figure 1	Regional Location Map	Appendix 1
Figure 2	Property Location and Local Infrastructure	Appendix 1
Figure 3	Drill Plan	Appendix 1
Figure 4	Longitudinal Section	Appendix 1
Figure 5	Typical Level Plan	Appendix 1
Figure 6	Typical Cross Section	Appendix 1

Those wishing to stake mining claims should consult with the Provincial Mining Recorders' Office of the Ministry of Northern Development and Mines for additional information on the status of the lands shown hereon. This map is not intended for navigational, survey, or land title determination purposes as the information shown on this map is complicate from various sources. Completeness and accuracy are not guaranteed. Additional information may also be obtained through the local Land Titles or Registry Office, or the Ministry of Natural Resources.

General Information and Limitations

 Contact Information:
 Toll Free
 Map Datum: NAD 83

 Provincial Mining Recorders' Office
 Tel: 1 (888) 415-9845 ext 57 Micjection: Geographic Coordinates

 Willet Green Miller Centre 933 Ramsey Lake Road
 Fax: 1 (877) 670-1444
 Topographic Data Source: Land Information Ontario

 Sudbury ON P3E 685
 Home Page: www.mndm.gov.on.ca/MNDM/MINES/LANDS/mismnpge.htm
 Mining Land Tenure Source: Provincial Mining Recorders' Office

This map may not show unregistered land tenure and interests in land including certain patents, leases, easements, right of ways, flooding rights, licences, or other forms of disposition of rights and interest from the Crown. Also certain land tenure and land uses that restrict or prohibit free entry to stake mining claims may not be illustrated.

The information shown is derived from digital data available in the Provincial Mining Recorders' Office at the time of downloading from the Ministry of Northern Development and Mines web site.

)NT/H CANAD	A MINISTRY OF NOR DEVELOPMENT AN PROVINCIAL MININ RECORDER'S OFFI	ID MINES Mining Land Tenure
e / Time of Issu OWNSHIP OWAN	e: Sat Aug 25 13:14:35 ED / AREA	T 2007 PLAN G-3946
DMINISTR ning Division nd Titles/Reg nistry of Natu	ATIVE DISTRIC	TS / DIVISIONS Porcupine COCHRANE TIMMINS
Concession,	a Boundaries	Land Tenure Freehold Patent Surface And Mining Rights Surface Rights Only
Provincial Pa Indian Reser Cliff, Pit & Pil	rk ve	Mining Rights Only Leasehold Patent Surface And Mining Rights
Contour Mine Shafts Mine Headfra	ime	Surface Rights Only Mining Rights Only Licence of Occupation Uses Not Specified
Road Road Trail	Pipeline	Surface Rights Only Mining Rights Only Mining Rights Only
Utilities Tower		Land Use Permit sec Order In Council (Not open for staking) mo Water Power Lease Agreement
		1234567 Filed Only Mining Claims 1234567 Filed Only Mining Claims 1234 Filed Only Mining Claims 1234 Areas Withdrawn from Disposition Mining Acts Withdrawn Types Mining Acts Withdrawn Wirm Surface And Mining Rights Withdrawn Wirm Surface And Mining Rights Withdrawn Wirm Surface Rights Civy Withdrawn Wirm Surface Rights Civy Withdrawn Wir Mining Rights Withdrawn Wir Surface Rights Civy Withdrawn Wir Mining Rights Withdrawn
		IMPORTANT NOTICES
5km	Scale Økm	1:287136 15km
RI GE	FIC EGIONAL OEX Limit	GURE 1 LOCATION MAP ted - August 2010

	u 5
	— 5396700 N –
	— 5396600 N –
en to E and	— ₅396500 N − I W along strike
2 m2	— 5396400 N –
d (NAD 83)	— 5396300 N -
	101 Scale
F	FIGURE 5

GEOEX LIMITED - 6500 E SECTION - JANUARY 2008

APPENDIX – 2

NATIONAL INSTRUMENT 43-101 MINERAL RESOURCE AND MINERAL RESERVE DEFINITIONS

Mineral Resource

Mineral Resources are sub-divided, in order of increasing geological confidence, into Inferred, Indicated, and Measured categories. An Inferred Mineral Resource has a lower level of confidence that that applied to an Indicated Mineral Resource. An Indicated Mineral Resource has a higher level of confidence than an Inferred Mineral Resource but has a lower level of confidence than a Measured Mineral Resource.

A **Mineral Resource** is a concentration or occurrence of natural, solid, inorganic or fossilized organic material in or on the Earth's crust in such form and quantity and of such grade or quality that it has reasonable prospects of economic extraction. The location, quantity, grade, geological characteristics and continuity of a Mineral Resource are known, estimated or interpreted from specific geological evidence and knowledge.

The term Mineral Resource cover mineralisation and natural material of intrinsic economic interest which has been identified and estimated through exploration and sampling and within which Mineral Reserves may subsequently defined by the consideration and application of technical, economic, legal, environmental, socio-economic, and governmental factors. The phrase "reasonable prospect of economic extraction" implies a judgement by the Qualified Person in respect of the technical and economic factors likely to influence the prospect of economic extraction. A Mineral Resource is an inventory of mineralisation that under realistically assumed and justifiable technical and economic conditions might become economically extractable. These assumptions must be presented explicitly in both public and technical reports.

An **Inferred Mineral Resource** is that part of a Mineral Resource for which quantity and grade or quality can be estimated on the basis of geological evidence and reasonably assumed, but not verified, geological and grade continuity. The estimate is based on limited information and sampling gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings, and drill holes.

An **Indicated Mineral Resource** is that part of a Mineral Resource for which quantity, grade or quality, densities, shapes and physical characteristics, can be estimated with a level of confidence sufficient to allow the appropriate application of technical and economic parameters, to support mine planning and evaluation of economic viability of the deposit. The estimate is based on detailed and reliable exploration and test information gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings, and drill holes that are spaced closely enough for geological and grade continuity to be reasonably assumed.

A **Measured Mineral Resource** is that part if a Mineral Resource for which quantity, grade or quality, densities, shape, and physical characteristics are so well-established that they can be estimated with confidence sufficient to allow the appropriate application of technical and economic parameters to support production planning and evaluation of the economic viability of the deposit. The estimate is based on detailed and reliable exploration, sampling and testing information gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings, and drill holes that are spaced closely enough to confirm both the geological and grade continuity.

Mineral Reserve

Mineral Reserves are subdivided in order of increasing confidence into Probable Mineral Reserves and Proven Mineral Reserves. A Probable Mineral Reserve has a lower confidence level that a Proven Mineral Reserve.

A **Mineral Reserve** is the economically mineable part of a Measured or Indicated Mineral Resource demonstrated by at least a Preliminary Feasibility Study. This Study must include adequate information on mining, processing, metallurgical, economic and other relevant factors that demonstrate, at the time of reporting, that economic mineral extraction can be justified. A Mineral Reserve includes diluting materials and allowances for losses that may occur when material is mined.

Mineral Reserves are those parts of Mineral Resources which, after the application of all mining factors, result in an estimated tonnage and grade which, in the opinion of the Qualified Person(s) making the estimates, is the basis of an economically viable project after taking account of all relevant processing, metallurgical, economic, marketing, legal, environmental, socio-economic, and government factors. Mineral reserves are inclusive of diluting material that will be mined in conjunction with the Mineral Reserves and delivered to the treatment plant or equivalent facility. The term "Mineral Reserve" need not necessarily signify that extraction facilities are in place or operative or that all governmental approvals have been received. It does signify that there are reasonable expectations of such approvals.

A **Probable Mineral Reserve** is the economically mineable part of an Indicated Mineral Resource, and in some cases a Measured Mineral Resource, demonstrated by at least a Preliminary Feasibility Study. This Study must include

adequate information on mining, processing, metallurgical, economic, and other relevant factors that demonstrate, at the time of reporting, that economic extraction can be justified.

A **Proven Mineral Reserve** is the economically mineable part of a Measured Mineral Resource demonstrated by at least a Preliminary Feasibility Study. This Study must include adequate information on mining, processing, metallurgical, economic, and other relevant factors that demonstrate, at the time of reporting, that economic extraction is justified.

Application of the term Proven Mineral Reserve category implies that the Qualified Person has the highest degree of confidence in the estimate with the consequent expectation in the minds of the reader of the report. The term should be restricted to that part of the deposit where production planning is taking place and for which any variation of the estimate would not significantly affect the economic viability

APPENDIX – 3

SUMMARY OF COMPOSITE ASSAY INTERSECTIONS TULLY GOLD PROPERTY

Level	Section	Hole ID	from (m)	to(m)	length	Uncut g/t	VG	Long S	Section Pierc	e Point	Horiz.	Assa	ys in Comp	osite
					m			PPt E	PPt N	PPt Elev	width	Min g/t	Max g/t	number
175	6300	69_01	160.02	167.64	7.62	6.08		486288	5396434	176	4.9	0.51	22.44	6
175	6225	69_02	123.75	147.83	24.08	3.88	5 VG	486227	5396434	186	5.9	0.00	47.26	30
175	6200	69_03	149.87	160.02	10.15	1.59	VG	486197	5396430	162	6.1	0.00	9.52	9
150	6175	69_04	151.79	153.28	1.49	10.16	VG	486166	5396433	164	7.9	0.00	203.32	15
150	6125	69_05	159.72	165.51	5.79	0.32		486135	5396431	151	3.4	0.68	2.38	10
175	6325	69_06A	164.53	168.83	4.30	3.87		486318	5396443	163	3.2	0.34	11.152	7
150	6325	69_06A	186.84	195.71	8.87	14.68	3 VG	486318	5396425	147	8	0.00	336.26	16
150	6100	69_07	172.15	180.38	8.23	0.00		486106	5396403	160	9.8	0.00	4.42	14
200	6350	69_08	123.29	129.02	5.73	1.34	VG	486349	5396437	195	4.9	0.00	11.73	10
200	6450	69_09	121.77	125.36	3.60	0.41		486379	5396440	194	2.7	0.00	2.38	4
200	6400	69_10	121.31	122.96	1.65	2.84		486411	5396439	201	1.3	0.34	9.35	3
200	6400	69_10	148.74	150.94	2.19	4.68	VG	486411	5396413	188	2.1	0.00	17.68	4
175	6450	69_11	128.11	134.57	6.46	0.85		486441	5396444	184	4.4	0.00	2.04	9
175	6450	69_11	141.21	145.18	3.96	1.41		486441	5396435	174	2.9	0.00	4.42	5
150	6450	69_11	151.61	157.34	5.73	0.77		486441	5396427	166	4.2	0.00	4.08	7
175	6475	69_12	114.30	134.05	19.75	3.28	2 VG	486471	5396455	183	11.6	0.00	23.12	18
150	6300	69_14	185.53	206.14	20.60	0.58	VG	486288	5396440	155	15.8	0.00	8.5	20
200	6525	69_15	105.61	108.51	2.90	0.55		486532	5396461	198	1.7	0.00	1.7	3
175	6250	69 16	156.85	169.47	12.62	0.73		486258	5396446	167	11.7	0.00	4.42	15
175	6350	69 17	161.12	168.98	7.86	4.44	2 VG	486348	5396438	184	6.3	0.00	49.3	10
175	6350	69_17	178.64	188.73	10.09	0.51		486348	5396427	169	6,5	0.00	5.1	6
125	6400	69 18	203.76	214.88	11.13	1.13		486409	5396435	133	10.4	0.00	25.84	7
175	6475	69 19	163.59	165.14	1.55	9.51		486471	5396463	164	2.5	0.34	42.84	4
150	6475	69 19	179.92	181.60	1.68	0.34		486471	5396449	154	1.5	0.34	0.34	1
150	6225	69 20	217.47	220.28	2.80	2.14	VG	486227	5396449	142	3.2	0.00	6.12	5
150	6225	69 20	238.51	243.23	4.72	0.72		486227	5396428	139	4.7	0.00	1.7	5
200	6325	69 21	83.52	97.72	14.20	2.00	VG	486319	5396436	196	2.5	1.02	7.82	11
150	6325	69 21	130.45	155.11	24.66	18.82	2 VG	486319	5396427	151	4.9	0.00	150.62	14
175	6325	80 01	122.22	140.36	18.14	1.21	VG	486323	5396433	172	9.7	0.00	10.54	32
150	6325	80 01	157.58	160.48	2.90	0.87	VG	486325	5396417	148	1.9	0.07	3.06	6
250	6350	80 02	47.55	62.94	15.39	1.17		486348	5396431	249	10.2	0.00	15.47	21
225	6325	80 03	61.90	68 61	6 71	6 77	VG	486320	5396451	236	4.3	0.00	48.28	10
225	6325	80 03	80.13	90.95	10.82	2.66		486319	5396438	220	7 1	0.17	15.64	16
200	6325	80 03	119.60	125.09	5 49	1.58	VG	486315	5396413	194	3.8	0.00	6 29	7
125	6350	80 04	218 85	232 11	13 26	0.45	2 VG	486353	5396442	118	11 1	0.00	4.08	24
125	6325	80 05	222.05	224 64	2 59	0.53	2.10	486322	5396438	120	21	0.00	1.00	4
100	6375	80_06	241 61	252 27	10.65	0.29		486376	5396443	102	8.4	0.00	2.55	22
200	6275	80 07	87.93	100.92	12.98	1 95	2 VG	486284	5396442	209	8.5	0.00	16.6	25
200	6250	80 08A	104 24	111 25	7 01	0.80	2.10	486258	5396441	200	47	0.00	6.8	15
200	6250	80_08A	115.09	121.65	6.55	0.00		486259	5396434	194	5	0.00	1.87	15
225	6450	80 09	87.39	93.09	5 70	0.83	VG	486441	5396445	215	35	0.00	3.06	12
225	6450	80_00A	89.79	95.28	5 49	2.30		486442	5396442	216	5.2	0.00	16 15	10
200	6225	80 10A	95.22	104 12	8 90	0.71		486218	5396432	210	5,2	0.00	2 38	21
175	6225	80 11	126 19	148 38	22 19	5.88	7 VG	486220	5396442	174	15.8	0.00	56 76	44
125	6450	80 12	217 58	219.21	1.63	0.25	/ /0	486440	5396457	124	1 1	0.00	0.17	3
100	6450	80 12	239.36	242.93	3.57	0.31		486442	5396439	113	29	0.00	1.53	6
200	6200	80 13	102 72	122.00	20.27	0.91		486195	5396426	199	11	0.00	3 91	39
200	6475	80 14	87.48	95 10	7.62	1.25		486466	5396449	210	5.5	0.00	7.82	12
200	6150	80 15	113 43	116 59	3 15	0.77		486158	5396426	193	1.5	0.00	1.36	7
175	6150	80 15	123.84	140.21	16 37	1.22	VG	486156	5396417	179	Q 1	0.00	7 99	35
250	6400	81 01	34 50	81.60	47.00	1.22	2.VC	486402	5306/38	236	5.2	0.00	62.56	66
200	6375	81 01	81 60	128 78	47.09	0.47	2 10	486382	5306440	10/	1.6	0.00	5 27	57
200	6325	81 02	07.11	120.70	24 75	1.06	VO	486325	5306420	194	7.0	0.00	5.27	46
150	6300	81 02	1/7 80	160.35	24.75	0.28		486306	5306/31	142	2.5	0.00	2.55	16
250	6250	81 03	37.86	44.68	6.83	3.14	VG	486259	5396432	251	6.8	0.00	18.87	10
225	6250	81 03	57.82	90.77	32.95	0.58	vo	486250	5396431	210	5	0.01	5 1	55
200	6225	81 03	93.79	181.08	87 29	2.61	5 VG	486228	396431	160	13.0	0.00	214.88	96
200	6375	81 04	33.53	30.62	6 10	2.01	5.40	486381	5306426	255	0.5	0.00	6 12	30 6
225	6375	81 04	62.03	73.40	11 37	0.25		486370	5396420	200	0.5	0.00	14 28	12
220	6350	81 04	02.03	111 40	14.48	0.23		486354	5306/17	103	3	0.00	4.08	25
200	6175	81_04 81_05	90.93	113.02	20.81	3.87	2 1/6	480334	5306/16	193	14.5	0.00	4.00	23
250	6325	81 06	36.27	43.59	7 32	0.21	2 00	486321	5396424	251	3 1	0.00	3 23	5
250	6350	81 08	12 13	43.33	20.21	0.21		486344	5306424	2/1	47	0.00	2.04	23
250	6325	81_00	42.43	46.94	20.21	5.67	VG	486322	5396420	241	4.7	0.00	2.04 54 74	23
200	6300	81 00	70.20	123 00	53.80	0.78	10	486300	5306420	200	6.6	0.00	5 27	80
175	6275	81 00	130.76	123.33	58.00	0.70		486273	5306/21	140	16.0	0.00	9.27	68
100	6250	81 00	208 04	221 10	12.25	1.00	VC	486252	5306421	QA	38	0.00	26.19	17
250	6300	81 10	200.94	80 00	12.20	2.22		400202	5306420	222	5.0	0.00	156 /	63
200	6275	81 10	08 15	103.33	40.49	2.70		400230	5306432	109	1.5	0.00	8 67	5
150	6250	81 10	1/0 21	153 10	12 00	0.94	٧G	100210	5306432	150	2.4	0.00	0.07 Q 16	J 15
100	6225	01_1U 81_10	207.26	100.10	12.09 25 60	0.02		400207	5306432	100	2.4 F	0.17	0.10	10
200	6225	01_10	201.20	232.01	16.05	0.00		400220	5206432	3∠ 210	ິງ	0.00	4.20	29
200	6275	01_11 91_11	1/1 00	32.00	10.90	1.30		400313	5306430	212	3.3 12 0	0.00	9.02 17.05	24 15
750	0213	01_11	141.00	102.40	10.00	1.21	٧G	400200	5206430	100	12.0	0.00	2 57	ið F
10	6200	01_11 91 14	229.09	200.09 220.07	4.00	0.59	VC	400231	539043U	00	1Z F 0	0.00	3.37 6.46	5 76
250	6150	01_11	211.00	106 74	60.04	0.04	21/0	400190	5306300	30	J.O 7 F	0.00	20.40	10
200	6150	01_12 81 12	55 62	100.71	50.31	6.04	2 VG	400100	2226206	242	16.2	0.00	29.92	03 70
220	6125	01_13 81_14	45 72	100.00	62.40	0.04	7.1/0	400140	2226200	212	10.2	0.00	260.70	100
200	0120	01_14	40.72	100.20	02.40	4.UZ	1 10	400120	2290299	217	4.1	0.00	200.70	100

Level	Section	Hole ID	from (m)	to(m)	length	Uncut g/t	VG	Long S	Section Pierc	e Point	Horiz.	Assa	ys in Comp	osite
			. ,		m	-		PPt E	PPt N	PPt Elev	width	Min g/t	Max g/t	number
225	6125	81_16	50.29	85.34	35.05	0.65		486105	5396378	224	5.2	0.00	3.74	45
175	6075	81_16	134.51	139.90	5.39	1.69		486077	5396392	166	3.9	0.85	2.72	6
125	6050	81_16	192.63	206.44	13.81	1.04		486052	5396407	112	3.9	0.00	7.48	15
100	6050	81_16	233.48	242.01	8.53	0.54	2 VG	486038	5396416	79	1.5	0.00	2.55	10
50	6025	81_16	280.72	293.98	13.26	7.11	2 VG	486013	5396430	36	1.5	0.00	149.6	20
125	6150	87_01	191.57	220.98	29.41	0.94	VG	486154	5396429	116	18.7	0.41	60.486	26
125	6275	87_02	205.22	217.20	11.98	1.34		486282	5396446	114	9.4	0.27	8.67	15
125	6050	87_03	180.75	196.90	16.15	0.30		486045	5396394	129	2.8	0.17	4.114	9
175	6475	87_05	135.58	142.04	6.46	1.98		486484	5396458	168	2.5	0.34	13.056	8
150	6475	87_05	145.36	146.94	1.58	0.41		486484	5396448	144	2.5	0.00	3.162	3
125	6475	87_05	180.56	184.10	3.54	1.91		486483	5396437	131	2	0.14	21.318	4
100	6475	87_06	172.52	184.71	12.19	1.62		486479	5396446	106	6	0.68	15.164	15
100	6475	87_06	187.76	196.17	8.41	6.40		486478	5396446	98	4	0.75	143.786	11
100	6475	87_06	200.74	218.08	17.34	1.03	VG	486477	5396445	81	7	0.68	5.848	17
75	6475	87_06	222.20	227.47	5.27	1.02		486476	5396444	65	3	1.02	5.712	6
75	6225	87_07	243.35	267.89	24.54	0.42	VG	486223	5397435	72	3.8	0.44	3.842	14
200	01/5	87_08	88.09	152.89	64.80	0.92	4 VG	486167	5396424	171	2.0	0.17	45.73	51
225	6375	87_09	57.91	01.00	3.69	3.18	٧G	386378	5396433	229	7.3 F	0.17	7 106	8
225	6375	07_09	120.00	11.21	2.44	3.01	2.1/0	400370	5390433	213	5	0.10	7.100	4
100	6275	07_09 97_00	120.02	147.52	1 16	1.19	2 VG	400371	5390432	103	10	12 97	0.002	17
225	6125	07_09 87 16	70 /1	102.21	36.30	35.09	2 VG 5 VG	400309	5396432	201	1/1 3	0.37	40.010	2
225	6225	88 27A	70.41	70.05	7 71	2.45	5 / 6	480133	5396404	201	14.5	0.37	10 778	13
225	6225	88 28	60.66	68.88	8.23	2.45		400227	530636	234	4 3./	0.10	1 666	15
220	6075	88 20	106.68	108 17	1 /0	0.07		486086	5396370	105	2.4	0.07	0.204	3
175	6000	88 30	136.40	143 41	7.01	1.85		486009	5396364	169	2,3	0.03	15.98	14
75	6025	88 31	243.84	251 46	7.62	1.00		486019	5396406	69	2.6	0.03	2.89	14
17	6100	88 32	273 10	284 07	10.97	0.03		486098	5396435	30	5.6	0.03	0.034	18
0	6175	88 33	303.28	321 41	18.14	1.97		486184	5396416	-1 4	7.9	0.03	21 284	30
100	6300	88 38	221.59	231.04	9.45	0.34		486396	5396448	92	5.4	0.03	1.87	12
100	6400	88 39	212.45	239.27	26.82	1.55		486410	5396444	82	11.7	0.03	16.864	34
150	6075	88 40	144.63	160.32	15.70	0.80		486075	5396376	162	1.6	0.03	4.522	23
100	6100	88_40	177.39	184.40	7.01	1.34						0.03	17.85	11
100	6125	88_40	204.89	213.24	8.35	18.58	VG					0.03	150.246	11
75	6125	88_40	259.84	265.72	5.88	0.10		486124	5396428	65	2.2	0.03	0.272	7
125	6225	97_01	173.00	186.87	13.87	0.62		486232	5396441	126	7.2	0.07	7.378	20
100	6225	97_01	210.77	222.99	12.22	135.77	2 VG	486230	5396428	100	5.3	0.03	2534.02	18
200	6125	97_02	83.82	113.84	30.02	3.52	5 VG	486135	5396403	200	16.4	0.10	143.548	30
-25	6275	97_03	344.73	379.63	34.90	0.39		486267	5396436	-33	4.4	0.00	4.42	27
150	6375	97_04	179.89	200.41	20.51	5.32		486363	5396440	141	20.8	0.07	96.662	21
50	6450	97_05	272.64	285.54	12.89	1.17		486446	5396464	44	6.3	0.03	4.93	12
125	6500	97_06	178.83	195.65	16.82	5.88		486506	5396475	122	10.1	0.34	73.712	20
100	6500	97_06	225.77	231.22	5.46	0.29		486505	5396453	86	2.9	0.00	0	0
250	6300	97_07	46.24	49.90	3.66	3.42	2 VG	486310	5396449	252	8.5	0.14	21.828	12
225	6300	97_07	67.67	78.94	11.28	7.20		486306	5396435	231	6.2	0.03	10.846	13
25	6400	97_08	300.72	311.51	10.79	0.62		486402	5396463	12	3,7	0.07	1.428	10
150	6250	97_09	187.63	192.88	5.24	6.44	a. 1 / O	486253	5396444	158	3.1	1.39	16.15	/
150	6250	97_10	162.70	185.01	22.31	9.06	3 VG	486242	5396443	143	6.2	0.34	266.526	22
125	6200	97_11	199.89	218.18	18.29	0.92	VG	486203	5396438	116	12.4	0.00	2.080	16
125	6225	97_12	197.97	219.15	21.18	2.10	4 VG	486214	5396444	115	11.3	0.03	19.448	21
150	6225	97_13	142.40	176.66	7.50	0.48		400220	5206422	144	10	0.03	4.720	9
100	6500	97_13	203.45	212.48	0.02	0.91		486496	5390432	144	4.5	0.00	3.00	0
75	6500	97_14	203.43	257 77	33.44	8 19		466491	5396460	75	14.9	0.10	407.4	33
100	6525	97 15	195 22	204 73	9.51	2.06		486533	5396476	110	4	0.00	19 72	8
100	6525	97 15	224 24	231.53	7.28	0.15		486534	5396463	86	21	0.00	68	6
150	6500	97 16	165.66	179.37	13 72	11.00		486493	5396471	135	6.5	0.03	131 24	11
150	6500	97 16	200.74	203.67	2.93	1.12		486493	5396457	108	1	0.41	2.482	4
50	6475	97 17	260.73	274.02	13.29	2.01		486473	5396476	45	5.3	0.00	5.576	13
125	6475	97 18	182.45	201.02	18.56	7.11	4 VG	486479	5396462	123	15.1	0.37	82.824	26
125	6475	97 18	214.64	217.51	2.87	1.03		486477	5396453	106	10	0.03	4.216	12
75	6450	97 19	231.53	233.23	1.70	0.93		486458	5396467	78	3.2	0.37	4.896	8
75	6450	97_19	245.58	280.90	35.33	0.49		486455	5396456	55	15.6	0.00	3.91	38
175	6375	97_20	116.01	131.86	15.85	2.53		486374	5396443	182	7.6	0.00	32.538	16
125	6250	97_21	202.30	209.00	6.71	2.74		486252	5396446	116	2.8	0.07	2.992	6
125	6250	97_21	214.85	218.88	4.02	0.73	VG	486252	5396440	107	3	0.10	4.556	6
125	6250	97_21	220.46	224.88	4.42	6.14	VG	486253	5396435	101	2.2	0.10	61.03	5
225	6250	97_22	73.55	81.26	7.71	2.75		486253	5396435	222	5.6	0.10	13.362	10
225	6175	97_23	76.57	86.11	9.54	0.29		486169	5396421	218	5	0.00	1.36	9
200	6175	97_24	90.34	106.16	15.82	2.94	2 VG	486177	5396426	203	4.1	0.03	53.108	19
200	6175	97_24	109.18	112.26	3.08	1.65	VG	486177	5396416	189	3.9	0.24	6.188	5
200	6175	97_24	116.07	121.46	5.39	4.40		486186	5396415	186	4.1	0.03	11.866	6
225	6125	97_25	77.97	82.75	4.79	19.11	3 VG	486128	5396400	218	2.8	0.00	106.012	7
225	6125	97_25	85.74	93.09	7.35	2.00	VG	486128	5396395	212	2.7	0.07	12.648	9
225	6125	97_25	97.38	108.08	10.70	1.62		486128	5396389	200	4.9	0.10	12.648	11
175	6375	97_26	144.29	146.70	2.41	2.26		486365	5396444	161	9.8	0.24	27.2	21
225	6400	97_27	70.47	84.12	13.66	0.05		486402	5396444	223	9.9	0.00	0.646	11
200	6375	97_27	118.00	120.00	2.00	0.00		486396	5396421	185	1.6	0.00	0	2

Level	Section	Hole ID	from (m)	to(m)	length	Uncut g/t	VG	Long S	Section Piero	e Point	Horiz.	Assay	s in Com	oosite
					m			PPt E	PPt N	PPt Elev	width	Min g/t	Max g/t	number
100	6525	97_28	205.71	213.21	7.50	1.78		486522	5396477	106	3.8	0.306	4.658	9
100	6525	97_28	222.50	237.20	14.69	7.16	2 VG	486523	5396466	88	7.9	0.00	87.72	18
75	6525	97_29	238.05	247.59	9.54	1.42		486520	5396472	67	3.2	0.00	4.012	13
75	6525	97_29	267.25	271.07	3.83	1.51		486520	5396461	44	1.7	0.00	6.562	5
50	6525	97_30	263.41	269.72	6.31	1.49		486520	5396488	44	2.5	0.10	4.522	10
25	6525	97_30	287.18	299.01	11.83	0.74		486522	5396477	20	4.9	0.07	3.774	11
225	6300	97_31	66.05	71.75	5.70	1.62		486309	5396455	229	2.9	0.14	5.202	6
200	6300	97_31	95.01	113.23	18.23	1.18		486309	5396437	197	8.9	0.03	4.522	20
1/5	6300	97_32	122.80	139.99	17.19	1.52		486308	5396444	174	11.4	0.07	6.562	16
150	6300	97_32	153.50	164.74	11.25	0.42		486308	5396430	148	2.7	0.00	1.87	10
225	6325	97_33	60.26	68.00	7.74	9.25		486332	5396450	230	2.3	0.51	20.52	10
225	6250	97_33	64.25	69.76	5.61	4.07		400332	5390439	217	2.3	0.20	42.030 9.104	6
220	6350	07 34	85.50	00.70	13 /7	0.25		486349	5306431	200	73	0.07	4 25	11
200	6350	97 34	109 58	116 98	7 41	1.07		486327	5396419	190	9	0.00	2 278	5
175	6325	97 35	105.67	134 72	29.05	0.85	2 VG	486327	5396435	179	9	0.00	8 772	26
25	6525	97 36	288.13	316.99	28.86	0.69	2.10	486514	5396481	16	14.7	0.03	6.936	29
150	6250	97 37	164.10	169.62	5.52	3.58		486239	5396424	144	3.6	0.10	9.588	6
125	6275	97 38	173.00	203.48	30.48	1.43	2 VG	486272	5396446	123	15.1	0.03	29.648	24
250	6475	97_39	50.00	60.00	10.00	0.00		486482	5396435	242				
250	6450	97_40	59.01	64.68	5.67	0.36		486457	5396438	239	2.3	0.00	0.816	4
150	6300	97_41	170.17	188.95	18.78	0.56	VG	486308	5396433	137	11	0.56	3.536	16
125	6275	97_42	213.09	228.02	14.93	0.62	3 VG	486271	5396446	119	10.1	0.03	4.148	15
250	6125	97_43	61.14	67.21	6.07	1.91	2 VG	486130	5396395	237	2.9	0.07	8.058	8
225	6125	97_43	75.59	82.42	6.83	3.25		486130	5396387	220	7.1	0.17	20.57	7
200	6125	97_43	87.90	95.71	7.81	2.61		486130	5396381	210	3.2	0.17	12.886	6
125	6400	97_44	179.28	182.88	3.60	0.99		486389	5396441	135	2.4	0.14	1.7	3
25	6275	97_45	297.64	300.59	2.95	0.28	3 VG	486269	5396436	23	10	0.00	3.604	21
75	6175	97_46	243.99	256.92	12.92	0.52		486170	5396436	82	8.5	0.52	2.346	13
25	6000	97_47	294.62	300.23	5.61	1.45		486002	5936447	21	4.5	1.45	2.346	4
-25	6000	97_48	330.50	342.50	6.00	1.20		486004	5396417	-21	2.7	0.034	2.788	4
-50	6000	97_40 07_70	234.03	236.83	2.97	0.23		400004	5036400	-43	2	0.03	0.306	3
75	6000	97_49	234.03	230.03	2.00	0.23		405995	5930402	74	2	0.20	0.300	3
125	6275	97_50	200.92	211 44	10 52	1 21		486281	5396446	116	63	0.70	5.678	11
17	6275	97 52	131.37	138 23	6.86	0.41		486283	5936431	179	4.2	0.07	0.0714	6
175	6275	97 52	147.95	150.66	2 71	1.34	3 VG	486284	5396438	168	4.3	0 136	3 978	9
150	6275	97 53	151.18	188.18	37.00	1.85	6 VG	486275	5396437	146	19.3	0	33.116	33
50	6500	97 54	269.44	279.29	9.85	3.07	3 VG	486499	5396478	51	5.3	0.034	19.482	12
25	6500	97_54	286.66	308.03	21.37	1.05	VG	486498	5386466	32	11	0	11.152	23
75	6550	97_55	243.93	250.73	6.80	2.50		486546	5396494	74	3.5	0.272	8.092	8
50	6500	97_55	267.98	273.92	5.94	0.19		486546	5396481	53	0.8	0	0.272	4
50	6500	97_56	254.66	258.17	3.51	53.63	3 VG	486536	5396479	53	1.9	1.156	179.826	4
50	6500	97_56	274.62	299.31	24.69	1.74	4 VG	486536	5396477	38	12.4	0	18.904	22
150	6500	97_57	148.13	153.92	5.79	0.98		486498	5396464	157	3.7	0.102	2.38	5
125	6500	97_57	192.63	198.79	6.16	1.28	VG	486497	5396443	119	3	0.034	2.686	6
200	6350	97_58	112.01	117.50	5.49	0.19		486356	5396439	190	1.9	0	0.476	5
175	6350	97_58	131.22	141.73	10.52	0.43		486354	5396429	1/1	3.5	0	1.972	8
125	6375	97_59	198.12	203.61	5.49	0.51		480300	5396450	115	2.7	0.068	1.088	5
75	6375	97_59	210.31	217.04	1.22	0.56	VG	400303	5306433	88	3.0 2.4	0.000	2.992	0
125	6250	97_09	188.00	101 66	3.66	1.63	VG	486255	5306433	124	2.4	1 258	2 176	4
100	6250	97_00	108.00	200.56	1.83	1.03	2 VG	486255	5396449	124	2.0	0.204	9.656	13
100	6250	97 60	206.84	208.60	1.80	2.38	2.10	486255	5396446	101	2.2	0.136	3.4	3
25	6550	97 61	251.61	273.77	22.16	1.71	2 VG	100200	5396484	36	2.8	0	53.924	22
0	6550	97 61	295.66	304.25	8.60	0.78	VG		5396495	0	3.6	0.306	4.828	10
-25	6550	97_61	314.55	332.38	17.83	2.95	2 VG		5396501	-22	3.7	0	91.834	22
-50	6550	97_61	337.35	350.58	13.23	1.17	3 VG		5396507	-42	3.3	0.204	11.424	16
-75	6550	97_61	359.39	378.96	19.57	0.78	4 VG		5396514	-66	2.5	0	6.29	22
		A_01			0.00									
		A_02			0.00									
	6400	A_03			0.00									
75	6300	A_04	211.00	227.00	16.00	0.420		486294	5396457	84	4.7	0	2.33	16
100	6300	A_05	197.00	202.00	5.00	52.81		486398	5396449	109	2.3	0.87	351.43	7
	6450	A_06			0.00									
25	6600	A_07	278.00	281.00	3.00	4 40		486591	5369534	35	1.2	<u> </u>		4-
-50	6600	A_08	341.61	354.63	13.02	1.48		486604	5396549	-47	2.9	U	6.14	17
100	6725	A_09	211.00	218.00	7.00	0.090		486128	5396424	102	3.9	U	0.23	8
25	6350	A_10	227 60	2/1 70	0.00	0.00		100000	E206400	24	4 7	0	0.64	7
-25	0000	A_11 A_12	331.00	341.70	4.10	0.08		400309	2290400	-34	1.7	U	0.01	1
	6400	Λ_1Z Δ 1/			0.00									
	0400	A_14			0.00									

APPENDIX – 4

WORKING NOTES RE MINERAL RESOURCE ESTIMATES

Hole ID	from (m)	to(m)	Core	Uncut g/t	Horiz.	HorzWxg	VG	Polygon	Poly Area	Area of	Category	SG	Polygon	grams	INDICATED	INDICATED	Cun	nulative Indicat	ed	INFERRED	INFERRED	Cum	ulative Inferre	ed
			m		Width			Number		Influence			tonnes		tonnes	ounces	Tonnes	Grade	Ounces	tonnes	ounces	Tonnes	Grade	Ounces
97_01	210.77	222.99	12.22	135.770	5.30	719.58	2 VG	125	404	20	INDICATED	2.8	5,995	813,941	5,995	26,171.7	5,995.0	135.77	26,171.7	-	-	-	-	-
97_56	254.66	258.17	3.51	53.630	1.90	101.90	3 VG	174	293	17	INDICATED	2.8	1,559	83,609	1,559	2,688.4	7,554.0	118.8	28,860.1	-	-	-	-	-
A_05	197.00	202.00	5.00	52.810	2.30	121.46		159	556	24	INDICATED	2.8	3,581	189,113	3,581	6,080.8	11,135.0	97.6	34,940.9	-	-	-	-	-
87_09	181.05	182.21	1.16	35.090	10.00	350.90	2 VG	150	395	20	INDICATED	2.8	11,060	388,095	11,060	12,479.0	22,195.0	66.4	47,419.9	-	-	-	-	-
97_25	77.97	82.75	4.79	19.108	2.80	53.50	3 VG	33	20	4	INDICATED	2.8	157	3,000	157	96.5	22,352.0	66.1	47,516.4	-	-	-	-	-
69_21	130.45	155.11	24.66	18.820	4.90	92.22	2 VG	155	80	9	INDICATED	2.8	1,098	20,664	1,098	664.4	23,450.0	63.9	48,180.8	-	-	-	-	-
88_40	204.89	213.24	8.35	18.579	1.60	29.73	VG	130	1124	34	INFERRED	2.8	5,036	93,564	-	-	23,450.0	63.9	48,180.8	5,036	3,009	5,036.0	18.6	3,008.5
69_06A	186.84	195.71	8.87	14.680	8.00	117.44	3 VG	155	80	9	INDICATED	2.8	1,792	26,307	1,792	845.9	25,242.0	60.4	49,026.7	-	-	5,036.0	18.6	3,008.5
97_16	165.66	179.37	13.72	11.000	6.50	71.50		102	232	15	INDICATED	2.8	4,222	46,442	4,222	1,493.3	29,464.0	53.3	50,520.0	-	-	5,036.0	18.6	3,008.5
69_04	151.79	153.28	1.49	10.160	7.90	80.26		78	684	26	INFERRED	2.8	15,130	153,721			29,464.0	53.3	50,520.0	15,130	4,943	20,166.0	12.3	7,951.3
69_19	163.59	165.14	1.55	9.510	1.39	13.22		82	289	17	INDICATED	2.8	1,125	10,699	1,125	344.0	30,589.0	51.7	50,864.0	-	-	20,166.0	12.3	7,951.3
97_33	60.26	68.00	7.74	9.250	2.30	21.28		23	218	15	INDICATED	2.8	1,404	12,987	1,404	417.6	31,993.0	49.9	51,281.6	-	-	20,166.0	12.3	7,951.3
97_10	162.70	185.01	22.31	9.060	6.20	56.17	3 VG	119	290	1/	INDICATED	2.8	5,034	45,608	5,034	1,466.5	37,027.0	44.3	52,748.1	-	-	20,166.0	12.3	7,951.3
97_14	224.33	257.77	33.44	8.190	14.90	122.03		175	369	19	INDICATED	2.8	15,395	126,085	15,395	4,054.2	52,422.0	33.7	56,802.3	-	-	20,166.0	12.3	7,951.3
97_07	67.67	78.94	11.28	7.199	6.20	44.63	0.1/0	25	215	15	INDICATED	2.8	3,732	26,867	3,732	863.9	56,154.0	31.9	57,666.2	-	-	20,166.0	12.3	7,951.3
97_28	222.50	237.20	14.69	7.160	1.90	50.50	2 VG	140	262	10	INDICATED	2.8	5,795	41,492	5,795	1,334.2	61,949.0	29.6	59,000.4	-	-	20,166.0	12.3	7,951.3
01_10	200.72	293.90	13.20	7.110	1.50	10.07	2 VG	105	1021	43		2.0	7,040	54,377	-	4 600 4	61,949.0	29.0	59,000.4	7,040	1,749	27,014.0	10.6	9,699.6
97_10	162.45	201.02	10.00	7.110	15.10	1107.30	4 VG	105	470	22		2.0	20,210	143,093	20,210	4,620.4	62,159.0	24.1	63,620.6	-	-	27,014.0	10.6	9,099.0
01_13	55.63 61.00	69 61	6 71	6.040	4 20	20.11	5 VG	24	240	10		2.0	2,005	14 192	2,005	2,444.1	93,272.0	22.0	66,064.9	-	-	27,014.0	10.0	9,099.0
97 09	187.63	102.88	5.24	6.440	4.30	10.06	4.VG	07	100	1/		2.0	2,095	10,620	2,095	400.0	95,307.0	21.7	66 862 4		-	27,014.0	10.8	9,099.0
87 06	187 76	196 17	0.24 8 41	6 400	4 00	25.60	4 00	177	219.5	15	INDICATED	∠.0 2.8	2 458	15 731	2 458	505.8	99 474 0	∠1.4+ 21.1	67 368 2		-	27,014.0	10.0	9,099.0 9,099.0
97 21	220.46	224.89	4 42	6 140	2 20	13 51	VG	202	219.0	16		2.0	1 540	9.456	2,40	304.0	101 014 0	20.8	67 672 2		-	27,014.0	10.8	0,600,9
69 01	160.02	167 64	7.42	6 080	4 90	29 70	٧G	93	200	10	INDICATED	∠.0 2.8	1 386	5,400 8 427	1,040	271 0	102 400 0	20.0	67 943 2		-	27,014.0	10.0	9,099.0 9,099.0
80 11	126 19	148.38	22 19	5 880	15.80	92.90	7 VG	75	319	18	INDICATED	2.8	14 113	82 984	14 113	2 668 3	116 513 0	18.8	70 611 5		-	27 814.0	10.8	9 699 A
97.06	178.83	195.65	16.82	5 880	10.00	59 39	2 VG	101	590	24		2.0	16 685	98 108	16 685	3 154 6	133 198 0	17.2	73 766 1			27,014.0	10.0	9,600.8
81 09	31 70	46 94	15.24	5 670	3 10	17.58	VG	5	125	11	INDICATED	2.8	1 085	6 152	1 085	197.8	134 283 0	17.2	73 963 9		-	27,814.0	10.0	9 699 8
97 04	179.89	200 41	20.51	5 320	20.80	110.66	3 VG	110	799	28	INFERRED	2.8	46 534	247 561	-	-	134 283 0	17.1	73 963 9	46 534	7 960	74 348 0	74	17 660 0
97 33	80.01	85.62	5.61	4.870	2.30	11.20	0.0	44	304	17	INDICATED	2.8	1.958	9.535	1.958	306.6	136.241.0	17.0	74.270.5	-		74.348.0	7.4	17,660.0
69 10	148.74	150.94	2.19	4.680	2.10	9.83	VG	63	789	28	INFERRED	2.8	4.639	21.711	-	-	136,241.0	17.0	74,270.5	4,639	698	78,987.0	7.2	18,358,1
69 17	161.12	168.98	7.86	4,440	6.30	27.97	2 VG	89	129	11	INDICATED	2.8	2.276	10,105	2.276	324.9	138.517.0	16.7	74.595.4	-	-	78,987.0	7.2	18.358.1
97 24	116.07	121.46	5.39	4.400	4.10	18.04		53	315	18	INDICATED	2.8	3,616	15,910	3,616	511.6	142,133.0	16.4	75,107.0	-	-	78,987.0	7.2	18,358.1
69 07	172.15	180.38	8.23	4.390	8.23	36.13		37	1514	39	INFERRED	2.8	34.889	153,163	-	-	142,133.0	16.4	75.107.0	34.889	4,925	113.876.0	6.4	23,282,9
81 14	45.72	108.20	62.48	4.020	4.10	16.48	7 VG	34	226	15	INDICATED	2.8	2,594	10,428	2,594	335.3	144,727.0	16.2	75,442.3	-	-	113,876.0	6.4	23,282.9
81_04	33.53	39.62	6.10	3.990	0.50	2.00		3	795	28	INFERRED	2.8	1,113	4,441	-	-	144,727.0	16.2	75,442.3	1,113	143	114,989.0	6.3	23,425.7
69_02	123.75	147.83	24.08	3.880	5.90	22.89	5 VG	49	518	23	INDICATED	2.8	8,557	33,201	8,557	1,067.6	153,284.0	15.5	76,509.9	-	-	114,989.0	6.3	23,425.7
69_06A	164.53	168.83	4.30	3.870	3.20	12.38		114	294	17	INDICATED	2.8	2,634	10,194	2,634	327.8	155,918.0	15.3	76,837.7	-	-	114,989.0	6.3	23,425.7
81_05	83.21	113.02	29.81	3.870	14.50	56.12	2 VG	51	109	10	INDICATED	2.8	4,425	17,125	4,425	550.6	160,343.0	15.0	77,388.3	-	-	114,989.0	6.3	23,425.7
97_37	164.10	169.62	5.52	3.580	3.60	12.89		120	229	15	INDICATED	2.8	2,308	8,263	2,308	265.7	162,651.0	14.8	77,654.0	-	-	114,989.0	6.3	23,425.7
97_02	83.82	113.84	30.02	3.520	16.40	57.73	5 VG	56	257	16	INDICATED	2.8	11,801	41,540	11,801	1,335.7	174,452.0	14.1	78,989.7	-	-	114,989.0	6.3	23,425.7
97_07	46.24	49.90	3.66	3.420	2.01	6.87	2 VG	6	230	15	INDICATED	2.8	1,294	4,425	1,294	142.3	175,746.0	14.0	79,132.0	-	-	114,989.0	6.3	23,425.7
69_12	114.30	134.05	19.75	3.280	11.60	38.05	2 VG	61	518	23	INDICATED	2.8	16,825	55,186	16,825	1,774.5	192,571.0	13.1	80,906.5	-	-	114,989.0	6.3	23,425.7
97_43	75.59	82.42	6.83	3.250	2.80	9.10		32	153	12	INDICATED	2.8	1,200	3,900	1,200	125.4	193,771.0	13.0	81,031.9	-	-	114,989.0	6.3	23,425.7
87_09	57.91	61.60	3.69	3.180	3.03	9.64	VG	19	256	16	INDICATED	2.8	2,172	6,907	2,172	222.1	195,943.0	12.9	81,254.0	-	-	114,989.0	6.3	23,425.7
81_03	37.86	44.68	6.83	3.140	6.80	21.35	VG	8	915	30	INFERRED	2.8	17,422	54,705		-	195,943.0	12.9	81,254.0	17,422	1,759	132,411.0	5.9	25,184.7
97_54	269.44	279.29	9.85	3.070	5.30	16.27	3 VG	176	425	21	INDICATED	2.8	6,307	19,362	6,307	622.6	202,250.0	12.6	81,876.6	-	-	132,411.0	5.9	25,184.7
87_09	74.83	11.21	2.44	3.010	2.00	6.02		42	383	20	INDICATED	2.8	2,145	6,456	2,145	207.6	204,395.0	12.5	82,084.2	-	-	132,411.0	5.9	25,184.7
97_61	314.55	332.38	17.83	2.947	3.70	10.90	2 VG	197	2118	46		2.8	21,942	64,663	-	-	204,395.0	12.5	82,084.2	21,942	2,079	154,353.0	5.5	27,263.9
97_24	90.34	122.00	10.02	2.940	4.10	3 60	2 vG	29	400	21		2.0	0,∠08 1.097	15,459	0,∠08 1 007	497.1	209,003.0	12.3	02,001.3 82 762 7	-	-	154,353.0	0.5 E F	27,203.9
81 10	37 40	80.00	00.1	2.040	6.20	3.09	4.1/0	40	040	23	INFERDED	∠.0 2.9	11 766	32 700	1,907	101.4	211,040.0	12.2	02,102.1 82 762 7	11 760	1.050	104,303.0	5.5	28 215 7
01_10	37.49	81.26	43.49	2.700	5.00	17.01	4 vG	26	645	20		2.0	10 114	32,109	-	-	211,040.0	12.2	02,102.1	11,766	1,052	166 110.0	5.3	20,313.7
97 21	202 30	209.00	6.71	2.750	2.80	7.68		167	152	12		∠.0 2.8	1 102	3 269	1 102	105 1	222 946 0	11.7	83 762 1		-	166 119.0	5.3	28 315 7
80 03	80.12	203.00 QA QE	10.71	2.742	2.00	18.80		45	155	12		∠.0 2.8	3 081	8 195	3 081	263.5	222,940.0	11.7	84 025 6		-	166 119.0	5.3	28 315 7
81 03	93 79	181 09	87 20	2 610	13 90	36.28	5 VG	90	248	16		2.0	9,652	25 192	9,652	200.0	235 679 0	11.0	84 835 6		-	166 119 0	5.3	28 315 7
97 43	87.90	95 71	7 81	2.010	3 20	8.35	3.43	36	166	13	INDICATED	2.0	1 487	3 881	1 487	124 8	237,166.0	11.2	84 960 4		-	166 119 0	53	28 315 7
97 20	116 01	131.86	15.85	2.530	7,60	19.23		86	306	17	INDICATED	2.8	6,512	16,475	6 512	529.8	243 678 0	10.9	85,490.2	-	-	166,119.0	53	28,315.7
97 55	243.93	250 73	6.80	2.500	3,50	8.75		170	448	21	INDICATED	2.8	4,390	10,975	4 390	352 9	248 068 0	10.8	85,843 1	-	-	166,119.0	53	28,315 7
88 27A	72.24	79.95	7.71	2.450	4.00	9.80			796	28	INFERRED	2.8	8,915	21.842	-,000	-	248.068.0	10.8	85.843 1	8,915	702	175.034.0	5.2	29.018.0
97 60	206.84	208.64	1.80	2.380	1.38	3.28	VG	168	90	9	INDICATED	2.8	348	828	348	26.6	248.416.0	10.8	85,869.7	-	-	175,034.0	5.2	29,018.0
80, 09A	89.79	95.28	5.49	2.300	5.20	11.96	-	40A	474.5	22	INDICATED	2.8	6,909	15,891	6,909	511.0	255,325.0	10.5	86,380.7	-	-	175,034.0	5.2	29,018.0
97 26	144.29	146.70	2.41	2.260	1.21	2.73	VG	111	223	15	INDICATED	2.8	756	1,709	756	54.9	256,081.0	10.5	86,435.6		-	175,034.0	5.2	29,018.0
69_20	217.47	220.28	2.80	2.140	2.80	5.99	VG	121	71	8	INDICATED	2.8	557	1,192	557	38.3	256,638.0	10.5	86,473.9	-	-	175,034.0	5.2	29,018.0
97_12	197.97	219.15	21.18	2.100	11.30	23.73	4 VG	126	563	24	INDICATED	2.8	17,813	37,407	17,813	1,202.8	274,451.0	9.9	87,676.7	-	-	175,034.0	5.2	29,018.0
97_15	195.22	204.73	9.51	2.060	4.00	8.24		100	1079	33	INFERRED	2.8	12,085	24,895	-		274,451.0	9.9	87,676.7	12,085	801	187,119.0	5.0	29,818.5
97_17	260.73	274.02	13.29	2.010	5.30	10.65		179	423	21	INDICATED	2.8	6,277	12,617	6,277	405.7	280,728.0	9.8	88,082.4		-	187,119.0	5.0	29,818.5
69_21	83.52	97.72	14.20	2.000	2.50	5.00	VG	69	164.5	13	INDICATED	2.8	1,152	2,304	1,152	74.1	281,880.0	9.7	88,156.5	-	-	187,119.0	5.0	29,818.5
97_25	85.74	93.09	7.35	2.000	2.70	5.40	VG	35	130	11	INDICATED	2.8	983	1,966	983	63.2	282,863.0	9.7	88,219.7	-	-	187,119.0	5.0	29,818.5
87_05	135.58	142.04	6.46	1.980	2.50	4.95		60	660	26	INFERRED	2.8	4,620	9,148	-	-	282,863.0	9.7	88,219.7	4,620	294	191,739.0	4.9	30,112.6
88_33	303.28	321.41	18.14	1.970	7.90	15.56		208	5229	72	INFERRED	2.8	115,665	227,860	-	-	282,863.0	9.7	88,219.7	115,665	7,327	307,404.0	3.8	37,439.3

80_07 87_05 97_43 87_16 97_53 88_30	87.93 180.56	100.92	m		Width																			
80_07 87_05 97_43 87_16 97_53 88_30	87.93 180.56	100.92						Number		Influence			tonnes		tonnes	ounces	Tonnes	Grade	Ounces	tonnes	ounces	Tonnes	Grade	Ounces
87_05 97_43 87_16 97_53 88_30	180.56	100.02	12.98	1.950	8.50	16.58	2 VG	47	437	21	INDICATED	2.8	10.401	20.282	10,401	652.2	293.264.0	9.4	88.871.9	-	-	307.404.0	3.8	37.439.3
97_43 87_16 97_53 88_30		184.10	3.54	1.910	2.00	3.82		103	225	15	INDICATED	2.8	1,260	2.407	1,260	77.4	294,524.0	9.4	88,949,3	-	-	307,404.0	3.8	37,439,3
87_16 97_53 88_30	61 14	67 21	6.07	1 910	2.90	5.54	2 VG	12	465	22	INDICATED	2.8	3 776	7 212	3 776	231.9	298,300,0	9.3	89 181 2			307 404 0	3.8	37 439 3
97_53 88_30	70.41	106 71	36.30	1 860	1/ 30	26.60	5 VG	56	257	16		2.0	10,200	10 130	10,200	615.4	308 590 0	0.0	80 706 6			307 404 0	3.8	37 430 3
97_33 88_30	151 10	100.71	27.00	1.800	14.30	20.00	5 VG	117	207	14		2.0	0.042	10 205	0.042	501.5	219 522 0	9.0	00 200 1	-	-	307,404.0	3.0	27 429.2
88_30	151.16	100.10	37.00	1.650	19.30	35.71	6 VG	117	164	14	INDICATED	2.0	9,943	16,395	9,943	591.5	316,533.0	0.0	90,366.1	-	-	307,404.0	3.0	37,439.3
	136.40	143.41	7.01	1.848	2.70	4.99		15	2255	47	INFERRED	2.8	17,048	31,505		-	318,533.0	8.8	90,388.1	17,048	1,013	324,452.0	3.7	38,452.3
97_28	205.71	213.21	7.50	1.780	3.80	6.76		141	321	18	INDICATED	2.8	3,415	6,079	3,415	195.5	321,948.0	8.8	90,583.6	-	-	324,452.0	3.7	38,452.3
97_34	64.25	68.76	4.51	1.780	4.10	7.30	VG	21	311	18	INDICATED	2.8	3,570	6,355	3,570	204.3	325,518.0	8.7	90,787.9	-	-	324,452.0	3.7	38,452.3
97_56	274.62	299.31	24.69	1.740	12.40	21.58	4 VG	195	221	15	INDICATED	2.8	7,673	13,351	7,673	429.3	333,191.0	8.5	91,217.2	-	-	324,452.0	3.7	38,452.3
97_48	359.66	365.64	5.97	1.714	1.70	2.91		209	2178	47	INFERRED	2.8	10,367	17,769	-	-	333,191.0	8.5	91,217.2	10,367	571	334,819.0	3.6	39,023.7
97_61	251.61	273.77	22.16	1.711	2.80	4.79	2 VG	193	844	29	INFERRED	2.8	6,617	11,322	-	-	333,191.0	8.5	91,217.2	6,617	364	341,436.0	3.6	39,387.7
81 01	34.59	81.69	47.09	1.700	0.75	1.28	2 VG	18	838	29	INFERRED	2.8	1,760	2,992	-	-	333,191.0	8.5	91,217.2	1,760	96	343,196.0	3.6	39,483.9
81 16	134.51	139.90	5.39	1.690	3.90	6.59		38	658	26	INFERRED	2.8	7,185	12,143	-	-	333,191.0	8.5	91,217,2	7,185	390	350.381.0	3.5	39.874.3
97 24	109.18	112.26	3.08	1.650	3.90	6.44	VG	52	60	8	INDICATED	2.8	655	1.081	655	34.8	333,846.0	8.5	91,252.0		-	350.381.0	3.5	39.874.3
97 60	188.00	191.66	3.66	1 628	2.80	4 56	VG	165	218	15	INDICATED	2.8	1 709	2 782	1 709	89.5	335 555 0	8.5	91 341 5		-	350 381 0	3.5	39 874 3
87_06	172 52	184 71	12 19	1.620	6.00	9.72	10	145	230	15		2.0	3 864	6 260	3 864	201.3	339 419 0	8.4	91 542 8			350 381 0	3.5	39 874 3
07_25	07.38	109.09	10.70	1.620	1 00	7.04		30	516	23		2.0	7 080	11 470	7 080	368.8	346 499 0	8.2	01 011 6			350 381 0	3.5	30 874 3
97_20	97.30	74.75	10.70	1.020	4.90	7.94		39	510	23	INDICATED	2.0	7,080	11,470	7,000	300.0	340,499.0	0.2	91,911.0		-	350,361.0	3.5	39,674.3
97_31	66.05	/1./5	5.70	1.620	2.90	4.70		25	215	15	INDICATED	2.8	1,746	2,829	1,746	90.9	348,245.0	8.2	92,002.5	-	-	350,381.0	3.5	39,874.3
69_03	149.87	160.02	10.15	1.590	6.10	9.70	VG	76	1068	33	INFERRED	2.8	18,241	29,003	-	-	348,245.0	8.2	92,002.5	18,241	933	368,622.0	3.4	40,806.9
80_03	119.60	125.09	5.49	1.580	3.80	6.00	VG	69	164.5	13	INDICATED	2.8	1,750	2,765	1,750	88.9	349,995.0	8.2	92,091.4		-	368,622.0	3.4	40,806.9
88_39	212.45	239.27	26.82	1.550	11.70	18.14		149	3507	59	INFERRED	2.8	114,889	178,078	-	-	349,995.0	8.2	92,091.4	114,889	5,726	483,511.0	3.0	46,532.9
97_32	122.80	139.99	17.19	1.520	11.40	17.33		92	345	19	INDICATED	2.8	11,012	16,738	11,012	538.2	361,007.0	8.0	92,629.6	-	-	483,511.0	3.0	46,532.9
97_29	267.25	271.07	3.83	1.510	1.70	2.57		194	227.5	15	INDICATED	2.8	1,083	1,635	1,083	52.6	362,090.0	8.0	92,682.2	-	-	483,511.0	3.0	46,532.9
97_30	263.41	269.72	6.31	1.490	2.50	3.73		194	227.5	15	INDICATED	2.8	1,593	2,374	1,593	76.3	363,683.0	7.9	92,758.5	-	-	483,511.0	3.0	46,532.9
A 08	341.61	354.63	13.02	1.480	2.90	4.29		191	1660	41	INFERRED	2.8	13,479	19,949	-	-	363,683.0	7.9	92,758.5	13.479	641	496,990.0	3.0	47,174.3
97 47	294.62	300.23	5.61	1.450	4.50	6.53		211	1355	37	INFERRED	2.8	17.073	24,756	-	-	363,683.0	7.9	92,758.5	17.073	796	514.063.0	2.9	47,970.3
97 38	173.00	203 48	30.48	1 430	15 10	21.59	2 VG	163	189	14	INDICATED	2.8	7 991	11 427	7 991	367.4	371 674 0	7.8	93 125 9	-	-	514 063 0	2.9	47 970 3
97 29	238.05	200.40	9.54	1 420	3 20	4 54	2 00	172	310	18		2.0	2 778	3 945	2 778	126.8	374 452 0	7.0	93 252 7			514,063.0	2.0	47 970 3
60 11	141.21	1/6 10	2.06	1.420	2.00	4.00		02	696	26	INCEDDED	2.0	5.570	7 954	2,110	120.0	274 452.0	7.7	02 252 7	E E70	252	E10 622 0	2.0	40,000.0
09_11	141.21	145.16	3.90	1.410	2.90	4.09		03	000	20	INFERRED	2.0	5,570	7,654	-	-	374,452.0	1.1	93,252.7	5,570	253	519,633.0	2.9	40,222.0
81_11	75.71	92.66	16.95	1.360	3.50	4.76		46	315	18	INDICATED	2.8	3,087	4,198	3,087	135.0	377,539.0	1.1	93,387.7	-	-	519,633.0	2.9	48,222.8
69_08	123.29	129.02	5.73	1.340	4.90	6.57	VG	67	103	10	INDICATED	2.8	1,413	1,893	1,413	60.9	378,952.0	1.1	93,448.6	-	-	519,633.0	2.9	48,222.8
87_02	205.22	217.20	11.98	1.340	9.40	12.60		160	146	12	INDICATED	2.8	3,843	5,150	3,843	165.6	382,795.0	7.6	93,614.2	-	-	519,633.0	2.9	48,222.8
97_52	147.95	150.66	2.71	1.340	1.66	2.22	3 VG	95	263	16	INDICATED	2.8	1,222	1,637	1,222	52.7	384,017.0	7.6	93,666.9	-	-	519,633.0	2.9	48,222.8
88_40	177.39	184.40	7.01	1.337	1.60	2.14		131	804	28	INFERRED	2.8	3,602	4,816	-	-	384,017.0	7.6	93,666.9	3,602	155	523,235.0	2.9	48,377.7
97_57	192.63	198.79	6.16	1.280	3.00	3.84	VG	142	234	15	INDICATED	2.8	1,966	2,516	1,966	80.9	385,983.0	7.6	93,747.8	-	-	523,235.0	2.9	48,377.7
80_14	87.48	95.10	7.62	1.250	5.50	6.88		17	1193	35	INFERRED	2.8	18,372	22,965	-	-	385,983.0	7.6	93,747.8	18,372	738	541,607.0	2.8	49,116.1
81 09	208.94	221.19	12.25	1.220	3.80	4.64	VG	203	276	17	INDICATED	2.8	2,937	3,583	2,937	115.2	388,920.0	7.5	93,863.0	-	-	541,607.0	2.8	49,116.1
80 15	123.84	140.21	16.37	1.218	9.10	11.08	VG	55	482	22	INDICATED	2.8	12.281	14,958	12,281	481.0	401.201.0	7.3	94,344.0	-	-	541.607.0	2.8	49,116,1
97 51	200.92	211 44	10.52	1 214	6 30	7.65		161	153	12		2.8	2 699	3 277	2 699	105.4	403 900 0	73	94 449 4			541 607 0	2.8	49 116 1
80_01	122.22	1/0.36	18 14	1.214	0.00	11 74	VG	01	251	16		2.0	6.817	8 240	6,817	265.2	400,000.0	7.0	94 714 6			541 607 0	2.0	40,116,1
81 11	1/1 88	152.46	10.14	1 210	2 1 8	2.64	VG	116	151	12		2.0	0,017	1 1 1 6	0,017	35.0	411 630.0	7.2	94,750.5			541 607 0	2.0	40,116,1
00 21	242.04	251 46	7.62	1.210	2.10	2.04	vu	124	505	24		2.0	4 222	5 109	4 222	167.2	411,033.0	7.2	04 017 7	-	-	541,007.0	2.0	40,110.1
00_31	243.04	201.40	7.02	1.200	2.00	3.12		134	090	24	INDICATED	2.0	4,332	5,196	4,332	107.2	415,971.0	7.1	94,917.7	40 750	-	541,007.0	2.0	49,110.1
97_48	336.50	342.50	6.00	1.200	2.70	3.24		210	1819	43	INFERRED	2.8	13,752	16,502	-	-	415,971.0	7.1	94,917.7	13,752	531	555,359.0	2.8	49,646.7
87_09	128.02	147.52	19.51	1.190	16.00	19.04	2 VG	84	894	30	INFERRED	2.8	40,051	47,661	-	-	415,971.0	7.1	94,917.7	40,051	1,533	595,410.0	2.7	51,179.2
97_31	95.01	113.23	18.23	1.180	8.90	10.50		70	143	12	INDICATED	2.8	3,564	4,206	3,564	135.2	419,535.0	7.0	95,052.9	-	-	595,410.0	2.7	51,179.2
97_61	337.35	350.58	13.23	1.172	3.30	3.87	3 VG	198	3142	56	INFERRED	2.8	29,032	34,026	-	-	419,535.0	7.0	95,052.9	29,032	1,094	624,442.0	2.6	52,273.3
80_02	47.55	62.94	15.39	1.170	10.20	11.93		4	489	22	INDICATED	2.8	13,966	16,340	13,966	525.4	433,501.0	6.9	95,578.3	-	-	624,442.0	2.6	52,273.3
97_05	272.64	285.54	12.89	1.170	6.30	7.37		181	2169	47	INFERRED	2.8	38,261	44,765	-	-	433,501.0	6.9	95,578.3	38,261	1,439	662,703.0	2.5	53,712.7
97_60	198.73	200.56	1.83	1.140	1.40	1.60	VG	166	65	8	INDICATED	2.8	255	291	255	9.3	433,756.0	6.9	95,587.6	-	-	662,703.0	2.5	53,712.7
69 18	203.76	214.88	11.13	1.130	10.40	11.75		108	1151	34	INFERRED	2.8	33,517	37,874	-	-	433,756.0	6.9	95,587.6	33,517	1,218	696,220.0	2.5	54,930.5
97 16	200.74	203.67	2.93	1.116	1.00	1.12		143	161	13	INDICATED	2.8	451	503	451	16.2	434,207.0	6.8	95,603.8	-	-	696,220.0	2.5	54,930.5
97 34	109.58	116.98	7.41	1.070	4.01	4.29		88	64	8	INDICATED	2.8	719	769	719	24 7	434,926.0	6.8	95.628.5	-	-	696,220.0	2.5	54,930 5
81 02	97 11	121.86	24 75	1.060	7.90	8.37		68	219	15	INDICATED	2.8	4 844	5 135	4 844	165.1	439 770 0	6.8	95 793 6			696 220 0	2.5	54 930 5
07 54	286.60	300 00	21.73	1 050	11 00	11 55	VC	105 ^	250	10		2.0	11 000	11 577	11 020	373.0	450 706 0	0.0	06 165 0	-	-	606 220.0	2.0	54 020 5
97_04	200.00	200.03	12.04	1.000	2.00	4.00	٧G	190A	1017	19		2.0	10.040	11,577	11,020	312.3	450,790.0	0.0	90,100.9	10.040	-	716,000,0	2.5	54,930.5
01_16	192.63	200.44	13.81	1.040	3.90	4.06	1/2	132	101/	43		∠.ŏ	19,842	20,030		-	450,796.0	0.0	90,165.9	19,842	664	7 10,062.0	2.4	00,094.0
87_06	200.74	218.08	17.34	1.030	7.00	7.21	vG	1/8	391	20	INDICATED	2.8	1,664	7,894	7,664	253.8	458,460.0	6.5	96,419.7	-	-	716,062.0	2.4	55,594.0
97_18	214.64	217.51	2.87	1.030	2.33	2.40	VG	146	336	18	INDICATED	2.8	2,192	2,258	2,192	72.6	460,652.0	6.5	96,492.3	-	-	716,062.0	2.4	55,594.0
87_06	222.20	227.47	5.27	1.020	3.00	3.06		177	219.5	15	INDICATED	2.8	1,844	1,881	1,844	60.5	462,496.0	6.5	96,552.8	-	-	716,062.0	2.4	55,594.0
80_13	102.72	122.99	20.27	0.990	11.00	10.89		50	437	21	INDICATED	2.8	13,460	13,325	13,460	428.5	475,956.0	6.3	96,981.3	-	-	716,062.0	2.4	55,594.0
97_44	179.28	182.88	3.60	0.990	2.40	2.38		109	449	21	INDICATED	2.8	3,017	2,987	3,017	96.0	478,973.0	6.3	97,077.3	-	-	716,062.0	2.4	55,594.0
97_57	148.13	153.92	5.79	0.980	3.70	3.63		80	553	24	INDICATED	2.8	5,729	5,614	5,729	180.5	484,702.0	6.2	97,257.8	-	-	716,062.0	2.4	55,594.0
87_01	191.57	220.98	29.41	0.940	18.70	17.58	VG	79	1500	39	INFERRED	2.8	78,540	73,828	-	-	484,702.0	6.2	97,257.8	78,540	2,374	794,602.0	2.3	57,967.9
81 10	98.45	103.33	4.88	0.937	1.50	1.41	VG	72	260	16	INDICATED	2.8	1.092	1.023	1.092	32.9	485,794.0	6.2	97,290.7	-		794,602.0	2.3	57,967.9
97 10	231 53	233.23	1 70	0.030	0.75	0.70	. •	148	914	30	INFERRED	2.8	1 010	1 785	-,002	-	485 794 0	6.2	97 200 7	1 010	57	796 521 0	2.0	58 025 3
87 08	88.00	152.80	64.80	0.000	2 60	2 30	4 VG	77	143	12		2.8	1 041	958	1 0/1	30.8	486 835 0	6.2	97 321 5	1,313	- 57	796 521 0	2.3	58 025 3
07_00	100.09	210 10	18 20	0.920	12 40	2.00	- VG	127	1020	32	INFEPDED	2.0	37 400	31 100	1,041	30.6	400,030.0	0.2	07 221.0	27 400	1 100	834 010 0	2.3	50 121.0
97_11	199.69	210.18	10.29	0.920	12.40	11.41	vG	127	1060	33		2.0	31,498	34,498	-	-	400,030.0	0.2	91,321.5	37,498	1,109	034,019.0	2.2	50 404 0
97_13	169.07	176.66	7.59	0.910	4.50	4.10		122	350	19	INDICATED	2.8	4,410	4,013	4,410	129.0	491,245.0	<u>ь.2</u>	97,450.5	-	-	634,019.0	2.2	59,134.6
80_01	157.58	160.48	2.90	0.870	1.90	1.65	VG	153	483	22	INDICATED	2.8	2,570	2,236	2,570	71.9	493,815.0	6.1	97,522.4	-	-	834,019.0	2.2	59,134.6
69_11	128.11	134.57	6.46	0.850	4.40	3.74		62	564	24	INDICATED	2.8	6,948	5,906	6,948	189.9	500,763.0	6.1	97,712.3	-	-	834,019.0	2.2	59,134.6
97_35	105.67	134.72	29.05	0.850	9.00	7.65	2 VG	90	170	13	INDICATED	2.8	4,284	3,641	4,284	117.1	505,047.0	6.0	97,829.4	-	-	834,019.0	2.2	59,134.6

Hole ID	from (m)	to(m)	Core	Uncut g/	t Horiz.	HorzWxg	VG	Polygon	Poly Area	Area of	Category	SG	Polygon	grams	INDICATED	INDICATED	Cun	nulative Indica	ted	INFERRED	INFERRED	Cum	ulative Inferre	ed
			m		Width			Number		Influence			tonnes		tonnes	ounces	Tonnes	Grade	Ounces	tonnes	ounces	Tonnes	Grade	Ounces
80_09	87.39	93.09	5.70	0.830	3.50	2.91	VG	40A	474.5	22	INDICATED	2.8	4,650	3,860	4,650	124.1	509,697.0	6.0	97,953.5	-	-	834,019.0	2.2	59,134.6
81_10	140.21	153.10	12.89	0.820	2.40	1.97		96	203	14	INDICATED	2.8	1,364	1,118	1,364	36.0	511,061.0	6.0	97,989.5	-	-	834,019.0	2.2	59,134.6
88_28	60.66	68.88	8.23	0.810	3.40	2.75		10	1094	33	INFERRED	2.8	10,415	8,436	-	-	511,061.0	6.0	97,989.5	10,415	271	844,434.0	2.2	59,405.9
80_08A	104.24	111.25	7.01	0.800	4.70	3.76		48	399	20	INDICATED	2.8	5,251	4,201	5,251	135.1	516,312.0	5.9	98,124.6		-	844,434.0	2.2	59,405.9
88_40	144.63	160.32	15.70	0.800	1.60	1.28		58	719	27	INFERRED	2.8	3,221	2,577	-	-	516,312.0	5.9	98,124.6	3,221	83	847,655.0	2.2	59,488.8
97_61	295.66	304.25	8.60	0.783	3.60	2.82	VG	192	1544	39	INFERRED	2.8	15,564	12,187		-	516,312.0	5.9	98,124.6	15,564	392	863,219.0	2.2	59,880.7
81_09	70.20	123.99	53.80	0.780	6.60	5.15		71	298	17	INDICATED	2.8	5,507	4,295	5,507	138.1	521,819.0	5.9	98,262.7		-	863,219.0	2.2	59,880.7
97_61	359.39	378.96	19.57	0.777	2.50	1.94	4 VG	199	2608	51	INFERRED	2.8	18,256	14,185	-	-	521,819.0	5.9	98,262.7	18,256	456	881,475.0	2.1	60,336.8
80_15	113.43	116.59	3.15	0.774	1.50	1.16		54	400	20	INDICATED	2.8	1,680	1,300	1,680	41.8	523,499.0	5.8	98,304.5	-	-	881,475.0	2.1	60,336.8
69_11	151.61	157.34	5.73	0.770	4.20	3.23		106	581	24	INDICATED	2.8	0,833	5,261	6,833	169.2	530,332.0	5.8	98,473.7	-	-	881,475.0	2.1	60,336.8
97_50	231.71	234.70	2.99	0.760	2.00	1.52		136	1515	39	INFERRED	2.8	8,484	6,448	-	-	530,332.0	5.8	98,473.7	8,484	207	889,959.0	2.1	60,544.1
97_30	207.10	299.01	12.63	0.740	4.90	3.03		74	404	22		2.0	10,300	4,711	10,300	101.0	536,696.0	5.7	96,625.2	-	-	009,959.0	2.1	60,544.1
07_21	214.95	210 00	12.02	0.730	2.00	0.04	VC	160	177	12		2.0	1 497	1 002	1 497	442.2	555,535.0	5.5	99,007.4	-	-	800,959.0	2.1	60,544.1
97_21 60_20	214.00	210.00	4.02	0.720	4 70	2.10	vG	109	131	13		2.0	1,407	1 2/1	1,407	34.0	558 746 0	5.5	99,102.2		-	880 050 0	2.1	60,544.1
97 14	203.45	243.23	9.02	0.720	4.70	3.53		144	224	15		2.0	3 073	2 213	3 073	71 1	561 819 0	5.5	99,142.1			889 959 0	2.1	60 544 1
80 10A	95 22	104 12	8 90	0.720	6.60	4 69		28	702	26	INFERRED	2.0	12 973	9 211	-	-	561 819 0	5.5	99 213 2	12 973	296	902 932 0	2.1	60,840,3
97 36	288 13	316.99	28.86	0.690	14 70	10 14		182	1082	33	INFERRED	2.8	44 535	30 729	-	-	561 819 0	5.5	99 213 2	44 535	988	947 467 0	2.0	61 828 4
81 16	50.29	85.34	35.05	0.650	5.20	3.38		13	759	28	INFERRED	2.8	11.051	7,183	-	-	561,819.0	5.5	99.213.2	11.051	231	958.518.0	2.0	62.059.4
81 11	277.83	339.97	62.15	0.640	5.80	3.71	VG	207	3246	57	INFERRED	2.8	52,715	33,738	-	-	561,819.0	5.5	99.213.2	52,715	1.085	1.011.233.0	1.9	63,144.2
81 12	38,40	106.71	68.31	0.640	7.50	4.80	2 VG	11	525	23	INDICATED	2.8	11.025	7.056	11.025	226.9	572.844.0	5.4	99,440,1	-	-	1.011.233.0	1.9	63,144,2
97 01	173.00	186.87	13.87	0.621	7.20	4.47	VG	124	383	20	INDICATED	2.8	7,721	4,795	7,721	154.2	580,565,0	5.3	99,594,3	-	-	1.011.233.0	1.9	63,144,2
97_08	300.72	311.51	10.79	0.620	3.70	2.29	-	183	7952	89	INFERRED	2.8	82,383	51,077	-	-	580,565.0	5.3	99,594.3	82,383	1,642	1,093,616.0	1.8	64,786.6
97_42	213.09	228.02	14.93	0.620	10.10	6.26	3 VG	164	74	9	INDICATED	2.8	2,093	1,298	2,093	41.7	582,658.0	5.3	99,636.0	-		1,093,616.0	1.8	64,786.6
81_11	229.09	233.69	4.60	0.590	0.95	0.56		204	392	20	INDICATED	2.8	1,043	615	1,043	19.8	583,701.0	5.3	99,655.8	-	-	1,093,616.0	1.8	64,786.6
69_14	185.53	206.14	20.60	0.580	15.80	9.16	VG	115	220	15	INDICATED	2.8	9,733	5,645	9,733	181.5	593,434.0	5.2	99,837.3	-	-	1,093,616.0	1.8	64,786.6
81_03	57.82	90.77	32.95	0.580	5.00	2.90		27	262	16	INDICATED	2.8	3,668	2,127	3,668	68.4	597,102.0	5.2	99,905.7	-	-	1,093,616.0	1.8	64,786.6
97_59	210.31	217.54	7.22	0.580	3.60	2.09		189	529	23	INDICATED	2.8	5,332	3,093	5,332	99.4	602,434.0	5.2	100,005.1	-	-	1,093,616.0	1.8	64,786.6
81_04	96.93	111.40	14.48	0.570	3.00	1.71		66	124	11	INDICATED	2.8	1,042	594	1,042	19.1	603,476.0	5.2	100,024.2	-	-	1,093,616.0	1.8	64,786.6
81_10	207.26	232.87	25.60	0.560	5.00	2.80		205	636	25	INDICATED	2.8	8,904	4,986	8,904	160.3	612,380.0	5.1	100,184.5	-	-	1,093,616.0	1.8	64,786.6
97_41	170.17	188.95	18.78	0.560	11.00	6.16	VG	158	321	18	INDICATED	2.8	9,887	5,537	9,887	178.0	622,267.0	5.0	100,362.5	-	-	1,093,616.0	1.8	64,786.6
69_15	105.61	108.51	2.90	0.550	1.70	0.94		16	2255	47	INFERRED	2.8	10,734	5,904	-	-	622,267.0	5.0	100,362.5	10,734	190	1,104,350.0	1.8	64,976.4
81_16	233.48	242.01	8.53	0.540	1.50	0.81	2 VG	133	1524	39	INFERRED	2.8	6,401	3,457	-	-	622,267.0	5.0	100,362.5	6,401	111	1,110,751.0	1.8	65,087.5
80_05	222.05	224.64	2.59	0.530	2.10	1.11		154	791	28	INFERRED	2.8	4,651	2,465	-	-	622,267.0	5.0	100,362.5	4,651	79	1,115,402.0	1.8	65,166.8
97_46	243.99	256.92	12.92	0.520	8.50	4.42		128	2147	46	INFERRED	2.8	51,099	26,571		-	622,267.0	5.0	100,362.5	51,099	854	1,166,501.0	1.8	66,021.2
69_17	178.64	188.73	10.09	0.510	6.50	3.32		113	361	19	INDICATED	2.8	6,570	3,351	6,570	107.7	628,837.0	5.0	100,470.2	-	-	1,166,501.0	1.8	66,021.2
81_09	130.76	188.76	58.00	0.510	16.90	8.62		118	172	13	INDICATED	2.8	8,139	4,151	8,139	133.5	636,976.0	4.9	100,603.7	-	-	1,166,501.0	1.8	66,021.2
97_59	198.12	203.61	5.49	0.510	2.70	1.38		151	273	17	INDICATED	2.8	2,064	1,053	2,064	33.8	639,040.0	4.9	100,637.5	-	-	1,166,501.0	1.8	66,021.2
97_19	245.58	280.90	35.33	0.490	15.60	7.64		180	481	22		2.8	21,010	10,295	21,010	331.0	660,050.0	4.8	100,968.5	-	-	1,166,501.0	1.8	66,021.2
97_13	142.40	121.65	0.44 6 5 5	0.460	5.01	2.40		90	215	15		2.0	3,010	1,440	3,010	40.5	670 108 0	4.7	101,015.0	-	-	1,100,501.0	1.0	66,021.2
81 01	81 69	128.78	47.09	0.470	4 60	2.00	VG	64	200	14		2.0	2 576	1 211	2 576	38.9	672 684 0	4.7	101,121.4			1,100,501.0	1.0	66 021 2
80 04	218 85	232 11	13.26	0.450	11 10	5.00	2 VG	152	496	22		2.0	15 4 16	6 937	15 416	223.1	688 100 0	4.6	101,100.0			1,100,001.0	1.0	66 021 2
97 58	131 22	141 73	10.52	0.430	3 50	1.51	2 10	112	187	14	INDICATED	2.0	1 833	788	1 833	25.3	689 933 0	4.6	101,000.4	-	-	1 166 501 0	1.0	66 021 2
87 07	243.35	267.89	24.54	0.420	3.80	1.60	VG	206	1956	44	INFERRED	2.8	20.812	8.741	-	-	689,933.0	4.6	101,408.7	20.812	281	1,187,313.0	1.7	66.302.3
97 32	153.50	164.74	11.25	0.420	2.70	1.13		156	143	12	INDICATED	2.8	1.081	454	1.081	14.6	691.014.0	4.6	101.423.3		-	1.187.313.0	1.7	66.302.3
A 04	211.00	227.00	16.00	0.420	4.70	1.97		201	1771	42	INFERRED	2.8	23,306	9.789	-	-	691.014.0	4.6	101.423.3	23,306	315	1,210,619,0	1.7	66.617.0
69_09	121.77	125.36	3.60	0.410	2.70	1.11		65	208	14	INDICATED	2.8	1,572	645	1,572	20.7	692,586.0	4.6	101,444.0	-	-	1,210,619.0	1.7	66,617.0
87_05	145.36	146.94	1.58	0.410	0.71	0.29		81	110	10	INDICATED	2.8	219	90	219	2.9	692,805.0	4.6	101,446.9	-	-	1,210,619.0	1.7	66,617.0
97_52	131.37	138.23	6.86	0.410	4.20	1.72		94	272	16	INDICATED	2.8	3,199	1,312	3,199	42.2	696,004.0	4.5	101,489.1	-	-	1,210,619.0	1.7	66,617.0
97_03	344.73	379.63	34.90	0.390	4.40	1.72		185	3933	63	INFERRED	2.8	48,455	18,897	-	-	696,004.0	4.5	101,489.1	48,455	608	1,259,074.0	1.7	67,224.6
97_59	232.01	236.22	4.21	0.370	2.40	0.89	VG	187	1559	39	INFERRED	2.8	10,476	3,876	-	-	696,004.0	4.5	101,489.1	10,476	125	1,269,550.0	1.6	67,349.2
97_40	59.01	64.68	5.67	0.360	2.30	0.83		2	859	29	INFERRED	2.8	5,532	1,992	-	-	696,004.0	4.5	101,489.1	5,532	64	1,275,082.0	1.6	67,413.2
69_19	179.92	181.60	1.68	0.340	1.50	0.51		104	758	28	INFERRED	2.8	3,184	1,083	-	-	696,004.0	4.5	101,489.1	3,184	35	1,278,266.0	1.6	67,448.0
88_38	221.59	231.04	9.45	0.340	5.40	1.84		200	702	26	INFERRED	2.8	10,614	3,609	-	-	696,004.0	4.5	101,489.1	10,614	116	1,288,880.0	1.6	67,564.0
69_05	159.72	165.51	5.79	0.320	3.40	1.09		57	1338	37	INFERRED	2.8	12,738	4,076	-	-	696,004.0	4.5	101,489.1	12,738	131	1,301,618.0	1.6	67,695.1
80_12	239.36	242.93	3.57	0.310	2.90	0.90		147	1071	33	INFERRED	2.8	8,697	2,696	-	-	696,004.0	4.5	101,489.1	8,697	87	1,310,315.0	1.6	67,781.8
87_03	180.75	196.90	16.15	0.300	2.80	0.84		59	1714	41	INFERRED	2.8	13,438	4,031		-	696,004.0	4.5	101,489.1	13,438	130	1,323,753.0	1.6	67,911.4
80_06	241.61	252.27	10.65	0.290	8.40	2.44		188	408	20	INDICATED	2.8	9,596	2,783	9,596	89.5	705,600.0	4.5	101,578.6	-	-	1,323,753.0	1.6	67,911.4
97_23	76.57	86.11	9.54	0.290	5.00	1.45		30	458	21	INDICATED	2.8	6,412	1,859	6,412	59.8	712,012.0	4.4	101,638.4	-	-	1,323,753.0	1.6	67,911.4
97_06	225.77	231.22	5.46	0.289	2.90	0.84		173	422	21	INDICATED	2.8	3,427	990	3,427	31.8	715,439.0	4.4	101,670.2	-	-	1,323,753.0	1.6	67,911.4
81_02	147.89	169.35	21.46	0.280	2.50	0.70	0.1/0	157	344	19	INDICATED	2.8	2,408	674	2,408	21.7	/1/,847.0	4.4	101,691.9	-	-	1,323,753.0	1.6	67,911.4
97_45	297.64	300.59	2.95	0.280	10.00	2.80	3 VG	186	6059	/8	INFERRED	2.8	169,652	47,503	-	-	/1/,847.0	4.4	101,691.9	169,652	1,527	1,493,405.0	1.4	69,438.8
80_12	217.58	219.21	1.63	0.250	1.10	0.28		107	691	26	INFERRED	2.8	2,128	532	-	-	/1/,84/.0	4.4	101,691.9	2,128	17	1,495,533.0	1.4	b9,455.9
07_04	02.03	/3.40	17.3/	0.250	0.70	0.18	VC	20	425	21		2.8	10 470	208	833	0.7	718,680.0	4.4	101,698.6	-	-	1,495,533.0	1.4	60,455.9
97_34	85.50	98.97	13.47	0.250	7.30	1.83	٧G	43	498	22		2.8	10,179	2,545	10,179	81.8	728,859.0	4.3	101,780.4	-	-	1,495,533.0	1.4	09,455.9
97_49	234.03	230.03	2.00	0.230	2.00	0.40		130	1/0	20		2.0	4,340	998	4 005	- 70	720,009.0	4.3	101,700.4	4,340	32	1,499,073.0	1.4	60,400.0
07 55	267 QP	43.59	1.32 5.9/	0.210	0.80	0.00		5 171	120	20	INDICATED	∠.0 2.8	1,005	228	1,065	1.3	729,944.0	4.3	101,707.7	- 1 822	-	1,499,073.0	1.4	60,400.0
97 59	112 01	117 50	5 10	0.190	1 00	0.10		87	154	29		∠.0 2 9	910	156		5.0	730 763 0	4.3	101,707.7	1,032	_ 11	1 501 705.0	1.4	69 400 2
31_30	112.01	117.30	3.43	0.150	1.30	0.00		07	104	14	INDIOATED	2.0	019	100	019	5.0	100,100.0	4.3	101,132.1	-	-	1,001,700.0	1.4	00,400.Z

н	ole ID	from (m)	to(m)	Core	Uncut g/t	Horiz.	HorzWxg	VG Pol	lygon P	Poly Area	Area of	Category	SG	Polygon	grams	INDICATED	INDICATED	Cum	ulative Indica	ted	INFERRED	INFERRED	Cumu	lative Inferre	ed
				m		Width		Nui	mber		Influence			tonnes		tonnes	ounces	Tonnes	Grade	Ounces	tonnes	ounces	Tonnes	Grade	Ounces
g	97_15	224.24	231.53	7.28	0.150	2.10	0.32	1	140	262	16	INDICATED	2.8	1,541	231	1,541	7.4	732,304.0	4.3	101,800.1	-	-	1,501,705.0	1.4	69,499.2
8	81_08	42.43	62.64	20.21	0.130	4.70	0.61	2	22	155	12	INDICATED	2.8	2,040	265	2,040	8.5	734,344.0	4.3	101,808.6	-	-	1,501,705.0	1.4	69,499.2
8	88_40	259.84	265.72	5.88	0.100	2.20	0.22	1	137	3101	56	INFERRED	2.8	19,102	1,910	-	-	734,344.0	4.3	101,808.6	19,102	61	1,520,807.0	1.4	69,560.6
	A_09	211.00	218.00	7.00	0.090	3.90	0.35	1	129	1165	34	INFERRED	2.8	12,722	1,145	-	-	734,344.0	4.3	101,808.6	12,722	37	1,533,529.0	1.4	69,597.4
	A_11	337.60	341.70	4.10	0.080	1.70	0.14	1	184	6944	83	INFERRED	2.8	33,053	2,644	-	-	734,344.0	4.3	101,808.6	33,053	85	1,566,582.0	1.4	69,682.4
8	8_29	106.68	108.17	1.49	0.070	0.60	0.04		14	1845	43	INFERRED	2.8	3,100	217	-	-	734,344.0	4.3	101,808.6	3,100	7	1,569,682.0	1.4	69,689.4
g	7_27	70.47	84.12	13.66	0.050	9.90	0.50	4	41	437	21	INDICATED	2.8	12,114	606	12,114	19.5	746,458.0	4.2	101,828.1	-	-	1,569,682.0	1.4	69,689.4
8	8_32	273.10	284.07	10.97	0.030	5.60	0.17	1	138	4985	71	INFERRED	2.8	78,165	2,345	-	-	746,458.0	4.2	101,828.1	78,165	75	1,647,847.0	1.3	69,764.8
9	7_27	118.00	120.00	2.00	0.000	1.60	0.00	8	85	328	18	INDICATED	2.8	1,469	-	1,469	-	747,927.0	4.2	101,828.1	-	-	1,647,847.0	1.3	69,764.8
9	7_39	50.00	60.90	10.90	0.000	4.50	0.00		1	849	29	INFERRED	2.8	10,697	-	-	-	747,927.0	4.2	101,828.1	10,697	-	1,658,544.0	1.3	69,764.8
	A_07	278.00	281.00	3.00	0.000	1.20	0.00	1	190	1592	40	INFERRED	2.8	5,349	-	-	-	747,927.0	4.2	101,828.1	5,349	-	1,663,893.0	1.3	69,764.8
																	-					-	1,663,893.0	1.3	69,764.8
																						-	1,663,893.0	1.3	69,764.8

APPENDIX – 5

SCOPING STUDY REPORT FOR GEOEX LIMITED BY P & E MINING CONSULTANTS INC.

ADJUSTED BY GEOEX FOR INFLATION TO 2010

P&E MINING CONSULTANTS INC. Geologists and Mining Engineers

2 County Court Blvd., Suite 202, Brampton, Ontario, L6W 3W8 Ph: 905-595-0575 Fax: 905-595-0578

Scoping Study Costs For Exploration Property Near Timmins, Ontario, Canada

_

for

GEOEX LIMITED

September 2007

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	UNDERGROUND EXPLORATION PROGRAMME	2
2.1	Programme Parameters	2
2.2	Surface Installations	2
2.3	Underground Development Requirements	3
2.4	Materials and Manpower	3
2.5	Capital Expenditures	4
3.0	1,000 TONNES PER DAY MINING AND PROCESSING OPTION	5
3.1	Underground Mine	5
3.2	Mining Methods	6
3.3	Surface Facilities	6
3.4	Capital Costs	7
3.5	Manpower	7
3.6	Operating Costs	7
4.0	PROCESSING AND TAILINGS	8

Page

1.0 INTRODUCTION

Capital and operating costs were developed for GEOEX Limited for a narrow vein gold property in the Timmins, Ontario area. Estimates were prepared for:

Preproduction expenditures for an exploration ramp from surface and lateral development on the ore zone; and

Capital expenditures and operating costs for a 1,000 tonnes per day mining operation with an on site mill.

The deposit consists of veins with minimum widths of 1.5 metres to widths supporting narrow longhole open stopes.

All data and information are presented in metric units. All costs are presented in constant mid 2007 Dollars.

2.0 UNDERGROUND EXPLORATION PROGRAMME

2.1 **Programme Parameters**

The potentially economic mineralized zones would be mined by underground mining techniques. The potentially economic mineralization to be explored extends to the 150 metres below surface elevation. There is no surface outcrop and 30 to 35 metres of overburden comprising distinct layers of swampy organic, clay and glacial till materials.

To facilitate the underground exploration programme the following would be required:

5 kilometre gravel access road Generators for power Compressed air compressors Trailers for offices, dry, warehouse and storage Explosives magazines Ramp portal Other miscellaneous facilities and equipment

Development work would consist of:

Ramp from surface to 150 metres vertical depth below surface. Drifting and crosscutting for exploration of mineralization

The property is located approximately 45 kilometres from a reasonably sized population centre.

A mining contractor would be used for the programme. The mining contractor would supply all equipment, consumables and manpower.

2.2 Surface Installations

The 5 kilometre access road would provide access to the site and be built to accommodate travel of transport trucks bring equipment and materials to the site. Gravel for the road would be provided from nearby gravel pits.

Power would be generated on site by generators with a total capacity of 1 megawatt. Two 0.5 megawatt generators would provide power to the underground operation and small surface operation. If one generator broke down the second would provide for power to continue to be supplied to critical equipment.

Compressors to provide the underground mine with compressed air would also be rented from the contractor.

All office, dry, warehouse and covered storage facilities would be provided by the contractor, on a rental basis, as part of the contract for the exploration programme. The ramp development and exploration programme period would be approximately 12 months which does not warrant purchase of these facilities. Explosive magazines would be placed on surface and be constructed from shipping containers.

Owner rented trailers and compressors might provide significant savings in component total cost terms, but would not significantly impact the total project budget.

2.3 Underground Development Requirements

The initial layers of material through which the underground ramp must pass will require special development techniques, until bedrock is reached. The swampy layer would be damned and ditched around the portal area and material inside the damn removed down to the clay layer. The clay layer would be frozen locally to allow for digging and if required breaking of the clay to create the ramp tunnel. As the face advanced a steel arch system or corrugated steel tunnel liner such as Armtec's Tunnel Liner Plate would be installed to provide the permanent ramp opening. A portable freezing plant would freeze the ground to be removed, before the next segment of liner plate was installed in the frozen ground. When the glacial till material was reached this material would be grouted with cement to consolidate the gravel and pebble material. The ramp face would be advanced by drilling and blasting techniques, similar to those used in developing the ramp in rock.

The ramp would be developed at a minus 15 percent gradient with dimensions of 4.5 metres wide by 3.6 metres high, to accommodate transport of development waste rock to surface using 17 tonne underground haul trucks.

Lateral development from the ramp to undertake sampling and exploration drilling would be undertaken at appropriate vertical intervals.

All development work would be performed by a mining contractor. The contractor would provide all equipment and facilities to undertake the exploration programme.

2.4 Materials and Manpower

All materials and manpower would be procured and supplied by the contractor to the project. The manpower would include all underground miners, mechanics, electricians, other labour and direct supervision for the project. As well the contractor would provide all surface personnel and project management and engineering related functions required to support the underground development programme.

Geology aspects of the project would be the only area of responsibility for the owner.

All manpower could commute from local communities to the project. This eliminates the need for camp accommodations and facilities to be provided.

2.5 Capital Expenditures

Table 1 shows the capital expenditures required to develop the ramp to the 150 metre below surface elevation. All costs are based on budget pricing provided by mining contractors to perform the work in similar conditions and locations in Canada. All rental rates were also provided by the contractors for surface equipment and facilities.

3.0 1,000 TONNES PER DAY MINING AND PROCESSING OPTION

A 1,000 tonnes per day mining operation would utilize the ramp and other infrastructure developed for the foregoing exploration programme. In addition, the underground mine would be developed to facilitate stoping, a processing plant would be constructed on surface and a power line would be constructed to replace on site power generation.

3.1 Underground Mine

To facilitate mining of the deposit at 1,000 tpd a fresh air ventilation raise and an exhaust ventilation raise would be required. Surface ventilation fans would be installed on the fresh air raise to push air into the underground mine. All ore would be trucked to surface in the ramp using underground haul trucks. Waste rock would be placed in mined out stopes using haul trucks as well.

Sublevels for access to ore mining areas would be developed from the ramp on approximately 25 metre vertical intervals. The sublevel accesses would be located approximately in the middle of the overall strike length of the potentially economic mineralized zone. The sublevel accesses would be developed 4.5 metres wide by 3.6 metres high to accommodate 17 tonne haul trucks. Services installed on the sublevels would include a 102 mm pipe compressed air line, 51 mm pipe water line, communications cable, central blasting cable and 220 volt power cable.

Other underground facilities would include a small maintenance shop, main dewatering sumps, fuel and lube bay, explosives magazine, refuge station and storage areas.

Water collection sumps would be located on each sublevel. Overflow drill holes in each sump would send water to the main water collection sumps, for settling, recirculation and/or discharge from the mine.

A small underground maintenance shop would be constructed, for the servicing of mining equipment, and include a warehouse and fuel and lube bays.

Explosives would be stored in underground powder and cap magazines, where several days requirements could be held. There would be separate powder and cap magazines.

A large storage area for materials would be provided at a strategic location in the mine. Smaller storage areas would be located in development and mining areas and be supplied from the main storage area.

Other underground infrastructure would include electrical substation cut-outs and a refuge station (equipped with tables, seating, potable water and telephones).

3.2 Mining Methods

The deposit would be mined using sublevel open stoping methods with unconsolidated waste rock backfill supplied from development headings.

In sublevel open stoping, mining proceeds longitudinally (along the strike length of a zone) in potentially economic mineralized zones, from the extremities of the orebody to the central access. Initial development consists of an undercut, in potentially economic mineralization, being created at the bottom, of the mining block, to the edges of the orebody. Sublevels would be spaced nominally 25 metres apart vertically. A slot raise is driven at the end of each stope and opened up to the full width of the zone.

Upholes are drilled and the holes loaded with ANFO. A number of rows are blasted at a time. After each blast all ore is mucked out from the undercut. This sequence continues until the central access is reached.

All potentially economic mineralization would be mucked from stopes by Load-Haul-Dump (LHD) units, loaded onto underground haul trucks and trucked to surface in the ramp. After stoping has commenced waste rock from development would be placed into mined out areas. Prior to stoping waste rock would be trucked to surface and placed on a small waste rock storage area.

Development waste rock would be placed into mined out areas to avoid trucking it to surface.

3.3 Surface Facilities

All mine surface support facilities would be constructed and operated by the mining contractor.

An explosives storage area for the mine would be located 500 metres from mining and other facilities. The magazines would be housed in metal shipping containers.

The mine services site would include a small surface maintenance shop, mine supervision, geology, engineering and administration offices; 20 kilometre power line and power substations for the mine and processing plant; warehouse; and water treatment facility.

The mine owner would provide geology and engineering services to the mine. This would ensure that the interests of the owner in maximizing the economic returns from the deposit are placed first. The geology department would be responsible for mapping and interpretation, sampling of production drill holes, grade control and ore reserve estimations. The engineering department would be responsible for mine planning and design, production scheduling, surveying, geotechnical design, and performance statistics and any other technical requirements that support the operation.

3.4 Capital Costs

Table 2 shows the capital expenditures required for the preproduction period. All costs are based on budget pricing provided by mining contractors to perform the work in similar conditions and locations in Canada. All rental rates were also provided by the contractors for surface equipment and facilities.

3.5 Manpower

All underground manpower including supervision, engineering staff as well as surface personnel and mine management personnel, to sustain the production rate, would be provided by the mining contractor.

3.6 Operating Costs

Table 3 and Table 4 provide operating costs for longhole and shrinkage mining and mine overhead costs for the operation. All costs are based on contractor rates to perform the work required. All rental rates were also provided by the contractors for surface equipment and facilities.

The total mining costs are as follows:

Longhole Mining	\$34/tonne
Shrinkage Mining	\$60/tonne

The total indirect costs for the mine operation are \$30.73/tonne.

4.0 PROCESSING AND TAILINGS

All potentially economic mineralization would be processed at an onsite processing plant.

The plant would be a conventional gold processing plant using crushing, grinding, gravity concentration if amenable, cyanidation and electrowinning to produce gold dore bars.

The capital cost for a 1,000 tpd processing plant is estimated to be \$35 million, including EPCM and indirect costs.

The operating cost is estimated to be \$12 per tonne of potentially economic mineralization and includes all consumables, maintenance parts, power and manpower.

Custom processing of ore at a custom mill as an alternative option would eliminate the capital costs but require an ore transportation cost of \$0.15 per tonne kilometre with the nearest custom milling site 50 kilometres distance which equates to a transportation cost of \$7.50 per tonne. The custom milling cost could be expected to be an additional \$18 per tonne.

Report Compiled by:

Malcolm Buck, P.Eng.

Sr. Associate Mining Engineer P&E Mining Consultants Inc.

M. K. BUCK

DISCLAIMER

The purpose of this report was to provide Geoex Limited with basic operating and capital costs for a typical Timmins, Ontario narrow vein gold mining operation, in order that they may be included in a Preliminary Analysis. P&E Mining Consultants provided these costs to Geoex without specific knowledge of the property they were evaluating nor did P&E have the opportunity to review the final financial analysis derived from the costs provided. P&E is in no way responsible for the conclusions and recommendations drawn from any report in which Geoex has used the above mentioned operating and capital costs.

8

Insert new quantities for the values highlighted in yellow.

Table 1. Exploration Program Underground Development Expenditures

Ramp to 150 metres below surface @ 15 % Development Rate Single Heading (metres/day) Development Rate Multiple Heading (metres/day) Months to Complete Development Program Waste Rock S.G. Tonnes Trucked 1,150 metres 4.2 metres 5.9 metres 9 months 2.9 59,430 tonnes

	Quantity	Units	Unit Cost (\$)	Cost/Mth (\$)	Total Cost (\$)	2010 Inflated
Infrastructure						
Gravel Access Road	5	km	\$100,000		\$500,000	\$525,000
Water Management	1	lot	\$200,000		\$200,000	\$210,000
Mobilization	1	lot	\$150,000		\$150,000	\$157,500
Demobilization	1	lot	\$75,000		\$75,000	\$78,750
Explosives Magazines and Storage (Shipping Containers)	1	lot	\$75,000		\$75,000	\$78,750
Direct Underground Development Costs						
Portal	1	ea.	\$250,000		\$250,000	\$262,500
Overburden Ramp Section - Full Support System	230	metres	\$10,000		\$2,300,000	\$2,415,000
Exploration Ramp to 150 mL (4.5 m wide X 3.6 m high)	1,150	metres	\$3,000		\$3,450,000	\$3,622,500
Truck Haulage	59,430	tonnes	\$5.20		\$309,000	\$324,450
Exploration Drifts & XC to 150 mL (3.6 m wide X 3.6 m high)	1	metres	\$2,700		\$3,000	\$3,150
Truck Haulage	38	tonnes	\$5.20		\$0	\$0
Underground Substation	1	each	\$250,000		\$250,000	\$262,500
Misc. Construction (Sumps, doors, etc.)	1	lot	\$100,000		\$100,000	\$105,000
Mine General Services Costs						
Generator Leasing	1	each		\$25,000	\$225,000	\$236,250
Compresssor Leasing	2	each		\$5,000	\$45,000	\$47,250
Indirect Rentals				\$54,900	\$494,000	\$518,700
Indirect Materials (incl. mine heating)				\$91,500	\$824,000	\$865,200
Power				\$105,400	\$949,000	\$996,450
Surface Trailers Rentals & Maintenance				\$45,750	\$412,000	\$432,600
Indirect Labour				\$350,750	\$3,157,000	\$3,314,850
Geology				\$45,750	\$412,000	\$432,600
Surface Labour & Security				\$61,700	\$555,000	\$582,750
Environmental				\$4,575	\$41,000	\$43,050
Owner Management				\$29,700	\$267,000	\$280,350
TOTAL ON-SITE COST					\$15,043,000	\$15,795,150

Production Rate

1000 tpd

Table 2. Capital Expenditures - 1,000 tonnes per day Operation

20		(\$)	(\$)	(\$)	
20					
20					
20					
20	1	¢100.000		¢2 000 000	¢2 100 000
20	кm	\$100,000		\$2,000,000	\$2,100,000
1	ea.	\$600,000		\$600,000	\$630,000
1		\$35,000,000		\$35,000,000	\$36,750,000
1		\$4,000,000		\$4,000,000	\$4,200,000
1	lot	\$100,000		\$100,000	\$105,000
1	lot	\$250,000		\$250,000	\$262,500
1	lot	\$100,000		\$100,000	\$105,000
1	lot	\$50,000		\$50,000	\$52,500
1	each	\$250,000		\$250,000	\$262,500
180	metres	\$2,500		\$450,000	\$472,500
180	metres	\$2,500		\$450,000	\$472,500
100	metres	\$3,000		\$300,000	\$315,000
1	lot	\$100,000		\$100,000	\$105,000
1	lot	\$300,000		\$300,000	\$315,000
				\$1,238,000	\$1,299,900
				\$45,188,000	\$47,447,400
	20 1 1 1 1 1 1 1 1 1 1 1 1 1	20 km 1 ea. 1 1 lot 1 lot	20 km \$100,000 1 ea. \$600,000 1 \$35,000,000 \$4,000,000 1 lot \$100,000 1 lot \$100,000 1 lot \$100,000 1 lot \$100,000 1 lot \$250,000 1 lot \$50,000 1 lot \$250,000 1 lot \$250,000 180 metres \$2,500 180 metres \$2,500 100 metres \$3,000 1 lot \$100,000 1 lot \$300,000	20 km \$100,000 1 ea. \$600,000 1 \$35,000,000 1 \$4,000,000 1 lot \$100,000 1 lot \$100,000 1 lot \$250,000 1 lot \$250,000 1 lot \$50,000 1 lot \$50,000 1 lot \$50,000 1 lot \$50,000 1 lot \$250,000 1 lot \$100,000 1 lot \$300,000	20 km \$100,000 \$2,000,000 1 ea. \$600,000 \$600,000 1 \$35,000,000 \$35,000,000 \$4,000,000 1 bt \$100,000 \$100,000 \$100,000 1 bt \$100,000 \$100,000 \$250,000 1 lot \$100,000 \$250,000 1 lot \$50,000 \$250,000 1 lot \$250,000 \$250,000 180 metres \$2,500 \$450,000 180 metres \$3,000 \$300,000 1 lot \$100,000 \$100,000 1 lot \$300,000 \$1,238,000
Table 3. Longhole Open Stoping Mining Costs - 1,000 tonnes per day

Ore SG	2.9
Stope Width	3.6 metres
Stope Length	50 metres
Stope Height	25 metres
Stope Tonnes	13,050 tonnes

Longhole Stope Development Costs				\$	2010 Inflated
Access Drift	25	metres	\$3,000	\$75,000	\$78,750
Sill Drift	50	metres	\$2,700	\$135,000	\$141,750
Slot Raise	20	metres	\$1,500	\$30,000	\$31,500
Total Devlopment Cost				\$240,000	\$252,000
Development Cost Per Tonne				\$18	\$19
Direct Costs - Longhole Mining				\$/t	
Drilling				\$2.70	\$2.84
Blasting				\$1.50	\$1.58
Mucking and Secondary Blasting				\$3.25	\$3.41
Truck Haulage				\$4.50	\$4.73
Stope Filling				\$2.50	\$2.63
Misc. Construction				\$1.50	\$1.58
Total Direct Longhole Mining Cost				\$16	\$17
Total Longhole Dev. & Mining Cost				\$34	\$36

Table 4. Shrinkage Stoping Mining Costs - 1,000 tonnes per dayOre SG2.9

Ore SG Stope Width Stope Length Stope Height Stope Tonnes

2 metres 60 metres 30 metres 10,440 tonnes

Shrinkage Stope Development Costs				\$	2010 Inflated
Sill Drift	60	metres	\$1,500	\$90,000	\$94,500
Mucking Drift	50	metres	\$1,800	\$90,000	\$94,500
Draw Raises	25	metres	\$2,000	\$50,000	\$52,500
Manway Raise	30	metres	\$2,200	\$66,000	\$69,300
Dev. Truck Haulage	1,689	tonnes	\$4.50	\$8,000	\$8,400
Total Devlopment Cost				\$304,000	\$319,200
Development Cost Per Tonne				\$29	\$31
Direct Costs - Shrinkage Mining				\$/t	
Drilling				\$5.00	\$5.25
Blasting				\$2.00	\$2.10
Mucking				\$5.20	\$5.46
Ground Support				\$11.97	\$12.57
Truck Haulage				\$4.50	\$4.73
Ventilation				\$0.40	\$0.42
Misc. Construction				\$2.00	2.1
Total Direct Shrinkage Mining Cost				\$31	\$33
Total Shrinkage Dev. & Mining Cost				\$60	\$63

Table 5.	Mine	General	Operating	Costs
----------	------	---------	-----------	-------

			Cost/day	(\$/t)	2010 Inflated
			(\$)		
Generator Leasing	1	each	\$820	\$0.82	\$0.86
Compresssor Leasing	2	each	\$262	\$0.26	\$0.28
Indirect Rentals			\$1,800	\$1.80	\$1.89
Indirect Materials (incl. mine heating)			\$3,000	\$3.00	\$3.15
Power			\$3,500	\$3.50	\$3.68
Surface Trailers Rentals & Maintenance			\$1,500	\$1.50	\$1.58
Indirect Labour			\$13,700	\$13.70	\$14.39
Geology			\$1,500	\$1.50	\$1.58
Surface Labour & Security			\$2,000	\$2.00	\$2.10
Environmental			\$150	\$0.15	\$0.16
Owner Management			\$2,500	\$2.50	\$2.63
TOTAL ON-SITE COST				\$30.73	\$32.27