43-101 Technical Report On The "South Zone" Ryan Lake Property Powell Township, Ontario For Pacific Comox Resources Ltd

By: Buss Services Inc. L. Buss, P.Geo., P.Geol. Effective Date: May 31, 2008

Table of Contents

1.0 Summary	1
2.0 Introduction and Terms of Reference	3
3.0 Reliance on Other Experts	4
4.0 Property Descriptions and Location	_4
4.1 Location	4
4.2 Land Tenure	4
4.2.1 General	4
4.2.2 Mining Leases	
4.2.3 Ownership	
4.2.4 Legal Surveys	5
4.2.5 Permits	6
4.3 Environmental Issues	6
5.0 Accessibility, Climate, Infrastructure, Physiography	7
5.1 Accessibility	7
5.2 Climate	
5.3 Infrastructure	7
5.4 Physiography	7
6.0 History	
6.1 Ownership	7
6.2 Summary of Exploration and Development	8
6.2.1 Geological Exploration	8
6.2.2 Mining Development	
6.3 Reserve Estimates	9
6.4 Production	
7.0 Geological Setting	
7.1 Regional Geology	
7.2 Powell Township Geology Summary	
7.3 General Property Geology	
8.0 Deposit Types	
8.1 General	11
8.2 Geological Concepts	12
9.0 Mineralization	
9.1 General	13
	13
9.3 Molybdenum	13
10.0 Exploration	13
10.1 Procedures	13
10.2 Interpretation	14

11.0 Drilling	
11.1 Procedures	
11.2 Summary of Results	
11.2.1 Pacific Comox PC-06-42	14
11.2.2 Pacific Comox PC-06-51	15
11.2.3 Pacific Comox PC-07-88	
11.3 Interpretation	
12.0 Sampling Method and Approach	16
12.1 Procedures	16
12.2 Accuracy of Results	
12.3 Quality of Samples	
12.4 Characteristics	
12.5 Summary of Results	
13.0 Sample Preparation, Analyses and Security	18
13.1 Statements	18
13.2 Certification	18
13.3 Quality Control	18
14.0 Data Verification	
14.1 Statements	
14.2 Discussion	
15.0 Mineral Resource Estimates	19
15.1 Qualifications	19
15.2 Parameters	19
15.3 Factors	20
15.4 Results	20
15.5 Discussion	20
16.0 Interpretations and Conclusions	21
17.0 Recommendations	22
17.1 General	22
17.2 Procedures	
17.3 Exploration	23
17.3.1 Database Management	23
17.3.2 Surface Exploration	23
17.4 Diamond Drilling	
18.0 References	25
19.0 Certification	26

List of Figures

Page

Figure 1 General Location Plan	5
Figure 2 Property Claims and Leases Location	6
Figure 3 Regional Geology – Matachewan	10
Figure 4 Township Geology Plan – Powell	11
Figure 5 Property Geology Plan – Ryan Lake	12
Figure 6 South Zone Diamond Drill Location Plan	15
Figure 7 Drill Indicated Resource Block (3-D)	21

List of Tables

Page

Table 1 Mineral Claim Summary	_5
Table 2 Historical Reserves	9
Table 3 Historical Production	9
Table 4 Viewed Drill Hole Mineralization Summary	_18
Table 5 Drill Indicated Mineral Resource	_20

List of Appendices

Appendix I Drill Hole Collar Survey Location Table
Appendix II PC-06-42, PC-06-51, PC- 07-88 Drill Logs
Appendix III Check Assay Results
Appendix IV Check blank/Known Grade Assay Results
Appendix V Drill Hole Intercept Summary
Appendix VI Assay Data & Certificates
Appendix VII Specific Gravity Results
Appendix VIII Gemcom Resource Summary Sheet

1.0 Summary

At the request of Pacific Comox Resources Ltd. (PCR), Buss Services Inc. (BSI) has been contracted to prepare an independent 43-101 Technical Report for Pacific Comox on the Ryan Lake Property ("Property") near Matachewan, Ontario, Canada in the, Kirkland Lake Mining Division.

BSI has prepared this entire report based upon information believed to be accurate at the time of certification, but which is not guaranteed. The author relied on MNDM assessment and geological reports and information provided by PCR head office and the geological field personnel.

Included in this report is information on land tenure, historical mining and exploration work, property geology, diamond drilling methodology and results, assay data and a Drill Indicated Resource calculation. Future exploration recommendations are also included to forward the project towards a Drill Indicated Reserve.

The property is located in Powell Township, District of Temiskaming, Ontario. Latitude N47*58', Longitude W80*42' on NTS map 41-P-15. The UTM location of the property shaft is 17-5313202mN and 17-522678.7mE on Lease # MR12548. This report targets this lease as well as Leases MR6322, MR6323 and MR5494. There is an operating 250 ton barite processing mill on site and a 2 compartment shaft to a depth of approximately 150 meters.

The property was first staked by Mr. P. Sauve in 1947 and incorporated into Ryan Lake Mines Ltd. This company was then reorganized in 1955 to Min-Ore Mines Ltd. The Min-Ore property was optioned to International Ranwick Ltd. in 1957 and changed to International Molybdenum Mines Ltd. in 1959. Pax International Mines Ltd. purchased 100% of the property in 1965 and became Geo-Pax Mines Ltd. from 1968 to 1970. Extender Minerals Ltd. purchased 100% of the Ryan Lake property in July, 1970 and held onto it until March 2005 when Pacific Comox purchased 100% of the property.

A total of 175 surface diamond drill holes for 14,900 meters were drilled on the property up to 2005. A further 196 holes for 10,400 meters were drilled from underground. An extensive I.P. survey was initiated in 1964 by McPhar Geophysics. A geochemical soil survey was also conducted on these claims as well as 30 others in the area, by J.R. Mowat & Assoc. The last work by Cominco in 1969 completed a regional surface geological mapping program.

Ryan Lake Mines Ltd. sank a two compartment shaft to 150 meters in 1950. Levels were established at 30, 60, 100 and 140 meters below surface. Total underground development work amounted to 2150 meters of drifting and 830 meters of cross cuts. A 30 meter vent raise was also driven to surface. Total unsubstantiated underground production was estimated at 184,790 short tons at an average grade of 1.35% Cu, 0.091% Mo, 0.007 opt Au, 0.20 opt Ag (4,995,745 lbs of Cu, 11,393 lbs Mo, 1,352 oz Au and 36,141 oz Ag).

Powell Township contains a mixture of metasedimentary units and metavolcanic flows. The entire southwest corner of the township is covered by siltstone and argillite units of the Gowganda Formation. A large syenitic plug occurs in the central western part of the township containing a dioritic alteration halo. Abundant north-south trending dike swarms are dominate throughout the metasedimentary units.

Of significance is the presence of a peridotite ultramafic unit immediately north of Ryan Lake in the central part of the township. The ultramafic unit trends northeast-southwest and is sandwiched between one of the syenite porphyry intrusions to the north and the mafic unit to the south.

This poly metallic mineralization appears to be of a "low grade-high tonnage" nature associated with the smaller high-level syenite bodies. The principle ore minerals are chalcopyrite and molybdenite with secondary minerals of silver and to a lesser extent, gold. Ore minerals occur as veins with or without quartz and are associated with pyrite. The copper-molybdenum occurrences show evidence of multiple stages of vein formation similar to the characteristics of the Canadian Cordillera porphyry deposits. At least two stages of early veins consisting of blue-grey quartz with fine grain chalcopyrite, molybdenite and pyrite, occur in the Matachewan area. The Ryan Lake property quartz veins carry coarse grains and patches of mineralization which could be a third stage of early veining

All work by PCR since 2005 has been on conducting an infill diamond drilling program on the south zone. A total of 88 holes for 9,536 meters have been drilled on the south zone to the end of December, 2007. Most recently, a drill program of the crown pillar above the underground workings was completed as part of a closure plan on the property. Total drill hole density for the south mineralized zone averages 15 meter centers in the east/west direction and 25 meter centres in the north/south direction. A majority of holes were drilled at 0* azimuth and -45* dip. The general dip direction of the mineralized zone was documented at 80* to the north.

Since the fall of 2005, all drill core was logged and sampled in 1.5 meter intervals, on site. More recently, it had been sampled throughout the entire length in one metre sample increments. Drill holes prior to 2007, were selectively sampled for various reasons from mineralization to geological units. All drill core samples were transported to an accredited laboratory for assay determination. Random sample intervals were quartered and sent to another accredited laboratory as check assays. Blanks assays were also taken at 50 sample intervals.

The drill indicated mineral resource estimate was created on the Gemcom 6.1.3 software package via the "block model" analysis for a solid. The mining tonnage/grade from the underground workings were not part of this resource estimate. There was no volume calculation or location plans with UTM coordinates at the time of this report to model the underground. The specific gravity was calculated at 2.798 g/cm3 from 16 core samples. The drill indicated resource was calculated at 5,969,916 metric tonnes at 0.339 % Cu, 0.039 % Mo, 0.092 gpt Au and 5.04 gpt Ag. Plus 8,523,018 tonnes of low grade at 0.053 % Cu, 0.005 % Mo, 0.04 g/t Au and 0.4 g/t Au.

The near surface was the main target area for this phase of drilling in the south zone and as such, a majority of the surface holes were drilled to an average depth of 132 meters. Most of the holes were mineralized the entire distance with quite a few holes terminating in mineralization.

Therefore the potential for increasing the size of the south mineralized resource is favourable, as it is still open in all directions. However, the reader should be caution that this is only a drill indicated resource. As such, further work is required before increasing the mineralized deposit to the next stage of reserve estimation.

Procedural recommendations include resampling of missing assays in the completed drill holes to help determine the total grade value of the zone. The ongoing relogging standard program of the drill core should also be continued to increase the confidence level for geological modeling of the zone.

Any future drilling on this property will require continued quality control and quality assurance, recently implemented. It is also recommended that all core be sawn rather than split for proper sample representation and to reduce sample bias.

Assaying via total pulp digestion will produce more accurate grades for reconciliation and geostatistical purposes and is recommended for all future sampling programs. As well, all new holes should be surveyed down the hole to verify the location of the hole termination. Drill hole casing should be left in the drillhole for drill directional verification and location purposes. All underground workings and surface infrastructure must be digitized into the Gemcom database for increased confidence levels of future reserve estimates and location.

Exploration recommendations include an attempt to model the deposit geologically, once all of the missing data is entered into the database. Drill hole collar location information and casing depths should be used to create topographic surfaces for depth of overburden determinations and stripping ratios. A surface bedrock exposure northeast of the shaft should be further stripped and washed for mapping, sampling. It is recommended that a bulk sample be extracted from this area for metallurgical and milling testing of the south zone.

Diamond drilling recommendations include infilling the 50 meter gap that occurs in the middle of the zone. Further drilling should be done to the north, northwest and southeast of the south zone until the mineralized limits of the zone is determined.

2.0 Introduction and Terms of Reference

At the request of Pacific Comox Resources Ltd. (PCR), Buss Services Inc. (BSI) has been contracted to prepare an independent 43-101 Technical Report for Pacific Comox on the Ryan Lake Property ("Property") near Matachewan, Ontario, Canada in the, Kirkland Lake Mining Division. The property is currently in the diamond drill Exploration Stage of a mineral deposit.

Pacific Comox Resources Ltd is a publicly listed limited company under the laws of Ontario. They trade on the "TSX" under the symbol "PMC". The address of the company is Suite 2300, 1 Dundas St. W., Toronto, ON. M5X 1J3.

PCR refers to Pacific Comox Resources Ltd., the author refers to Lawrence M. Buss, P. Geo. and the Ryan Lake project refers to the copper-molybdenum-gold-silver property approximately 12 km northwest of Matachewan, in Northeastern Ontario.

The Ryan Lake Property is one of two exploration projects for the company. The other being the Mabel Gold Property in North Sonora State, Mexico. A 43-101 report was completed on the property in January, 2003 and is not the focus of this report.

This technical report is to conform to the National Instrument 43-101 standards. Terms of engagement are in an e-mail from PCR to BSI, September 20, 2007 and January 15, 2008.

There were no limitations put on the author in preparation of this report with respect to technical information. The information herein is derived from a review of documents listed in Section 19.0 from the assessment file information provided by Ontario Ministry of Northern Development and Mines, Kirkland Lake Division (MNDM) As well as various historical report provided by Pacific Comox.

The author visited the Ryan lake Property on September 20, 2007 and January 10, 2008 to examine the location, access and physical condition of the property. Diamond drill core, logs and field procedures were reviewed while on site.

This report contains information on land tenure, historical mining and exploration work, property geology, diamond drilling methodology and results, and sample data. Recommendations for future exploration and drilling are also included in this report.

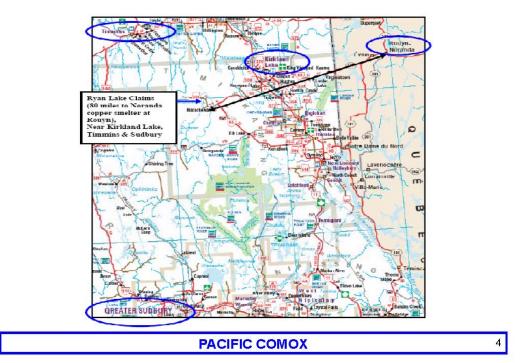
Metric units of measurement are used in this report, unless otherwise noted.

3.0 Reliance on Other Experts

Land tenure information was obtained from the Ontario Ministry of Northern Development and Mines (OMNDM), Mines and Mineral Division web site ("CLAIMaps") and Geology Ontario web site. Both of which contain disclaimers as to the validity of the data. In addition, the existence and validity of any un-registered agreements between parties are not reflected in the Ontario Mining and Land Commissioner. However, the author has reviewed the Ryan Lake claim package and legality of property ownership provided by PCR legal counsel. Verbal discussion was also held with OMNDM claim recording staff in Sudbury, Ontario to verify that all claims of PCR were in "good standing".

BSI has prepared this entire report based upon information believed to be accurate at the time of certification, but which is not guaranteed. The author relied on MNDM assessment and geological reports and information provided by PCR head office and geological field personnel. Therefore, for the purposes of this report, the author relies on the truth and accuracy of the data presented from these sources, including all documentation.

4.0 Property Descriptions and Location


4.1 Location

The property is located in Powell Township, District of Temiskaming, Ontario. Latitude N47*58', Longitude W80*42' on NTS map 41-P-15. The UTM location of the property shaft is 17-5313202mN and 17-522678.7mE (Figure 1). The property is situated 12 km northwest from the Town of Matachewan and 48 km west-southwest of Kirkland Lake.

4.2 Land Tenure

4.2.1 General

The South zone mineralization lies within four continuous leased claims covering an area of 74.9 hectares. These leases include all surface and subsurface mineral rights for PCR. There is a 250 ton barite processing mill on site along with a 2 compartment shaft to a depth of approximately 150 meters. A 30 meter ventilation raise from the 90 level to surface also exists on the property. The shaft is on claim MR 12548 while the south mineralized zone extends onto claims MR6322, MR 6323 and MR 5494.

LOCATION OF RYAN LAKE CLAIMS IN RELATION TO TIMMINS, KIRKLAND LAKE & SUDBURY

Figure 1 General Location Plan

4.2.2 Mining Leases

Table 1 summarizes the Mining Lease summary of the property and expiry dates:

Table 1: Mineral Claim Summary

Claim No.	Parcel No.	Area (ha)	Record Date	Expiry Date	Registered Owner
			yy-mm	yy-mm	
MR12548	3725	25.82	02-02	12-02	PCR
MR5494	3973	16.51	04-04	14-03	PCR
MR6322	3093	17.77	07-09	17-09	PCR
MR6323	3094	14.81	07-09	17-09	PCR

4.2.3 Ownership

All claims are 100% owned by PCR as leaseholds from the previous owner (Extender Minerals of Canada Ltd. - EMC). They were legally transferred in September of 2007 (Figure 2).

4.2.4 Legal Surveys

All claim blocks are mineral leases registered with Temiskaming Land Registry Office in Haileybury, Ontario under the ownership of PCR.

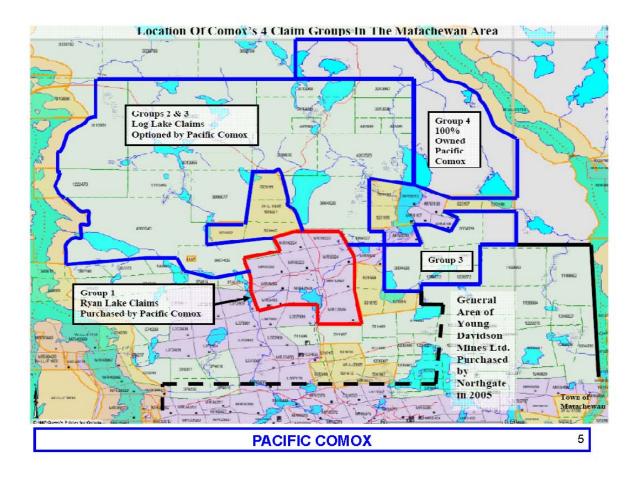


Figure 2 Property Claims and Leases Location

4.2.5 Permits

As part of the agreement with EMC, PCR has agreed to file a site closure plan before any permitting can be issued. The closure plan report is anticipated to be completed by July, 2008.

4.3 Environmental Issues

There are no known environmental issues on the property except for the clean-up of the operating barite mill and site debris. As per the agreement between EMC and PCR, EMC is solely responsible for the clean-up of the mill and site before transfer of the building ownership. The site initiation of steel debris removal was initiated during the later half of April, 2008. No other options or agreements are known with these claims at the time of this report.

5.0 Accessibility, Climate, Infrastructure, Physiography

5.1 Accessibility

As mentioned previously, the accessibility to the property is via an all weather 12 km gravel road from the Town of Matachewan. A paved highway (#66) connects to Kirkland Lake. The nearest railway is at Elk Lake, 37 km south of Matachewan on highway # 65.

5.2 Climate

The climate is typically a temperate climate with daily average temperatures of -17.1 degrees Celsius in January to 17.8 degrees Celsius in July. (Environment Canada – Climate Weather Office, 1971-2000). Average monthly rainfall averages around 95 mm from June to September. Average monthly snowfall high occurs in December and January at approximately 65cm.

5.3 Infrastructure

The property is serviced by Hydro One – Ontario and contains a 250 short tons per day, dry Barite mill, on claim # MR 12548. The mill and contents are not suited for milling the property mineralization and would have to be retrofitted for mineral processing operations. Otherwise dismantling would be required for the construction of a new polymetallic processing mill.

5.4 Physiography

The physiography of the area is of a boreal forest type with a silt till overburden thickness in the 3-5 metre range. Approximately 25% of the property is outcrop while another 25% is lowland. Most of the forested area consists of a mixture of popular and spruce. A small area 100 M northwest of the shaft has been cleared as a result of drill hole collar density.

6.0 History

6.1 Ownership

The property was first staked by Mr. P. Sauve in 1947 and incorporated into Ryan Lake Mines Ltd. It was optioned to Teck Exploration Ltd. in 1948 and was dropped at the end of the year. Ryan Lake Mines Ltd. changed to New Ryan Lake Mines Ltd. in 1951. One new share was offered for two old shares of Ryan lake Mines Ltd. (SMDR-000846). The company was reorganized in 1955 to Min-Ore Mines Ltd. at a 3.5 to 1 share price. In 1957, the property was optioned to Mr. G.S. Welsh and International Ranwick Ltd. They changed their name to International Molybdenum Mines Ltd. in 1959.

The Ryan Lake property was leased to Pax International Mines Ltd. in 1962 for five years (Ariz, 1978). Geo-Met Reactors Ltd. bought into the property in 1964 to help with the metallurgy. Pax International Mines Ltd. purchased 100% of the property in 1965. Cominco optioned the property from Pax International in 1966 and 1967. The ownership of the land became Geo-Pax Mines Ltd. from 1968 to 1970.

Extender Minerals Ltd. (EML) purchased 100% of the Ryan Lake property in July, 1970. Mr. P. Burke optioned some of the property and conducted a pre 43-101 geological report. EML began operation of the Barite Mill in early 1970. Subsequent work on the property was not publicly documented until Pacific Comox purchased the property in March 2005.

6.2 Summary of Exploration and Development

6.2.1 Geological Exploration

Ten claims were staked in 1947 and followed up with six surface diamond drill holes (Free, 1967). Teck Exploration conducted a magnetometer and S.P. survey on the property. They also drilled fifty holes on various geophysical anomalies totally 4,000 meters. From 1950 to 1957, surface trenching and a diamond drilling program were undertaken. A total of 99 surface drill holes for 5,000 meters and 143 underground drill holes for 6,600 meters, were drilled through this period. An additional 29 underground holes (2100 meters) and 4 surface holes (250 meters) were drilled from 1958 to 1959 (SMDR-000846).

An extensive I.P. survey was initiated in 1964 by McPhar geophysics over the ten claims. This was followed up with 24 underground holes totaling 1,700 meters and 7 surface drill holes for 1,100 meters. The property was also enlarged to 40 contiguous claims during this period. A geochemical soil survey was conducted on 35 of the claims by J.R. Mowat & Assoc. (SMDR-000846). Cominco completed a regional surface geological mapping program and drilled 15 NX surface holes totaling 2750 meters. One deep hole was drilled to test the North Zone while the others were designed to test the I.P. anomalies on the south zone. Very little information was found on these holes or the I.P. data...

Since September, 2005, Pacific Comox has drilled 88 holes on the south Zone area totaling 9,536 metres (see Appendix I). The most recent phase of the crown pillar drilling was completed in December, 2007.

6.2.2 Mining Development

Ryan Lake Mines Ltd. sank a two compartment shaft to 150 meters in 1950. Levels were established at 30, 60, 100, and 140 meters below the surface. Underground development work at the end of 1957 amounted to 2000 meters of drifting and 730 meters of cross cuts, mostly on the first two levels (Ariz, 1978). A 30 meter vent raise was also driven to surface. 50 meters of drifting was completed in 1959 on the second level.

Pax International exposed all underground known mineralized zones on the third and fourth levels during their tenure. A total of 100 meters of drifting and 100 meters of crosscuts were completed during this period (Ariz, 1978).

Some of the underground development and bulk sampling by Pax occurred within the resource block. But their extent and location were unknown at the time of this report. Part of the on going "closure plan" data includes the modeling of the underground openings.

6.3 Reserve Estimates

Reserve estimates throughout the history of the Ryan Lake Property were estimated with no sample data found to substantiate the estimates. All figures are not 43-101 compliant and are summarized in Table 2 (after Ariz & Pax International):

Year	Туре	Short Tons	% Cu	% MoS2
1948	Indicated	203,000	2.93	?
	Possible	1,600,000	1.77	0.24
1964	Proven	110,000	2.00	0.74
	Possible	500,000	1.25	0.25
	Inferred	600,000	0.30	0.21

Table 2: Historical Reserves (non-43-101 compliant)

6.4 Production

The following past production figures were obtained from the Mineral Deposit Record of the property, Ontario Ministry of Natural Resources – Mines Division (SMDR-000846). The molybdenum was recovered from leaching/roasting of old tailings. Total underground production was reported as 184,790 short tons at an average grade of 1.35% Cu, 0.091% Mo, and 0.007 opt Au, 0.20 opt Ag (4,995,745 lbs of Cu, 11,393 lbs Mo, 1,352 oz Au and 36,141 oz Ag). Past production is summarized in Table 3.

Year	Short Tons Milled	Grade % Cu	Grade % Mo	Grade oz Au	Grade oz Ag
1948	37.0	4.239		?	?
1950	350.0	1.526		0.010	0.200
1951	10,274.0	1.513		0.008	0.182
1952	21,543.0	0.995		0.005	0.135
1953	27,272.0	1.498		0.008	0.209
1954	47,738.0	1.581		0.009	0.229
1955	44,206.0	1.020		0.006	0.166
1956	22,132.0	1.746		0.008	0.260
1957	5,000.0	1.845		0.008	0.284
1962	300.0	2.212		0.010	0.443
1964	5,938.0	0.365	0.096	?	?
Total	184,790.0	1.350	0.096	0.007	0.200

Table 3: Historical Production Estimates

7.0 Geological Setting

7.1 Regional Geology

The regional geology of the Matachewan area consists of Precambrian volcanic and sedimentary rocks of the Superior Province. Geological features are dominated by the Cairo stock in Cairo and Alma townships (Figure 3).

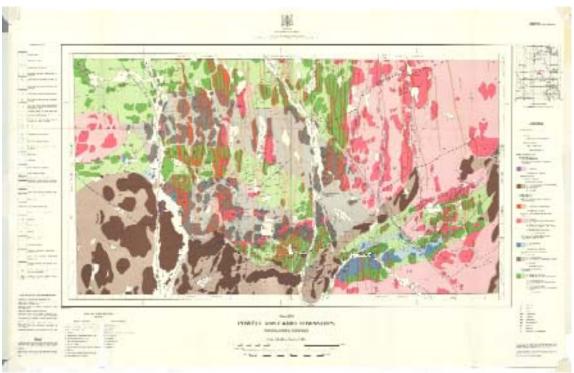


Figure 3 Regional Geology Plan

The Cairo stock is a large syenitic intrusion that occurs around the isoclinally-folded sequence of the Temiskaming Group of metasedimentary rocks and the Keewatin metavolcanic flows (Sinclair, 1979). The southern flank of the antiform is oriented WNW-ESE. The syenitic and metavolcanic-metasedimentary sequences are cut by north-south trending diabase dike swarms.

Regional metamorphism is greenschist facies (Free, 1967). High grade propylitic alteration occurs throughout the region as chlorite-epidote-calcite assemblages. Silicification occurs locally around the syenite porphyries and serpentinization of the mafics is also present locally.

Two major faults occur in the region and strike in a general north-south direction. One fault follows the Montreal river valley, while the other occurs as the Mistinkon Lake valley (Dean, 1958). East-west shears and subsidiary faults occur along the contact of the volcanic and sediment interface.

7.2 Powell Township Geology Summary

Powell Township also contains a mixture of metasedimentary units and metavolcanic flows (Figure 4). The entire southwest corner of the township is covered by siltstone and argillite units of the Gowganda Formation (OGS Map P3577). A large syenitic plug occurs in the central western part of the township containing a dioritic alteration halo on the perimeter. Large intermediate volcanic flows are present in the northwestern part of the township. The remainder of the township is covered by alternating mafic-metavolcanic rocks.

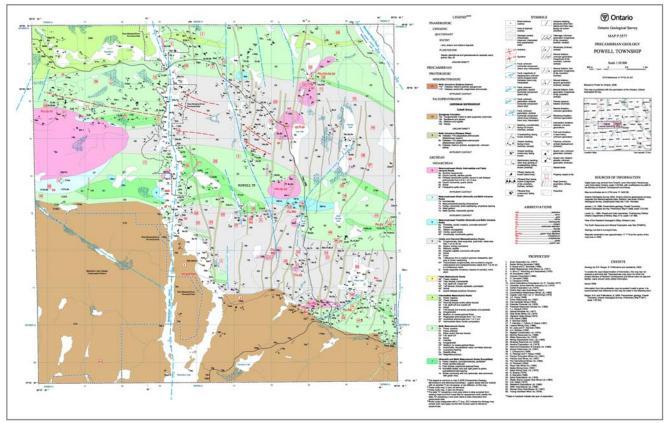


Figure 4 Township Geology Plan

7.3 General Property Geology

The Ryan Lake property is located on a faulted north contact zone between the south Temiskaming sediments and the Keewatin volcanics (Dean, 1958). The western half of the property contains a serpentized peridotite along this contact. All units are cut by at least four north-south trending younger diabase dikes up to 40 meters wide.

A near vertical dike-like mass of syenite and syenite porphyry occur near the north boundary of the peridotite. It has a consistent N65-70W strike and averages 19 meters in thickness (Kierans, 1964). Numerous east-west and N70E faults diverge from this zone and are enriched in quartz, chalcopyrite and molybdenite. South of this dike zone lies the east-west Ryan Lake Fault zone which is enriched with molybdenite. No attempt at geological modeling has been conducted on the mineralized zone except that shown in Figure 5, from an unknown author.

8.0 Deposit Types

8.1 General

This poly metallic mineral deposit appears to be of a "low grade-high tonnage" nature associated with the smaller high-level syenite bodies and the peripheral phases of the Cairo Stock. The principle ore minerals are chalcopyrite and molybdenite with secondary minerals of silver and to a lesser extent, gold. Ore minerals occur as veins with or without quartz and are associated with pyrite (Ariz, 1978). It was noted by this author that chalcopyrite occurs mostly as disseminations in the syenites and along fracture planes in the perioditie and mafics.

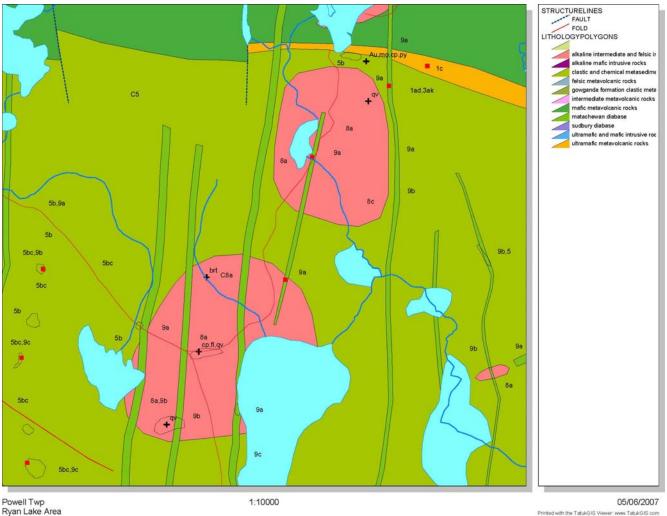


Figure 5 Ryan Lake Local Geology Plan

Carbonatization occurs in lesser fractures but was logged as a zonation flooding while silicification was noted locally in the mafics near the peridotite contact (Ariz, 1978). Chloritization occurs as thin salvages along quartz veins. Hematitzation occurs locally as envelopes around copper and molybdenum bearing zones (Sinclair, 1979).

8.2 Geological Concepts

Sinclair also stated that the composition of the copper-molybdenum and gold-silver reflects a regional zonation of metals. The gold-silver deposits in the Matachewan area are associated with pyritic syenite and contain small amounts of copper and molybdenum. Pyrite amounts in these deposits vary from 2% to 10%. In contrast, the copper-molybdenum occurrences are low in pyrite and contain minor amounts of scheelite (Little, 1959).

The copper-molybdenum occurrences of the Matachewan area show evidence of multiple stages of vein formation similar to the characteristics of the Canadian Cordillera porphyry deposits (Sinclair, 1979). At least two stages of early veins, consisting of blue-grey quartz with fine grain chalcopyrite, molybdenite and pyrite, occur. The Ryan Lake property quartz veining contains coarse grains and patches of mineralization which could represent a third stage of early veining states Sinclair, 1979.

The early veins are cut by later stage veins of barren quartz with localized coarse calcite and chlorite patches. Chalcopyrite and molybdenite occur in these veins as irregular masses and are often associated with coarse grain purple fluorite. Barite and tourmaline are minor and erratic constituents of these veins (Sinclair, 1979).

Sinclair concluded that the copper-molybdenum occurrences of this area exhibit many features comparable to the Cordilleran porphyry deposits. They include the relationship to epizonal, porphyritic intrusive rocks; distribution of copper-molybdenum sulphides in fractures. Along with veins that show evidence of multistage development and regional zonation of metals and alteration.

9.0 Mineralization

9.1 General

The mineralization occurs dominantly in blue-gray quartz veins and stringers. The veining is more pronounced in the peridotites than in the porphyries. The mineralization is scattered throughout the veins as fine grain patches, stringers and disseminated grains. The quartz veining averages about 1 cm in width and strikes at N20W with a near vertical dip (Vokes, 1963). Pyrite occurs as fine disseminated grains (<1mm), fracture filling and blebs (2-5mm) throughout the mafics (Free, 1967).

9.2 Copper

Chalcopyrite is the dominate copper bearing mineral on the property. Although, bornite blebs were observed around the mine workings in drill core. Minor malachite oxides were also noticed on weathered surfaces. The chalcopyrite also occurs as fine grains (<1mm) along fractures. Massive stringers were viewed in the shear and brecciated zones with carbonate as the gangue. This author also noted that it can occur as disseminated grains within the mineralized syenite porphyry unit. It was also evident as a halo along geological contacts between units.

9.3 Molybdenum

Molybdenite usually occurs as a "smeared" out shear in highly silicified fault zones of the mine area and in the mineralized syenite porphyry. It can grade upwards to 2% to 3% across 0.25 m thickness in the silicified fault zones (Free, 1967). It also occurs as disseminated blebs within the quartz rich veinlet systems.

10.0 Exploration

10.1 Procedures

Buss Services Inc. visited the property to confirm the presence of the reported geology, mineralization and review of the drilling program in September, 2007. BSI was also contracted by PCM from January to May31, 2008 to review and standardize the geological logging nomenclature along with updating the drilling database of the south zone.

A majority of the work on the property by PCR has been the infill diamond drilling of the south mineralized zone. A crown pillar drilling program for the mine closure plan was also underway during the fall visit. These pillar drilling holes were identified as "CP-07-..", while the exploration holes are identified as "PC-07-..". All hole collar information is summarized in Appendix I.

10.2 Interpretation

Buss Services Inc. also spent a few days reviewing past exploration data of the property at the local Mines Recorder Office in the Town of Kirkland Lake. All reports and drawings viewed appeared to be of factual information and there is no reason to suggest otherwise.

However, some of the material mentioned in the viewed reports was created privately for previous owners. As such, no verification of some of the data was available at the time of the review.

11.0 Drilling

11.1 Procedures

PCR has conducted a partial infill drilling program on the property since September, 2005. A total of 88 NQ size diamond drill holes were drilled for 9,536 metres up to December, 2007 (Figure 6). All drill core is stored on site for review. Three randomly picked holes were chosen to be viewed for logging standards, mineralization and geology. They were PC-06-42, PC-06-51 and PC-07-88. The drill logs for these holes are in Appendix II.

All PCR drill hole collars were clearly marked with the hole name and information on them. Most holes had been laid out to be drilled at an azimuth of 000 degrees and a dip of -45 degrees. Holes were spotted by the "on-site" Geologist with a hand held GPS unit. The drill casing was intact for hole PC-07-88 and "pulled" from the other two holes. However, they were well exposed for strike and dip measurements.

No down hole survey tests were conducted on the holes. All PCR hole collars were surveyed by Everest Geodetics Survey Company of Barrie, ON. in the fall of 2007. A list of hole collar co-ordinates in UTM (NAD 83) were produced with the shaft located, in Appendix I. PCR is in the process of surveying the hole collar strike and dip values of the remaining holes. No holes prior to 2005 were scheduled to be surveyed at the time of this report.

11.2 Summary of Results

11.2.1 Pacific Comox PC-06-42

The spotted hole location at 5323261mN and 522560.8mE, was drilled at 0* azimuth, -45* dip on the southern area of the project. It commenced in October, 2006 to a depth of 144.0 m. Another hand held GPS unit was used to check the hole collar. The reading was within 3 meters of the surveyed co-ordinates. This is considered "normal" accuracy for a hand held GPS.

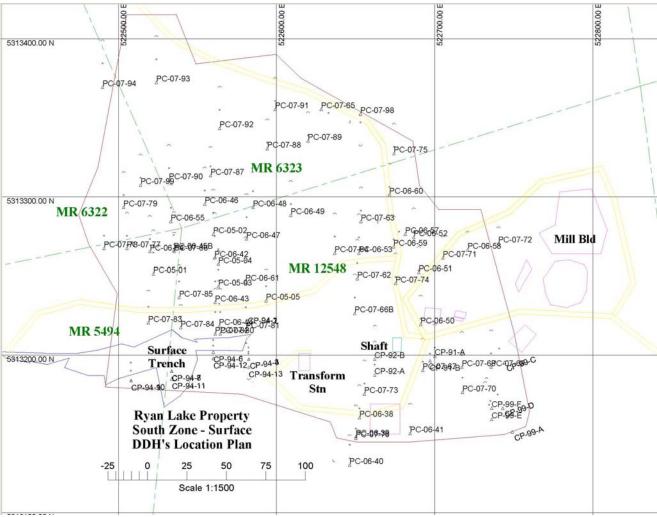


Figure 6 South Zone Diamond Drill Location Plan

Sample number 236508, grading 0.58% Cu, 0.125% Mo, and 2.8 oz/ton Ag was checked for mineralization at 44.0 meters. It was noted to be a mineralized slip in a syenitic unit and was like the molybdenite slip/shear described earlier.

Samples 236544 to 236550 at 104 meters to 112 meters were also reviewed and discussed with the site geologist. It was a noted to be a porphyritic syenite with abundant pink quartz veinlets and k-spar phenocrysts. There was chalcopyrite disseminated throughout the quartz veinlets and disseminated molybdenite grains throughout the unit. The hole ended in unsampled dike material.

11.2.2 Pacific Comox PC-06-51

This hole was drilled November, 2006 at 0* azimuth and -45* dip on the northern edge of the mineralized zone. The surveyed hole at 5313252mE, 522689.9mN was drilled to 151 meters on November 10, 2006. A GPS test was also within 2.0 meters of the survey.

Another molybdenite smear was noted in sample number 237594 (40.0 meters) at 20^* to the core axis. This 1.5 meter sample graded 0.129% Cu, .035% Mo and 0.80 opt. Ag in a syenitic unit.

A zone of syenite was investigated at 49 meters (sample # 237599). The grade at this point was 0.416% Cu, 0.016% Mo and 7.6 opt Ag. It was noted to be altered basalt with approximately 3% chalcopyrite with disseminated bornite.

11.2.3 Pacific Comox PC-07-88

The most recently completed viewed hole at the time, with assays, was PC-07-88. It was a hole near the centre of the mineralized zone drilled at 0* azimuth and -45* dip to a depth of 187 meters. A review of the collar direction via a Brunton compass was found to be slightly off of the original layout.

Sample number 41373 in a "greenish syenite" (altered basalt?) graded 2.75% Cu, 0.202% Mo at the 57 meter mark. It was noted that there was up to 5% disseminated chalcopyrite blebs. Molybdenum occurred as blebs within the quartz/calcite veinlets.

11.3 Interpretation

Total hole density for the project averages 15 meter centres in the east/west direction and 25 meter centres in the north/south direction. Most core angle foliations were around 40^* to 50^* to the core axis. With a majority of holes drilled at 0^* azimuth and -45^* dip, the general dip of the mineralized zone appeared to be 80^* to the northeast.

It was also noted that quite a few of the holes ended in strong mineralization with consistent assays. This suggests a depth to the deposit that has not been defined by present drilling. A 50 meter gap in drill coverage occurs in the middle of the zones between holes PC-06-49 and PC-07-63.

When viewing the drillhole database, it was noted that there was various logging discrepancies throughout the history of the drilling programs. For example, the "Ryan Lake Mineralized zone" was undefined as a rock unit and appeared to have the characteristics of a pyrite altered contact zone between the mafics/ultramafics and the syenite intrusives. Discrepancies also existed in the porphyritic syenite and altered basalt/mafic units, especially in terms of alteration and porphyritic textures. It was noted that there was no standard geological unit descriptions, for the logging process. However, estimated mineral percentage and types were well documented.

12.0 Sampling Method and Approach

12.1 Procedures

All recently drilled holes were logged on site and sampled in meter intervals throughout the entire length of the hole. A hydraulic core splitter is used to half the core. One half is tagged with a sample number and bagged. The other half of core is left in the original core box with the other half of the sample tag, stapled to the box. All drill core samples were transported by the site Geologist to Swastika Laboratories in Swastika, Ontario for polymetallic processing of Copper, Molybdenum, Silver and Gold. Random sample intervals are also quartered and sent to Lakefield Laboratories, near Peterbourgh, ON. as check assays (see results in Appendix III). Blanks are used at 50 sample intervals and are summarized in Appendix IV.

12.2 Accuracy of Results

A few of the holes were noted to have missing information scattered randomly throughout them. Some had no samples taken in mineralized zones; others had missing sample tags and/or missing sample numbers throughout the core. Some 1.5 meter sample intervals were found to overlap the lithologies. In rare instances, the metered distance information was missing in the core boxes. Not all samples sent for assay were sampled for all four elements. This affected the sample population for each mineral differently.

12.3 Quality of Samples

Basic logging and sampling procedures for diamond drill holes appeared to be followed by most previous site geologists. However, the hydraulic splitter does pose a problem with sample representation. Irregular sizes of core diameter do occur with this type of splitting process. It also has a tendency to fracture the core along weak fracture planes, creating samples that are not a true 50% of the whole. Another problem is the difficulty of lining up the remaining split core in the core box.

One last point is that all pieces have to be broken into 15 cm lengths for splitting purposes. This was found to be a hindrance when determining geotechnical data on the rock units for the closure plan.

12.4 Characteristics

The main rock units used in the logging process were syenite, syenite porphyry, altered basalt, basalt, mafic, ultramafic, diabase and the "Ryan Lake Mineralized Zone". Little mention of alteration, geotechnical, or veining was documented. Relogging of some holes noted very few thick diabase dikes. Most dikes encountered were narrow diabase veinlets. Although, hole PC-06-56 was drilled parallel to the strike of what appeared to be a "Lamophyre dike" as documented in area reports (Zalnieriunas et. al., 2004).

A large geological mineral deposition control appears to be the ultramafic unit spanning the western part of the property from southeast to the northwest. However, the zone is still open to the north and northeast with the perimeter holes having mineralized grades. Practically all syenite and altered rock units have mineralized grades of some value. Assay values have a tendency to increase closer towards the syenite contacts.

12.5 Summary of Results

The following table summarizes the reported intercepts noted in the drill core as reported in PCR press releases. None of these composites were noted in the company Gemcom database. A full summary of the holes are in Appendix V.

Table 4: Viewed Drill Hole Mineralization Summary

Hole Number	Core Length (m)	Est. True Width (m)	Cu (%)	Mo (%)	Au (gpt)	Ag (gpt)
PC-07-88	106	73	0.23	0.010	0.01	1.34
	30	21	0.44	0.016	0.01	2.57
PC-06-51	49	34	0.10	0.016		
	35	23	0.40	0.019		
	30	21	0.17	0.025		
	33	23	0.37	0.039		
PC-06-42	19	13	0.32	0.030	0.043	2.56
	34	23	0.39	0.013	0.040	1.83

13.0 Sample Preparation, Analyses and Security

13.1 Statements

PCR contract geologist's mark the sample intervals, tags and shipping sheets, while a technician splits the core and staples the tags. Sample delivery is preformed by the site geologist to the assay laboratory. All sample pulps are stored in a separate room in the core shed and sample rejects are stored in and around the mill building.

13.2 Certification

The majority of core sample preparation and assay is conducted by Swastika Laboratories in Swastika, Ontario. A polymetallic analysis is conducted by the Laboratory for percent copper and molybdenum as well as Gold and silver, (reported in grams per tonne). Gold assays are derived by the "Fire Assay" method. The remaining elements are measured by Atomic Absorption Spectrophotometry using background correction. Swastika is a certified ISO 9001 laboratory and an accredited member of the Standards Council of Canada. See sample certificates in Appendix VI.

13.3 Quality Control

"Check assays" were implemented towards the latter phase of core logging. "Blanks" and/or standards were used sparingly throughout the program and are now being used in the winter relogging program.

It is in this author's opinion that the collection and assay of the core samples were within basic industry standards. However, the verification and duplication of data was below industry standards and was corrected immediately. The representation of the sample as a whole is another problem that should be dealt with on future drill programs.

14.0 Data Verification

14.1 Statements

This author, as a qualified person of the APGO, has verified the data used in this report to the best of what was supplied to him by PCR and other agencies.

14.2 Discussion

The quality control on the project by today's acceptable standards required further improvement. A quality control program was implemented with the winter re-logging program.

Only a few drill hole collar locations were verified as to azimuth and dip as they still had the hole casing intact. However, the other holes that had no casing were approximated with a Brunton compass for drill hole azimuth and dip. Drill hole direction can be further defined in the future using a drillhole survey instrument.

Generally, the 15 meter centre drill spacing coupled with the short length of the holes (132 metres average) and the NQ diameter core rods; can be considered reliable, for a drill indicated resource. Furthermore, the large sample population is within acceptable standards for various geostatistic analyses.

15.0 Mineral Resource Estimates

15.1 Qualifications

Mr. Lawrence M. Buss, P.Geo., is acting independently and arms length to PCR as a qualified person (see sect. 19). Neither Mr. Buss, nor BSI holds any shares in PCR or its subsidiaries.

15.2 Parameters

The calculated drill indicated mineral resource estimate was created on Gems 6.1 software package via block model analysis. "Inverse distance squared" grade search criteria was used for the resource grade calculation. All assay values were uncut and each mineral grade is reported individually as is characteristic of a resource such as this.

The resource solid was created in 8 meter plan elevations with a maximum of 15 meter distance from the perimeter drill holes. Due to the lack of Geological information on the property, only the assay grades of the drill holes were used to create the resource solid.

All drill logs were checked for missing assays and inserted where required. The solid created in figure 7 includes all waste material in the mineralized zone. Selective blasting and further definition drilling can minimize waste dilution.

15.3 Factors

One major factor to consider in this estimate is the underground development and mining extraction values. An estimate by Dean, (1958), puts the lateral workings 2.5 meters by 3.0 meters for a distance of 2,650 meters, not including raising. Mining tonnage from underground was estimated on historical reports and cannot be actually verified. As such, the underground area was not included in the resource calculations. The shaft is the only underground working surveyed in location to the resource block. As mentioned, the Closure Plan crown pillar drilling program is expected to help in establishing mining volumes and locations.

Testing results on a tonnage factor for the mineralization was calculated at Lakefield Laboratories on 16 core samples of various rock units within the mineralized area. The results are summarized in Appendix VII. The rock density of these samples was determined to average 2.797 g/cm3 with a specific gravity averaging 2.83. Mining, milling and permitting costs are beyond the scope of this report at this time.

15.4 Results

The calculated preliminary mineral indicated resource estimate is stated in table 5. The calculated summary sheet is in Appendix VIII

Zone	Volume	Density	Tonnes	Cu	Mo	Au	Ag
	m3x1000	T/m3	Metric	%	%	g/t	g/t
South Zone – Medium & High	2,134.4	2.797	5,969,917	0.339	0.039	0.092	5.04
South Zone Low Grade	3,047.2	2.797	8,523,018	0.053	0.005	0.04	0.4
Total Resource	5,181.6	2.797	14,492,934	0.171	0.019	0.06	2.30
Internal Waste	405.6.0	2.797	1,134,463	0.016	0.001	0.04	0.1

Table 5: Indicated Mineral Resource (2008).

15.5 Discussion

A large open pitable tonnage block was the main focus of the resource estimate and as such, the above drill indicated resource reflects this criterion.

The historic tons and grade mined were not subtracted from the figures as their verification was not possible at the time of this report. Further resource estimates would require digitizing the underground mining openings and subtracting these from the resource tonnes.

As mentioned previously, PCR is in the process of a closure plan, which must be submitted before any permitting can begin on the Property. Infrastructure on the property is already in place, but its quality and suitability is yet to be assessed.

The metallurgical characteristics of the deposit are unknown at the present time. This still needs to be determined, with present technology, for grind ability and recovery.

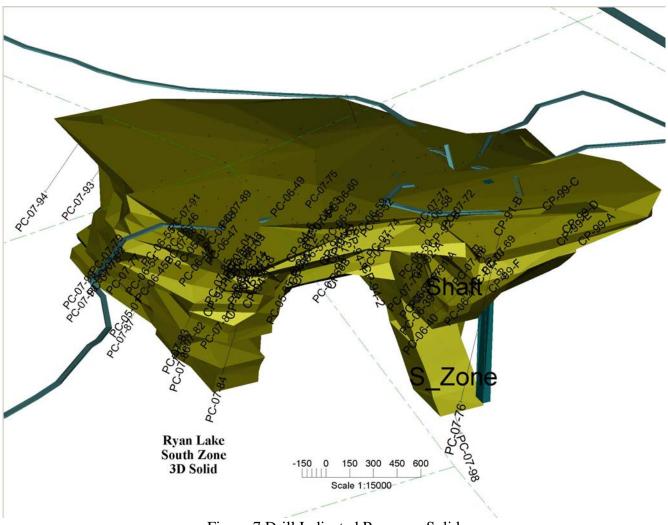


Figure 7 Drill Indicated Resource Solid

16.0 Interpretations and Conclusions

BSI has examined and updated the southern zone database with all the surface diamond drilling information since 2005. The pre-2006 data is mostly paper files, whereas the post-2006 data is archived as excel drill logs. Pre-2005 drilling data was not used in this report and only served as a reference. This was because of the collar locations of the old holes, being based on a previous ground grid. As such, the ground grid was not incorporated into the recent survey data.

The underground diamond drilling is documented on the mine levels plans, but their logs are unknown at this time. The historic drilling could also be entered into the database once a conversion grid system is created and the paper logs are located. The underground openings could also be digitized into the database at the same time.

The geological setting of the property does appear favourable for a large tonnage – low grade Cu-Mo-Ag deposit. The presence of the peridotite unit adjacent to the syenite porphyry unit suggests a deep conduit environment. Intense basalt alteration and moderate quartz veining also support a multi-stage fluid system favourable for this type of mineralized concentration. Much more geological work would be required to understand this concept fully

The near surface was the main target area for this phase of drilling in the south zone and consequently, a majority of the surface holes were drilled to an average depth of 132 meters. Most of the holes were mineralized the entire distance and quite a few terminated in mineralization. Of interest is hole PC-07-86 which was drilled to 170 meters (@ -45*) and still contained chalcopyrite mineralization (0.13 % Cu) over a 7.0 meter interval near the bottom. Perimeter drill holes around the zone also contained good mineralization and assay values. The calculated mineralized resource is still open in all directions. This suggests a strong potential for increasing the size of the south zone drill indicated resource.

Although the QA/QC of the project was a negative factor, the present database is sufficient as a basis for further interpretation and modeling interpretation. Overall, the author is satisfied with the results of the data collaboration for a preliminary resource estimate. However, as a mineral resource estimate, mineral resources that are not mineral reserves do not have demonstrated economic viability. Therefore, the reader should be caution that this is only a drill indicated resource calculation and as such, much further work is required on the zone for the next stage of reserve calculation.

17.0 Recommendations

17.1 General

The following recommendations are broken up into three main areas that need attention. All three recommendations should be implemented to bring the drill indicated resource to the next level as a drill indicated reserve.

17.2 Procedures

Missing assays in the completed drill holes should continue to be sent out for assay to help determine the total grade value of the zone. This will also increase the sample population for increased confidence levels of any geostatistical analysis. As an open pit is anticipated, all holes are required to be sampled over the full length of core for economic calculation purposes.

As very little geological information is know about the Ryan Lake property, the re-logging standard program of the drill logs should also be continued. This will increases the confidence level for geological modeling of the south zone.

Any future drilling on this property will require continued quality control and quality assurance. That being; checks, blanks, and/or a predetermined grade material sent to two different assay laboratories for data verification.

It is also recommended that all core be sawn rather than split for proper sample representation and to reduce the sample bias as described above.

It should be noted here, that Mr. Kierans, in 1964, stated in his Interim Report, (Pax Intl); "there was a problem sampling for MoS2 in the ore". He never mentions the reason why, but goes on further to suggest what can be done to assign accurate MoS2 final grades. He recommends assaying via total pulp digestion to produce more accurate grades for reconciliation purposes. This author agrees, especially since the south zone is a low grade deposit with many "spikes" in assay values.

Large variations can occur in assays due to the "smear effect" of the molybdenum and the "bleb" effect of the chalcopyrite as seen in the "checks and "blanks" in Appendix III and IV.

Drilling holes at 180 degrees azimuth would help in further determining the orientation of the south zone. It would also produce verification of results from the zero degree azimuth drilling. Steeper dipping holes (-80) would increase the information required for the investigation of the Geological and structural controls of the deposit. It could also show the orientation of the high grade shoots in the down plunge direction.

All future drill holes must be surveyed down the hole to verify the location of the hole at termination. Drill hole casing is usually left in the drillhole for drill directional verification and location purposes. As such, it is recommended here. All future drill holes anywhere on the property should be spotted via current survey techniques with both front and back sites clearly marked.

Another item recommended by Mr. Kierans, in 1964, was "conducting bulk sampling programs for large scale mill runs". Core quartering being sent out for small scale sample mill runs and comparison was another recommendation.

Finally, all underground workings and surface infrastructure must be digitized into the Gemcom database for increased confidence levels of future resource estimates and location.

17.3 Exploration

The future exploration aspects of the property could be divided into a database management and surface deposit investigation categories.

17.3.1 Database Management

Once all of the missing data is entered into the database, an attempt should be made to model the deposit geologically. This would give some insight into the nature, size and limitations of the deposit.

Drill hole collar location information and casing depths should be used to create topographic surfaces for depth of overburden determinations and stripping ratios.

17.3.2 Surface Exploration

A surface bedrock exposure northeast of the shaft should be further stripped and washed for mapping and sampling purposes. There is a trenched out spot in this area that could be enlarged for the production of a large bulk sample. Metallurgical and mill testing of the bulk sample on the deposit would be required for future reserves. Especially in regards to the metal content verses the combined copper/molybdenite assay value.

17.4 Diamond Drilling

As the deposit is still open at depth and laterally, it is recommended that further drilling be done on this property. Another twenty holes at an average length of 300 meters would be required to further understand the deposit for both lateral and vertical extent.

As mentioned previously, a 50 meter gap occurs in the middle of the zone between 522600mE and 522650mE. It would require approximately eight holes on a 75 metre spacing to fill in this area. It is also recommended that further drilling be done to the north and northwest of the mineralization in conjunction with the southeast perimeter to determine the mineralized limits of the south zone.

A couple of holes would be required at an azimuth of 180 degrees in the heart of the zone to verify previous drill results. Deep drilling below the zone to 300 m could extend the depth and hence, tonnage of the resource to greater than 150 m.

18.0 References

Ariz, J.F., 1978, Unpublished report on Ryan Lake Copper-Molybdenum Property, Matachewan, Ontario for Mr. P. Bourke, 10 p.

Caldwell, L.D., 2007, Unpublished renewal of mining leases documents, Fasken, Martineau, DuMoulin, LLP, Barristers & Solicitors, 3 p.

Dean, W.J., 1958, Unpublished report of Ryan Lake Property Report for International Ranwick Mines Ltd., 26 p.

Environment Canada, 2000, Canadian Climate Normals 1971 – 2000, Kirkland Lake, <u>www.climate.weatheroffice.ec.gc.ca</u>, 2 p.

Free, B., 1967, Unpublished report of Project Termination Report Powell (Pax) Property, Ontario for Cominco Ltd., 14 p.

Kierans, M.D., 1964, Unpublished Interim Report – Ryan Lake Mine, Powel Township, Ontario, for Pax International Mines Ltd., 13 p.

Moody, G.E., 1964, Unpublished report on Summary of 1963 Exploration Program for Pax International Mines Ltd., 6 p.

Mowat, J.R. and Associates, 1966, Unpublished report of Summary of Surface Drill Program Results, Pax International Mines Ltd., 2 p.

Ontario Geological Survey, 2005, Geological Compilation of the Central Abitibi Greenstone Belt, Map # P.3565, NTS reference 42 A & parts of 31M, 41O, 41P, 42B.

Ontario Geological Survey, 2006, Powell Township Precambrian Geology Map # P.3577, NTS reference 41 P/15, 42 A/2

Pascoe, D.E., 2007, Unpublished Extender Minerals v. Director of Mine Rehabilitation, Ministry of Northern Development & Mines, 9 p.

Savage, W.S., 1954, Unpublished report for New Ryan Lake Mines Ltd., 4 p.

Sinclair, W.D., 1979, Copper-Molybdenum Occurrences of the Matachewan Area, Ontario, Project 770071, Regional and Economic Geology Division, Geological Survey of Canada, 6 p.

Source Mineral Deposit Record, #000846, 1973, Ontario Ministry of Natural Resources – Division of Mines – Kirkland Lake, 7 p.

Zalnieriunas, R.V., Healey, D.R., 2004; Matachewan Gold Project – Oka grid, 2003 field work; for Young Davidson Mines Ltd. OMNMD File # GL-TR03_oko.W8041 p.41

19.0 Certification

I, Lawrence M. Buss, do hereby certify that:

- 1. I maintain a geological consulting practice at 54 McKelvie Ave., Kirkland Lake, Ontario P2N 2K5.
- 2. I am a graduate of Laurentian University, Sudbury with an honours degree of Bachelor of Mining Geology in 1987 and have practiced my profession continuously since that time.
- 3. I am a Certified Professional Geological Scientist registered as a practicing member in good standing with APEG (31275), APGO (1383), APEGGA (M50002), NAPEGG (1330) and, as such, I am qualified to author the accompanying report.
- 4. As a result of my education and experience, I am a "Qualified Person" as defined in National Policy 43-101.
- 5. I have not received, nor do I expect to receive, any interest, directly or indirectly, from Pacific Comox Resources Ltd., or any affiliate or associate company and neither I, nor any affiliation entity of mine, is at present, or under an agreement, arrangement or understanding expects to become, an insider, associate, affiliated entity or employee of Pacific Comox Resources Ltd. or any associated or affiliated entities.
- 6. Neither I nor any affiliated entity of mine own, directly, or indirectly, nor expect to receive any interest in the properties or securities of Pacific Comox Resources Ltd. or any associated or affiliated companies.
- 7. As of the date of this certificate, I am not aware of any material fact or material change with regard to the property that would make the report misleading.
- 8. Neither I nor any affiliated entity of mine, have earned the majority of our income during the preceding years from Pacific Comox Resources Ltd., or any associated or affiliated companies.
- 9. This report, as well as its conclusions and recommendations, are based on the examination of available data and discussions with involved geologists. The author visited the Ryan lake Property on September 20, 2007 and during the months of February and March, 2008 to examine the data supplied by Pacific Comox Resources. The author also visited the Mines Branch in Kirkland Lake on September, 2007 and January 2008 to examine the data on file concerning the Ryan Lake and Township of Powell areas.
- 10. I have read the National Instrument 43-101 and form 43-101F1 and have prepared the technical report in compliance with this NI 43-101 Form as generally accepted Canadian industry practice.

11. I consent to the filing of this report with any stock exchange and other regulatory authority and any publication by them, including electronic publication in the public company files on their websites accessible by the public.

Dated at Kirkland Lake, Ontario, this 31 day of May, 2008

Lawone MBu

Lawrence M. Buss, P.Geo.

APPENDIX I

Drill Hole Collar Survey Location Table

DDH #	Northing	Easting	Elevation	Length	Azimuth	Dip
PC-05-1	5313251	522522.1	361.1	200.0	000	-46.0
PC-05-2	5313276	522560.0	360.8	124.5	000	-45.0
PC-05-3	5313243	522563.2	360.5	69.7	000	-51.0
PC-05-4	5313257	522595.1	359.4	78.5	000	-52.0
PC-05-5	5313234	522593.4	360.1	129.9	000	-54.0
PC-06-38	5313160	522652.4	353.2	102.0	000	-45.0
PC-06-39	5313148	522650.1	352.4	112.69	000	-45.0
PC-06-40	5313130	522646.2	351.6	120.85	000	-45.0
PC-06-41	5313150	522684.4	351.5	119.0	000	-45.0
PC-06-42	5313261	522560.8	361.0	140.0	000	-45.0
PC-06-43	5313233	522561.2	360.6	73.0	000	-45.0
PC-06-44	5313218	522563.7	361.4	93.0	000	-45.0
PC-06-45B	5313266	522535.0	356.7	137.0	000	-45.0
PC-06-46	5313295	522554.6	355.9	101.0	000	-45.0
PC-06-47	5313273	522581.0	361.0	128.0	000	-45.0
PC-06-48	5313293	522585.1	357.5	118.5	000	-45.0
PC-06-49	5313288	522609.0	354.3	52.0	000	-45.0
PC-06-50	5313219	522691.1	351.0	126.0	000	-45.0
PC-06-51	5313252	522689.9	348.7	151.0	000	-45.0
PC-06-52	5313274	522686.7	351.0	114.0	000	-45.0
PC-06-53	5313264	522652.0	357.2	105.0	000	-45.0
PC-06-54	5313265	522519.9	355.2	119.0	000	-45.0
PC-06-55	5313284	522533.2	356.0	99.0	000	-45.0
PC-06-57	5313276	522681.4	351.4	101.0	000	-45.0
PC-06-58	5313266	522720.7	344.2	101.0	000	-45.0
PC-06-59	5313268	522673.8	351.9	101.0	000	-45.0
PC-06-60	5313301	522671.3	352.2	104.0	000	-45.0
PC-06-61	5313246	522580.4	360.7	130.7	000	-45.0
PC-07-62	5313248	522651.0	357.1	125.0	000	-45.0
PC-07-63	5313284	522653.3	354.2	112.5	000	-45.0
PC-07-64	5313264	522636.8	357.8	104.0	000	-45.0
PC-07-65	5313355	522628.2	352.0	149.0	000	-45.0
PC-07-66B	5313226	522649.4	357.3	164.0	000	-45.0
PC-07-67	5313190	522692.4	352.7	151.0	000	-45.0
PC-07-68	5313192	522717.1	354.9	131.0	000	-45.0
PC-07-69	5313192	522735.6	356.0	125.0	000	-45.0
PC-07-70	5313176	522717.5	356.6	121.0	000	-45.0
PC-07-71	5313261	522705.2	346.2	75.0	000	-45.0
PC-07-72	5313270	522740.2	343.0	104.0	000	-45.0
PC-07-73	5313175	522655.5	353.9	113.0	000	-45.0
PC-07-74	5313245	522675.2	351.4	110.0	000	-45.0
PC-07-75	5313327	522674.2	351.6	119.0	000	-45.0
PC-07-76	5313147	522650.1	352.4	101.0	225	-45

DDH #	Northing	Easting	Elevation	Length	Azimuth	Dip
PC-07-77	5313267	522505.4	355.2	110.0	000	-45
PC-07-78	5313267	522490.9	355.3	104.0	000	-45
PC-07-79	5313293	522503.3	355.0	104.0	000	-45
PC-07-80	5313213	522564.4	361.1	111.0	000	-45
PC-07-81	5313216	522580.6	361.2	223.0	000	-45
PC-07-82	5313213	522561.2	361.2	230.0	000	-45
PC-07-83	5313220	522518.9	362.1	147.0	000	-55
PC-07-84	5313217	522539.4	361.2	173.0	000	-63
PC-07-85	5313236	522538.4	362.1	78.0	000	-55
PC-07-86	5313265	522535.3	356.6	170.0	000	-63
PC-07-87	5313313	522558.2	354.4	278.0	000	-50
PC-07-88	5313330	522594.1	351.3	187.0	000	-45
PC-07-89	5313335	522619.9	350.9	134.0	000	-45
PC-07-90	5313355	522599.1	352.6	254.0	000	-45
PC-07-91	5313355	522599.1	352.6	158.0	000	-45
PC-07-92	5313343	522564	359.0	248.0	000	-45
PC-07-93	5313372	522524	362.0	135.0	000	-45
PC-07-94	5313369	522490	362.4	134.0	000	-45
PC-07-98	5313352	522653	352.0	227.0		
PC-07-99	5313307	522514	352.0	197.0		
CP-07-91A	5313199	522700	352.0	133.0	000	-45
CP-07-91B	5313199	522700	352.0	18.0	000	-50
CP-07-92A	5313187	522662	352.0	76.4	000	-45
CP-07-92B	5313197	522662	352.0	32.0	000	-45
CP-07-92C	5313190	522660	352.0	41.0	000	-51
CP-07-94-1	5313219.0	522581.9	361.2	21.8	179	-45
CP-07-94-2	5313219.0	522581.9	361.2	45.8	179	-40
CP-07-94-3	5313197.0	522582.4	362.2	20.2	351	-55
CP-07-94-4	5313197.0	522582.4	362.2	14.0	351	-60
CP-07-94-5	5313201.5	522560.0	360.8	11.0	359	-50
CP-07-94-6	5313201.5	522560.0	360.8	29.00	359	-60
CP-07-94-7	5313189.5	522533.7	359.6	32.00	359	-45
CP-07-94-8	5313189.5	522533.7	359.6	29.40	359	-50
CP-07-94-9	5313183.5	522508.0	361.0	26.00	359	-65
CP-07-94-10	5313183.5	522508.0	361.0	34.40	359	-50
CP-07-94-11	5313184.5	522533.7	359.7	35.00	359	-50
CP-07-94-12	5313197.5	522560.0	361.6	20.00	359	-60
CP-07-94-13	5313192.0	522582.4	362.5	30.25	359	-60
CP-07-99A	5313151.0	522749.0	356.6	76.4	340	-45
CP-07-99B	5313159.0	522719.0	356.6	39.0	359	-45
CP-07-99C	5313195.0	522744.0	356.6	22.6	340	-45
CP-07-99D	5313166.0	522743.0	356.6	26.0	340	-45

DDH #	Northing	Easting	Elevation	Length	Azimuth	Dip
CP-07-99E	5313159.0	522736.0	356.6	35.0	350	-45
CP-07-99F	5313166	522736	352.0	116.0	350	-45
PC-07-100	5313310	522586	352.0	122.0		
SHAFT1	5313202	522678.7	352.0			
SHAFT2	5313211	522679.1	351.7			
SHAFT3	5313211	522673.5	352.6			

Pacific Comox RTK GPS Results

NAD83, UTM zone 17

CGVD28 Orthometric Heights, modeled from HT1_01

On-Site Control Stations Established by Static GPS Ties to Hwy 65 MTO Geodetic Control Points 00819970291 & 00819970320

Jan.07	5313165	522745.9	358.14	77m S.E. of shaft - marked by 3 wood stakes
Feb.07	5313265	522643.4	357.98	64m N.W. of shaft - marked by 3 wood stakes

APPENDIX II

PC-06-42, PC-06-51, PC-07-88 Drill Logs

PACIFIC COMOX RES. LTD. – Ryan Lake Project

Diamond Drill Log

Location: 522560.8E, 5313261N Elev: 361.0_

Property Location:	Matachewan, ON

Attitude: <u>0 °</u> Az;	Dip : <u>-45°</u>
--------------------------	--------------------------

Drill Contractor: Rick Yost

Core Size: NQ

Start: Oct 04, 2006 Finish: Oct 11, 2006

Total Depth: 140.0 m Assays by: Swastika Laboratories

Hole: PC-06-42

Page ______ of _5___

Tropari Tests: at ____; bearing __° AZ, Dip__°

<u>m; bearing</u> AZ, Dip<u></u>

Purpose: test north mineral zones under dh 02

Logged by: Robert van Ingen Relogged by: LMB

DEP	TH, M	DECODIDION		SAMP	LE	_		Мо	Aq	Au
FROM	то	DESCRIPTION	No.	FROM	то	WIDTH	Cu %	%	g	g/Ck
0.00	2.13	CASING								
2.13	7.00	SYENITE PORPHYRY fine grained, white to grey albite phenocrysts, weakly reddened (pervasive K-spar alteration) with trace pyrite and chalcopyrite, disseminated and in fractures; late stage calcite gash veinlets.	96174 96175 45436 45437	2.13 3.00 3.95 5.35	3.00 3.95 5.35 7.00	0.87 0.95 1.40 1.65	0.017 0.015 0.048 0.012	0.001 0.001 0.001 0.001	0.2 0.1 0.6 0.2	0.01 0.01 0.04 0.00
7.00	9.15	BRECCIATED ULTRAMAFIC	45438 45439	7.50 8.10	8.10 9.15	1.10 1.05	0.013 0.017	0.001 0.001	0.2 0.2	0.03 0.00
9.15	10.05	BRECCIATED BASALT, .	45440	9.15	9.90	0.75	0.025	0.001	0.2	0.00
10.05	12.95	ULTRAMAFIC	45441 45442 45443	9.90 11.10 12.13	11.10 12.13 13.50	1.20 1.03 1.37	0.078 0.028 0.010	0.001 0.001 0.001	0.4 0.2 0.1	0.00 0.00 0.01
12.95	20.50	BASALT	45444 45445 45446 45447 45448	13.50 14.70 16.30 17.60 19.00	14.70 16.30 17.60 19.00 20.50	1.20 1.60 1.30 1.40 1.50	0.016 0.021 0.040 0.014 0.012	0.001 0.001 0.002 0.001 0.001	0.1 0.3 0.2 0.2 0.1	0.01 0.02 0.00 0.00 0.00
20.50	23.65	LOSS CORE	45449	20.50	24.90	4.40	0.018	0.001	0.2	0.00

DEPT	ГН, М	DECODIDION		SAMP	LE			Мо	Ag	Au
FROM	TO	DESCRIPTION	No.	FROM	TO	WIDTH	Cu %	%	g	g
23.65	28.69	BASALT	96176 96177 96178	24.90 25.90 26.90	25.90 26.90 28.69	1.00 1.00 1.79	0.004 0.009 0.005	0.001 0.001 0.001	0.1 0.1 0.1	0.00 0.00 0.00
28.69	32.60	BRECCIATED BASALT	96179 96180 96181	28.69 29.70 30.75	29.70 30.75 31.90	1.01 1.05 1.15	0.023 0.063 0.034	0.001 0.001 0.001	0.1 0.2 0.2	0.05 0.01 0.00
32.60	36.90	BASALT	45450 236501 236502	31.90 33.25 35.00	33.25 35.00 36.85	1.35 1.75 1.85	0.035 0.213 0.058	0.001 0.002 0.001	0.3 0.9 0.2	0.01 0.05 0.00
36.90	39.30	LAMPHRYERE DIKE	236503 236504	36.85 38.00	38.00 39.30	1.15 1.30	0.029 0.016	0.001 0.001	0.2 0.1	0.00 0.01
39.30	40.44	BRECCIATED BASALT	236505	39.30	41.00	1.70	0.160	0.006	0.9	0.05
40.44	41.30	ALTERED BASALT								
41.30	44.20	BRECCIATED BASALT trace cp in fractures assoc'd with k-spar-"tourmaline"- mt	236506 236507	41.00 43.60	43.60 44.20	2.60 0.60	0.069 0.110	0.001 0.001	0.4 1.0	0.00 0.07
44.20	44.60	QUARTZ FELDSPAR PORPHYRY								
44.60	45.50	GROUND CORE - FAULT	236508	44.20	45.50	1.30	0.500	0.099	2.2	0.07
45.50	46.30	QUARTZ FELDSPAR PORPHYRY	236509	45.50	46.90	1.40	0.252	0.035	3.1	0.12
46.30	52.15	BRECCIATED BASALT chlorite, leucoxene and calcite as well as 1-5% sulphides controlled in fractures or disseminated.	236510 236511 236512 236513	46.90 48.20 49.20 50.30	48.20 49.20 50.30 51.75	1.00 1.10 1.45 1.35	0.054 0.017 0.105 0.101	0.002 0.001 0.008 0.005	0.3 2.9 1.3 0.4	0.00 0.00 0.00 0.02
52.15	57.60	ALTERED BASALT, schistosity at 0-30 dtca, trace cp in veinlets and diss, weak carbonate alt, 3% PY curved foliation above, good cc-chl stockwork here, .2% CPY moderate carbonate alteration, 3% CPY	236514 96182 236515 236516 236517	51.75 53.10 53.70 55.00 56.00	53.10 53.70 55.00 56.00 57.60	1.35 0.60 1.30 1.00 1.60	0.155 0.057 0.335 0.437 2.190	0.008 0.002 0.016 0.021 0.293	0.8 0.2 2.4 3.3 19.0	0.06 0.04 0.06 0.02 0.32

Page 3 of 5

DEPT	ГН, М			SAMP	LE			Мо	Ag	Au
FROM	TO	DESCRIPTION	No.	FROM	TO	WIDTH	Cu %	%	g	g/Ck
57.60	61.65	BRECCIATED BASALT, weakly schistose at 40 dtca, black chl-bt-cc stockwork v'ts, 2% PY	236518 236519 236520	57.60 59.00 60.50	59.00 60.50 62.00	1.40 1.50 1.50	0.500 0.098 0.105	0.001 0.005 0.001	1.6 0.8 0.7	0.02 0.03 0.00
61.65	64.90	ALTERED BASALT, chI veinlets centered with cc w/wo qtz, wk biotite alt	236521 236522	62.00 63.45	63.45 64.90	1.45 1.45	0.164 0.173	0.003 0.002	1.3 0.7	0.02 0.00
64.90	67.25	LAMP DIKE, mod amphibole alt	96183 96184	64.90 66.00	66.00 67.25	1.10 1.25	0.173 0.051	0.012 0.006	1.4 0.3	0.02 0.02
67.25	70.20	BRECCIATED BASALT, mod chlorite alt, 1% PY	236523 96185 96186	67.25 68.30 69.35	68.30 69.35 70.20	1.05 1.05 0.85	0.116 0.038 0.079	0.001 0.001 0.001	0.7 0.2 0.2	0.03 0.00 0.03
70.20	74.75	ALTERED BASALT, 1% PY, mod epidote alt	96187 236524 236525	70.20 71.45 73.00	71.45 73.00 74.50	1.25 1.55 1.50	0.014 0.029 0.028	0.001 0.001 0.002	0.1 0.4 0.1	0.02 0.00 0.00
74.75	77.70	ALTERED MAFIC VOLCANIC - weakly schistose, occ veinlet k-spar, wk chlorite alt	236526 236527	74.50 76.00	76.00 77.65	1.50 1.65	0.110 0.042	0.004 0.001	0.3 0.1	0.00 0.02
77.70	78.40	SYENITE PORPHYRY, 2% CPY, lower ct 70 dtca, fract at 40 dtca	236528	77.65	78.40	0.75	0.054	0.001	0.4	0.00
78.40	79.45	ALTERED MAFIC VOLCANIC, mod carb alt	236529	78.40	79.45	1.05	0.075	0.001	0.4	0.01
79.45	81.45	BRECCIATED MAFIC occ cc-cp veinlet at depth	236530 236531	79.45 80.90	80.90 82.20	1.45 1.30	0.075 0.074	0.009 0.001	0.4 0.2	0.00 0.00
81.45	82.55	BASALT, wk chlorite alt, 1% PY								
82.55	88.07	ALTERED BASALT, mod biotite alt, 5% PY 1% CPY	236532 96188 236534 236535	82.20 84.00 85.25 86.90	84.00 85.25 86.90 88.25	1.80 1.25 1.65 1.35	0.152 0.055 0.091 0.113	0.001 0.037 0.001 0.004	0.3 0.7 0.4 0.4	0.00 0.03 0.00 0.02
88.07	89.33	BRECCIATED MAFIC	236536	88.25	90.10	1.85	0.152	0.003	1.5	0.00

DEPT	ΓH, M			SAMP	LE			Мо	Ag	Au
FROM	TO	DESCRIPTION	No.	FROM	TO	WIDTH	Cu%	%	g/t	g/t
89.33	95.10	ALTERED MAFIC VOLCANIC, 3% CPY, wk silica alt	236537 236538 236539 236540	90.10 91.10 92.55 93.65	91.10 92.55 93.65 95.00	1.00 1.45 1.10 1.35	0.318 0.407 0.240 0.103	0.004 0.007 0.005 0.002	2.1 2.0 1.7 0.2	0.00 0.03 0.00 0.04
95.10	96.25	DIABASE DIKE	236541	95.00	96.45	1.45	0.045	0.001	0.2	0.00
96.25	98.40	BRECCIATED MAFIC	236542	96.45	97.90	1.45	0.082	0.001	0.3	0.00
98.40	99.10	ALTERED MAFIC strong epidote alt, trace py-cp	236543	97.90	99.65	1.75	0.416	0.011	1.5	0.03
99.10	102.75	BRECCIATED MAFIC, 1% CPY	236544 236545	99.65 101.00	101.00 102.55	1.35 1.55	0.414 0.381	0.002 0.025	1.7 2.0	0.10 0.20
102.75	110.20	ALTERED MAFIC VOLCANIC, mod biotite alt, 3% CPY	236546 236547 236548 236549 236550	102.55 104.00 105.40 107.00 108.40	104.00 105.40 107.00 108.40 110.00	1.45 1.40 1.60 1.40 1.60	0.550 0.710 0.910 0.450 0.203	0.014 0.057 0.050 0.003 0.002	2.4 5.6 4.6 1.2 0.7	0.04 0.12 0.03 0.06 0.00
110.20	112.00	BRECCIATED MAFIC VOLCANIC, 2% PY	236551	110.00	111.50	1.50	0.810	0.004	1.5	0.09
112.00	113.60	BRECCIATED SYENITE, 2% CPY	236552	111.50	113.00	1.50	0.296	0.001	0.8	0.00
113.60	114.85	BRECCIATED MAFIC VOLCANIC, 1% PY, mod carb alt	236553	113.00	114.50	1.50	0.436	0.001	1.9	0.08
114.85	117.60	ALTERED MAFIC VOLCANIC, 1% CPY, mod carb alt	236554 236555	114.50 115.95	115.95 117.20	1.45 1.25	0.610 1.210	0.014 0.094	4.3 8.0	0.15 0.18
117.60	118.70	BRECCIATED SYENITE, 3% CPY	236556 236557	117.20 118.15	118.15 119.00	0.95 0.85	0.302 0.040	0.018 0.001	1.2 0.5	0.04 0.00
118.70	119.50	BRECCIATED MAFIC VOLCANIC, 1% PY	236558	119.00	120.00	1.00	0.036	0.001	0.2	0.00
119.50	124.25	ALTERED BASALT, wk epidote alt, 1% CPY	236559 236560 236561	120.00 121.50 123.00	121.50 123.00 124.45	1.50 1.50 1.45	0.021 0.085 0.031	0.001 0.006 0.001	0.4 0.4 0.2	0.00 0.03 0.01

Page 5 of 5

DEPT	ΓH, M	DESCRIPTION		SAMF	PLE			Мо	Aq	Au
FROM	TO	DESCRIPTION	No.	FROM	TO	WIDTH	Cu %	%	g	g
124.25	126.60	LAMP DIKE	96189 96190	124.45 125.40	125.40 126.25	0.95 0.85	0.093 0.014	0.005 0.001	0.7 0.1	0.03 0.01
126.60	127.75	BRECCIATED MAFIC VOLCANIC, mod chlorite alt, 2% CPY	96191 236562	126.25 127.05		0.80 0.50	0.062 0.316	0.001 0.001	0.2 1.5	0.01 0.16
127.75	134.10	BRECCIATED BASALT magnetic, fm. grained, diss leucoxene, slightly schistose rock; trace cp bbc, then well fract'd. Mod chlorite alt	236563 96192 96193 96194 96195 96197 96199	127.55 128.55 129.65 130.45 131.11 132.00 133.00	129.65 130.45 131.11 132.00 133.00	1.00 1.10 0.80 0.66 0.89 1.00 1.00	1.090 0.930 0.042 0.018 0.009 0.012 0.039	0.018 0.001 0.001 0.001 0.001 0.001 0.001	6.5 0.3 0.2 0.1 0.1 0.1 0.2	0.06 0.03 0.03 0.01 0.02 0.01 0.00
134.10	134.90	ALTERED MAFIC VOLCANIC, mod biotite alt, 3% CPY	236564	134.00	135.45	1.45	1.090	0.015	6.5	0.05
134.90	135.45	BRECCIATED SYENITE, 3% CPY								
135.45	139.00	BRECCIATED MAFIC VOLCANIC, wk hemitite alt	96200 96201 96202	135.45 136.50 137.75	137.75	1.05 1.25 1.25	0.051 0.018 0.017	0.001 0.001 0.001	0.2 0.2 0.1	0.00 0.01 0.00
139.00	140.00	MAFIC VOLCANIC	96203	139.00	140.00	1.00	0.016	0.001	0.1	0.00
EOH										

PACIFIC COMOX RES. LTD. – Ryan Lake Project

Diamond Drill Log

Location: grid 100 ft N, 5ft E of dh 50 elev –5ft

- Property Location: Matachewan, ON
- Attitude: <u>0 °</u> Az; **Dip**: <u>-45°</u>
- Drill Contractor: Rick Yost

Core Size: NQ

Start: Nov 10, 2006 Finish: Nov 14, 2006

Total Depth: 151.0 m Assays by: Swastika Laboratories

Hole: PC-06-51

Page <u>1</u> of _8__

Tropari Tests: at ___; bearing __ AZ, Dip__

<u>m; bearing</u> AZ, Dip<u></u>

Purpose: test mineral zones between Cominco dhs1 & 2

Logged by: Robert van Ingen

DEP	TH, M			SAM	IPLE					
FROM	TO	DESCRIPTION	No.	FROM	то	WIDTH	Cu %	Mo %	Ag g	Au g
0.00	9.14	CASING								
9.14	22.8	BASALT Dark green, fine grained, hard, magnetic, weak epidote alteration of feldspar, irregular pillow breccia banding with associated pyrite and magnetite; minor scattered beige silicification; trace chalcopyrite in fractures & near epidote-chlorite-calcite veinlets some at a small angle to core axis								
		- ditto, 25 cm ground; 50% bbc237	572	9.14	11.0	1.86	0.084	0.030	0.80	0.02
		- ditto, good core recovery	573	11.0	12.5	1.5	0.098	0.004	0.30	
		- ditto, 30 % bbc	574	12.5	14.0	1.5	0.112	0.004	0.20	
		- ditto, full core recovery	575	14.0	15.5	1.5	0.051	0.001	0.10	
		- ditto,	576	15.5	17.0	1.5	0.039	0.002	0.10	0.01
		- ditto,	577	17.0	18.5	1.5	0.039	0.001	0.10	0.01
		- ditto,	578	18.5	20.0	1.5	0.028	0.001	0.10	
		- ditto,	579	20.0	21.5	1.5	0.165	0.005	0.20	0.02

i

ii

DEP	TH, M			SAN	IPLE					
FROM	TO	DESCRIPTION	No.	FROM	то	WIDTH	Cu %	Mo %	Ag g	Au g
		- ditto	580	21.5	22.8	1.3	0.036	0.008	0.30	
22.8	38.7	ALTERED BASALT Grey siliceous flow top to 28.5m, locally sheared and mineralized, followed by weak beige silicified basalt (like that above) to 34.5m; then mineralized with scattered slips and veinlets of moly to the syenite contact at 38.7m								
		- beige chert/magnetite (exhalite?) sheared at 60-90 dtca; k-spar altered and pyritized with cp stringers 23.0-23.3 and a slip of moly at 23.5m	581	22.8	24.0	1.2	0.428	0.125	3.60	
		- mottled grey siliceous replacements; bedding foliation at 30 dtca,	582	24.0	25.5	1.5	0.025	0.004	0.30	
		- grey siliceous, aphanitic to v.f.g.; volc bx; minor ep/beige alt'n	583	25.5	27.0	1.5	0.016	0.001	0.20	
		- patchy beige alt'n; mt rich & bx bands 40 dtca; cp-chl-cc v'ts at 30 dtca	584	27.0	28.5	1.5	0.071	0.002	0.30	0.09
		- greyish pillow bx, minor ep/beige alt'd; f.g., ep-chl-cp v'ts <25 dtca	585	28.5	30.0	1.5	0.105	0.002	1.50	0.11
		- greenish, fm.g.; chl-ep alt'n; rare cp-cc-chl v'ts; 25 cm bbc at 30.8m	586	30.0	31.5	1.5	0.056	0.001	0.30	0.07
		- ditto; patchy beige alt'n; at 31.7m, 5cm k-spar-cp fault bx at 50 dtca,	587	31.5	33.0	1.5	0.050	0.002	0.20	
		- ditto, trace cp	588	33.0	34.5	1.5	0.031	0.001	0.10	
		-volc bx banding at 30 dtca; at 34.95m, 5 cm cc-cp-(moly) fault bx	589	34.5	35.5	1.0	0.077	0.005	0.10	0.01
		- at 35.6m, 40 cm beige alt'd band at 55 dtca with 5 cm band k-spar-cp	590	35.5	36.5	1.0	0.065	0.001	0.70	0.13
		- chl volc bx; weak beige alt'd; moly-cp-chl v't // to c.a.	591	36.5	37.7	1.2	0.426	0.360	7.20	0.08
		- 50% bbc; at 38.16m, 3cm cc fault bx 40 dtca; moly slip at 37.9m, 5 dtca	592	37.7	38.7	1.0	0.028	0.031	0.40	

DEP	TH, M			SAN	IPLE					
FROM	то	DESCRIPTION	No.	FROM	то	WIDTH	Cu %	Mo %	Ag g	Au g
38.7	44.8	SYENITE Somewhat reddened; crowded with small phenocrysts, rare large ones; occasional wallrock xenoliths; weak flow foliation at 45 dtca; rare calcite- chalcopyrite- quartz veinlets 45/100 dtca								
		- ditto,	593	38.7	40.2	1.5	0.046	0.004	0.10	
		-ditto	594	40.2	41.7	1.5	0.129	0.035	0.80	
		- ditto	595	41.7	43.2	1.5	0.004	0.003	0.10	
		- ditto, lower contact at about 70 dtca	596	43.2	44.8	1.6	0.007	0.002	0.30	
44.8	76.5	ALTERED BASALT Massive to flow breccia, similar to above; weakly deformed, altered and veined to 52.3m, then rather intensely beige silicified, much less epidote and more frequent k-spar veinlets and relatively well mineralized, 0.5-3% cp, to 58.7m; minor chalco and moly return 72.0-75.0m								
		- variably soft (chloritic) and hard (epidote and beige silicific'n); 0.1% Cu	597	44.8	46.3	1.5	0.087	0.020	0.40	
		- ditto	598	46.3	47.8	1.5	0.042	0.004	0.10	0.03
		- ditto,	599	47.8	49.3	1.5	0.416	0.016	7.60	0.03
		- ditto	600	49.3	50.8	1.5	0.088	0.004	0.40	0.02
		- ditto	601	50.8	52.3	1.5	0.163	0.015	1.50	0.09
		- 20% bbc, speck of moly at 52.4; k-spar v'ts 52.8-53.0m	602	52.3	53.3	1.0	0.087	0.007	0.50	
		- chl fr'd, 80 dtca w k-spar, scattered stringers cp to 54.0m, moly at 53.8m	603	53.3	54.8	1.5	0.164	0.015	1.60	0.09
		-volc bands at 30 dtca; x-fr'd some // to c.a., e.g. k-spar and cp, 0.2% Cu	604	54.8	56.2	1.4	0.432	0.008	2.10	0.50
		- at 56.67m, sh'd –bx'd k-spar-cp band at 60 dtca	605	56.2	57.2	1.0	0.214	0.004	1.10	0.03

DEP	TH, M			SAM	1PLE					
FROM	то	DESCRIPTION	No.	FROM	то	WIDTH	Cu %	Mo %	Ag g	Au G
		- intense beige alt'n bands at 90 dtca, sh'd to bx'd 45-90 dtca; q-k-spar- cc-chl-cp veins, stringers and diss's; no py, 1.5% Cu, trace moly	606	57.2	58.7	1.5	1.500	0.073	16.80	0.15
		- cc v't stockwork ; trace cp	607	58.7	60.2	1.5	0.070	0.001	0.40	0.03
		- trace k-spar alt'n, no sulphides	608	60.2	61.7	1.5	0.012	0.001	0.20	
		- epidote v'ts reappear, trace sulphides	609	61.7	63.2	1.5	0.018	0.001	0.10	
		- ditto, trace cp	610	63.2	64.7	1.5	0.054	0.001	0.10	
		- weak beige silic'n, k-spar-cc v'ts, trace sulphides	611	64.7	66.2	1.5	0.006	0.001	0.10	
		- ditto, x-fr'd, trace cp	612	66.2	67.5	1.3	0.036	0.001	0.30	0.02
		- ditto, 40% bbc, trace sulphides	613	67.5	69.0	1.5	0.028	0.001	0.10	0.01
		- ditto, 30% bbc; at 69.8m, 10cm fault bx; leucoxene prevails	614	69.0	70.5	1.5	0.028	0.001	0.20	
		- ditto, at 71.9m, 10cm fault bx, trace sulphides	615	70.5	72.0	1.5	0.035	0.002	0.30	0.02
		- volc bx cleaved at 40 dtca; bbc/fault bx; 2 slips moly // to c.a.; .1 Cu	616	72.0	73.5	1.5	0.223	0.051	2.90	0.20
		- ditto, 50% bbc; x-fr'd/v'ts (q-cp-cc), some 0-30 dtca, good trace cp	617	73.5	75.0	1.5	0.183	0.030	1.10	0.08
		- ditto, trace k-spar v'ts cut by cc v'ts, sch at 20 dtca, rare cc-chl-cp v'ts	618	75.0	76.5	1.5	0.290	0.018	3.10	
76.5	95.5	BASALT As above but less silicified, i.e., hard/soft, chloritic, minor epidote and sulphides generally in veinlets with calcite, chlorite, quartz.								
		- ditto, occ chl w/wo k-spar-cp v'ts 0-30 dtca	619	76.5	78.0	1.5	0.053	0.021	0.70	0.09
		- ditto, bx'd k-spar v'ts at depth	620	78.0	79.5	1.5	0.017	0.001	0.10	
		- ditto, minor beige alt'n and k-spar v'ts; slip of moly at 79.8m at 25 dtca	621	79.5	81.0	1.5	0.246	0.031	0.80	0.06

Page 5 of 8

DEP	TH, M			SAM	IPLE					
FROM	TO	DESCRIPTION	No.	FROM	то	WIDTH	Cu %	Mo %	Ag g	Au g
		- ditto, at 82.4m, 1 cm py- ep- cc-cp vein at 10 dtca	622	81.0	82.5	1.5	0.034	0.001	0.20	
		- ditto, 20% bbc, occ q-cc-py-cp v't	623	82.5	84.0	1.5	0.021	0.001	0.10	0.02
		- ditto, occ k-spar v't, x-fr'd, about 0.1% Cu	624	84.0	85.5	1.5	0.017	0.001	0.10	0.01
		- ditto, no sulphides	625	85.5	86.5	1.0	0.025	0.001	0.20	
		- ditto, minor k-spar v'ts	626	86.5	88.0	1.5	0.034	0.002	0.20	0.01
		- ditto, occ k-spar-ep-cc v't	627	88.0	89.5	1.5	0.020	0.045	0.70	
		- ditto, well fr'd to bx'd, occ mt band; cc v'ts at 30/110 dtca; about 0.1 Cu	628	89.5	91.0	1.5	0.049	0.002	0.30	0.02
		- ditto, less alt'd and fr'd	629	91.0	92.5	1.5	0.047	0.004	0.70	
		- ditto, moly slip at 93.7m	630	92.5	94.0	1.5	0.053	0.008	0.50	0.02
		- ditto, folded mt band, sh'd at 45 dtca; cc-q-cp v't stockwork below 95.2m	631	94.0	95.5	1.5	0.076	0.002	0.40	
95.5	110.0	ALTERED AND MINERALIZED BASALT Chlorite and calcite altered; basalt as before; minor beige and k-spar silicification; well fractured and veined								
		- sh'd to fault bx'd, beige alt'd; stockwork cc, minor k-spar, v'ts, 0.1% Cu	632	95.5	97.0	1.5	0.115	0.003	1.10	
		- chl-cc- earthy hem v'ts and cc-q v'ts , faint trace sulphides	633	97.0	98.5	1.5	0.098	0.001	0.40	0.02
		- occ cc-cp-q v't 10-45 dtca, trace cp	634	98.5	100.0	1.5	0.103	0.006	1.00	0.02
		- schistose at 40 dtca, occ k-spar-chl-cp and cc-q-cp v'ts, 0.1% Cu	635	100.0	101.5	1.5	0.162	0.012	3.10	0.08
		- ditto, but much more veining-at 15-70 dtca; about 1% Cu	636	101.5	103.0	1.5	0.830	0.103	12.00	0.40
		- ditto; less veining, say 0.5% Cu	637	103.0	104.5	1.5	0.540	0.015	6.70	0.07

DEP	TH, M			SAN	IPLE					
FROM	то	DESCRIPTION	No.	FROM	то	WIDTH	Cu %	Mo %	Ag g	Au g
		- ditto, well x-fr'd and veined; about 0.7% Cu	638	104.5	106.0	1.5	0.114	0.040	1.60	
		- ditto, some pitted veinlets; about 0.3% Cu	639	106.0	107.2	1.2	0.138	0.062	2.30	0.05
		-ditto, mainly cc-q- cp v'ts, about 0.3% Cu	640	107.2	108.5	1.5	0.415	0.011	3.50	0.11
		- beige alt'd with k-spar at depth; fault brecciated pyritic qv with trace moly 108.7- 109.2; 2 generations of quartz, younger is white; 0.5% Cu	641	108.5	110.0	1.5	0.318	0.029	2.50	0.14
110.0	129.5	SYENITE Reddened, crowded with small phenocrysts, occ xenolith, well fractured- some filled with barren quartz veinlets or traces of pyrite or rarely moly or specular hematite or the focus of orange bleaching. Fine diss sulphides								
		- ditto, cleavage at 45 dtca; upper contact irregular	642	110.0	111.5	1.5	0.145	0.009	1.60	
		- ditto, cleavage cuts cc-q v'ts	643	111.5	113.0	1.5	0.033	0.004	0.40	0.01
		- ditto, specular hematite at 113.8m	644	113.0	114.5	1.5	0.008	0.006	0.40	0.01
		- ditto,	645	114.5	116.0	1.5	0.011	0.008	0.10	0.01
		- ditto, pitted q-specularite veinlet at 116.2m	646	116.0	117.5	1.5	0.027	0.004	0.30	
		- ditto, 80% bbc	647	117.5	119.0	1.5	0.031	0.002	0.40	
		- ditto, much bbc	648	119.0	120.5	1.5	0.012	0.004	0.20	0.01
		- ditto, bbc, moly slip at 121.9m at 5 dtca	649	120.5	122.0	1.5	0.009	0.077	0.30	0.02
		- ditto, good core recovery	650	122.0	123.5	1.5	0.015	0.016	0.20	
		- ditto, bbc 124-125	651	123.5	125.0	1.5	0.011	0.002	0.20	
		- ditto, bbc, 125.6-126.3, chl-limonite in fr's	652	125.0	126.3	1.3	0.057	0.005	0.30	0.07

DEP	ТН, М			SAN	IPLE					
FROM	то	DESCRIPTION	No.	FROM	то	WIDTH	Cu %	Mo %	Ag g	Au g
		- ditto, bbc, starting at126.5m, 1 cm q-moly-py vein > chl-py slip // to c.a.	653	126.3	127.9	1.6	0.016	0.079	0.90	0.10
		- ditto, pitted q v'ts, bbc 128.8- 129.5; at 128.8m, 1-2 cm thick q-py-cp vn	654	127.9	129.5	1.6	0.296	0.002	0.40	0.09
129.5	146.0	FAULTED, BRECCIATED, SILICIFIED, PYRITIC (3- 15%) BASALT Multiphase fragmentation and silicification: 1. brecciation and K-spar open space filling, 2. pyrite diss and fr're fillings w/wo quartz, 3. renewed faulting with minor silicificaton, q-cc-chl veining, fracturing and leaching								
		- intense beige and k-spar alt'd; well fr'd; py-cc-q v't stockwork, pitted	655	129.5	131.0	1.5	0.013	0.002	0.30	0.64
		-dark greyish brown to orangy-red; bleached k-spar matrix/ iron-rich (not mt) meta basalt clast bx, cut 132.0- 132.2m by whitish porcelainite fault gouge and conformable quartz vein at 40 to 45 dtca; <1% cp (& below)	656	131.0	132.5	1.5	0.036	0.004	0.20	0.50
		- dark grey, micro fr'd to bx'd basalt flow top?, stockwork v'ts, pitted	657	132.5	134.0	1.5	0.069	0.001	0.30	0.02
		- ditto, at 135.5m, 20cm band sh'd pyritic k-spar bx at 45 dtca, 30% bbc	658	134.0	135.5	1.5	0.064	0.002	0.30	0.01
		- 80% dark grey mt-rich clasts in orangy pitted matrix, 90% bbc	659	135.5	137.0	1.5	0.012	0.001	0.30	0.02
		- ditto, 5% matrix k-spar; pitted q-chl v'ts 0-30 dtca; at 137.1m, folded qv	660	137.0	138.5	1.5	0.016	0.001	0.70	0.01
		- ditto?,100% fine bbc	661	138.5	140.0	1.5	0.022	0.001	0.40	0.01
		- ditto, 90% bbc; much less k-spar; clasts of mt in "basalt" or dike?	662	140.0	141.5	1.5	0.105	0.019	1.50	0.02
		- ditto, mt clasts/bands at 45-70 dtca in melanocratic "basalt"; 30% bbc	663	141.5	143.0	1.5	0.058	0.001	0.20	
		- ditto, 50% bbc; 2% pyrite	664	143.0	144.5	1.5	0.034	0.001	0.40	
		- good core recovery; beige alt', m.g. sy? in "basalt" to 145.3; change to:-	665	144.5	146.0	1.5	0.008	0.001	0.20	
146.0	151.0	BASALT Very fine grained, greyish green, well fractured, epidotized; 100% bbc								

DEP.	TH, M			SAM	PLE					
FROM	TO	DESCRIPTION	No.	FROM	то	WIDTH	Cu %	Mo %	Ag g	Au g
		- ditto, trace sulphides (some very fine grained); fr's at 0-45 dtca	666	146.0	147.5	1.5	0.018	0.001	0.20	
		- ditto	667	147.5	149.0	1.5	0.013	0.001	0.10	
		- ditto	668	149.0	150.0	1.0	0.022	0.001	0.10	
		- ditto	669	150.0	151.0	1.0	0.018	0.001	0.10	
	EOH									

			Pacific Comox Resour Ltd. GRID LOCATION: Powell	ces							
Matach	ewan	Ryan Lake Az360,	Twp., Ontario								
DDH#: GRID: MDU:	88.0	A2360, Dip45	UTM, type: E, N: Nad: 83 Zone: 17 Logged by: Subash Bisoyi Start: End:								
From	То	Rock Type	Description	Sample #	From	То	m	Cu %	Mo %	AG g/t	Au g/t
0.0	3.7		Over burden- loose soil and gravel	41322	4.0	5.0	1.0	0.021	0.001	0.100	0.000
3.7	6.0	Syenite	Hard massive greenish Syenite rock Cu, Py dissemination	41323	5.0	6.0	1.0	0.020	0.001	0.100	0.000
6.0	8.0	Syenite	Hard massive greenish Syenite rock	41324	6.0	7.0	1.0	0.020	0.001	0.100	0.000
		Syenite		41325	7.0	8.0	1.0	0.023	0.001	0.200	0.000
8.0	15.0	Syenite	Crushed Zone	41326	8.0	9.0	1.0	0.021	0.001	0.200	0.010
		Syenite	Crushed Zone	41327	9.0	10.0	1.0	0.021	0.001	0.100	0.000
		Syenite	Crushed Zone	41328	10.0	11.0	1.0	0.017	0.001	0.200	0.000
		Syenite	Crushed Zone	41329	11.0	12.0	1.0	0.024	0.001	0.200	0.000
		Syenite	Crushed Zone	41330	12.0	13.0	1.0	0.023	0.001	0.200	0.000
		Syenite	Crushed Zone	41331	13.0	14.0	1.0	0.022	0.001	0.200	0.000
		Syenite	Crushed Zone	41332	14.0	15.0	1.0	0.034	0.001	0.300	0.000
15.0	19.0	Syenite	Hard massive greenish Syenite rock Cu, Py dissemination	41333	15.0	16.0	1.0	0.111	0.001	0.600	0.000
		Syenite	Hard massive greenish Syenite rock Cu, Py dissemination	41334	16.0	17.0	1.0	0.078	0.001	0.400	0.000
		Syenite	Hard massive greenish Syenite rock Cu, Py dissemination	41335	17.0	18.0	1.0	0.024	0.001	0.300	0.000
		Syenite	Hard massive greenish Syenite rock Cu, Py dissemination	41336	18.0	19.0	1.0	0.051	0.001	0.400	0.000
19.0	23.0	Porphyr Sye.	Syenite with pink phenocrysts of Orthoclase Felspar.	41337	19.0	20.0	1.0	0.098	0.011	0.500	0.020
		Porphyr Sye.	Dissemination of Pyrite and Chalcopyrite.	41338	20.0	21.0	1.0	0.057	0.001	0.300	0.000
		Porphyr Sye.	Syenite with pink phenocrysts of Orthoclase Felspar.	41339	21.0	22.0	1.0	0.111	0.001	0.700	0.000

i

From	То	Rock Type	Description	Sample #	From	То	m	Cu %	Mo %	AG g/t	Au g/t
		Porphyr Sye.	Dissemination of Pyrite and Chalcopyrite.	41340	22.0	23.0	1.0	0.014	0.001	0.100	0.000
23.0	29.0	Porphyr Sye.	Syenite with pink phenocrysts of Orthoclase Felspar.	41341	23.0	24.0	1.0	0.023	0.001	0.400	0.000
		Porphyr Sye.	Good dissemination of Pyrite and Chalcopyrite.	41342	24.0	25.0	1.0	0.404	0.003	1.900	0.000
		Porphyr Sye.	Syenite with pink phenocrysts of Orthoclase Felspar.	41343	25.0	26.0	1.0	0.346	0.007	2.300	0.000
		Porphyr Sye.	Good dissemination of Pyrite and Chalcopyrite.	41344	26.0	27.0	1.0	0.169	0.002	1.000	0.000
		Porphyr Sye.	Syenite with pink phenocrysts of Orthoclase Felspar.	41345	27.0	28.0	1.0	0.307	0.001	1.700	0.000
		Porphyr Sye.	Good dissemination of Pyrite and Chalcopyrite.	41346	28.0	29.0	1.0	0.260	0.007	1.700	0.030
29.0	56.0	Syenite	Hard massive greenish Syenite	41347	29.0	30.0	1.0	0.130	0.003	0.900	0.150
		Syenite	Good Cu, Py dissemination calcite veinlets	41348	30.0	31.0	1.0	0.082	0.001	0.600	0.020
		Syenite	Hard massive greenish Syenite	41349	31.0	32.0	1.0	0.359	0.004	1.100	0.000
		Syenite	Good Cu, Py dissemination calcite veinlets	41350	32.0	33.0	1.0	0.068	0.002	0.500	0.000
		Syenite	Hard massive greenish Syenite	41351	33.0	34.0	1.0	0.113	0.002	1.100	0.025
		Syenite	Good Cu, Py dissemination calcite veinlets	41352	34.0	35.0	1.0	0.134	0.006	0.800	0.000
		Syenite	Hard massive greenish Syenite	41353	35.0	36.0	1.0	0.040	0.001	0.400	0.000
		Syenite	Good Cu, Py dissemination calcite veinlets	41354	36.0	37.0	1.0	0.025	0.001	0.300	0.000
		Syenite	Hard massive greenish Syenite	41355	37.0	38.0	1.0	0.062	0.002	1.500	0.000
		Syenite	Good Cu, Py dissemination	41356	38.0	39.0	1.0	0.097	0.029	1.700	0.000
		Syenite	Hard massive greenish Syenite	41357	39.0	40.0	1.0	0.274	0.015	1.100	0.000
		Syenite	Good Cu, Py dissemination	41358	40.0	41.0	1.0	0.273	0.010	2.100	0.000
		Syenite	Hard massive greenish Syenite	41359	41.0	42.0	1.0	0.066	0.008	0.900	0.000
		Syenite	Good Cu, Py dissemination	41360	42.0	43.0	1.0	0.040	0.001	0.400	0.000
		Syenite	Hard massive greenish Syenite calcite veins	41361	43.0	44.0	1.0	0.236	0.003	1.000	0.000
		Syenite	Good Cu, Py dissemination calcite veinlets	41362	44.0	45.0	1.0	0.222	0.009	1.900	0.000

From	То	Rock Type	Description	Sample #	From	То	m	Cu %	Mo %	AG g/t	Au g/t
		Syenite	Hard massive greenish Syenite	41363	45.0	46.0	1.0	0.410	0.002	2.300	0.060
		Syenite	Good Cu, Py dissemination	41364	46.0	47.0	1.0	0.431	0.008	2.200	0.000
		Syenite	Hard massive greenish Syenite	41365	47.0	48.0	1.0	0.034	0.001	0.200	0.000
		Syenite	Good Cu, Py dissemination calcite veinlets	41366	48.0	49.0	1.0	0.072	0.001	0.300	0.000
		Syenite	Hard massive greenish Syenite	41367	49.0	50.0	1.0	0.170	0.003	1.000	0.000
		Syenite	Good Cu, Py dissemination	41368	50.0	51.0	1.0	0.030	0.007	0.700	0.000
		Syenite	Hard massive greenish Syenite	41369	51.0	52.0	1.0	0.020	0.001	0.100	0.000
		Syenite	Good Cu, Py dissemination veinlets of calcite	41370	52.0	53.0	1.0	0.081	0.002	0.500	0.015
		Syenite	Hard massive greenish Syenite	41371	53.0	54.0	1.0	0.019	0.001	0.200	0.000
		Syenite	Good Cu, Py dissemination	41372	54.0	55.0	1.0	0.014	0.027	0.400	0.000
		Syenite	Hard massive greenish Syenite	41373	55.0	56.0	1.0	0.860	0.041	4.300	0.090
56.0	58.0	Porphyr Sye.	Syenite with pink phenocrysts of Orthoclase Felspar.	41374	56.0	57.0	1.0	2.750	0.202	15.300	0.170
		Porphyr Sye.	Good dissemination of Pyrite and Chalcopyrite.	41375	57.0	58.0	1.0	0.464	0.003	1.400	0.020
58.0	137.0	Syenite	Hard massive greenish Syenite	41376	58.0	59.0	1.0	0.178	0.005	0.700	0.000
		Syenite	Good dissemination of Pyrite and Chalcopyrite.	41377	59.0	60.0	1.0	0.058	0.001	0.400	0.000
		Syenite	Hard massive greenish Syenite	41378	60.0	61.0	1.0	0.023	0.001	0.100	0.000
		Syenite	Good dissemination of Pyrite and Chalcopyrite.	41379	61.0	62.0	1.0	0.020	0.001	0.100	0.000
		Syenite	Hard massive greenish Syenite	41380	62.0	63.0	1.0	0.017	0.001	0.100	0.030
		Syenite	Good dissemination of Pyrite and Chalcopyrite.	41381	63.0	64.0	1.0	0.017	0.001	0.100	0.000
		Syenite	Hard massive greenish Syenite	41382	64.0	65.0	1.0	0.009	0.001	0.100	0.000
		Syenite	Good dissemination of Pyrite and Chalcopyrite.	41383	65.0	66.0	1.0				
		Syenite	Hard massive greenish Syenite calcite veins	41384	66.0	67.0	1.0	0.034	0.003	0.200	0.000
		Syenite	Good dissemination of Pyrite and Chalcopyrite.	41385	67.0	68.0	1.0	0.038	0.002	0.400	0.000
		Syenite	Hard massive greenish Syenite calcite veins	41386	68.0	69.0	1.0	0.018	0.001	0.200	0.000

From	То	Rock Type	Description	Sample #	From	То	m	Cu %	Mo %	AG g/t	Au g/t
		Syenite	Good dissemination of Pyrite and Chalcopyrite.	41387	69.0	70.0	1.0	0.020	0.002	0.200	0.000
		Syenite	Hard massive greenish Syenite	41388	70.0	71.0	1.0	0.016	0.001	0.100	0.000
		Syenite	Good dissemination of Pyrite and Chalcopyrite.	41389	71.0	72.0	1.0	0.017	0.001	0.300	0.000
		Syenite	Hard massive greenish Syenite calcite veins	41390	72.0	73.0	1.0	0.041	0.001	0.200	0.010
		Syenite	Good dissemination of Pyrite and Chalcopyrite.	41391	73.0	74.0	1.0	0.028	0.001	0.100	0.015
		Syenite	Hard massive greenish Syenite	41392	74.0	75.0	1.0	0.030	0.001	0.200	0.000
		Syenite	Good dissemination of Pyrite and Chalcopyrite.	41393	75.0	76.0	1.0	0.021	0.001	0.100	0.010
		Syenite	Hard massive greenish Syenite	41394	76.0	77.0	1.0	0.028	0.001	0.200	0.000
		Syenite	Good dissemination of Pyrite and Chalcopyrite.	41395	77.0	78.0	1.0	0.084	0.001	0.500	0.010
		Syenite	Hard massive greenish Syenite	41396	78.0	79.0	1.0	0.058	0.002	0.300	0.000
		Syenite	Good dissemination of Pyrite and Chalcopyrite.	41397	79.0	80.0	1.0	0.116	0.005	0.300	0.000
		Syenite	Hard massive greenish Syenite	41398	80.0	81.0	1.0	0.062	0.001	0.200	0.000
		Syenite	Good dissemination of Pyrite and Chalcopyrite.	41399	81.0	82.0	1.0	0.013	0.002	0.700	0.000
		Syenite	Hard massive greenish Syenite calcite veins	41400	82.0	83.0	1.0	0.036	0.002	0.300	0.000
		Syenite	Good dissemination of Pyrite and Chalcopyrite.	41401	83.0	84.0	1.0	0.023	0.001	0.200	0.000
		Syenite	Hard massive greenish Syenite	41402	84.0	85.0	1.0	0.034	0.007	0.300	0.010
		Syenite	Good dissemination of Pyrite and Chalcopyrite.	41403	85.0	86.0	1.0	0.055	0.001	0.300	0.040
		Syenite	Hard massive greenish Syenite calcite veins	41404	86.0	87.0	1.0	0.070	0.001	0.400	0.005
		Syenite	Good dissemination of Pyrite and Chalcopyrite.	41405	87.0	88.0	1.0	0.043	0.001	0.300	0.000
		Syenite	Hard massive greenish Syenite calcite veins	41406	88.0	89.0	1.0	0.060	0.001	0.300	0.000
		Syenite	Good dissemination of Pyrite and Chalcopyrite.	41407	89.0	90.0	1.0	0.032	0.001	0.200	0.020

From	То	Rock Type	Description	Sample #	From	То	m	Cu %	Mo %	AG g/t	Au g/t
		Syenite	Hard massive greenish Syenite	41408	90.0	91.0	1.0	0.087	0.039	0.400	0.000
		Syenite	Good dissemination of Pyrite and Chalcopyrite.	41409	91.0	92.0	1.0	0.132	0.031	0.500	0.020
		Syenite	Hard massive greenish Syenite	41410	92.0	93.0	1.0	0.067	0.001	0.300	0.005
		Syenite	Good dissemination of Pyrite and Chalcopyrite.	41411	93.0	94.0	1.0	0.020	0.002	0.100	0.000
		Syenite	Hard massive greenish Syenite	41412	94.0	95.0	1.0	0.019	0.001	0.100	0.000
		Syenite	Good dissemination of Pyrite and Chalcopyrite.	41413	95.0	96.0	1.0	0.048	0.001	0.300	0.000
		Syenite	Hard massive greenish Syenite calcite veins	41414	96.0	97.0	1.0	0.024	0.001	0.400	0.000
		Syenite	Good dissemination of Pyrite and Chalcopyrite.	41415	97.0	98.0	1.0	0.087	0.002	0.600	0.000
		Syenite	Hard massive greenish Syenite calcite veins	41416	98.0	99.0	1.0	0.050	0.001	0.400	0.000
		Syenite	Good dissemination of Pyrite and Chalcopyrite.	41417	99.0	100.0	1.0	0.051	0.004	0.300	0.000
		Syenite	Hard massive greenish Syenite calcite veinlets	41418	100.0	101.0	1.0	0.650	0.027	2.200	0.030
		Syenite	Good dissemination of Pyrite and Chalcopyrite.	41419	101.0	102.0	1.0	0.313	0.021	1.800	0.040
		Syenite	Hard massive greenish Syenite	41420	102.0	103.0	1.0	1.430	0.059	7.400	0.050
		Syenite	Good dissemination of Pyrite and Chalcopyrite.	41421	103.0	104.0	1.0	0.190	0.006	1.300	0.010
		Syenite	Hard massive greenish Syenite calcite veins	41422	104.0	105.0	1.0	0.137	0.011	2.200	0.000
		Syenite	Good dissemination of Pyrite and Chalcopyrite.	41423	105.0	106.0	1.0	0.173	0.010	2.000	0.005
		Syenite	Hard massive greenish Syenite calcite veins	41424	106.0	107.0	1.0	0.365	0.035	2.700	0.050
		Syenite	Good dissemination of Pyrite and Chalcopyrite.	41425	107.0	108.0	1.0	1.070	0.033	6.000	0.050
		Syenite	Hard massive greenish Syenite calcite veins	41426	108.0	109.0	1.0	0.910	0.015	6.100	0.070
		Syenite	Good dissemination of Pyrite and Chalcopyrite.	41427	109.0	110.0	1.0	3.220	0.084	13.900	0.000

From	То	Rock Type	Description	Sample #	From	То	m	Cu %	Mo %	AG g/t	Au g/t
		Syenite	Hard massive greenish Syenite calcite veins	41428	110.0	111.0	1.0	0.030	0.001	0.200	0.000
		Syenite	Good dissemination of Pyrite and Chalcopyrite.	41429	111.0	112.0	1.0	0.340	0.008	1.900	0.000
		Syenite	Hard massive greenish Syenite	41430	112.0	113.0	1.0	0.520	0.001	2.900	0.000
		Syenite	Good dissemination of Pyrite and Chalcopyrite.	41431	113.0	114.0	1.0	1.010	0.027	6.400	0.000
		Syenite	Hard massive greenish Syenite calcite veins	41432	114.0	115.0	1.0	0.063	0.001	0.400	0.000
		Syenite	Good dissemination of Pyrite and Chalcopyrite.	41433	115.0	116.0	1.0	0.078	0.001	0.500	0.000
		Syenite	Hard massive greenish Syenite	41434	116.0	117.0	1.0	0.029	0.002	0.400	0.000
		Syenite	Good dissemination of Pyrite and Chalcopyrite.	41435	117.0	118.0	1.0	0.064	0.001	0.500	0.000
		Syenite	Hard massive greenish Syenite calcite veins	41436	118.0	119.0	1.0	0.122	0.003	1.300	0.000
		Syenite	Good dissemination of Pyrite and Chalcopyrite.	41437	119.0	120.0	1.0	0.226	0.009	1.600	0.000
		Syenite	Hard massive greenish Syenite	41438	120.0	121.0	1.0	0.580	0.015	4.700	0.040
		Syenite	Good dissemination of Pyrite and Chalcopyrite.	41439	121.0	122.0	1.0	0.105	0.005	1.100	0.020
		Syenite	Hard massive greenish Syenite calcite veins	41440	122.0	123.0	1.0	0.177	0.018	1.900	0.040
		Syenite	Good dissemination of Pyrite and Chalcopyrite.	41441	123.0	124.0	1.0	0.171	0.044	1.200	0.000
		Syenite	Hard massive greenish Syenite	41442	124.0	125.0	1.0	0.362	0.022	2.500	0.000
		Syenite	Good dissemination of Pyrite and Chalcopyrite.	41443	125.0	126.0	1.0	0.078	0.002	0.600	0.000
		Syenite	Hard massive greenish Syenite calcite veins	41444	126.0	127.0	1.0	0.064	0.001	0.400	0.000
		Syenite	Good dissemination of Pyrite and Chalcopyrite.	41445	127.0	128.0	1.0	0.157	0.001	0.400	0.000
		Syenite	Hard massive greenish Syenite	41446	128.0	129.0	1.0	0.005	0.001	0.100	0.000
		Syenite	Good dissemination of Pyrite and Chalcopyrite.	41447	129.0	130.0	1.0	0.455	0.019	2.500	0.010
		Syenite	Hard massive greenish Syenite	41448	130.0	131.0	1.0	0.052	0.001	0.200	0.030

From	То	Rock Type	Description	Sample #	From	То	m	Cu %	Mo %	AG g/t	Au g/t
		Syenite	Good dissemination of Pyrite and Chalcopyrite.	41449	131.0	132.0	1.0	0.033	0.001	0.100	0.010
		Syenite	Hard massive greenish Syenite calcite veins	41450	132.0	133.0	1.0	0.184	0.001	0.400	0.000
		Syenite	Good dissemination of Pyrite and Chalcopyrite.	41451	133.0	134.0	1.0	0.027	0.001	0.100	0.000
		Syenite	Hard massive greenish Syenite	41452	134.0	135.0	1.0	0.023	0.001	0.100	0.000
		Syenite	Good dissemination of Pyrite and Chalcopyrite.	41453	135.0	136.0	1.0	0.018	0.001	0.200	0.000
		Syenite	Hard massive greenish Syenite	41454	136.0	137.0	1.0	0.025	0.001	0.200	0.000
137.0	140.0	Syenite	Good dissemination of Pyrite and Chalcopyrite.	41455	137.0	138.0	1.0	0.006	0.001	0.100	0.000
		Syenite	Hard massive greenish Syenite calcite veins	41456	138.0	139.0	1.0	0.013	0.001	0.100	0.000
		Syenite	Good dissemination of Pyrite and Chalcopyrite.	41457	139.0	140.0	1.0	0.005	0.001	0.100	0.000
140.0	187.0	Syenite	Hard massive greenish Syenite calcite veins	41458	140.0	141.0	1.0	0.008	0.001	0.100	0.000
		Syenite	Good dissemination of Pyrite and Chalcopyrite.	41459	141.0	142.0	1.0	0.015	0.001	0.200	0.000
		Syenite	Hard massive greenish Syenite	41460	142.0	143.0	1.0	0.158	0.002	1.000	0.020
		Syenite	Good dissemination of Pyrite and Chalcopyrite.	41461	143.0	144.0	1.0	0.068	0.001	0.400	0.000
		Syenite	Hard massive greenish Syenite calcite veins	41462	144.0	145.0	1.0	0.225	0.008	1.500	0.000
		Syenite	Good dissemination of Pyrite and Chalcopyrite.	41463	145.0	146.0	1.0	0.054	0.001	0.200	0.000
		Syenite	Hard massive greenish Syenite calcite veins	41464	146.0	147.0	1.0	0.035	0.001	0.300	0.000
		Syenite	Good dissemination of Pyrite and Chalcopyrite.	41465	147.0	148.0	1.0	0.015	0.001	0.200	0.000
		Syenite	Hard massive greenish Syenite	41466	148.0	149.0	1.0	0.287	0.031	2.000	0.000
		Syenite	Good dissemination of Pyrite and Chalcopyrite.	41467	149.0	150.0	1.0	0.019	0.001	0.300	0.000
		Syenite	Hard massive greenish Syenite calcite veins	41468	150.0	151.0	1.0	0.014	0.001	0.100	0.000

From	То	Rock Type	Description	Sample #	From	То	m	Cu %	Mo %	AG g/t	Au g/t
		Syenite	Good dissemination of Pyrite and Chalcopyrite.	41469	151.0	152.0	1.0	0.006	0.001	0.200	0.000
		Syenite	Hard massive greenish Syenite	41470	152.0	153.0	1.0	0.028	0.001	0.100	0.005
		Syenite	Good dissemination of Pyrite and Chalcopyrite.	41471	153.0	154.0	1.0	0.113	0.001	0.400	0.000
		Syenite	Hard massive greenish Syenite calcite veins	41472	154.0	155.0	1.0	0.045	0.001	0.200	0.020
		Syenite	Good dissemination of Pyrite and Chalcopyrite.	41473	155.0	156.0	1.0	0.046	0.001	0.400	0.010
		Syenite	Hard massive greenish Syenite calcite veins	41474	156.0	157.0	1.0	0.015	0.001	0.100	0.000
		Syenite	Good dissemination of Pyrite and Chalcopyrite.	41475	157.0	158.0	1.0	0.032	0.001	0.700	0.015
		Syenite	Hard massive greenish Syenite calcite veins	41476	158.0	159.0	1.0	0.017	0.001	0.200	0.000
		Syenite	Good dissemination of Pyrite and Chalcopyrite.	41477	159.0	160.0	1.0	0.026	0.001	0.500	0.000
		Syenite	Hard massive greenish Syenite calcite veins	41478	160.0	161.0	1.0	0.005	0.001	0.100	0.000
		Syenite	Good dissemination of Pyrite and Chalcopyrite.	41479	161.0	162.0	1.0	0.040	0.001	0.500	0.000
		Syenite	Hard massive greenish Syenite calcite veins	41480	162.0	163.0	1.0	0.008	0.001	0.200	0.000
		Syenite	Good dissemination of Pyrite and Chalcopyrite.	41481	163.0	164.0	1.0	0.002	0.001	0.200	0.000
		Syenite	Hard massive greenish Syenite calcite veins	41482	164.0	165.0	1.0	0.016	0.001	0.200	0.000
		Syenite	Good dissemination of Pyrite and Chalcopyrite.	41483	165.0	166.0	1.0	0.014	0.001	0.200	0.020
		Syenite	Hard massive greenish Syenite calcite veins	41484	166.0	167.0	1.0	0.005	0.001	0.100	0.000
		Syenite	Good dissemination of Pyrite and Chalcopyrite.	41485	167.0	168.0	1.0	0.053	0.001	0.500	0.010
		Syenite	Hard massive greenish Syenite calcite veins	41486	168.0	169.0	1.0	0.035	0.001	0.400	0.020

From	То	Rock Type	Description	Sample #	From	То	m	Cu %	Mo %	AG g/t	Au g/t
		Syenite	Hard massive greenish Syenite calcite veins	41487	169.0	170.0	1.0	0.014	0.001	0.300	0.010
		Syenite	Average dissemination of Cu,Pyrite calcite veins	41488	170.0	171.0	1.0	0.008	0.001	0.200	0.000
		Syenite	Hard massive greenish Syenite calcite veins	41489	171.0	172.0	1.0	0.013	0.001	0.400	0.005
		Syenite	Average dissemination of Cu,Pyrite calcite veins	41490	172.0	173.0	1.0	0.021	0.001	0.300	0.010
		Syenite	Hard massive greenish Syenite calcite veins	41491	173.0	174.0	1.0	0.026	0.001	0.500	0.010
		Syenite	Average dissemination of Cu,Pyrite calcite veins	41492	174.0	175.0	1.0	0.007	0.001	0.100	0.020
		Syenite	Hard massive greenish Syenite calcite veins	41493	175.0	176.0	1.0	0.021	0.001	0.400	0.000
		Syenite	Average dissemination of Cu,Pyrite calcite veins	41494	176.0	177.0	1.0	0.035	0.001	0.600	0.000
		Syenite	Hard massive greenish Syenite calcite veins	41495	177.0	178.0	1.0	0.033	0.001	0.400	0.000
		Syenite	Average dissemination of Cu,Pyrite calcite veins	41496	178.0	179.0	1.0	0.047	0.002	0.300	0.000
		Syenite	Hard massive greenish Syenite calcite veins	41497	179.0	180.0	1.0	0.011	0.001	0.300	0.010
		Syenite	Average dissemination of Cu,Pyrite calcite veins	41498	180.0	181.0	1.0	0.009	0.001	0.300	0.010
		Syenite	Hard massive greenish Syenite calcite veins	41499	181.0	182.0	1.0	0.002	0.001	0.100	0.005
		Syenite	Average dissemination of Cu,Pyrite calcite veins	41500	182.0	183.0	1.0	0.019	0.001	0.100	0.000
		Syenite	Hard massive greenish Syenite calcite veins	40751	183.0	184.0	1.0	0.050	0.001	0.800	0.000
		Syenite	Average dissemination of Cu,Pyrite calcite veins	41752	184.0	185.0	1.0	0.043	0.001	0.400	0.000
		Syenite	Hard massive greenish Syenite calcite veins	42753	185.0	186.0	1.0	0.005	0.001	0.200	0.000
		Syenite	Average dissemination of Cu,Pyrite calcite veins	43754	186.0	187.0	1.0	0.012	0.001	0.300	0.005
					End	of	hole				

APPENDIX III

Check Assay Results

			Swastika				Lakefield		
Hole #	Sample #	Cu (%)	Mo (%)	Au (g/t)	Ag (g/t)	Cu (%)	Mo (%)	Au (g/t)	Ag (g/t)
PC-06-41	96145/46	0.011	0.001	0.02	0.60	0.010	< 0.010	< 0.02	< 0.50
PC-06-42	45436	0.048	0.001	0.04	0.60	0.050	< 0.002	0.03	< 0.50
	236501	0.230	0.002	0.05	0.90	0.170	0.000	0.05	0.80
	236508	0.580	0.125	0.09	2.80	0.420	0.070	0.04	1.50
	236545	0.362	0.026	0.00	1.90	0.400	0.020	0.39	2.00
PC-06-51	237573	0.098	0.004	0.00	0.30	0.100	0.000	0.02	< 0.50
	237585	0.105	0.002	0.11	1.50	0.140	< 0.002	0.02	< 0.50
	237594	0.129	0.035	0.00	0.80	0.004	0.000	< 0.02	< 0.50
	237595	0.004	0.003	0.00	0.10	0.000	< 0.002	< 0.02	< 0.50
	237599	0.416	0.016	0.03	7.60	0.420	0.010	0.05	12.50
	237617	0.183	0.030	0.08	1.10	0.240	0.050	0.06	1.20
	237636	0.830	0.103	0.43	12.00	1.210	0.170	0.56	12.70
	237652	0.057	0.005	0.04	0.30	0.040	0.010	0.04	0.30
	237662	0.105	0.019	0.02	1.50	0.190	0.020	0.02	1.50
	237668	0.022	0.001	0.00	0.10	0.020	< 0.002	0.02	< 0.50
PC-07-88	41356	0.097	0.029	0.00	1.70	0.100	0.030	0.05	2.17
	41374	2.750	0.202	0.17	15.30	2.860	0.250	0.13	14.80
PC-06-39	95546/47	0.024	0.001	0.09	0.20	0.150	< 0.010	0.06	< 0.50
PC-06-40	95594/95	0.009	0.001	0.02	0.10	< 0.010	0.010	0.02	< 0.50
	95645/46	0.013	0.001	0.02	0.20	0.010	< 0.010	< 0.02	< 0.50
CP-07-94-2	95845/46	0.008	0.001	0.01	0.20	0.010	< 0.010	0.02	< 0.50
CP-07-94-4	95895/96	0.043	0.001	0.09	0.30	0.400	< 0.010	0.05	< 0.50
CP-07-94-7	95945/46	0.002	0.001	0.00	0.10	0.010	< 0.010	< 0.02	< 0.50
CP-07-94-8	95795/96	0.021	0.001	0.01	0.70	0.010	< 0.010	< 0.02	0.70
PC-07-94-10	95745/46	0.009	0.001	0.00	0.10	0.020	< 0.010	< 0.02	< 0.50
PC-07-94-11	95695/96	0.034	0.001	0.01	0.40	0.040	< 0.010	0.02	< 0.50
PC-07-94-13	96095/96	0.003	0.001	0.00	0.20	< 0.010	< 0.010	0.02	< 0.50

APPENDIX IV

Check Blank/Known Grade Assay Results

			Re-Assay	Value			Original	Assay	
Hole #	Sample #	Cu (%)	Mo (%)	Au (g/t)	Ag (g/t)	Cu (%)	Mo (%)	Au (g/t)	Ag (g/t)
PC-05-5	96348	0.027	0.001	0.03	0.40	0.030	0.001	0.01	0.30
PC-06-39	95547	0.009	0.001	0.01	0.10	0.001	0.001	0.01	0.10
PC-06-40	95597	0.010	0.001	0.03	0.10	0.001	0.001	0.01	0.10
PC-06-41	96148	0.045	0.001	0.03	0.40	0.030	0.001	0.01	0.30
PC-06-42	96198	0.049	0.001	0.00	0.40	0.030	0.001	0.01	0.30
PC-06-48	96298	0.050	0.001	0.03	0.20	0.030	0.001	0.01	0.30
PC-06-49	96248	0.043	0.001	0.02	0.10	0.030	0.001	0.01	0.30
CP-07-94-2	95848	0.007	0.001	0.00	0.10	0.001	0.001	0.01	0.10
CP-07-94-4	95898	0.009	0.001	0.00	0.10	0.001	0.001	0.01	0.10
CP-07-94-7	95948	0.012	0.001	0.00	0.20	0.030	0.001	0.01	0.30
CP-07-94-8	95798	0.008	0.001	0.01	0.20	0.001	0.001	0.01	0.10
CP-07-94-10	95748	0.008	0.001	0.01	0.10	0.001	0.001	0.01	0.10
CP-07-94-11	95698	0.012	0.001	0.00	0.10	0.001	0.001	0.01	0.10
CP-07-94-13	96098	0.043	0.001	0.01	0.50	0.030	0.001	0.01	0.30
CP-07-99A	95998	0.029	0.001	0.00	0.40	0.030	0.001	0.01	0.30
CP-07-99D	96048	0.040	0.001	0.02	0.300	0.030	0.001	0.01	0.30

APPENDIX V

Drill Hole Intercept Reporting Summary

Hole Number	Core Length (m)	Est. True Width (m)	Cu (%)	Mo (%)	Au (opt)	Ag (opt)
PC-07-88	106	73	0.23	0.010	0.01	1.34
	30	21	0.44	0.016	0.01	2.57
PC-07-87	34	24	0.96	0.056	0.08	5.36
	33	23	0.54	0.027	0.003	3.04
PC-07-86	76	52	0.49	0.028	0.14	3.54
PC-07-85	11	7	0.49	0.028	0.06	3.89
PC-07-83	69	47	0.21	0.008	0.04	1.27
	16	11	0.41	0.010	0.06	2.54
PC-07-82	72	50	0.33	0.040	0.07	3.80
PC-07-81	135	93	0.35	0.031	0.05	2.30
	9	6	0.33	0.076	0.04	2.31
PC-07-80	6	4	0.38	0.235	0.11	0.38
	5	3	1.18	0.043	0.09	6.09
PC-07-79	19	13	0.30	0.008	0.02	2.30
	24	16	0.17	0.017	0.01	1.16
PC-07-78	29	20	0.35	0.007	0.05	2.46
	20	14	0.23	0.021	0.01	0.98
PC-07-77	35	24	0.18	0.009	0.03	1.37
	17	12	0.21	0.039	0.01	1.09
PC-07-75	8	5	0.06	0.011	1.02	0.92
	16	11	0.55	0.014	0.03	2.47
PC-07-74	19	13	0.23	0.062	0.08	2.98
PC-07-73	10	7	0.21	0.002	0.05	1.27
PC-07-72	7	5	0.55	0.005	0.12	4.58
PC-07-71	8	6	0.31	0.035	0.04	1.14

Hole Number	Core Length (m)	Est. True Width (m)	Cu (%)	Mo (%)
PC-07-70	27	18	0.25	0.008
	68	47	0.16	0.047
PC-07-69	48	33	0.09	0.074
	109	75	0.10	0.091
PC-07-68	72	50	0.34	0.137
	47	32	0.20	0.014
	39	27	0.14	0.063

Hole Number	Core Length (m)	Est. True Width (m)	Cu (%)	Mo (%)
PC-07-67	24	16	0.27	0.185
PC-07-66B	68	47	0.17	0.133
	26	18	0.19	0.073
	82	56	0.23	0.005
PC-07-65	38	26	0.35	0.021
	25	17	0.36	0.023
	78	54	0.07	0.041
PC-07-64	29	20	0.07	0.054
	63	43	0.43	0.022
PC-07-63	67	46	0.18	0.042
PC-07-62	20	14	0.26	0.045
	24	16	0.29	0.017
	10	7	0.57	0.036
PC-06-61	225	155	0.36	0.017
PC-06-60	39	27	0.56	0.049
	53	36	0.40	0.022
PC-06-59	50	34	0.29	0.049
	27	19	0.26	0.031
	56	39	0.32	0.024
PC-06-58	49	34	0.21	0.023
PC-06-57	99	68	0.21	0.016
	18	12	1.14	0.038
PC-06-55	42	29	0.32	0.018
	79	54	0.17	0.011
PC-06-54	139	96	0.76	0.028
PC-06-53	62	43	1.95	0.215
PC-06-51	49	34	0.10	0.016
	35	23	0.40	0.019
	30	21	0.17	0.025
	33	23	0.37	0.039
PC-06-50	38	26	0.23	0.032
	51	35	0.13	0.124
PC-06-48	160	110	0.47	0.035
	54	37	0.56	0.019
PC-06-47	223	154	0.38	0.038
	59	41	0.63	0.106
PC-06-46	41	28	0.53	0.079
	94	65	0.66	0.026

APPENDIX VI

Assay Data & Certificates

Assaying - Consulting - Representation

Page 1 of 2

Assay Certificate

6W-3232-RA1 Date: OCT-19-06

Company: Project: Ryan Lake Atm: D. Empey

We hereby certify the following Assay of 39 Core samples submitted OCT-16-06 by .

Sample	Au	Au Check	Ag	Cu	Мо	
Number	g/tonne	g/tonne	g/tonne	% %	8.	
236526	Nil	_	0.3	0.110	0.004	
236527	0.02	-	0.1	0.042	0.001	
236528	Nil	Nil	0.4	0.054	0.001	
236529	0.01	-	0.4	0.075	0.001	1
236530	Nil	-	0.4	0.075	0.009	
236531	Nil	-	0.2	0.074	0.001	
236532	Nil	-	0.3	0.152	0.001	
236533	Nil	-	0.1	0.011	0.010	
236534	Nil	-	0.4	0.091	0.001	
236535	0.02		0.4	0.113	0.004	
236536	Nil	-	1.5	0.152	0.003 \	
236537	Nil	-	2.1	0.318	0.004	
236538	0.03	-	2.0	0.407	0.007	Pr-16-47
236539	Nil	-	1.7	0.240	0.005	ACON
236540	0.04		0.2	0.103	0.002	
236541	Nil	-	0.2	0.045	0.001	
236542	Nil	-	0.3	0.082	0.001	
236543	0.03	-	1.5	0.416	0.011	
236544	0.10	-	1.7	0.414	0.002	
236545	Nil	-	1.9	0.362	0.026	
236546	0.04	-	2.4	0.55	0.014	y .
236547	0.12	0.13	5.6	0.71	0.057	
236548	Nil	-	1.5	0.390	0.004	
236549	0.03	-	4.6	0.91	0.050	
236550	0.06		1.2	0.450	0.003	
236551	Nil	-	0.7	0.203	0.002	
236552	0.09	-	1.5	0.81	0.004	
236553	Nil	-	0.8	0.296	0.001	/
236554	0.08	-	1.9	0.436	0.001	1
236555	0.15	-	4.3	0.61	0.014	/
					/	

Certified by Denis Charty

1 Cameron Ave., P.O. Box 10, Swastika, Ontario POK 1T0 Telephone (705) 642-3244 Fax (705) 642-3300

Assaying - Consulting - Representation

Page 2 of 2

Assay Certificate

Date: OCT-17-06

6W-3122-RA1

Company: Project: Ryan Lake Attn: D. Empey

We hereby certify the following Assay of 40 Core samples submitted OCT-12-06 by .

Sample Number	Au g/tonne	Au Check g/tonne	Ag g/tonne	Cu %	Mo %)
236516	0.02	-	3.3	0.437	0.021	
236517	0.32	0.31	19.0	2.19	0.293 /	
236518	0.02	-	1.6	0.138	0.001	- W7
236519	0.03	0.04	0.8	0.098	0.005	>PC-08-42
236520	Nil	-	0.7	0.105	0.001	
236521	0.02		1.3	0.164	0.003	
236522	Nil	-	0.7	0.173	0.002	
236523	0.03	-	0.7	0.116	0.001	\
236524	Nil	-	0.4	0.029	0.001	
236525	Nil	-	0.2	0.028	0.002)

) in chart Certified by

1 Cameron Ave., P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244 Fax (705) 642-3300

Assaying - Consulting - Representation

Page 1 of 2

Assay Certificate

6W-3122-RA1 Date: OCT-17-06

PACIFIC COMOX RESOURCES LTD Company: Ryan Lake

Project: Attn: D. Empey

We hereby certify the following Assay of 40 Core samples submitted OCT-12-06 by .

Sample	Au	Au Check	Ag	Cu	Mo	
Number	g/tonne	g/tonne	g/tonne		8	
45436	0.04	0.04	0.6	0.048	0.001	
45437	Nil	-	0.2	0.012	0.001	
45438	0.03	-	0.2	0.013	0.001 (
45439	Nil	-	0.2	0.017	0.001	
45440	Nil	-	0.2	0.025	0.001	
45441	Nil	_	0.4	0.078	0.001	
45442	Nil	-	0.2	0.028	0.001	
45443	0.01	-	0.1	0.010	0.001	\
45444	0.01	-	0.1	0.016	0.001	N 01-47
45445	0.02	-	0.3	0.021	0.001	>PC-06-AZ
45446	Nil	-	0.2	0.040	0.002	
45447	Nil	-	0.2	0.014	0.001	
45448	Nil	-	0.1	0.012	0.001	
45449	Nil	0.01	0.2	0.018	0.001	
45450	0.01	-	0.3	0.035	0.001	
236501	0.05	-	0.9	0.213	0.002	
236502	Nil	-	0.2	0.058	0.001	/
236503	Nil	-	0.2	0.029	0.001	(
236504	0.01	-	0.1	0.016	0.001	
236505	0.05	-	0.9	0.160	0.006	
236506	Nil	-	0.4	0.069	0.001	
236507	0.07	0.07	1.0	0.110	0.001	
236508	0.09	-	2.8	0.58	0.125	
236509	0.12	-	3.1	0.252	0.035	
236510	Nil	-	0.3	0.054	0.002	
236511	Nil		2.9	0.017	0.001	
236512	Nil	-	1.3	0.105	0.008	
236513	0.02	-	0.4	0.101	0.005	/
236514	0.06	-	0.8	0.155	0.008	/
236515	0.06	-	2.4	0.335	0.016	,

Certified by Davis chat

1 Cameron Ave., P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244 Fax (705) 642-3300

Assaying - Consulting - Representation

Page 2 of 2

Assay Certificate

(III) 2020 D.L

6W-3232-RA1 Date: OCT-19-06

Company: PACIFIC COMOX RESOURCES LTD Project: Ryan Lake

Attn: D. Empey

We hereby certify the following Assay of 39 Core samples submitted OCT-16-06 by .

Sample Number	Au g/tonne	Au Check g/tonne	Ag g/tonne	Cu %	Mo %	L
236556 236557	0.18	0.21	8.0	1.21 0.302	0.095)
236558	Nil	-	0.5	0.040	0.001	
236559 236560	Nil Nil	-	0.2	0.036 0.021	0.001	PC-06-42
236561	0.03		0.4	0.085	0.006	91.59
236562 236563	0.01	-	0.2	0.031 0.316	0.001	
236564 Blank	0.06 Nil	0.04	6.5	1.09	0.015	
STD OxJ47	2.25				- 7	/

Certified by Denis cliquity

1 Cameron Ave., P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244 Fax (705) 642-3300

Assaying - Consulting - Representation

Page 1 of 2

Date: DEC-31-06

Assay Certificate

6W-4182-RA1

Company: Project: Ryan Lake Attn: D. Empey

We hereby certify the following Assay of 58 Core samples submitted DEC-14-06 by .

Number $g/tonneg/tonne%237563Ni1-1.50.1590.0722375640.220.243.90.0300.652375650.01-0.10.0090.010237566Ni10.011.20.0600.298237567Ni10.011.20.0640.007237569Ni1-0.10.0040.008237570Ni1-0.10.0010.0052375720.02-0.80.0840.030237575Ni1-0.10.00980.0042375760.01-0.10.0390.001237576Ni1-0.10.0390.002237578Ni1-0.10.0280.001237580Ni1-0.10.0280.001237581Ni1-0.10.0280.001237582Ni1-0.10.0280.001237583Ni1-0.10.0280.0012375840.09-0.30.0710.0022375850.11-1.50.1050.002237587Ni1-0.20.0250.0042375840.01-0.10.0310.0012375890.01-0.10.0310.0012375890.01-0.10.0310.0012375910.080$	Sample	Au	Au Check	Ag	Cu	Мо	
237564 0.22 0.24 3.9 0.030 0.65 237565 0.01 - 0.1 0.009 0.010 237566 Nil - 0.2 0.016 0.007 237567 Nil 0.01 1.2 0.060 0.298 237568 0.15 - 5.6 0.188 0.53 237570 Nil - 0.1 0.001 0.008 237571 Nil - 0.1 0.001 0.008 237572 0.02 - 0.8 0.084 0.030 237573 Nil - 0.1 0.001 0.004 237574 Nil - 0.1 0.039 0.001 237575 Nil - 0.1 0.039 0.001 237576 0.01 - 0.1 0.039 0.001 237577 0.01 - 0.1 0.028 0.001 237576 0.01 - 0.1 0.028 0.001 237580 Nil - 0.3	Number	g/tonne	g/tonne	g/tonne	8	8	
237565 0.01 - 0.1 0.009 0.010 237565 Ni1 - 0.2 0.016 0.007 237566 Ni1 0.01 1.2 0.060 0.298 237567 Ni1 0.01 1.2 0.060 0.298 237568 0.15 - 5.6 0.188 0.53 237576 Ni1 - 0.1 0.001 0.008 237570 Ni1 - 0.1 0.001 0.005 237572 0.02 - 0.8 0.084 0.030 237573 Ni1 - 0.1 0.098 0.004 237574 Ni1 - 0.1 0.039 0.001 237575 Ni1 - 0.1 0.039 0.001 237576 0.01 - 0.1 0.039 0.001 237577 0.02 - 0.2 0.165 0.005 237579 0.02 - 0.2 0.165 0.008 237581 Ni1 - 0.3	237563	Nil	-	ī.5	0.159	0.072	
237566 Nil - 0.2 0.016 0.007 237567 Nil 0.01 1.2 0.060 0.298 237568 0.15 - 5.6 0.188 0.53 237570 Nil - 0.1 0.004 0.008 237571 Nil - 0.1 0.001 0.005 237572 0.02 - 0.8 0.084 0.030 237573 Nil - 0.1 0.004 0.004 237573 Nil - 0.1 0.001 0.005 237573 Nil - 0.1 0.001 0.004 237574 Nil - 0.1 0.039 0.001 237575 Nil - 0.1 0.039 0.001 237576 0.01 - 0.1 0.039 0.001 237577 0.02 - 0.2 0.165 0.005 237581 Nil - 0.3 0.025 0.004 237582 Nil - 0.3 <td< td=""><td>237564</td><td>0.22</td><td>0.24</td><td>3.9</td><td>0.030</td><td>0.65</td><td></td></td<>	237564	0.22	0.24	3.9	0.030	0.65	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	237565	0.01	-	0.1	0.009	0.010	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	237566	Nil	-	0.2	0.016	0.007	
237569 Nil - 0.1 0.004 0.008 237570 Nil - 0.1 0.001 0.008 237571 Nil - 0.1 0.001 0.005 237572 0.02 - 0.8 0.084 0.030 237573 Nil - 0.3 0.098 0.004 237574 Nil - 0.1 0.051 0.001 237575 Nil - 0.1 0.051 0.001 237576 0.01 - 0.1 0.039 0.002 237577 0.01 - 0.1 0.039 0.001 237576 Nil - 0.1 0.039 0.001 237577 0.01 - 0.1 0.028 0.001 237578 Nil - 0.1 0.028 0.001 237580 Nil - 0.3 0.025 0.004 237581 Nil - 0.3 0.025 0.004 237583 Nil - 0.2 0.	237567	Nil	0.01	1.2	0.060	0.298	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	237568	0.15	-	5.6	0.188	0.53	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	237569	Nil	-	0.1	0.004	0.008	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	237570	Nil	-	0.1	0.001	0.008	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	237571	Nil	-	0.1	0.001	0.005	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	237572	0.02	-	0.8	0.084	0.030	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	237573	Nil	-	0.3	0.098	0.004	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	237574	Nil	-	0.2	0.112	0.004)
237577 0.01 - 0.1 0.039 0.001 237577 0.01 - 0.1 0.029 0.001 237579 0.02 - 0.2 0.165 0.005 237580 Nil - 0.3 0.036 0.008 237581 Nil - 3.6 0.428 0.125 237582 Nil - 0.3 0.025 0.004 237583 Nil - 0.3 0.025 0.004 237584 0.09 - 0.3 0.071 0.002 237586 0.11 - 1.5 0.105 0.002 237586 0.07 - 0.3 0.056 0.001 237587 Nil - 0.2 0.050 0.002 237588 Nil - 0.1 0.031 0.001 237589 0.01 - 0.1 0.077 0.005 237590 0.11 0.15 0.77 0.065 0.001	237575	Nil	-	0.1	0.051	0.001	
237578 Nil - 0.1 0.028 0.001 237579 0.02 - 0.2 0.165 0.005 237580 Nil - 0.3 0.036 0.008 237581 Nil - 3.6 0.428 0.125 237582 Nil - 0.3 0.025 0.004 237583 Nil - 0.2 0.016 0.001 237584 0.09 - 0.3 0.071 0.002 237585 0.11 - 1.5 0.105 0.002 237586 0.07 - 0.3 0.056 0.001 237587 Nil - 0.2 0.050 0.002 237586 0.01 - 0.1 0.031 0.001 237589 0.01 - 0.1 0.077 0.005 237589 0.01 - 0.1 0.077 0.005 237590 0.11 0.15 0.7 0.065 0.001	237576	0.01	-	0.1	0.039	0.002	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	237577	0.01		0.1	0.039	0.001	
237580 Nil - 0.3 0.036 0.008 $AC - 06 - 5/$ 237581 Nil - 3.6 0.428 0.125 237582 Nil - 0.3 0.025 0.004 237583 Nil - 0.2 0.016 0.001 237584 0.09 - 0.3 0.071 0.002 237586 0.11 - 1.5 0.105 0.002 237586 0.07 - 0.3 0.056 0.001 237587 Nil - 0.2 0.050 0.002 237588 Nil - 0.1 0.031 0.001 237589 0.01 - 0.1 0.077 0.005 237590 0.11 0.15 0.7 0.065 0.001	237578	Nil	-	0.1	0.028	0.001	
237581 Nil - 3.6 0.428 0.125 237582 Nil - 0.3 0.025 0.004 237583 Nil - 0.2 0.016 0.001 237584 0.09 - 0.3 0.071 0.002 237585 0.11 - 1.5 0.105 0.002 237586 0.07 - 0.3 0.056 0.001 237587 Nil - 0.2 0.050 0.002 237588 Nil - 0.1 0.031 0.001 237589 0.01 - 0.1 0.077 0.005 237589 0.11 - 0.1 0.077 0.005 237589 0.01 - 0.1 0.077 0.005 237590 0.11 0.15 0.7 0.065 0.001	237579	0.02	-	0.2	0.165	0.005	De of Fi
237581 Nil - 3.6 0.428 0.125 237582 Nil - 0.3 0.025 0.004 237583 Nil - 0.2 0.016 0.001 237584 0.09 - 0.3 0.071 0.002 237585 0.11 - 1.5 0.105 0.002 237586 0.07 - 0.3 0.056 0.001 237587 Nil - 0.2 0.050 0.002 237588 Nil - 0.1 0.031 0.001 237589 0.01 - 0.1 0.077 0.005 237589 0.11 - 0.1 0.077 0.005 237589 0.01 - 0.1 0.077 0.005 237590 0.11 0.15 0.7 0.065 0.001	237580	Nil	-	0.3	0.036	0.008	>PC-06-31
237583 Nil - 0.2 0.016 0.001 237584 0.09 - 0.3 0.071 0.002 237585 0.11 - 1.5 0.105 0.002 237586 0.07 - 0.3 0.056 0.001 237587 Nil - 0.2 0.050 0.002 237588 Nil - 0.1 0.031 0.001 237589 0.01 - 0.1 0.077 0.005 237590 0.11 0.15 0.7 0.065 0.001	237581	Nil	-	3.6	0.428	0.125	/ -
237584 0.09 - 0.3 0.071 0.002 237585 0.11 - 1.5 0.105 0.002 237586 0.07 - 0.3 0.056 0.001 237587 Ni1 - 0.2 0.050 0.002 237588 Ni1 - 0.1 0.031 0.001 237589 0.01 - 0.1 0.077 0.005 237590 0.11 0.15 0.7 0.065 0.001	237582	Nil	-	0.3	0.025	0.004	/
237585 0.11 - 1.5 0.105 0.002 237586 0.07 - 0.3 0.056 0.001 237587 Ni1 - 0.2 0.050 0.002 237588 Ni1 - 0.1 0.031 0.001 237589 0.01 - 0.1 0.077 0.005 237590 0.11 0.15 0.7 0.065 0.001	237583	Nil	-	0.2	0.016	0.001	
237586 0.07 - 0.3 0.056 0.001 237587 Ni1 - 0.2 0.050 0.002 237588 Ni1 - 0.1 0.031 0.001 237589 0.01 - 0.1 0.077 0.005 237590 0.11 0.15 0.7 0.065 0.001	237584	0.09	-	0.3	0.071	0.002	
237587 Nil - 0.2 0.050 0.002 237588 Nil - 0.1 0.031 0.001 237589 0.01 - 0.1 0.077 0.005 237590 0.11 0.15 0.7 0.065 0.001	237585	0.11	-	1.5	0.105	0.002	
237588 Nil - 0.1 0.031 0.001 237589 0.01 - 0.1 0.077 0.005 237590 0.11 0.15 0.7 0.065 0.001	237586	0.07	-	0.3	0.056	0.001	
237589 0.01 - 0.1 0.077 0.005 237590 0.11 0.15 0.7 0.065 0.001	237587	Nil	-	0.2	0.050	0.002	
237589 0.01 - 0.1 0.077 0.005 237590 0.11 0.15 0.7 0.065 0.001	237588	Nil	-	0.1	0.031	0.001	
257550	237589	0.01	-	0.1	0.077	0.005	
237591 0.08 - 7.2 0.426 0.360 /		0.11	0.15	0.7	0.065		1
	237591	0.08	-	7.2	0.426	0.360	F
237592 Nil - 0.4 0.028 0.031/	237592	Nil		0.4	0.028	0.031/	

Dim chat Certified by_

1 Cameron Ave., P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244 Fax (705) 642-3300

Assaying - Consulting - Representation

Page 2 of 2

Date: DEC-31-06

Assay Certificate

6W-4182-RA1

Company: PACIFIC COMOX RESOURCES LTD. Project: Ryan Lake

Attn: D. Empey

We hereby certify the following Assay of 58 Core samples submitted DEC-14-06 by .

Sample	Au	Au Check	Ag	Cu	Мо	
Number	g/tonne	g/tonne	g/tonne	ş	÷	
237593	Nil	-	0.1	0.046	0.004	
237594	Nil	-	0.8	0.129	0.035	
237595	Nil	-	0.1	0.004	0.003	
237596	Nil	-	0.3	0.007	0.002	
237597	Nil	-	0.4	0.087	0.020	
237598	0.03		0.1	0.042	0.004	
237599	0.03	-	7.6	0.416	0.016	
237600	0.02	-	0.4	0.088	0.004	
237601	0.09	-	1.5	0.163	0.015	1 2- DC-FT
237602	Nil	-	0.5	0.087	0.007	R-06-51
237603	0.09	-	1.6	0.164	0.015	/
237604	0.65	0.35	2.1	0.432	0.008	/
237605	0.03	-	1.1	0.214	0.004	
237606	0.15	-	16.8	1.50	0.073	
237607	0.03	-	0.4	0.070	0.001	
237608	Nil		0.2	0.012	0.001	
237609	Nil	-	0.1	0.018	0.001	
237610	Nil	Nil	0.1	0.054	0.001	
237611	Nil	-	0.1	0.006	0.001	
237612	0.02	-	0.3	0.036	0.001	
237613	0.01	-	0.1	0.028	0.001	
237614	Nil	-	0.2	0.028	0.001	
237615	0.02	-	0.3	0.035	0.002	
237694	0.22	-	6.4	0.355	0.065	
237695	0.05	-	1.2	0.179	0.013	
237696	Nil		0.2	0.134	0.005	
237697	0.03	-	0.1	0.032	0.001	
237698	Nil	-	0.1	0.027	0.001	
Blank	Nil	-	-	-	-	
STD OxJ47	2.36	-	-	-	-	

Certified by Dein chart,

Assaying - Consulting - Representation

Page 1 of 2

Assay Certificate

6W-3926-RA1 Date: DEC-07-06

Company: Project: RYAN LAKE Attn: D. Empey

We hereby certify the following Assay of 36 Core samples submitted NOV-29-06 by .

Sample Number	Au g/tonne	Au Check g/tonne	Ag g/tonne	Cu %	Mo %	
237616	0.20		2.9	0.223	0.051	
237617	0.08	-	1.1	0.183	0.030	
237618	Nil	Ni l	3.1	0.290	0.016	
237619	0.09	-	0.7	0.053	0.021	
237620	Ni l	-	0.1	0.017	0.001	
237621	0.06	-	0.8	0.246	0.031	4
237622	Ni l	-	0.2	0.034	0.001	/
237623	0.02	-	0.1	0.021	0.001	
237624	0.01	-	0.1	0.017	0.001	
237625	Ni l	-	0.2	0.025	0.001	/
237626	Nil	0.01	0.2	0.034	0.002	7
237627	Ni 1	-	0.7	0.020	0.045	
237628	0.02	-	0.3	0.049	0.002	PC-06-51
237629	Ni l	-	0.7	0.047	0.004	SIC CO OI
237630	0.02	-	0.5	0.053	0.008	
237631	Nil	-	0.4	0.076	0.002	
237632	Ni l	-	1.1	0.115	0.003	
237633	0.02	-	0.4	0.098	0.001	
237634	0.02	-	1.0	0.103	0.006	
237635	0.08		3.1	0.162	0.012	
237636	0.43	0.38	12.0	0.83	0.103	
237637	0.07	-	6.7	0.54	0.015	
237638	Ni l	-	1.6	0.114	0.040	
237639	0.05	-	2.3	0.138	0.062	
237640	0.11	-	3.5	0.415	0.011	
237641	0.14	-	2.5	0.318	0.029	
237642	Ni l	-	1.6	0.145	0.009	/
237643	0.01	-	0.4	0.033	0.004	
237644	0.01	-	0.4	0.008	0.006	/
237645	0.01	-	0.1	0.011	0.008	

* () Certified by

Assaying - Consulting - Representation

Page 2 of 2

Assay Certificate

6W-3926-RA1 Date: DEC-07-06

Company: PACIFIC COMOX RESOURCES LTD. Project: RYAN LAKE

Attn: D. Empey

We hereby certify the following Assay of 36 Core samples submitted NOV-29-06 by .

Sample Number	Au g/tonne	Au Check g/tonne	Ag g/tonne	Cu %	Mo %	
237646 237647 237648	Nil Nil 0.01	- - -	0.3 0.4 0.2	0.027 0.031 0.012	0.004 0.002 0.004 0.077	-PC-06-51
237649 237650	0.02 Nil	Nil	0.3	0.009 0.015	0.016	
237651 Blank STD OxJ47	Ni 1 Ni 1 2.40	-	0.2	0.011	0.002	

enectrat Certified by

SD
Established 1928

Assaying - Consulting - Representation

Page 1 of 2

Assay Certificate

6W-3944-RA1 Date: DEC-07-06

Company:	PACIFIC COMOX RESOURCES LTD.
Project:	Ryan Lake

Attn: D. Empey

We hereby certify the following Assay of 42 Core samples submitted NOV-29-06 by .

	Sample Number	Au g/tonne	Au Check g/tonne	Ag g/tonne	Cu %	Mo %	
	237652 237653	0.04	0.10	0.3	0.057	0.005	
	237654	0.10	-	0.9	0.016	0.079	
	237655	0.09	-	0.4	0.296	$0.002 \\ 0.002$	
	237656	0.50	-	0.3	0.015	0.002	
	237657	0.02		0.3	0.069	0.001	
	237658	0.01	Ni l	0.3	0.064	0.002	
	237659	0.02	-	0.3	0.012	0.001	>PC-06-51
	237660	0.01	-	0.7	0.016	0.001	PIC-06-51
	237661	0.01	-	0.4	0.022	0.001	
	237662	0.02	-	1.5	0.105	0.019	
	237663	Ni l	-	0.2	0.058	0.001	
	237664	Nil	-	0.4	0.034	0.001	
	237665	Ni l	-	0.2	0.008	0.001	
	237666	Ni l		0.2	0.018	0.001	
	237667	Nil	-	0.1	0.013	0.001	/
	237668	Nil	-	0.1	0.022	0.001	/
~	237669	Nil	-	0.1	0.018	0.001	
	237670	Ni l	Nil	0.1	0.012	0.002	
	237671	0.02		0.4	0.048	0.002	
	237672	0.02	-	0.2	0.063	0.002	
	237673	0.01	-	0.3	0.053	0.002	
	237674	0.04	-	0.9	0.276	0.022	
	237675	0.12	-	1.4	0.426	0.008	
	237676	0.04		0.9	0.159	0.004	
	237677	0.04	-	2.4	0.387	0.011	
	237678	0.04	-	1.2	0.275	0.007	
	237679	0.06	-	1.1	0.248	0.018	
	237680	Ni l	-	0.5	0.180	0.016	
	237681	0.10	0.10	2.0	0.385	0.016	

Certified by Down Chat

Assaying - Consulting - Representation

Assay Certificate

Page 2 of 3 7W-2684-RA1

Date: AUG-22-07

Company: Project: Attn:

PACIFIC COMOX RESOURCES LTD Ryan Lake D. Empey

We hereby certify the following Assay of 68 Core samples submitted AUG-09-07 by .

Sample	Au	Au Check	Ag	Cu	Мо	
Number	g/tonne	g/tonne	g/tonne	* 	\$ 	
41316	Nil	-	0.1	0.009	0.001	
41317	Nil	-	0.1	0.008	0.001	
41318	Nil	-	0.2	0.025	0.001	
41319	Nil	-	0.1	0.008	0.001	
41320	Nil	-	0.1	0.012	0.001	
41321	Nil	Nil	0.1	0.006	0.001	
41322	Nil	-	0.1	0.021	0.001	
41323	Nil	-	0.1	0.020	0.001	
41324	Nil	-	0.1	0.020	0.001	
41325	Nil		0.2	0.023	0.001	
41326	0.01		0.2	0.021	0.001	1
41327	Nil	-	0.1	0.021	0.001	
41328	Nil	-	0.2	0.017	0.001	
41329	Nil	-	0.2	0.024	0.001	PC-07-88
41330	Nil	-	0.2	0.023	0.001	16-01 00
41331	Nil		0.2	0.022	0.001	
41332	Nil	-	0.3	0.034	0.001	/
41333	Nil	Nil	О.б	0.111	0.001	
41334	Nil	-	0.4	0.078	0.001	3 .
41335	Nil	-	0.3	0.024	0.001	
41336	0.02		0.4	0.051	0.001	
41337	Nil	-	0.5	0.098	0.011	
41338	Nil	-	0.3	0.057	0.001	
41339	Nil	-	0.7	0.111	0.001	
41340	Nil	-	0.1	0.014	0.001	1
41341	Nil	-	0.4	0.023	0.001	
41342	Nil	Nil	1.9	0.404	0.003	/
41343	Nil	-	2.3	0.346	0.007	
41344	Nil	-	1.0	0.169	0.002 /	
41345	Nil	-	1.7	0.307	0.001	

Certified by Deenis Charty

Assaying - Consulting - Representation

Page 1 of 3

Assay Certificate

7W-2710-RA1

Company: Project: PACIFIC COMOX RESOURCES LTD Ryan Lake

Attn:

D. Empey

Date: AUG-27-07

We hereby certify the following Assay of 65 Core samples submitted AUG-14-07 by .

Sample	Au	Au Check	Ag	Cu	Mo	
Number	g/tonne	g/tonne	g/tonne	%	No.	
41346	0.03	-	1.7	0.260	0.007	
41347	0.15	-	0.9	0.130	0.003	
41348	0.02	-	0.6	0.082	0.001	
41349	Nil	-	1.1	0.359	0.004	
41350	Nil		0.5	0.068	0.002	
41351	0.03	0.02	1.1	0.133	0.002	
41352	Nil	-	0.8	0.134	0.006	
41353	Nil	-	0.4	0.040	0.001	
41354	Nil	-	0.3	0.025	0.001	
41355	Nil		1.5	0.062	0.002	
41356	Nil	-	1.7	0.097	0.029	
41357	Nil	-	1.1	0.274	0.015	
41358	Nil	-	2.1	0.273	0.010	00
41359	Nil	-	0.9	0.066	0.008	XC-07-88
41360	Nil		0.4	0.040	0.001	// 0/ 00
41361	Nil	-	1.0	0.236	0.003 /	
41362	Nil	-	1.9	0.222	0.009 /	
41363	0.09	0.03	2.3	0.410	0.002	
41364	Nil	-	2.2	0.431	0.008	
41365	Nil		0.2	0.034	0.001	
41366	Nil	-	0.3	0.072	0.001	
41367	Nil		1.0	0.170	0.003 \	
41368	Nil	-	0.7	0.030	0.007	
41369	Nil	-	0.1	0.020	0.001	
41370	Nil	0.03	0.5	0.081	0.002	
41371	Nil	-	0.2	0.019	0.001	
41372	Nil	-	0.4	0.014	0.027	
41373	0.09	-	4.3	0.86	0.041	
41374	0.17	-	15.3	2.75	0.202 /	
41384	Nil	-	0.2	0.034	0.003	
					· · · · ·	

Certified by Denisch

Assaying - Consulting - Representation

Page 3 of 3

Assay Certificate

7W-2684-RA1 Date: AUG-22-07

Company: PACIFIC COMOX RESOURCES LTD Project: Ryan Lake

Attn: D. Empey

We hereby certify the following Assay of 68 Core samples submitted AUG-09-07 by .

Sample Number	Au g/tonne	Au Check g/tonne	Ag g/tonne	Cu %	Mo	
41375	0.02	-	1.4	0.464	0.003	
41376	Nil	-	0.7	0.178	0.005	
41377	Nil	-	0.4	0.058	0.001 /	
41378	Nil	-	0.1	0.023	0.001 (Pa AT-00
41379	Nil	Nil	0.1	0.020	0.001	7 PC-01-00
41380	0.03	-	0.1	0.017	0.001 (
41381	Nil	-	0.1	0.017	0.001 \	
41382	Nil	-	0.1	0.009	0.001	
Blank	Nil	-	-	-	-)
STD OxK48	3.56					/

Certified by Deing Charles

Assaying - Consulting - Representation

Assay Certificate

Page 2 of 3

7W-2710-RA1

Date: AUG-27-07

Company: PACIFIC COMOX RESOURCES LTD Project: Ryan Lake Attn: D. Empey

We hereby certify the following Assay of 65 Core samples submitted AUG-14-07 by .

Sample	Au	Au Check	Ag	Cu	Mo	
Number	g/tonne	g/tonne	g/tonne	90	90	
41385	Nil		0.4	0.038	0.002	
41386	Nil	-	0.2	0.018	0.001	
41387	Nil	-	0.2	0.020	0.002	
41388	Nil	-	0.1	0.016	0.001	
41389	Nil	-	0.3	0.017	0.001	
41390	0.01		0.2	0.041	0.001	
41391	0.01	0.02	0.1	0.028	0.001	
41392	Nil	-	0.2	0.030	0.001	
41393	0.01	-	0.1	0.021	0.001	
41394	Nil	· · · ·	0.2	0.028	0.001	
41395	0.01		0.5	0.084	0.001	
41396	Nil	-	0.3	0.058	0.002	
41397	Nil	-	0.3	0.116	0.005 \	
41398	Nil	-	0.2	0.062	0.001	
41399	Nil	-	0.7	0.0129	0.002	FC-07-88
41400	Nil	_	0.3	0.036	0.002	7
41401	Nil	-	0.2	0.023	0.001	/
41402	0.01	-	0.3	0.034	0.007	/
41403	0.04	-	0.3	0.055	0.001	
41404	Nil	0.01	0.4	0.070	0.001	
41405	Nil	-	0.3	0.043	0.001	
41406	Nil		0.3	0.060	0.001	
41407	0.02	-	0.2	0.032	0.001	
41408	Nil	-	0.4	0.087	0.039	
41409	0.02	-	0.5	0.132	0.031	
41410	Nil	0.01	0.3	0.067	0.001	
41411	Nil	-	0.1	0.020	0.002	1 .
41412	Nil	-	0.1	0.019	0.001	/
41413	Nil	-	0.3	0.048	0.001 /	/
41414	Nil		0.4	0.024	0.001	

Certified by Davis charts

		Assaying -	Consulting - H	ratorie Representatio	n	
		, ,	U	1	Pag	e 3 of 3
Assay Certific	ate				7W	-2710-RA1
Company: PACIFIC C Project: Ryan Lake Attn: D. Empey	COMOX RES	OURCES L	ΓD		Date: A	UG-27-07
We hereby certify the submitted AUG-14-07	following Assa by .	ay of 65 Core	e samples			
Sample Number	Au g/tonne	Au Check g/tonne	Ag g/tonne	Cu %	Mo %	
41415	Nil	-	0.6	0.087	0.002	
41416	Nil	-	0.4	0.050	0.001	
41417	Nil	-	0.3	0.051	0.004 (P	1-07-8
41418 41419	0.03	-	2.2 1.8	0.65	0.027	
Blank						
STD OxK48	Nil 3.54	-	_	-	_)	

1928

Assaying - Consulting - Representation Page 1 of 2

Assay Certificate

7W-2708-RA1

Date: AUG-23-07

Company: PACIFIC COMOX RESOURCES LTD Project: Ryan Lake Attn: D. Empey

We hereby certify the following Assay of 54 Core samples submitted AUG-14-07 by .

Sample	Au	Au Check	Ag	Cu	Mo	
Number	g/tonne	g/tonne	g/tonne	do.	do	
54001	0.19	-	0.3	0.007	0.001	
54002	0.09	-	0.4	0.003	0.001	
41420	0.05	-	7.4	1.43	0.059	\ \
41421	0.01	-	1.3	0.190	0.006)
41422	Nil	-	2.2	0.137	0.011	
41423	Nil	0.01	2.0	0.173	0.010	
41424	0.05	-	2.7	0.365	0.035	
41425	0.05	-	6.0	1.07	0.033	1
41426	0.07	-	6.1	0.91	0.015	
41427	Nil	-	13.9	3.22	0.084	
41428	Nil		0.2	0.030	0.001	
41429	Nil	-	1.9	0.340	0.008	
41430	Nil	-	2.9	0.52	0.001	
41431	Nil	-	6.4	1.01	0.027	
41432	Nil	-	0.4	0.063	0.001	
41433	Nil		0.5	0.076	0.001	>PC-07-8
41434	Nil	-	0.4	0.029	0.002	10000
41435	Nil	-	0.5	0.064	0.001	/
41436	Nil	-	1.3	0.122	0.003	
41437	Nil	-	1.6	0.226	0.009	
41438	0.04		4.7	0.58	0.015	
41439	0.02	-	1.1	0.105	0.005	
41440	0.04	-	1.9	0.177	0.018	
41441	Nil	-	1.2	0.171	0.044	
41442	Nil	-	2.5	0.362	0.022	
11443	Nil		0.6	0.078	0.002	
11444	Nil	-	0.4	0.064	0.001	1
11445	Nil	-	0.4	0.157	0.001	/
11446	Nil	-	0.1	0.005	0.001	/
11447	Nil	0.02	2.5	0.455	0.019	T

Certified by Deins Chantzo

SD
Established 1928

Assaying - Consulting - Representation

Assay Certificate

Page 2 of 2

7W-2708-RA1

Company: PACIFIC COMOX RESOURCES LTD Project: Ryan Lake Aun: D. Empey

Date: AUG-23-07

We hereby certify the following Assay of 54 Core samples submitted AUG-14-07 by .

Sample	Au	Au Check	Ag	Cu	Mo	
Number	g/tonne	g/tonne	g/tonne	2	ofo	
41448	0.03		0.2	0.052	0.001	
41449	0.01	-	0.1	0.033	0.001	/
41450	Nil	-	0.4	0.184	0.001	
41451	Nil	-	0.1	0.027	0.001	
41452	Nil		0.1	0.023	0.001	1
41453	Nil	-	0.2	0.018	0.001	1
41454	Nil	Nil	0.2	0.025	0.001	
41455	Nil	-	0.1	0.006	0.001	
41456	Nil	-	0.1	0.013	0.001	
41457	Nil	-	0.1	0.005	0.001	
41458	Nil		0.1	0.008	0.001	>PC-07-88
41459	Nil	-	0.2	0.015	0.001	10-01-00
41460	0.02	-	1.0	0.158	0.002	/
41461	Nil	-	0.4	0.068	0.001 /	
41462	Nil	Nil	1.5	0.225	0.008	
41463	Nil	-	0.2	0.054	0.001	
41464	Nil	-	0.3	0.035	0.001	
41465	Nil	-	0.2	0.015	0.001	
41466	Nil	-	2.0	0.287	0.031	
41467	Nil		0.3	0.019	0.001	\
41468	Nil		0.1	0.014	0.001	
41469	Nil	-	0.2	0.006	0.001)
41470	0.01	Nil	0.1	0.028	0.001	/
41471	Nil	-	0.4	0.113	0.001 /	
Blank	Nil	-	-	-	- /	
STD OxK48	3.60	-				

Certified by Davis chor

Assaying - Consulting - Representation

Page 1 of 2

Date: AUG-23-07

Assay Certificate

7W-2709-RA1

PACIFIC COMOX RESOURCES LTD Company: Ryan Lake Project: Attn:

D. Empey

We hereby certify the following Assay of 33 Core samples submitted AUG-14-07 by .

Sample	Au	Au Check	Ag	Cu	Mo	
Number	g/tonne	g/tonne	g/tonne	olo	8	
41472	0.02	-	0.2	0.045	0.001	\ \
41473	0.01	-	0.4	0.046	0.001	
41474	Nil	-	0.1	0.015	0.001	
41475	0.02	0.01	0.7	0.032	0.001	
41476	Nil	-	0.2	0.017	0.001	
41477	Nil	-	0.5	0.026	0.001	1
41478	Nil	-	0.1	0.005	0.001	
41479	Nil	-	0.5	0.040	0.001	
41480	Nil	-	0.2	0.008	0.001	
41481	Nil	-	0.2	0.002	0.001	
41482	Nil	-	0.2	0.016	0.001	1
41483	0.02	-	0.2	0.014	0.001	
41484	Nil	-	0.1	0.005	0.001	
41485	0.01	-	0.5	0.053	0.001	>PC-07-88
41486	0.02	-	0.4	0.035	0.001	/rC=01 00
41487	0.01	-	0.3	0.014	0.001	
41488	Nil	-	0.2	0.008	0.001	/
41489	0.01	Nil	0.4	0.013	0.001	/
41490	0.01	-	0.3	0.021	0.001	
41491	0.01		0.5	0.026	0.001	
41492	0.02		0.1	0.007	0.001	1
41493	Nil	-	0.4	0.021	0.001	
41494	Nil	-	0.6	0.035	0.001	
41495	Nil	-	0.4	0.033	0.001	
41496	Nil		0.3	0.047	0.002	
41497	0.01	-	0.3	0.011	0.001	
41498	0.01	-	0.3	0.009	0.001	
41499	0.01	Nil	0.1	0.002	0.001	/
41500	Nil	-	0.1	0.019	0.001	/
40751	Nil	-	0.8	0.050	0.001	

Certified by Dienis Charto

Assaying - Consulting - Representation

Page 2 of 2

Assay Certificate

7W-2709-RA1 Date: AUG-23-07

Company: PACIFIC COMOX RESOURCES LTD Project: Ryan Lake Attn: D. Empey

We hereby certify the following Assay of 33 Core samples submitted AUG-14-07 by .

					,	
Sample	Au	Au Check	Ag	Cu	Mo	
Number	g/tonne	g/tonne	g/tonne	do	\$	
40752	Nil		0.4	0.043	0.001	
40753	Nil	-	0.2	0.005	0.001	710-01-80
40754	Nil	0.01	0.3	0.012	0.001	
Blank	Nil	-	-	-	-	
STD OxK48	3.53		-	-	-	

Lewis el m Certified by

APPENDIX VII

Specific Gravity Results

	ROCE	K SAMPLE B	ULK D	ENSITY I	N WATE	R
	ProjectNumber: Project Name:	11342-003 Pacific Comox Res.			Date: Nov 3/07 Technician	Arnie
	Description:	Rock Pieces				
	Sample	Rock Density		Pycnometer		Ratio
No.	ID	Density (g/cm ³)	Density (lbs/ft ³)	SG	Density (lbs/ft ³)	Bulk Density / Specific Gravity
1	41356	2.91	181.5	2.92	182.3	1.00
2	41374	2.83	176.9	2.86	178.6	0.99
3	45436	2.70	168.8	2.75	171.7	0.98
4	236501	2.89	180.2	2.90	181.1	1.00
5	236508	2.73	170.5	2.77	173.0	0.99
6	236545	2.80	174.9	2.83	176.7	0.99
7	237573	3.10	193.3	3.07	191.7	1.01
8	237585	2.93	182.8	2.97	185.4	0.99
9	237594	2.67	166.5	2.69	168.0	0.99
10	237595	2.66	166.2	2.69	168.0	0.99
11	237599	2.76	172.6	2.82	176.1	0.98
12	237617	2.73	170.5	2.76	172.3	0.99
13	237636	2.81	175.4	2.83	176.7	0.99
14	237652	2.61	162.8	2.67	166.7	0.98
15	237662	2.81	175.7	2.90	181.1	0.97
16	237668	2.82	175.9	2.92	182.3	0.96
		2.797				

APPENDIX VIII

Gemcom Resource Summary Sheet

Report 1: Incremental

Page 1 of 1

Data Date: 2008-05-26 7:13:16

ADBOROUP	Volume	Den di	Loo ce Volume	Loo ce Den city	Tonn ag e	CU	MO	AU	AG	
	M~E 1 1000	T per MMS	M~S = 1000	T per MMS	Tonnes	Cu 96	Ma 96	g/t Au	git AG	
ata										
WAR E	405.60	2.90	0.00	0.00	1,134,453.13	0.02	0.00	0.0+	0.10	
BELOW	3,047,20	2.90	0.00	0.00	8,523,017.90	0.05	0.01	0.0+	0.39	
low	1,509.60	2.90	0.00	0.00	4,ZZZ, 35 0.59	0.22	ᅋᇏ	0.06	153	
MED	315.20	Z 30	0.00	0.00	821,614.36	0.51	80.0	D.11	7 2 F	
нон	309.60	2.80	0.00	0.00	365,951.16	0.75	80.0	0.22	Z3 35	
To ta	6,637.20	2.80	0.00	0.00	16,827,297.66	0.00	0.1B	0.00	28.22	
ncategor	ized Mate	erial								
	25,132,20	2.80	0.00	0.00	70,296,438.51	0.00	0.00	0.01	0.21	
Total	; 26,182.30	2.80	0.00	0.00	70,286,432.61	0.00	0.00	0.00	0.21	