TECHNICAL REPORT

ON THE

GOWGANDA SILVER PROJECT INCLUDING A RESOURCE ESTIMATE OF THE SURFACE TAILINGS DEPOSIT

GOWGANDA, ONTARIO, CANADA

TEMEX Resources Corp. Suite 1660, 141 Adelaide Street West Toronto, Ontario, Canada M5H 3L5

BY:

Joe Campbell, P. Geo., GeoVector Management Inc. Alan Sexton, P.Geo, M.Sc., GeoVector Management Inc. Allan Armitage, Ph. D., P. Geol. GeoVector Management Inc.

July 8th, 2011

TABLE OF CONTENTS

PAGE

TABLE OF CONTENTS	1
LIST OF FIGURES	2
LIST OF TABLES	2
1 SUMMARY	3
2 INTRODUCTION	4
3 RELIANCE ON OTHER EXPERTS	4
4 PROPERTY DESCRIPTION AND LOCATION	5
5 ACCESS, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPH	Y8
6 EXPLORATION HISTORY	9
6.1 Tailings (1981 – 2000)	11
6.2 Historical Mineral Resource and Mineral Reserve Estimates for the Tailings	11
6.3 Metallurgical Test Work	12
6.4 Past Underground Exploration Methods	13
7 GEOLOGICAL SETTING	13
7.1 Regional Geology	13
7.2 Property Geology	16
8 DEPOSIT TYPES	17
9 MINERALIZATION	18
10 EXPLORATION	18
11 DRILLING	19
11.1 1980-1981 Drilling	19
11.2 1986 – 1987 Drilling	20
11.3 2000 Drilling	
12 SAMPLING METHOD AND APPROACH	
12.1 1981 Program	
12.2 1986-1987 Program	22
12.3 2000 Program	
13 SAMPLE PREPARATION, ANALYSIS AND SECURITY	23
13.1 1981 Program	23
13.2 1986-1987 Program	
14 DATA VERIFICATION	23
14.1 Drill Collar Locations	23
14.2 Check Assavs	
15 ADJACENT PROPERTIES	24
16 METALLURGICAL TESTING	
17 MINERAL RESOURCE ESTIMATE	
17.1 Drill File Preparation	
17.2 Resource Modelling and Wireframing	
17.3 Composites	
17.4 Grade Capping	
17.5 Specific Gravity	
17.6 Block Modeling	
17.7 Model Validation	
17.8 Resource Classification	
17.9 Resource Reporting	
18 OTHER RELEVANT DATA AND INFORMATION	
19 INTERPRETATION AND CONCLUSIONS	
20 RECOMMENDATIONS	
20.1 Program	
20.2 Budget	
21 REFERENCES	
22 CERTIFICATES OF AUTHORS - DATED AND SIGNATURES	

23	ADDITIONAL	REQUIREMENTS	FOR	TECHNICAL	REPORTS	ON	DEVELOPMENT
	PROPERTIES	& PRODUCTION PR	OPERT	IES			

LIST OF FIGURES

6	Location of the Gowganda Silver Project area near Gowganda, Ontario	FIGURE 1
7	Map showing the claims that are part of the Gowganda Silver Project	FIGURE 2
14	Regional Geology of the Gowganda area	FIGURE 3
17	Property Geology	FIGURE 4
19	Location of Auger, Drive Pipe and Sonic Drill Holes in the Tailings Areas	FIGURE 5
II hole locations	Isometric view looking north showing the Gowganda tailings deposit and dr	FIGURE 6
wganda tailings 28	Isometric view (zoomed in; see Figure 6) looking north showing the Go deposit and drill hole locations	FIGURE 7

LIST OF TABLES

TABLE 1	Summary data of Gowganda Silver Property leases.	8
TABLE 2	Lithological Units for the Gowganda Lake and Miller Lake Silver Area	15
TABLE 3	Summary of the drill hole composite data within the resource model	29
TABLE 4	Indicated Mineral Resource Estimate for the Gowganda Tailings Deposit at va	arious Silver
	Cutoff grades	31

LIST OF APPENDICES

- APPENDIX 1Listing of Drill Holes used in the Gowganda Tailings ResourceAPPENDIX 2Listing of Significant Drill Intersects from the Gowganda Tailings Drill Holes

1 SUMMARY

Temex's Gowganda Silver Property ("Property") is located within the Timiskaming District approximately three kilometres northeast of Gowganda, Ontario in NTS 41P/10 map sheet (Ronacher et. al., 2007). The Property comprises four mining leases and 14 contiguous mineral claims totalling 224 ha. These claims are bisected by the east-west boundary between Haultain and Nicol Townships within the Larder Lake Mining Division of northeastern Ontario. In April 2006, Temex completed the acquisition of the Miller Lake O'Brien Silver Property and related assets and facilities from Sandy K. Mines Limited ("SKM"), a private Ontario corporation.

The Property hosts the Miller Lake O'Brien Silver Mine which produced approximately 42 million ounces of silver between 1910 and 1972. The Miller Lake O'Brien Silver Mine is the largest past-producing Cobalt-style silver mine outside of Cobalt, Ontario. From 1910 to 1944 approximately 16 million ounces of silver was produced by Miller Lake O'Brien Mines. From 1945 to 1972 Siscoe Metals produced approximately 25.5 million ounces of silver from about 1.15 million tons of ore at an average recovered grade of 22 oz/ton silver.

It was recognized in the early 1980s that the tailings contained silver grades that were potentially recoverable. In 1981 Watts, Griffis and McOuat Limited ("WGM") completed 545 auger holes for 1,570 metres and 26 drive pipe holes for 191 metres within the tailings. In 1986 WGM completed an additional 152 sonic drill holes for 910 metres. From these drill holes, WGM estimated the tailings to contain 1.827 million tons grading 1.43 opt silver.

In 2000, a 32 hole (326 metres) sonic drill program was conducted on the tailings by Sandy K Mines Ltd. ("SKM") to better define the tailings in the core area. It was found that the average grade for the dry tailings from this drill program was about 2.0 oz/ton (62.6 g/tonne) silver. It was concluded based on this sonic drill program that the results of the WGM historic resource may be underestimated by a minimum of 25%. Gravity and metallurgical test work was carried out on the tailings by Lakefield Research Limited (1999) and by Process Research Associates Ltd. (2000). Tests indicated silver recoveries of 77% - 86% by separating and grinding the +100 mesh material prior to gravity recovery.

In the summer of 2006, Temex completed initial sampling of the tailings deposits and subsequent metallurgical test work on the silver recoveries (see news release February 21, 2007). The Temex metallurgical test work on the silver tailings samples shows that pre-oxidation of the bulk tailings material using a halide oxidant followed by leaching via sodium thiosulfate can achieve silver recoveries in excess of 80%. This approach provides a better processing route than gravity concentration, which yielded low silver recoveries and flotation which yielded high recoveries but an unsalable low grade concentrate product.

In 2011, Temex commissioned GeoVector to complete a NI 43-101 compliant resource estimate on the tailings deposit. The 2011 mineral resource estimate is based on 764 auger, drive pipe and sonic drill holes (3,012 metres) and 2,039 assay values. Drilling of tailings was conducted in 1981, 1987 and 2000. The resource estimate is categorized as indicated as defined by the CIM guidelines for resource reporting. Mineral resources do not demonstrate economic viability, and there is no certainty that the mineral resource will be converted into mineable reserves once economic considerations are applied.

The resource estimate for the tailings piles at a silver cut-off grade of 10.0 grams per tonne ("g/t") is ~1,940,000 tonnes grading 47.5 g/t silver for ~2,960,000 contained ounces of silver in an Indicated category.

Cut-off Grade	Tonnes	Silver					
(Silver g/t)	Tonnes	Grade (g/t)	Ozs				
5.0 g/t	1,946,465	47.3	2,961,665				
10 g/t	1,937,520	47.5	2,959,487				
20 g/t	1,903,081	48.1	2,941,810				
30 g/t	1,743,690	50.1	2,806,483				
40 g/t	1,112,423	58.2	2,083,075				

Mineral Resource Estimate for the Gowganda Project Tailings Piles. Resource grades are total insitu and metallurgical recoveries are not considered.

Assay values used in the resource estimate were verified against assays on drill logs contained in historic drill reports and assay certificates. A site visit was carried out by Alan Sexton, P.Geo. and Vice President of GeoVector to verify drill collar locations, tailings extent and mine infrastructure. Digital data files of hole collar locations and down-hole surveys were checked and verified. The mineral resource was estimated using 1.5 metre composites (2,504 composites) of assay values (2,039 assays) from 764 auger and sonic drill holes totaling 3,012 metres. The drill holes were completed in 1981 (571 holes), 1986 to 1987 (154 drill holes) and 2000 (39 drill holes).

A block model, with the origin at 518550E, 5280050N, 430 metres elevation, and oriented at 300°, was constructed using 4 x 4 x 1 metre blocks in the X, Y, Z direction respectively. Grades for silver were interpolated into the blocks by the inverse distance squared method using between four and twenty composites in a minimum of 2 drill holes to generate block grades. Based on a statistical analysis of the composite database from each resource model, it was decided that no capping was required on the composite populations to limit high values.

The size of the search ellipse was set at 42 x 42 x 3 metres in the X, Y, Z direction respectively for the indicated resource. The Principal azimuth is oriented at 155° (trend of the tailings piles), the Principal dip is oriented at 0° and the Intermediate azimuth is oriented at 65°. Specific gravity (SG) testing was previously carried out on 11 representative samples of tailings and the calculated average SG value of 2.12 was applied to all blocks within the updated block model.

2 INTRODUCTION

GeoVector Management Inc. ("GeoVector") was contracted by Temex Resources Corp. ("Temex") to complete a resource, and was requested to prepare recommendations for future exploration of the tailings deposits on the Gowganda Silver Property ("Property"), and to prepare a technical report on it in compliance with the requirements of NI 43-101. Joe Campbell ("Campbell"), Alan Sexton ("Sexton") and Allan Armitage ("Armitage") of GeoVector are independent Qualified Persons, and are responsible for the preparation of this report.

This technical report will be used by Temex in fulfillment of their continuing disclosure requirements. This report is based upon publicly-available assessment reports and unpublished reports and property data provided by Temex, as supplemented by publicly-available government maps and publications. Sexton personally inspected the Property on April 8th, 2011.

3 RELIANCE ON OTHER EXPERTS

The Authors rely on information from a report prepared for Temex, which detail 2006 diamond drill results of the Property, as well as numerous historical reports on the Property. The Authors have reviewed this material and believe that this data has been collected in a careful and conscientious manner and in accordance with the standards set out in NI 43-101. When appropriate, the Authors have relied upon information previously reported in historical reports, including text excerpts and direct reproduction of figure information to illustrate discussions in the text.

This report documents an estimate of the size and grade of a mineral resource which occurs on the Property, but the report does not indicate that an economic orebody is present. GeoVector has no opinion on mineral inventories for the Property which was previously calculated. As shown below, GeoVector's sole opinion on this subject is that the drilling to date has defined, at a silver cut-off grade (COG) of 10 grams per tonne ("g/t") is ~1,950,000 tonnes grading 47.2 g/t silver for ~2,960,000 contained ounces of silver.

4 PROPERTY DESCRIPTION AND LOCATION

Temex's Gowganda Silver Property is located within the Timiskaming District approximately three kilometres northeast of Gowganda, Ontario in NTS 41P/10 map sheet (Ronacher et. al., 2007) (Figure 1). The Property comprises four mining leases and 14 contiguous mineral claims totalling 224 ha. These claims are bisected by the east-west boundary between Haultain and Nicol Townships within the Larder Lake Mining Division of North Eastern Ontario (Figure 2).

The Gowganda Silver Property encompasses the former Miller Lake O'Brien, Millerett, Lower Bonsall and Upper Bonsall Mines and was formerly referred to as the Sandy K Property. The Bonsall Mine was subdivided into the Upper and Lower Bonsall Mines and is encompassed by eight successive surveyed claims of RSC82 to RSC89, all located within the Haultain Township. The Millerett Mine area is a single surveyed claim, RSC95, located within Haultain Township. Finally the Miller Lake O'Brien mine was composed of the five surveyed claims, RSC90 to RSC94, all located south of Haultain Township in Nicol Township.

Previous mining produced extensive underground workings and tailings deposits on the Property. All buildings, including head frames and mill, were demolished and equipment moved from the site at the conclusion of commercial mining by previous operators in 1972.

FIGURE 1 Location of the Gowganda Silver Project area near Gowganda, Ontario

FIGURE 2 Map showing the claims that are part of the Gowganda Silver Project.

Patent No.	Township	Reg. #	Lease #	Patent #	PIN#	PCL #	Instruction #	Area
RSC82	Haultain	LT321666	TC5721	4613T	61296-0042	4860	208343	318.15
RSC83	Haultain	LT321666	TC5721	4613T	61296-0042	4860	208343	
RSC84	Haultain	LT321666	TC5721	4613T	61296-0042	4860	208343	
RSC85	Haultain/Nicol	LT321666	TC5721	4613T	61296-0042	4860	208343	
RSC86	Haultain/Nicol	LT321666	TC5721	4613T	61296-0042	4860	208343	
RSC87	Haultain/Nicol	LT321666	TC5721	4613T	61296-0043	4860	208343	
RSC88	Nicol	LT321666	TC5721	5721T	61296-0042	4860	208343	
RSC89	Nicol	LT321666	TC5721	5721T	61321-0029	4860	208343	
RSC90	Nicol	LT321666	TC5721	5722T	61321-0027	4861	208342	154.2
RSC91	Nicol	LT321666	TC5721	5722T	61321-0027	4861	208342	
RSC93	Nicol	LT321666	TC5721	5722T	61321-0027	4861	208342	
RSC94	Nicol	LT321666	TC5721	5722T	61321-0027	4861	208342	
RSC92	Nicol	LT321666	TC5723	5723T	61321-0031	4862	208340	40.4
RSC95	Haultain/Nicol	LT321666	??	4514T	61296-0047	4863	208341	40.6

TABLE 1Summary data of Gowganda Silver Property leases.

5 ACCESS, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY

Access to the property is via an all-weather gravel road from Highway 560 linking Gowganda and Elk Lake (Ronacher et. al., 2007). A road network connects Elk Lake to the larger centers of New Liskeard and Kirkland Lake, both of which are located along Highway 11. The closest available commercial air service operates in Earlton, located 40 kilometres to the east of Gowganda.

The Property, located in northern Ontario, usually experiences continental climate with warm dry summers and cold dry winters that last 4 to 5 months. Temperatures in summer range between 5°C to 30°C. In the winter months (late November to early March) temperatures range between -8°C and -20°C with a few cold snaps where temperatures can drop to -25°C to -35°C. During most winters, swamps, lakes and streams freeze sufficiently to allow for drills to be set up on the ice. The area receives approximately 900 mm of precipitation with slightly more falling during the summer months. Total mean snowfall of is approximately 300 cm.

Topography is subdued with glacially rounded low-lying outcrops separated by swamps, lakes, creeks and beaver ponds. Bedrock exposures comprise approximately 10% of the surface area on the Property with the remainder of the area partially covered with Holocene glacio-fluvial deposits that are up to 15 m thick.

Vegetation on the Property consists mostly of recent re-growth of alder, poplar and spruce. Swampy areas contain black spruce, alder and cedar and dry areas are dominated by mixed boreal forest such as spruce, jack pine, maple and alder. Due to extensive mining and exploration activities surrounding the various former operating mines on the Property, much of the original forest growth has been cut and most of the Property is covered by dense alder and shrubs.

The local resources include businesses reliant on sport fishing during the summer seasons, and harvesting of pulp wood. There are cabin and lodge type accommodations available locally at the Auld Reekie Lodge. Hotel accommodation available in New Liskeard (145 km away) affords more amenities to visitors. Temex owns and maintains a house with core logging and sampling facilities in the town of Gowganda.

6 EXPLORATION HISTORY

The following description of the exploration history has been extracted from a recent report written for Temex on the Property (Ronacher et. al., 2007).

Mining began in 1907 on the Property at the Gowganda Silver Camp after the discovery of Silver near Bloom Lake, located in Hautain Township. Intermittent recorded production of silver from 1910 to 1944 amounted to ~16 million ounces of silver from an undetermined tonnage of ore. Siscoe Metals of Ontario Limited purchased the property from O'Brien Mines Limited and produced an additional 25,501,489 oz of silver from 1,147,683 tons of ore milled between 1945 and 1972 (Lalande, 1981).

Workings from 1909 to 1970 consisted of 13,500 feet of shaft and winze sinking and a total of 155,000 feet of cross-cutting. Development by O'Brien Mines Limited and Siscoe Metals of Ontario Limited resulted in 76,000 feet of surface and 457,000 feet of underground drilling between 1936 and 1970 (Lalande, 1981).

The exploration activity that occurred in the separate mines area is summarized below.

Bonsall Claim

1908 to 1909:

A main shaft was sunk on a cross-vein. According to Lalande (1981) the richest ore was found to occur near the junction of two veins, where 30 sacks of ore were taken out in 1909. The main shaft was completed to a depth of 125 feet with drifting of 60 feet following a faulted zone on the 75 foot level and further drifting and crosscutting of 186 feet.

1920 – Miller Lake O'Brien:

Considerable work was done predominantly on the lower levels, where workings were dewatered and the veins were sampled at several levels.

1981 to 1982 – Sandy K Mine Limited:

A 450 metre long adit was driven from the Lower Bonsall Mine area eastwards terminating in the Upper Bonsall area. A silver-cobalt-bearing vein was intersected in the 10900E cross-cut near the eastern termination of the adit in the Upper Bonsall area. From the drilling completed at this time the best assay from the drill holes returned 5.86 g/ton Ag in hole U82-10 from an east-west trending and north-south striking vein intersection. Reports describe silver occurring in the steeply dipping, north-south and eastwest trending calcite and quartz-calcite veins, many of which are multiple branching vein systems.

Millerett Claim

1909 to 1913 – Millerett Silver Mining Company:

Claim RSC95 became known as the Millerett Claim once the land was acquired by the Millerett Silver Mining Company; prior to 1909 the claim was referred to as the Blackburn Claim. Development of the area consisted of an adit driven 253 feet (77m) for development of the vein and according to McIlwaine (1978) a crosscut was driven west for 150 feet (46m).

1914 to 1915 - Millerett Silver Mining Company:

In the south central part of the claim levels were established at 60 feet (18m) and 127 feet (39m) as the No. 10 shaft was sunk to a depth of 127 feet (39m).

1945 – Siscoe Metals of Ontario Limited:

Ownership of the property was acquired by Siscoe Metals of Ontario Limited. Siscoe performed some diamond drilling and established a raise up from the 450 foot (137 0m) level of the main workings to the 300 foot (91m) sublevel of the main Millerett workings for cross cutting of high grade ores.

Miller Lake O'Brien Mine

1909 - Miller Lake O'Brien Mine:

Burrows (1920) describes the early history of the Miller Lake O'Brien mine comprised of a group of claims, formerly known as the Gates claims, based on the discovery of native silver and smaltite that were made in 1908. He stated that the first development was done primarily on veins with a general north and south strike, following the boundary line shared between claims RSC90 and RSC91. The most important vein was known as the No.2 vein system, which according to Burrows (1920) produced most of the ore in the earlier years of mine production. Burrows (1920) concluded that development at RSC90 and RSC91 shows all the ore to be contained within the diabase, mainly in the upper portion of the diabase sill in proximity to the meta-volcanic—diabase contact.

1920 - Miller Lake O'Brien Mine:

A new silver carrying vein (No. 16) 25 feet west of the main vein (No.7 N) was discovered. This led to focused mine efforts on a series of veins known locally as the Flynn System. Discovery of the No. 16 vein resulted in drifting for 140 feet on the 460 foot level.

1924 - Miller Lake O'Brien Mine:

Exploration continued on a series of veins south of the Flynn System that led to finding additional ore shoots that were later developed. Burrows (1920) explained that the discovered veins occurred in a connecting system of fractures that follow the curved columnar jointing of the diabase. Newly discovered veins that required further drifting were the No. 71 (585 foot level), 73 (525 foot level) and 79 (650 foot level) vein with No. 80 vein branching from No. 79 vein.

1939 to 1944 - Miller Lake O'Brien Mine:

This period of mine operation brought the closure of the O'Brien properties in 1939 with a total production of 17,555,649 ounces of silver and a considerable amount of unrecorded cobalt. Between 1940 and 1944 it has been estimated by Burrows (1920) that the lease's total production was approximately 620,000 ounces of silver.

1945 - Siscoe Metals of Ontario Limited:

Siscoe Metals of Ontario purchased the O'Brien property, prepared to start operations later that year and the main shaft and No.1 mill (in the south end of the property) were put into operation.

1950 - Siscoe Metals of Ontario Limited:

A second 400 ton/day gravity and flotation mill was built at this time. Both mills were used to treat tailings, rock pile, custom ore and mine ore. According to Moore (1956) about 250,000 tons of tailings left by Miller Lake O'Brien Mines in the area tailings pond were profitably treated and determined to have 5 oz/t silver.

1954 - Siscoe Metals of Ontario Limited:

Moore (1956) stated that a very high-grade vein was mined on the lowest level (1200 foot), and another near the Old No. 20 shaft south of the diabase dike. He further explained that at the time it was thought that the potential for the occurrence of ore south of the dike was not good, however no reason was given as to how the dike influenced ore occurrence.

1979 – Sandy K Mines Limited:

Sandy K Mines Limited purchased the mineral rights from Siscoe Metals of Ontario Limited and rehabilitated the site for underground exploration of the workings at the Lower Bonsall. A surface exploration program consisting of outcrop mapping and sampling, diamond drilling and trenching ran concurrently. Lalande (1981) stated that exploration concentrating around the Upper Bonsall, Millerett and Miller Lake O'Brien mine areas uncovered two veins south of the Upper Bonsall No.3 Shaft.

1980 - Sandy K Mines Limited:

Sandy K reviewed work done, re-sampled mineralization in surface trenches, monitored the dewatering of the Lower Bonsall mine and re-logged drill core.

1981 - Sandy K Mines Limited:

An adit was driven a total of 1476 feet (450 m) due eastward originating near the footwall of the diabase intrusive and close to the Lower Bonsall Mine. However Hester (1999) related that no veins of importance were recorded in this part of the adit.

1987 to 1989 - Sandy K Mines Limited:

Hester (1999) described the second phase of work as consisting of an additional 1525 ft (465 m) of drifting to follow several silver bearing veins discovered by drilling from underground stations. Furthermore, Hester (1999) noted that the underground working was of considerable geological interest since it crosscuts the entire 900 ft thick body of the diabase from near its footwall and western boundary in the Lower Bonsall Mine to near its hanging wall at the eastern face of the adit.

6.1 Tailings (1981 – 2000)

Published and unpublished data indicate that in excess of 1.35 million tons of rock was hoisted to the surface, milled, and treated by flotation for native silver recovery, and disposed of in tailings piles (Laland, 1981). Mill recovery of silver was reported as being ~95% for high grade ore (>50 oz/ton) and about 85-90% for low grade ore (10-20 oz/ton). The overall average grade of the ore milled on the property was 27 oz/ton; at ~ 95% recovery, some 1.3 -1.4 oz/ton ended up in the tailings. There were indications that some 1.5 million tons of tailings left on the property may contain more than 2.0 million ounces of silver. This led to a number of drill programs over the next 20 years to evaluate the silver resource in the tailings and the recoverability of the silver.

In 1981 Watts, Griffis and McOuat Limited ("WGM") completed 545 auger holes for 1,570 metres and 26 drive pipe holes for 191 metres within the tailings. In 1986 WGM completed an additional 152 sonic drill holes for 910 metres. From these drill holes, WGM estimated the tailings to contain 1.827 million tons grading 1.43 opt silver.

In 2000, a 32 hole (326 metres) sonic drill program was conducted on the tailings by Sandy K Mines Ltd. ("SKM") to better define the tailings in the core area. It was found that the average grade for the dry tailings from this drill program was about 2.0 oz/ton (62.6 g/tonne) silver. It was concluded based on this sonic drill program that the results of the WGM historic resource may be underestimated by a minimum of 25%. Gravity and metallurgical test work was carried out on the tailings by Lakefield Research Limited (1999) and by Process Research Associates Ltd. (2000).

6.2 Historical Mineral Resource and Mineral Reserve Estimates for the Tailings

In 1981, WGM as part of their evaluation of the Gowganda tailings calculated "Reserves" manually (Lalande, 1981). Using the assay samples (1,236) from the 572 drill holes (5,160 ft), WGM estimated the tailings to contain ~1.7 million tons of drill-proven, -probable, and –possible "reserves" grading 1.45 oz/ton silver. For this reserve calculation, drilled blocks were outlined on plans, areas of influence measured, and these areas were combined with intervals along drilled holes to obtain block volumes of mineable size.

No cutoff grade was used. Within the tailings, no samples were barren of silver, and very few had silver content of less than 0.5 oz/ton. Low-grade tailings were included in the reserve estimate. The reserve estimate was based on a tonnage factor of 16.26 ft³/ton (1.97 tonnes/m³), which was determined from one sample.

In 1987, after additional drilling, Canadian Lencourt Mines Ltd. recalculated the tailings reserves. It was decided to use the same general method of calculating reserves as was used in 1980-81. The 1987 drill holes were plotted and tonnage calculations were made using 10,000 square-foot blocks in areas of uniformly spread holes and polygons when hole spacing was irregular. Canadian Lancourt estimated the tailings to contain ~1.83 million tons of drill-proven "reserves" grading 1.43 oz/ton silver.

6.3 Metallurgical Test Work

Initial metallurgical test work on the tailings was completed by WGM in 1981 as part of their evaluation of the tailings (Lalande, 1981). For their study, three different lots of tailings samples were sent to Lakefield Research of Canada Ltd. The following tests were conducted: a) chemical and petrographic analysis; b) silver concentration tests by flotation; and c) cyanide leaching tests for dissolution of the silver. The three composite samples assayed 3.65, 1.27 and 1.85 oz/ton.

In the WGM study it was concluded that the optimum process for silver recovery would be to grind the tailings to about 80% -200 mesh followed by a cyanide leach. The reagent consumption in leaching showed 0.6 lb NaCN and 1.4 lb lime were consumed per ton of feed. Although a 48-hour leach yielded an 82.3% silver recovery, it was concluded there may be merit in conducting two other leach times of 72 and 96 hours to further increase silver recovery.

One preliminary silver precipitation test from the pregnant cyanidation solution was done using zinc dust with lead nitrate as a catalyst. The precipitation of the silver showed an efficiency of 98.9%. Insignificant amounts of gold, cobalt, nickel, copper, arsenic and bismuth were also precipitated, which may influence carbon absorption efficiency.

More recent metallurgical test work was completed by Lakefield Research (Lakefield) using a Knelson concentrator (Pearson, 1999) and by Process Research and Associates (PRA) with a Falcon concentrator (Pearson, 2000).

Four samples were received by Lakefield in September, 1999. The samples were blended together and riffled into five 10-kg test charges and a head sample. The silver and gold were done by pulp and metallic procedures. The assayed heads were 137 g/t Ag and 0.17 g/t Au and compared to an average head grade of 135 g/t Ag from the test work, showing good correlation with assayed heads. A sample of the feed was screened and each size fraction analysed for silver. It was found that higher silver grades existed in the coarser fractions.

A total of three gravity tests were completed by Lakefield utilizing a Knelson Concentrator, with samples then being passed through either a Mozley or Gemini table to increase the concentrate grade. In the first test (G1) the entire sample was put through the Knelson Concentrator and the concentrate was passed over the Mozley table. After an initial pass through the Mozley table additional passes were made across the table with the Mozley tails to recover three concentrates. Total combined silver recovery from the 3 passes was 4.6% of calculated Ag head grade. Combined concentrate grade was 7093 g/t Ag, which could be considered a marketable concentrate. The very poor silver recovery precludes a direct gravity concentration of the tailings.

For the remaining tests (G2 and G3), only the +100 mesh fraction of the feed was ground and concentrated. The -100 fraction only contained 10-16% of the silver within 28.9-31.0% of the test sample weight. In these cases the Knelson concentrate was passed over a Gemini table as the silver was more visible on the Gemini deck versus the Mozley deck. Again three passes were made over the table and the combined recovery of Ag was 27.2% - 48.7% of the initial calculated Ag content (-100 size fraction plus +100 size fraction) at grades of 3692 – 4702 g/t Ag. Although an improvement on test G1 the poor recovery, combined with lower concentrate grade suggested that direct gravity recovery of Ag from the tails was probably not economic. The possibility of the lower cost of leaching the gravity concentrate (approximately 1% of total tailings mass at 30 times the grade) against the loss of most of the total contained Ag recovery could be investigated to see where the optimal cost/benefit occurs.

Of some interest the test results for Au in G1 and G2 (Au not analyzed in G3) showed 100% recovery of gold from the tails. The average head grade of 0.17 g/t Au is low, but would constitute a significant by product from processing the tails.

The test program conducted by PRA utilized a Falcon SB4 centrifugal concentrator to undertake rougher concentration, followed by cleaning the total rougher using various gravity concentration methods, including panning and Wilfrey tabling.

The first phase of the test work by PRA was conducted on the as-received tailing. Tailings head grade ranged from 53-137 g/t Ag. The combined rougher silver recoveries ranged from 52% to 71%, with resulting grades of 80 g/t to 275 g/t Ag. Cleaning resulted in the final product silver grades of 670 g/t to 5200 g/t Ag but percentage of Ag recovered in the cleaner concentrate was very low. As in the Lakefield metallurgical work it, was recognized that most of the silver was present in the coarse fraction (+100 mesh) of the tailings.

Additional testwork was done by screening at 100 mesh particle size followed by grinding the coarse fraction prior to rougher concentrate using the Falcon. The overall rougher silver recovery of the ground coarse fraction (not including the -100 mesh fine fraction) was 77% to 86%, grading 295 g/t to 495 g/t Ag. The combined rougher was subjected to a two stage cleaning using a Wilfrey Table. This resulted in silver grades of 2439 g/t and 7391 g/t, but again Ag recovery was very low at these concentrate grades.

The results of the PRA tests showed that although overall Ag recovery was generally improved over the Lakefield tests, this recovery was achieved at a considerably lower concentrate grade, generally less than double the original head grade. The saleable value of a Ag concentrate at these relatively low grades is questionable. The possibility of the lower cost of leaching the gravity concentrate (approximately 36% of total tailings mass at twice the grade) against the loss of total Ag recovery could be investigated to see where the optimal cost/benefit occurs.

6.4 Past Underground Exploration Methods

Exploration for silver bearing carbonate gangue veins was accomplished through diamond drilling. Once silver veins were encountered further exploration involved establishing underground workings supplemented with additional diamond drilling. Due to the irregular distribution of silver and associated minerals it was impossible for past producers to outline large tonnages of ore by diamond drilling, drifting and raising. The various operators controlled mine development based on visual observations. The veins were relatively easy to follow by drifting and raise headings, if there was no visible silver mineralization in the wall of the rock within the mine then the vein was not considered to be ore (Lalande, 1981).

7 GEOLOGICAL SETTING

7.1 Regional Geology

The following description of the regional geology has been extracted from a report written for Temex on the Property (Ronacher et. al., 2007).

The Gowganda Silver Property is located near the north-western boundary of metasedimentary and metavolcanic rocks of the Cobalt Embayment subdivision of the Superior Province of the Canadian Shield (Figure 3). The Proterozoic Cobalt Group, which constitutes most of the Cobalt Embayment of the Huronian Supergroup is comprised of four formations; Gowganda, Lorrain, Gordon Lake and Bar River Formations. The Gowganda and Lorrain Formations have widespread exposures, whereas the Gordon Lake and Bar River Formations are much more restricted in areal extent. The Cobalt Group unconformably overlies the Archean metavolcanic rocks of the Abitibi Subprovince (Table 2).

FIGURE 3 Regional Geology of the Gowganda area

Gabbroic rocks, referred to as "Nipissing Diabase" in old literature and as "Nipissing Gabbro" in this report, are the most abundant and widespread igneous rocks intruding the Huronian Supergroup. Nipissing intrusive rocks form dikes, sills, undulating sheets up to several hundred metres thick, and bodies that are interpreted as cone sheets (MNDM, 2007). Intrusion of the gabbro has been dated at 2,162+/- 27 Ma (Fairbairn, et al, 1969). Later studies reported a U-Pb age of 2,219.4+/-4 Ma from wall rock alteration related to intrusion of the Nipissing Gabbro in the Gowganda area (Corfu, et al, 1986). The distribution of these tholeiitic intrusions is nearly uniform throughout the Cobalt Embayment. The spatial distribution of the Nipissing igneous bodies is mainly the result of lateral movement of mafic magma along dikes and subhorizontal zones of weakness in the Huronian rocks (Fahrig, 1987). Nipissing Gabbro is generally melanocratic, fine to medium grained with locally granophyric texture. A major tectonic event has not been correlated with the Nipissing intrusive rocks (Bennett, et al., 1991). The Gowganda area is well known for its silver bearing carbonate/quartz veins within the Nipissing Gabbro intrusions (MNDM, 2007).

The Archean metavolcanic rocks are generally characterized by east-west striking supracrustal strata made up of mafic to ultramafic volcanic assemblages that contain or are bounded by sedimentary units. Felsic to ultramafic intrusive rocks are common and are generally massive and unfoliated (Jackson and Fyon, 1991). The Cobalt Embayment is bounded to the south by the highly metamorphosed rocks of the Grenville Province. These rocks are mainly of sedimentary origin, are coarse grained, gneissic, clastic metasedimentary rocks, feldspathic biotite gneiss, quartzose and muscovite gneiss (MNDM, 2007).

TABLE 2 Lithological Units for the Gowganda Lake and Miller Lake Silver Area

Eon	Era	Epoch	Lithologic Units
		Holocene	Swamp, lake, stream deposits
Phanerozoic	Cenozoic		Glacial Deposits
		Pleistocene	Unconformity
	Late (Proterozoic)		Mafic Intrusive Rocks: Olivine diabase, porphyritic olivine diabase, diabase
			Intrusive Contact
Precambrian			Mafic Intrusive Rocks (Nipissing Gabbro): Pyroxene gabbro, amphibole gabbro, granophyre
	Middle (Archeon)		Intrusive Contact
	Middle (Archean)		Huronian Supergroup: Cobalt Group: Lorrain Formation, Gowganda Formation, Coleman Member
			Unconformity
			Mafic Intrusive Rocks: Diabase, porphyritic diabase
			Intrusive Contact
			Felsic Intrusive Rocks
	Early (Priscoan)		Intrusive Contact
			Mafic and Ultramafic Intrusive Rocks
			Intrusive Contact
			Felsic Metavolcanic rocks
			Mafic to Intermediate Metavolcanic rock

7.2 Property Geology

The following description of the property geology has been extracted from a recent written for Temex on the Property (Ronacher et. al., 2007).

The Property is underlain by a thick sequence of metavolcanic rocks of Archean age which are unconformably overlain by younger flat-lying meta-sedimentary rocks of the Coleman Member (Gowganda Formation, Huronian Supergroup; Figure 4). A sill of Nipissing Gabbro approximately 260 m thick subsequently intruded these rocks.

The metavolcanic rocks are the oldest rocks on the Gowganda Silver Property. These rocks are steeply dipping and east-striking and are comprised of volcanic flows, tuffs (volcanic ash) and minor banded ironformation (chemical deposit). Volcanic rocks were then folded and intruded by granites. Subsequent to this deformation the region underwent extension documented by intrusion of a swarm of mafic diabase dikes striking northward known as the Matachewan-type Diabase Dike Swarm. The Matachewan dikes can be distinguished from mafic dikes of other ages in the area by the presence of large feldspar crystals that have been altered to a waxy green colour (Lalande, 1981; Mayer and Pearson, 1989; Hester, 1999).

An extended period of erosion followed the intrusion of the Matachewan-type Diabase Dikes. Valleys were created through preferential erosion along several of the pre-existing vertical shear zones. These valleys were covered with conglomerate and sediments of probable glacial origin and have been termed the Gowganda Formation. Within this formation the Coleman Member (conglomerate, minor greywacke, arkose and argillite) occurs as a tongue that strikes to the southwest on claim RSC95 and likely follows a paleo-valley in the Archean meta-volcanic rocks. The Gowganda Formation passes upwards into quartzite and silty sediments of the Lorrain Formation. Since deposition neither formation has been significantly disturbed and therefore the dips of bedding remain uniformly close to horizontal, both formations are classified as part of the Huronian Supergroup (Hester, 1999; Lalande, 1981).

A second intrusion of diabase (gabbro) followed lithification of the Huronian sequence. The intrusion of Nipissing Gabbro formed a cone shaped sheet as evidenced by the circular form combined with inward dipping contacts of both the top and bottom of the intrusion. Deposits of silver in this area are associated with this form of intrusion where the intrusion thickness exceeds 300 m (Hester, 1999). Diabase in the eastern extent of the Property is overlain by up to 300 m of Precambrian rocks, mainly Archean meta-volcanic rocks.

In the Miller Lake area the Nipissing Gabbro forms a basinal sheet with dips ranging from 15° to 30° east to the center of the basin (Mayer and Pearson, 1989). The Nipissing Gabbro sill is composed of quartz gabbro with minor granophyre and basic segregations. Dominant alteration minerals near the upper and lower contacts include talc, chlorite and uralite from the alteration of pyroxenes, and sericite (Lalande, 1981). Most of the rock has ophitic texture, is fine to coarse grain and contains minor areas of gabbroic character. Orthorhombic pyroxene and plagioclase are present. Titaniferous magnetite or ilmenite form 1-3% of the rock (Moore, 1956).

The Gowganda Silver Property also contains several generations of faulting and related shearing. Most of the faults are post-ore and do not affect the silver mineralization or its distribution (Mayer and Pearson, 1989). However, shortly after consolidation of the Nipissing Gabbro the older NE-SW striking shears were reactivated leading to the development of fractures in the gabbro and surrounding rock. Together with secondary fractures these structural features became the conduits for the silver-bearing solutions which then formed the silver veins (Hester, 1999). These same east-west trending structures in the hanging wall of the volcanic rocks tend to propagate downwards into the underlying Nipissing Gabbro or overlying Huronian metasedimentary rocks. However, similar fracturing and silver mineralization appear to be absent in the underlying volcanic rocks.

A third intrusion of diabase followed vein formation leading to the placement of thin dikes trending NE or NW. Late thrust faulting concludes the tectonic history. These faults displaced some of the veins and clearly post-date the silver mineralization (Hester, 1999).

Silver-bearing veins occur as extension veins or shear veins within zones of fractured and weakly altered wall rock. Alteration extends for >0.5 m from either side of a vein. Dips of these veins are within 15° of vertical with the sheared veins typically strike E-W. Ore veins occur as conjugate fractures roughly perpendicular to northeast and southwest striking shears (Hester, 1999). The silver can also be found in north-south and east-west trending calcite and quartz-calcite veins (Mayer and Pearson, 1989). Among the most favourable locations for silver are north-south trending veins and at the junctions of east-west faults with north-south trending veins (Mayer and Pearson, 1989; Hester, 1999).

FIGURE 4 Property Geology

8 DEPOSIT TYPES

Silver-sulpharsenide veins are recognized as a deposit type that occurs along the north and northeastern margins of the Cobalt Embayment (Cobalt and Gowganda camps) and in the Thunder Bay area (Rove and Gunflint Formations) (Fyon et al, 1991).

In the Cobalt Camp the mineralization occurs within the Proterozoic Huronian Supergroup, principally within the Coleman Member of the Gowganda Formation, the Nippissing gabbro and to a lesser extent within Archean supracrustal rocks. All economically productive deposits occur in close proximity to the Huronian-Archean unconformity where Nipissing gabbro and steeply dipping Archean volcanic sequences coincide, and deposits are within the Nipissing gabbro or within 200 metres of contacts with the gabbro.

Vein formation involved the initial precipitation of mainly silicate minerals and chlorite followed by calcite and dolomite during subsequent dilation events. Silicates form <1cm selvages on the veins and the silver bearing assemblage occurs at the transition from silicate to carbonate, and therefore is preferentially distributed immediately adjacent to vein walls. The metallic mineralization is complex, including native silver, bismuth, arsenides (nickel-arsenic, nickel-cobalt-arsenic, cobalt-arsenic, cobalt-iron-arsenic), chalcopyrite, tetrahedrite, galena, sphalerite, marcasite and pyrite. (Fyon et al, 1991)

The mineralization is typically discontinuous along any vein structure. High grade pockets commonly occur in the vicinity of vein intersections, intersections with shear zones (usually shallow dipping), contrasting rock contacts, and irregularities in the Archean basement contact (commonly fault controlled).

9 MINERALIZATION

The following description of the mineralization has been extracted from a recent report written for Temex on the Property (Ronacher et. al., 2007).

The Gowganda Silver Camp is host to several past producing lode silver deposits that are predominantly hosted within the Nipissing Gabbro rocks and are characterized by zones of veins containing silver mineralization.

Silver bearing veins consist of a central fissure that typically ranges from 1 cm to 15 cm wide in a zone of fractured and altered wall rock. Alteration of wall rock typically extends for ½ m wide on either side of the fissure. Silver mineralization occurs within carbonate veins that fills fissures and can be associated with wide variety of exotic minerals containing combinations of cobalt-iron-nickel with arsenic-antimony-sulphur, with minor amounts of chalcopyrite and galena. Mineralization also often occurs in flat joints in the wall rock of the central vein. Veins are generally vertical or are within 15° of vertical. Silver and non-silver bearing veins occur as orthogonal and conjugate vein sets and are often linked by one or two persistent vein orientations (Lalande, 1981; Mayer and Pearson, 1989; Hester, 1999).

The main factors that influence the distribution of the mineralized carbonate veining in the Gowganda deposit relates to the variations in the physical characteristics of the rocks enclosing the gabbro cone sheet (i.e. tensile strength) as exhibited through the nature of the faulting. Several major faults strike north-south with 40° to 50° dips to the east. Few other faults strike east-west dipping 30° north and strike northwest-southeast dipping 15° northeast. The largest displacement is generally associated with the north striking faults, on the regional scale. These faults are responsible for the cumulative uplift of the western side of the diabase intrusive by several hundred feet and show signs of a major thrust component with a minor strike slip. Silver mineralization is spatially associated with these faults. Ore veins formed as the result of rejuvenated movement along old NE and SW striking shears in the rocks that enclose the Nipissing Gabbro sill. The rejuvenated shears are deflected at rock type boundaries where there is significant rheological contrast. The resulting secondary shears and tensional openings appear to be the conduits for the silver mineralizing fluids. Also, remobilization of silver after its original deposition in the veins can be seen whenever one of the thrust faults or later diabase dikes truncate ore shoots (Lalande, 1981; Mayer and Pearson, 1989; Hester, 1999).

10 EXPLORATION

After acquiring the Property in 2006, Temex conducted a drill program consisting of 22 diamond drill holes totalling ~2500 metres. The drill holes targeted silver bearing carbonate veins to verify previous drill results and expand the known limits of the mineralized zones (Ronacher et. al., 2007). The main targets are silver bearing carbonate veins that are near vertical and within the top 100 m of the Nipissing Gabbro sills. The silver-bearing veins are typically found within a zone of fractured rock in a conjugate set of north and east trending calcite and quartz-calcite veins. Additional work included limited trenching and whole rock sampling as well as preliminary metallurgical testing.

Since acquiring the Property, Temex has not conducted additional drilling of the tailings deposits. A description of the historic drilling of the tailings is presented below. Temex has, however, completed preliminary silver leaching test work on the tailings. This work is described in section 16 below.

11 DRILLING

Drilling of the tailing was conducted in three separate programs completed between 1981 and 2000 (Figure 5). In 1981 Watts, Griffis and McOuat Limited ("WGM") completed 545 auger holes for 1,570 metres and 26 drive pipe holes for 191 metres within the tailings. In 1986 WGM completed an additional 152 sonic drill holes for 910 metres. In 2000, a 32 hole (326 metres) sonic drill program was conducted on the tailings by Sandy K Mines Ltd. ("SKM") to better define the tailings in the core area.

11.1 1980-1981 Drilling

The work by WGM in 1980-81 was part of a larger study of this property carried out for Sandy K Mines Limited (Lalande, 1981). A sampling program was carried out in four stages:

- 1. Hand sampling to a maximum depth of 15 feet of the main tailings pile located on claim RSC84 and of the tailings filling what was known as Percy Lake. This first phase consisted of holes 100 feet apart along the length of the pile.
- 2. Hand sampling to 15-foot depth on a 100-foot grid of the main tailings pile. This grid was later infilled to 50 feet.
- 3. Hand sampling of small tailings zones that represent washout material from the main pile. These washouts are as far as 2,000 feet away and downstream from the main pile. These small zones were sampled to the bottom of the tailings on a 50-foot grid.
- 4. Drive-pipe sampling of the main tailings pile to reach the glacial till or bedrock underlying the tailings.

Manually 545 holes were sunk for cumulative length of 5,160 feet, and 27 drive-pipe holes for 629 feet. A total of 1,236 samples were collected and sent for fire assay, most samples taken at 5-foot drilling intervals.

FIGURE 5 Location of Auger, Drive Pipe and Sonic Drill Holes in the Tailings Areas

11.2 1986 - 1987 Drilling

During 1986 and 1987 Canadian Lencourt Mines Ltd. by an agreement with Sandy K Mines Ltd. undertook a program of further sampling of the silver tailings and is described below (Ekstrom, 1987). The aim of this sampling program was to put all of the WGM reserve in the proven category. In the earlier program by WGM, detailed sampling was restricted, because of water conditions and method employed, to the upper 15 feet of the tailings pile. The 1986-1987 program, by the use of a different method of

sampling, was concentrated on the deeper zones. In addition some infill drilling was done on the fringe areas of the pile and in areas under water (Figure 5).

Although effective, the drive-pipe technique was considered to be time-consuming and expensive. Consequently, alternatives were considered including a vibrating type of drill. Test drilling was carried out on the Sandy K silver tailing during August 1986 using the Wink Vibra Corer Sonic Drill. This proved successful and a full scale program was undertaken during January and February 1987 to complete the sampling.

The Vibra Corer Drill is a simple, efficient, lightweight tool which recovers excellent samples in unconsolidated material. In certain types of ground the drill recovers a core of undisturbed material in which bedding structures, etc. can be seen. The drill rods are vibrated into the ground by the Vibra Head which weighs 12 kg. The vibration is created by an eccentric bar in the head rotated by a flex cable powered by a four to eight horsepower gas engine. In the present program, the rods used were five foot BQ diamond drill rods (inside diameter 1.91 inches, outside diameter 2.20 inches). Although various drive shoes and core catchers are available for the Sonic drill, it was found in the present program that the drill rods with no shoe was the most effective method of sample recovery.

In the dryer, hard packed tailings above the water table, it was necessary to pull the rods every few inches and the hole remained open with no caving.

On reaching the water table, it was necessary to make certain that the rods were not plugged with the hard packed tailings. It was found that a short hard plug would not allow the wet flowable tailings into the string and the rods could be driven to the bottom without recovering any sample. To overcome this when the water table was encountered and recognized, the rods were cleaned and the hole driven to the bottom of the tailings with measurements made inside the rods each time a new rod was added to make sure a sample was being recovered. In most cases, in order to recover the sample, the rods could be plugged in the hard packed silty sand, humus and/or clay immediately beneath the tailings. Samples below the water table were often lost if this base plug was not made. This usually occurred at time if rock was encountered at the bottom of the hole.

A total of 248 feet (75.6 metres) in seven holes was drilled with the Vibra Corer in August 1986. A further 2738.5 feet (834.7 metres) were drilled in 145 holes during January and February of 1987.

11.3 2000 Drilling

A sonic drill program was conducted on the tailings from May 11 to May 18, 2000 (Pearson, 2000). The purpose of the drill program was to upgrade and verify the silver content of the tailings outlined in previous drill and auger programs completed in the 1980's.

The sonic drill program consisted of thirty two holes totalling 326 metres (Figure 5). Holes one to twenty five were drilled in the north tailings area and holes twenty six to thirty one were drilled in the Percey Lake tailings area to the south. Hole thirty two was drilled in the southwest tailing plume area. The sonic drilling was conducted by Ace Drilling Services of Surrey, British Columbia, under the direction of Mr. Udo Gusse. In addition, seven short holes totalling 16.3 metres were hand augured in various locations on the fringes of the tailings area.

In drill holes completed in the north tailings area (Figure 5) the stratigraphy consists of upper dry, coarse, sand tailings with thin very fine, clay tailing seams. Underlying the dry tailings are wet, coarse, sand tailings which locally have a 3-5% clay component or local clay layers up to 0.3 metres thick. Below the wet sand tailings is a very fine clay layer up to 1.8 metres thick, underlain by blackish grey, very coarse, wet sand tailings. The very coarse sand tailings lie above a thin clay layer or immediately above the bedrock.

The tailing stratigraphy is similar in the northern most sections except for the absence of the clay layers and the blackish grey, very coarse sand tailings. The southernmost section also has similar stratigraphy

except for the presence of a thin clay layer above the soil and bedrock surface. The blackish grey, very coarse sand tailings are absent.

The Percy Lake tailings area stratigraphy consisted of dry, coarse sand followed by wet, coarse sand tailings. Below the wet coarse, sand tailings occurs a light grey very fine clay layer. The clay layer is immediately above bedrock. The west Percy Lake tailings area upper portion consists of swamp muck and water. Below, fine silt to clay tailings occur above the bedrock. Tailing recovery in the Percy Lake area was poorer than the north tailings area due to high water saturation.

12 SAMPLING METHOD AND APPROACH

The sampling method and approach for historic drilling on the Property appears to conform to standard industry practise at the time of drilling. A brief description of sampling is presented below.

12.1 1981 Program

For the 1981 drilling program completed by WGM a total of 1,236 samples were collected and sent for fire assay, most samples taken at 5-foot drilling intervals (Lalande, 1981). Hand sampling or hand auguring was mainly carried out with a manually operated agricultural soil sampler. The sampler is an open 1-1/4" diameter, 18" long tube with a cutting edge that permits the collection of compacted soil as a core 1 inch in diameter. The sampler is lowered by pushing on a handle attached to a 30" long extension rod. Sampling was carried down to a depth of 15 feet, each sample representing a 5-foot interval. Cave-in was minimal above the water table. Poor recovery and contamination by caving of the walls occurred below the water table. A 1-1/4" spiral auger with a 2-1/2" pitch was used occasionally where tailings were somewhat clayey and dry.

The drive-pipe technique was used for sampling of tailings in excess of 15-foot thickness and for obtaining large-sized samples for silver recovery testing. They used a 3-1/2" diameter 5-foot long barrel sampler equipped with a flap retainer for material above the water table; a 2-1/2" diameter 2-foot long split spoon was used for sampling inside NW casing for material below the water table. The sampler and casing were driven by a 140lb hammer dropped 3 feet and operated by a motorized hoist. Drive pipe sampling was conducted to the bottom of the tailings pile, that is until glacial till material was retrieved from the hole or refusal on bedrock obtained. A maximum tailings depth of 54 feet was reached in one of 27 holes.

12.2 1986-1987 Program

A total of 248 feet in seven holes was drilled with the Vibra Corer in August 1986 (Ekstrom, 1987). A further 2738.5 feet were drilled in 145 holes during January and February of 1987. Forty-four samples were taken in the August program and four hundred and thirteen samples were collected during the January and February program.

Although recovery of samples in 1986-87 is estimated to have been generally between 90 and 100%, poor or no recovery was noted in a few holes below the water table. In these cases it is thought that debris (sticks, twigs, small muck fragments or pebbles) was mixed in the tailings and was driven ahead of the bit and did not allow the sample to enter the rod string. These holes were re-drilled up to four times with a move of two to five feet to pass through undisturbed material. Only four holes were drilled from which almost no sample was recovered an one hole was thought to be totally in wet humus

12.3 2000 Program

A total of 211 tailing samples were cored during the 2000 program (Pearson, 2000). Samples were taken every 1.5 metres down each hole, wherever possible. The drilling recovery of the tailings was 100% except locally in areas which were water saturated causing no recoveries or recoveries of 40-70% in some sample intervals.

13 SAMPLE PREPARATION, ANALYSIS AND SECURITY

Sample preparation, analysis and security for historic drilling on the Property are described in historic reports and are presented below. There is no information on sample preparation, analysis and security for data collected in 2000, and information is limited for 1981 and 1986-1987. The data is believed to have been collected in a careful and conscientious manner and in accordance with the standards set out at the time the work was completed.

13.1 1981 Program

A total of 1236 samples were collected by WGM from the 1981 tailings drill program (Lalande, 1981). All samples were sent to Bell-White Analytical Laboritories Limited, Haileybury, Ontario. All tailings samples were analyzed using a combined fire assay/atomic absorption analysis procedure. All samples were crushed to ¼" size and split down to a lb. Crushed material is then pulverized to -100 mesh size and then rolled to obtain a homogeneous sample. A sample of 14-15 grams is then collected for processing.

Fire assaying concentrate silver involved mixing the sample with an appropriate flux rich in PbO, melting at about 1,150°C, pouring into a conical mold, physical separation of an argentiferous lead button, and partial cupellation of the lead button to remove most of the lead. The reduced lead button is dissolved in HNO3 followed by aqua regia and dried. The residue is dissolved in alkaline potassium cyanide and the silver content determined by atomic absorption spectrometry.

Sensitivity of the method is 0.02 oz/ton. Precision at 0.1 oz/ton is said to be \pm 15%, and at 1.0 oz/ton, \pm 3.0%. The accuracy is said to suffer only slightly at more than 4 oz/ton due to partial cupellation of the lead button.

13.2 1986-1987 Program

A total of Forty-four samples were taken in the August, 1986 program and analyzed by Witteck Development Inc. Four hundred and thirteen samples were taken in the 1987 program and sent for analysis to Bell White Analytical Laboratories Ltd. in Haileybury. To check the assaying a composite sample was prepared by Witteck and assayed then and by Bell White and also by Bondar Clegg & Company Ltd. The correlation between these results was acceptable and the assays by Bell White are considered to be within generally accepted limits for silver.

14 DATA VERIFICATION

Data verification for historic drilling completed in 1981 on the Property is described in historic reports and is presented below. There is no data verification information for the drilling completed in 1986-1987 and 2000. The data is believed to have been collected in a careful and conscientious manner and in accordance with the standards set out at the time the work was completed.

14.1 Drill Collar Locations

Surveying of drill collar locations for the 1981 tailings drill program was carried out by Mr. W. C. Hammerstron, a consulting geologist, and Mr. J. Rae of WGM (Lalande, 1981). The surveying was based on an old established grid, from which four stations were used as starting points.

All tailings drill holes were surveyed by theodolite and stadia. A Sokisha 7520 Theodolite was used and distances were measured by chain or stadia. A 100 foot grid was established and marked to provide locations for all proposed drive-pipe holes in the main tailings pile.

For the tailings areas, the perimeter was surveyed and elevations recorded for preparation of topographic maps.

14.2 Check Assays

WGM conducted check assays on approximately 10% of samples from tailings samples (Lalande, 1981). Pulp rejects of approximately 109 tailing samples were sent to Lakefield Research of Canada, who analyzed them by atomic absorption. Silver was determined by direct atomic absorption after dissolution in concentrate nitric acid.

On analyses of tailings material, Lakefield averaged 1.78 oz/ton and Bell-White 1.46 oz/ton. The difference of 22% may be related to the difference in the analytical method and the presence of free silver. The sample size treated in fire assay is 28 times that used for atomic absorption analysis, which greatly reduces the influence of free silver, and that there is a small loss of silver during cupellation. The presence of free silver could easily account for an additional 10%.

The difference in assay results between Lakefield and Bell-White was considered large so WGM had additional checks performed at Bondar-Clegg and Company Limited. A total of 91 pulp rejects were transferred from Lakefield. When received, samples were screened and pulverized to pass a -150 mesh sieve size. A standard fire assay technique using $\frac{1}{2}$ assay ton of sample was employed on a homogenized sample. The precision of this technique was found to be at 0.1 oz/ton ± 30%, at 1.0 oz/ton ± 5.0%. The accuracy suffers at the higher levels, i.e. above 3.5 oz/ton Ag due to a phenomenon known as silver loss.

In addition Bondar-Clegg selected 10 sample to be analyzed by atomic absorption. Samples analyzed by atomic absorption were found to be 12% higher in average silver than the samples analyzed by fire assay.

15 ADJACENT PROPERTIES

There is no information on adjacent properties necessary to make the technical report understandable and not misleading.

16 METALLURGICAL TESTING

Temex completed sampling of the tailings deposits and subsequent metallurgical test work on the silver recoveries at the Project in 2007. The sampling and test work was conducted under the guidance of Metals Finance, utilizing Metsolve Laboratories ("Metsolve") in Burnaby, British Columbia. Metsolve is a 50:50 joint venture between Metals Finance Corp. and Falcon Concentrators Inc.

Preliminary auger samples of the tailings were taken in June 2006 in order to verify previous results and to initiate metallurgical test work on silver recoveries. Follow-up sampling at the same sites in November 2006 was taken to replenish the metallurgical samples being tested at Metsolve. The test batches of samples demonstrated excellent repeatability and confirmed silver grades ranging from 140-150 grams per tonne (up to 4.4 ounces per ton) at Site #1, 60-70 grams per tonne (up to 2.1 ounces per ton) at Site #2 and 130-140 grams per tonne (up to 4.1 ounces per ton) at Site #3. The sample sites occur within 220 metres of each other. The results from Site #1 showed the highest variability with sub samples ranging from 122.4 grams per tonne to 185.8 grams per tonne. The larger variability in the higher grade sample is attributable to the presence of coarse native silver which creates a nugget effect. This was noted in a 2000 report by Overburden Drilling Management which identified coarse silver from several samples taken during a confirmation sampling program. That report suggested that larger samples would reduce the nugget effect and that the probability of collecting coarse silver would increase with larger sample sizes in certain areas of the tailings.

Test work on Temex – Gowganda silver tailings samples had shown that pre-oxidation of the bulk tailings material using a halide oxidant followed by leaching via sodium thiosulfate can achieve silver recoveries in excess of 80%. This approach provides a better processing route than gravity concentration, which yielded low silver recoveries and flotation which yielded high recoveries but an unsalable low grade concentrate product.

The preliminary test work was carried out using a commercial halide oxidant similar to the type used in the swimming pool industry to test the concept. Based on the preliminary work, a more detailed study of this approach has been completed.

One of the primary objectives of the test program was to generate this oxidant with a solution of 50 g/l and 3 g/l of NaCl and NaBr using an electrochemical cell.

The electrochemical generation of the oxidant was varied to test the impact of oxidant concentration on Ag recovery. The tailings were placed in the oxidant solution for 30 minutes and were initially tested with no electrochemical treatment (AB103) as a baseline, and this achieved 13% Ag recovery to solution when it was subsequently treated with a 30 g/l sodium thiosulphate solution for 30-40 minutes. Two tests were done using similar parameters but at an oxidant concentration of 326 ppm (AB104 and AB105) and achieved 49.6% and 56% Ag recovery. Tests AB101 and AB102 used oxidant concentrations of 733 ppm and 886 ppm and achieved Ag recoveries of 77.2% and 82.0% respectively with the thiosodium solution. High silver recoveries were achieved in the thiosulfate leach tests where sufficient oxidant was used prior to leaching. These results were very encouraging, and the recovery curves suggest higher Ag recoveries may be possible at higher oxidant concentrations.

The final step in the process recovers the silver out of the thiosulfate solution. There were a number of approaches reviewed that have been employed to recover silver out of solution (such as electrowinning or silver precipitation/cementation). Cementation of silver, sometimes referred to as metal replacement, was chosen as being technically and practically simpler. The metal replacement was carried out by contacting the pregnant silver thiosulfate solution with 4.1 grams and 6.0 grams of steel wool causing the silver to drop out of solution as a solid. The silver was readily removed from solution using this approach, with both tests achieving 97.2% to 99.5% recovery respectively in 45 minutes. Based on the tests it is presumed that larger amounts of steel wool will result in more rapid precipitation of the Ag. This method of recovering Ag from the tailings is a great improvement over the previous gravity methods and has potential for sizing to a commercial level.

17 MINERAL RESOURCE ESTIMATE

GeoVector Management Inc. (GeoVector) of Ottawa, Ontario and Vancouver, B.C., has been contracted by Temex to provide a resource estimate for the surface tailings on the Property. Temex provided GeoVector with a complete Gemcom (6.1.4) database for the tailings, which included a drill hole database and wireframe models of the tailings. This data was imported into GeoVector's version of Gemcom (version 6.3). To complete the resource estimate of the tailings GeoVector assessed the raw database, the available written reports, and the resource modeling data that was available. Based on this review, GeoVector formulated a methodology to generate the resource estimate.

The mineral resource was estimated by Armitage and Campbell of GeoVector. Armitage and Campbell are independent Qualified Persons as defined by NI 43-101. Practices consistent with CIM (2005) were applied to the generation of the resource estimate. There are no mineral reserves estimated for the Property at this time.

The Mineral Resource estimate discussed in this section is based on 755 auger, drive pipe and sonic drill holes. These holes were drilled and assayed in three campaigns, including 1981 (571 holes), 1986 (152 Sonic holes), and 2000 (32 sonic holes).

Inverse distances squared interpolation restricted to mineralized domains were used to estimate silver grades (g/t Ag) into the block models. An Indicated Mineral Resource is reported in summary tables in Section 17.9 below, consistent with CIM definitions required by NI 43-101 (CIM, 2005).

17.1 Drill File Preparation

The drill assay database was examined for errors, including overlaps and gaps within intervals, typographical errors in assay values, and supporting information on source of assay values. Approximately 30% of the assay data was checked against data in logs and assay certificates in historic reports. Generally the database was in good shape, and after minor corrections no adjustments were required to assay values.

Verifications were also carried out on drill hole locations, down hole surveys, lithology, specific gravity (SG), and topography information. No corrections were done to this information and the data in the Gemcom database provided by Temex was found to be in excellent condition. The data was accepted as is.

17.2 Resource Modelling and Wireframing

For the tailings resource estimate, the resource model provided by Temex was imported into Gemcom GEMS 6.3 Software. The model was examined in cross section to confirm the wireframe honored the drill hole elevation, lithology and assay data. Only minor revisions were made to the original model. Figures 6 and 7 below show isometric views of the tailings model.

17.3 Composites

A total of 1,990 assay samples make up the drill database. The average width of the sample intervals is 1.47 meters, within a range of 0.3 meters to 6.1 meters. Of the total assay population 91% were 1.53 metres or less and only 4% of the assays were greater than 2 meters. Simple statistics of grade range and mean grade were carried out as an initial assessment of tenor of mineralization and this was used to help guide grade models for the resource estimate.

As the average length of the sample intervals within the database is 1.47 metres, a 1.5 metre composite length is used for the resource. Composites were generated starting from the collar of each hole and totalled 2,505. The composites were then domained based on whether they intersected the ore model, and a total of 2,425 1.5 metre composite sample points occur within the resource model. These values were used to interpolate grade into the resource model.

FIGURE 6 Isometric view looking north showing the Gowganda tailings deposit and drill hole locations

FIGURE 7 Isometric view (zoomed in; see Figure 6) looking north showing the Gowganda tailings deposit and drill hole locations

17.4 Grade Capping

Grade distribution in both the samples and the composites within the drill database were analyzed.

Composites were separated into waste or mineralization based on if they intersected the resource model. A total of 2,388 composite sample points occur within the resource model. These sample points were used to interpolate grade into their respective resource blocks.

Based on a statistical analysis of the composite database, it was decided that no capping was required on the composite populations to limit high values. Descriptive statistics of the composited silver values are shown in Table 3. Histograms of the data indicate a relatively log normal distribution with very few outliers within the database. Analyses of the spatial location of higher grade samples, (>200 g/t Ag) and the sample values proximal to them led GeoVector to believe that the high values were legitimate parts of the population, and that the impact of including these high composite values uncut would be negligible to the overall resource estimate.

TABLE 3Summary of the drill hole composite data within the resource model.

Variable	Ag (g/t)
Number of samples	2388
Minimum value	0.0
Maximum value	343.5
Mean	49.7
Median	41.1
Variance	1117
Standard Deviation	33.4
Coefficient of variation	0.67
99.5 Percentile	194

17.5 Specific Gravity

There are no recent specific gravity (SG) determinations for the tailings. Estimates of the SG of the different materials within the tailings were previously completed by Canadian Lancourt Mines (Ekstrom, 1987). Eleven samples were collected in an attempt to define the specific gravity of the tailings deposit. Samples were taken using a Vibra Corer Drill in drier areas and with an ice auger in low wet areas.

The average of five samples in the hard packed sand was 2.40 t/m³ and in low wet slimey areas was 1.50 t/m³. An average for mixed material was calculated to be 1.97 t/m³ based on an approximate ratio of sand to wet slimes. The resource sample database is made up of sandy, slimey and mixed material. Based on the ratio of samples of each type of material within the database, an average SG of 2.12 t/m³ is applied to all blocks within the block model.

17.6 Block Modeling

For the tailings resource estimate, a block model was constructed using 4 m x 4 m x 1 m blocks in the x, y, and z direction respectively. The block model area was created within NAD83 UTM space with an origin at 518550E, 5280050N, at an elevation of 430m above sea level and rotated -60 degrees. Grades for silver were interpolated into the blocks by the inverse distance squared method using a minimum of 4 and maximum of 20 composites (within a minimum of two drill holes) to generate block grades in the Indicated category.

Based on 3D semi-variography analysis of mineralized points within the resource model, the size of the search ellipse was set at 42 m x 42 m x 3 m in the x, y, z direction respectively for the Indicated resource. The Principal azimuth is oriented at 155°, the Principal dip is oriented at 0° and the Intermediate azimuth is oriented at 65°.

17.7 Model Validation

For the tailings resource the volume of the block model was essentially identical to the volume of the wireframe model. The size of the search ellipse and the number of samples used to interpolate grade achieved the desired effect of assigning a grade to each of the resource model blocks. Very few blocks were assigned a zero grade.

At a zero cut-off grade the cumulative total of the resource model contains 2.07 million tonnes @ 44.5 g/t Ag, (Table 4). This average grade is slightly lower than the composite average Ag grade within the model

(49.7 g/t Ag). This is likely due to the increased sampling density in the core of the higher grade tailings area.

Visual checks of the block model grades against the drill hole intersections showed that, as expected, the grades in the blocks proximal to the drill holes were very similar to drill hole grades. Comprehensive observations along 10 metre section lines did not indicate that, overall, there was any positive or negative bias to these blocks that would skew the global resource grade.

17.8 Resource Classification

The tailings Mineral Resource estimate is classified in accordance with the CIM Definition Standards (2005). As a result of the extensive drilling that has been completed on the tailings, it is considered that there is sufficient drill density and confidence in the distribution of Ag within the tailings deposit to classify the entire deposit as Indicated.

17.9 Resource Reporting

The grade and tonnage estimates contained herein are classified as Indicated given CIM definition Standards for Mineral Resources and Mineral Reserves (2005). As such, it is understood that:

 An 'Indicated Mineral Resource' is that part of a Mineral Resource for which quantity, grade or quality, densities, shape and physical characteristics can be estimated with a level of confidence sufficient to allow the appropriate application of technical and economic parameters, to support mine planning and evaluation of the economic viability of the deposit. The estimate is based on detailed and reliable exploration and testing information gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings and drill holes that are spaced closely enough for geological and grade continuity to be reasonably assumed.

Mineralization may be classified as an Indicated Mineral Resource by the Qualified Person when the nature, quality, quantity and distribution of data are such as to allow confident interpretation of the geological framework and to reasonably assume the continuity of mineralization. The Qualified Person must recognize the importance of the Indicated Mineral Resource category to the advancement of the feasibility of the project. An Indicated Mineral Resource estimate is of sufficient quality to support a Preliminary Feasibility Study which can serve as the basis for major development decisions.

A Review of the modeled blocks at various cut-off grades indicates a contiguous ore body at the 10.0 g/t silver cut-off grade. The resource estimate for the tailings piles at a silver cut-off grade of 10.0 g/t is ~1,940,000 tonnes grading 47.5 g/t silver for ~2,960,000 contained ounces of silver in an Indicated category. Results at various silver cut-off grades are tabulated below. For the resource, metallurgical recoveries are assumed to be 100%.

TABLE 4Indicated Mineral Resource Estimate for the Gowganda TailingsDeposit at various Silver Cutoff grades

Cut-off Grade	Tannaa	Silver			
(Silver g/t)	Tonnes	Grade (g/t)	Ozs		
(<1.0 g/t)	2,071,233	44.5	2,962,154		
1.0 g/t	1,951,169	47.2	2,962,145		
5.0 g/t	1,946,465	47.3	2,961,665		
10 g/t	1,937,520	47.5	2,959,487		
20 g/t	1,903,081	48.1	2,941,810		
30 g/t	1,743,690	50.1	2,806,483		
40 g/t	1,112,423	58.2	2,083,075		
50 g/t	530,752	73.5	1,254,939		
100 g/t	72,063	135.4	313,707		
200 g/t	5,222	229.5	38,538		

18 OTHER RELEVANT DATA AND INFORMATION

There is no other relevant data or information available that has not been included in this report.

19 INTERPRETATION AND CONCLUSIONS

In April 2006, Temex completed the acquisition of the Miller Lake O'Brien Silver Property, including the Miller Lake O'Brian Mine and associated tailings deposits, and related assets and facilities from Sandy K. Mines Limited, a private Ontario corporation.

Published and unpublished data indicate that in excess of 1.35 million tons of rock was hoisted to the surface, milled, and treated by flotation for native silver recovery, and disposed of in tailings piles (Laland, 1981). Mill recovery of silver was reported as being ~95% for high grade ore (>50 oz/ton) and about 85-90% for low grade ore (10-20 oz/ton). The overall average grade of the ore milled on the property was 27 oz/ton; at ~ 95% recovery, some 1.3 -1.4 oz/ton ended up in the tailings. There were indications that some 1.5 million tons of tailings left on the property may contain more than 2.0 million ounces of silver. This led to a number of drill programs over the next 20 years to evaluate the silver resource in the tailings and the recoverability of the silver. Watts, Griffis and McOuat Limited, in 1986 estimated the tailings to contain 1.827 million tons grading 1.43 ounces per ton silver.

In the summer of 2006, Temex completed initial sampling of the tailings deposits and subsequent metallurgical test work on the silver recoveries. The Temex metallurgical test work on the silver tailings samples shows that pre-oxidation of the bulk tailings material using a halide oxidant followed by leaching via sodium thiosulfate can achieve silver recoveries in excess of 80%.

In 2011, Temex commissioned GeoVector to complete a NI 43-101 compliant resource estimate on the tailings deposit. The 2011 mineral resource estimate is based on 764 auger, drive pipe and sonic drill holes (3,012 metres) and 2,039 assay values. Drilling of tailings was conducted in 1981, 1987 and 2000. The resource estimate is categorized as indicated as defined by the CIM guidelines for resource reporting. Mineral resources do not demonstrate economic viability, and there is no certainty that the mineral resource will be converted into mineable reserves once economic considerations are applied.

The resource estimate for the tailings piles at a silver cut-off grade of 10.0 grams per tonne ("g/t") is \sim 1,940,000 tonnes grading 47.5 g/t silver for \sim 2,960,000 contained ounces of silver in an Indicated category.

20 RECOMMENDATIONS

20.1 Program

It is recommended that a 'project concept' study be performed to ascertain the possibility of the Gowganda tailings being economically processed to recover silver. This study would be a simple desk top assessment using currently available information, and would provide a recommendation on whether there is sufficient encouragement to proceed with a scoping level economic study.

Assuming a positive outcome of the concept, the scoping study would include the following:

- 1. Additional metallurgical studies of the tailings to collect and test a larger sample of tailings material that is representative of average grade and representative of the spatial distribution of tailings. This material would be subjected to pre oxidation using a halide oxidant with a solution of NaCl and NaBr using an electrochemical cell with subsequent thiosulfate leaching and silver precipitation/cementation of the leachate using steel wool. The overall goal would be to test a range of conditions to provide optimal Ag recovery method; consumption levels of chemicals; and preliminary flow-sheet design to allow operating and capital costing estimates for a commercial sized plant.
- 2. Studies of tailings material kinetics and geometry of tailings area to allow development of concepts of tailings extraction processes (mining) with sufficient detail to create conceptual line drawing level design and estimation of operating and capital cost for a commercial sized plant.
- 3. Studies of local infrastructure, topography and geomorphology to allow line drawing level design of plant infrastructure and estimation of operating and capital cost for the onsite infrastructure.
- 4. Preliminary assessment of environmental issues, including initial sampling of drainage from the tailings area and ARD assessment, and preliminary scheduling of the baseline work necessary to meet permitting requirements, and the impact these issues have on overall project scheduling and cost.
- 5. Development of conceptual scheduling for construction, operation and closure, and the associated cash flow. This will be used to determine project feasibility by applying appropriate metal prices for recoverable elements (Ag plus Au).

Following a positive scoping study the project could be quickly moved into the feasibility stage. This would require:

- 1. Additional drilling and sufficient specific gravity testing to allow a reasonable amount of tonnage to be elevated to the measured resource/proven reserve and/or drill indicated resource/probable reserve categories to cover initial construction and working capital requirements.
- 2. Additional metallurgical work to optimize the plant flow sheet
- 3. Environmental baseline studies
- 4. Detailed engineering of plant, mining extraction process, infrastructure, materials sourcing and scheduling, detailed construction scheduling, tailings disposal and rehabilitation, and costing
- 5. Detailed cashflow modeling

20.2 Budget

It is estimated that the "concept study' would cost \$5,000. Assuming a positive outcome the additional metallurgical studies required for the scoping study are estimated to cost \$65,000, and the additional field studies associated with the scoping study (environmental sampling, tailing kinetics, surveying) are estimated to cost \$35,000, The scoping study reporting is estimated to cost \$100,000 for a total cost of \$200,000.

Assuming a positive scoping study a feasibility study and the related field studies are estimated to cost between \$500,000-\$750,000 dependent on the amount of field studies (drilling, environmental baseline, geotechnical) that would be required to meet feasibility requirements.

21 REFERENCES

- Bennett, G., Dressler, B.O., Robertson, J.A., 1991. The Huronian Supergroup and Associated Intrusive Rocks; *in* Geology of Ontario, Ontario Geological Survey, Special Volume 4, Part 1, Ministry of Northern Development and Mines.
- Corfu, F., Andrews, A., 1986. A U-Pb age for mineralized Nipissing diabase, Gowganda, Ontario. Canadian Journal of Earth Sciences, V.23.
- Ekstrom, Robert L.V., 1987. Report on Sampling, Sandy K Tailings for Canadian Lancourt Mines Lt. Unpublished Report, 31 p.
- Fahrig, W. F., 1987. The tectonic setting of continental mafic dike swarms: failed arms and early passive margins; *in* Mafic Dike Swarms, Geological Association of Canada, Special Paper 34.
- Fyon, J.A., Jackson, S. L., Garland, M.I., Easton, R. M., 1991, Metallogeny of the Proterozoic Eon, Northern Great Lakes Region, Ontario; *in* Geology of Ontario, Special Volume 4, Part 2, Chapter 23, pages 1198-1200
- Fairbairn, H.W., Hurley, P.W., Card, K.D., Knight, C. J., 1969. Correlation of Radiometric Ages of Nipissing Diabase and Huronian Metasediments with Proterozoic Orogenic Events in Ontario. Canadian Journal Earth Science, v. 6, p. 489-497.
- Hester, B.W., 1999. Report on the Property of Sandy K Mines Limited near Gowganda, Ontario, N.T.S. 41P/10, Prepared for: Sandy K Mines Limited. Brian W. Hester M.A.Sc., P.Eng., Ontario registration No. 19438019, Ontario.
- Hester, B. W., 2006. Draft Report Incomplete: Report on the Property of Sandy K Mines Limited Near Gowganda, Ontario. N.T.S.: 41P/10.
- Jackson, S.L., Fyon, J.A., 1991. The Western Abitibi Subprovince in Ontario; *in* Geology of Ontario, Ontario Geological Survey, Special Volume 4, Part 1.
- Lalande, P.G., 1981. Sandy K Mines Limited, Gowganda Project, Volume 1 of 5, Report Text. Watts, Griffis and McOuat Limited Consulting Geologists and Engineers, Toronto, Canada.
- Ministry of Northern Development and Mines, 2007. Geology of the Kirkland Lake District; Potential "New Gold Camp" In Lake Abitibi Area. (website-http://www.mndm.gov.on.ca/mndm/mines/ resgeol/northeast/kirkland_lake/geo_e.asp).
- McIlwaine, W. H., 1978. Geology of the Gowganda Lake Miller Lake Silver Area; Ontario Geological Survey Report 175.

- Moore, E. S., 1956. Geology of the Miller Lake Portion of the Gowganda Silver Area; Ontario Dept. Mines, v.64.
- Pearson, W.N., 1999. Memo on Gravity Testwork on a Gowganda Tailing Sample for Silver Recovery, November, 1999.

Pearson, W.N.. 2000. Gravity Concentration Study on the Sandy K Silver Tailing, January 2000, 47 p.

Pearson, W.N., 2000. Memo on the Sandy K Mines Ltd. Tailings drill program, May 2000.

Pearson, W. N. and Leigh, O. E., 1984. Report on the Sandy K Mines Limited Gowganda Silver-Cobalt Property.

Smethurst, M., Ronacher, E., and Wetherup, S., 2007. Report on 2006 Drilling, Gowganda Silver Property Gowganda, Ontario, Canada for Temex Resources Corp.. (internal drill report) 112 p.

22 CERTIFICATES OF AUTHORS - DATED AND SIGNATURES

QP CERTIFICATE – JOE CAMPBELL

- I, Joe Campbell, B.Sc (HON), P. Geo. of #10 Barrhaven Crescent, Ottawa, Ontario, hereby certify that:
- 1. I am currently a consulting geologist with GeoVector Management Inc., 10 Green Street Suite 312 Ottawa, Ontario, Canada K2J 3Z6
- 2. I am a graduate of Acadia University having obtained the degree of Bachelor of Science Honours in Geology in 1980.
- 3. I have been continuously employed as a geologist since September of 1980. Since 1980 I have worked on, and been project manager, for advanced exploration programs for resource and reserve definition and reporting, economic scoping, pre-feasibility and feasibility studies as study manager, and mine development and mine operations as chief geologist. I have extensive experience in gold and silver (epithermal and mesothermal), copper, zinc, hickel (sulphide and laterite) and uranium deposits. I have performed resource and reserve estimating in all these commodities.
- 4. I am a member of the Association of Professional Geologists of Ontario and use the title of Professional Geologist (P.Geo.).
- 5. I have read the definition of "Qualified Person" set out in National Instrument 43-101 ("NI 43-101") and certify that by reason of my education, affiliation of my professional association and past relevant work experience, I fulfill the requirements to be a "Qualified Person" for the purposes of NI 43-101.
- 6. I am responsible for sections 14-17, including Mineral Resource Estimate of the Technical Report.
- 7. I have not examined the Gowganda project in the field.
- 8. I have no prior involvement with the property that is the subject of the Technical Report.
- 9. I am independent of Temex Resources Corp. as defined by Section 1.4 of NI 43-101.
- 10. As of the date of this certificate, to the best of my knowledge, information and belief, the Technical Report contains all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.
- 11. I have read NI 43-101 and Form 43-101F1 (the "Form"), and the Technical Report has been prepared in compliance with NI 43-101 and the Form.
- 12. I consent to the filing of the Technical Report with and stock exchange and other regulatory authority and any publication by them, including electronic publication in the public company files on their websites accessible by the public, of the Technical Report.

Signed and dated this 8th day of July, 2011 at Vancouver, British Columbia.

Joe Campbell Ŕ Geo

QP CERTIFICATE – ALAN SEXTON

To Accompany the Report titled Gowganda Silver Project Including a Resource Estimate of the Surface Tailings Deposit, Gowganda, Ontario, dated July 8th, 2011 (the "Technical Report")

I, Alan J. Sexton, M. Sc., P. Geo. of, 41 Barrhaven Crescent, Nepean, Ontario, hereby certify that:

- 1. I am currently a consulting geologist with GeoVector Management Inc., 10 Green Street Suite 312 Ottawa, Ontario, Canada K2J 3Z6
- I am a graduate of Saint Marys University having obtained the degree of Bachelor of Science – Honours in Geology in 1982.
- 3. I am a graduate of Acadia University having obtained the degree of Masters of Science in Geology in 1988.
- 4. I have been employed as a geologist for every field season (May October) from 1979 to 1984. I have been continuously employed as a geologist since May of 1985.
- 5. I have been involved in mineral exploration for gold, copper, lead, zinc, nickel, uranium, tin and tungsten in Canada and the United States at the grass roots to advanced exploration stage.
- 6. I am a member of the Association of Professional Geoscientists of Ontario (P. Geo.).
- I have read the definition of "Qualified Person" set out in National Instrument 43-101 ("NI 43-101") and certify that by reason of my education, affiliation of my professional association and past relevant work experience, I fulfill the requirements to be a "Qualified Person" for the purposes of NI 43-101.
- 8. I am responsible for sections 1 to 13, Mineral Resource Estimate of the Technical Report".
- 9. I examined the Gowganda project in the field.
- 10. I have no prior involvement with the property that is the subject of the Technical Report.
- 11. I am independent of Temex Resources Corp. as defined by Section 1.4 of NI 43-101.
- 12. As of the date of this certificate, to the best of my knowledge, information and belief, the Technical Report contains all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.
- 13. I have read NI 43-101 and Form 43-101F1 (the "Form"), and the Technical Report has been prepared in compliance with NI 43-101 and the Form.
- 14. I consent to the filing of the Technical Report with and stock exchange and other regulatory authority and any publication by them, including electronic publication in the public company files on their websites accessible by the public, of the Technical Report.
- 15. Signed and dated this 8th day of July, 2011 at Nepean, Ontario

Alan sexton, M.

QP CERTIFICATE – ALLAN ARMITAGE

I, Allan E. Armitage, Ph. D., P. Geol. of #35, 1425 Lamey's Mill Road, Vancouver, British Columbia, hereby certify that:

- 1. I am currently a consulting geologist with GeoVector Management Inc., 10 Green Street Suite 312 Ottawa, Ontario, Canada K2J 3Z6
- 2. I am a graduate of Acadia University having obtained the degree of Bachelor of Science Honours in Geology in 1989.
- 3. I am a graduate of Laurentian University having obtained the degree of Masters of Science in Geology in 1992.
- 4. I am a graduate of the University of Western Ontario having obtained a Doctor of Philosophy in Geology in 1998.
- 5. I have been employed as a geologist for every field season (May October) from 1987 to 1996. I have been continuously employed as a geologist since March of 1997.
- 6. I have been involved in mineral exploration for gold, silver, copper, lead, zinc, nickel, uranium and diamonds in Canada, Mexico, Honduras, and the Philippines at the grass roots to advanced exploration stage, including resource estimation since 1991.
- 7. I am a member of the Association of Professional Engineers, Geologists and Geophysicists of Alberta and use the title of Professional Geologist (P.Geol.).
- I have read the definition of "Qualified Person" set out in National Instrument 43-101 ("NI 43-101") and certify that by reason of my education, affiliation of my professional association and past relevant work experience, I fulfill the requirements to be a "Qualified Person" for the purposes of NI 43-101.
- 9. I am responsible for sections 14-17, including Mineral Resource Estimate of the Technical Report.
- 10. I have not examined the Gowganda project in the field.
- 11. I have no prior involvement with the property that is the subject of the Technical Report.
- 12. I am independent of Temex Resources Corp. as defined by Section 1.4 of NI 43-101.
- 13. As of the date of this certificate, to the best of my knowledge, information and belief, the Technical Report contains all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.
- 14. I have read NI 43-101 and Form 43-101F1 (the "Form"), and the Technical Report has been prepared in compliance with NI 43-101 and the Form.
- 15. I consent to the filing of the Technical Report with and stock exchange and other regulatory authority and any publication by them, including electronic publication in the public company files on their websites accessible by the public, of the Technical Report.

Signed and/dated this 8th day of July/2011 at Vancouver, British Columbia. 11 Allan Armitage, P.Geol, PHD

23 ADDITIONAL REQUIREMENTS FOR TECHNICAL REPORTS ON DEVELOPMENT PROPERTIES & PRODUCTION PROPERTIES

The Property is currently at an exploration stage. Consequently, there is no information applicable to this section of the Technical Report.

APPENDIX I

Listing of Drill Holes used in the Gowganda Tailings Resource

HOLE-ID	EASTING	NORTHING	ELEVATION	LENGTH	TYPE	YEAR	AZIMUTH	DIP
DP-001	519479	5279916	406.1	16.15	PIPE	1981	360	-90
DP-002	519506	5280034	399.7	5.64	PIPE	1981	360	-90
DP-003	519461	5280107	396.9	6.10	PIPE	1981	360	-90
DP-004	519374	5280003	398.2	7.47	PIPE	1981	360	-90
DP-005	519404	5279871	401.0	7.62	PIPE	1981	360	-90
DP-006	519354	5279789	398.1	6.10	PIPE	1981	360	-90
DP-035	519495	5279616	393.5	11.70	PIPE	1981	360	-90
DP-040	519391	5279812	398.4	8.23	PIPE	1981	360	-90
DP-044	519419	5279930	402.8	8.38	PIPE	1981	360	-90
DP-047	519434	5279989	401.6	6.10	PIPE	1981	360	-90
DP-048	519494	5279975	403.7	8.23	PIPE	1981	360	-90
DP-049	519447	5280048	399.0	7.01	PIPE	1981	360	-90
DP-057	519468	5280137	396.1	5.33	PIPE	1981	360	-90
DP-060	519491	5280101	397.3	7.47	PIPE	1981	360	-90
DP-061	519521	5280094	397.5	1.52	PIPE	1981	360	-90
DP-062	519513	5280064	398.9	7.77	PIPE	1981	360	-90
DP-064	519454	5280078	398.0	6.10	PIPE	1981	360	-90
DP-071	519501	5280005	402.1	5.70	PIPE	1981	360	-90
DP-073	519441	5280019	400.7	6.40	PIPE	1981	360	-90
DP-082	519367	5279971	398.8	6.40	PIPE	1981	360	-90
DP-085	519426	5279957	402.6	7.32	PIPE	1981	360	-90
DP-093	519389	5279936	401.1	7.32	PIPE	1981	360	-90
DP-097	519413	5279900	401.8	8.69	PIPE	1981	360	-90
DP-105	519398	5279841	399.2	8.38	PIPE	1981	360	-90
DP-113	519384	5279782	398.8	7.13	PIPE	1981	360	-90
DP-114	519413	5279775	397.8	4.57	PIPE	1981	360	-90
HA-001	519660	5279295	390.7	4.57	AUGER	1981	360	-90
HA-002	519641	5279332	390.7	4.57	AUGER	1981	360	-90
HA-003	519660	5279350	391.6	4.57	AUGER	1981	360	-90
HA-004	519626	5279359	391.1	4.57	AUGER	1981	360	-90
HA-005	519617	5279375	390.7	4.57	AUGER	1981	360	-90
HA-006	519602	5279388	390.7	4.57	AUGER	1981	360	-90
HA-007	519531	5279510	390.7	1.52	AUGER	1981	360	-90
HA-008	519532	5279531	390.7	4.57	AUGER	1981	360	-90
HA-009	519524	5279547	391.0	4.57	AUGER	1981	360	-90
HA-010	519516	5279560	391.5	4.57	AUGER	1981	360	-90
HA-011	519509	5279573	391.9	4.57	AUGER	1981	360	-90
HA-012	519493	5279604	393.3	4.57	AUGER	1981	360	-90
HA-013	519477	5279631	393.9	4.57	AUGER	1981	360	-90
HA-014	519461	5279660	394.1	4.57	AUGER	1981	360	-90
HA-015	519446	5279686	394.6	4.57	AUGER	1981	360	-90
HA-016	519425	5279733	396.2	3.05	AUGER	1981	360	-90
HA-017	519398	5279777	398.7	4.12	AUGER	1981	360	-90
HA-018	519407	5279809	398.9	4.57	AUGER	1981	360	-90
HA-019	519414	5279840	400.0	4.57	AUGER	1981	360	-90
HA-020	519422	5279870	401.8	3.66	AUGER	1981	360	-90
HA-021	519430	5279903	403.1	4.57	AUGER	1981	360	-90

HA-022	519438	5279934	404.1	4.57	AUGER	1981	360	-90
HA-023	519446	5279967	403.0	4.57	AUGER	1981	360	-90
HA-024	519453	5279995	401.9	4.57	AUGER	1981	360	-90
HA-025	519459	5280024	400.8	4.57	AUGER	1981	360	-90
HA-026	519467	5280053	399.0	4.57	AUGER	1981	360	-90
HA-027	519474	5280082	398.1	4.57	AUGER	1981	360	-90
HA-028	519481	5280111	396.9	4.57	AUGER	1981	360	-90
HA-029	519489	5280141	396.0	4.57	AUGER	1981	360	-90
HA-030	519464	5280165	396.0	3.05	AUGER	1981	360	-90
HA-031	519459	5280149	395.9	3.05	AUGER	1981	360	-90
HA-032	519452	5280119	396.4	4.57	AUGER	1981	360	-90
HA-033	519445	5280089	397.4	4.57	AUGER	1981	360	-90
HA-034	519437	5280059	398.5	4.57	AUGER	1981	360	-90
HA-035	519430	5280031	399.7	4.57	AUGER	1981	360	-90
HA-036	519423	5280001	400.9	4.57	AUGER	1981	360	-90
HA-037	519416	5279972	401.4	4.57	AUGER	1981	360	-90
HA-038	519407	5279942	402.0	4.57	AUGER	1981	360	-90
HA-039	519400	5279912	401.1	4.57	AUGER	1981	360	-90
HA-040	519393	5279883	400.4	4.57	AUGER	1981	360	-90
HA-041	519386	5279853	399.5	4.57	AUGER	1981	360	-90
HA-042	519378	5279824	398.2	4.57	AUGER	1981	360	-90
HA-043	519371	5279794	398.8	4.57	AUGER	1981	360	-90
HA-044	519364	5279766	398.2	4.57	AUGER	1981	360	-90
HA-045	519334	5279774	397.4	4.57	AUGER	1981	360	-90
HA-046	519345	5279815	397.6	4.57	AUGER	1981	360	-90
HA-047	519349	5279829	397.4	2.59	AUGER	1981	360	-90
HA-048	519356	5279858	398.2	2.59	AUGER	1981	360	-90
HA-049	519363	5279888	399.0	4.42	AUGER	1981	360	-90
HA-050	519373	5279919	399.6	4.57	AUGER	1981	360	-90
HA-051	519377	5279948	400.2	4.12	AUGER	1981	360	-90
HA-052	519385	5279978	399.6	4.57	AUGER	1981	360	-90
HA-053	519392	5280008	398.8	4.57	AUGER	1981	360	-90
HA-054	519400	5280038	398.0	4.57	AUGER	1981	360	-90
HA-055	519407	5280068	397.2	4.57	AUGER	1981	360	-90
HA-056	519413	5280097	396.6	4.27	AUGER	1981	360	-90
HA-057	519421	5280127	396.2	2.74	AUGER	1981	360	-90
HA-058	519428	5279770	397.3	3.05	AUGER	1981	360	-90
HA-059	519435	5279800	398.2	3.96	AUGER	1981	360	-90
HA-060	519443	5279829	400.2	4.57	AUGER	1981	360	-90
HA-061	519450	5279859	402.2	4.57	AUGER	1981	360	-90
HA-062	519458	5279888	403.9	4.57	AUGER	1981	360	-90
HA-063	519466	5279918	405.8	4.57	AUGER	1981	360	-90
HA-064	519473	5279949	405.3	4.57	AUGER	1981	360	-90
HA-065	519480	5279979	403.5	4.57	AUGER	1981	360	-90
HA-066	519488	5280009	402.4	4.57	AUGER	1981	360	-90
HA-067	519495	5280040	400.5	4.57	AUGER	1981	360	-90
HA-068	519503	5280070	398.7	4.57	AUGER	1981	360	-90
HA-069	519511	5280100	397.4	4.57	AUGER	1981	360	-90
HA-070	519519	5280130	396.7	4.57	AUGER	1981	360	-90
HA-071	519450	5279731	395.6	4.57	AUGER	1981	360	-90
HA-072	519458	5279763	396 7	4 57	AUGER	1981	360	-90
HA-073	519464	5279793	397.8	4.57	AUGER	1981	360	-90
HA-074	519472	5279824	398.7	4.57	AUGER	1981	360	-90
HA-075	519480	5279853	401 7	4 57	AUGER	1981	360	-90
HA-076	519487	5279883	404.2	4 57	AUGER	1981	360	-90
HA-077	519494	5279911	406.7	4 57	AUGER	1981	360	-90
	010404	0210011	100.1		7.0 OLIN	1001	000	00

HA-078	519501	5279942	405.7	3.05	AUGER	1981	360	-90
HA-079	519508	5279972	403.9	3.51	AUGER	1981	360	-90
HA-080	519514	5280001	402.2	4.57	AUGER	1981	360	-90
HA-081	519522	5280029	400.7	4.57	AUGER	1981	360	-90
HA-082	519531	5279935	405.3	2.44	AUGER	1981	360	-90
HA-083	519524	5279906	404.7	2.44	AUGER	1981	360	-90
HA-084	519516	5279875	402.6	4.57	AUGER	1981	360	-90
HA-085	519509	5279845	401.3	2.44	AUGER	1981	360	-90
HA-086	519501	5279815	399.3	1.52	AUGER	1981	360	-90
HA-087	519492	5279787	397.7	1.52	AUGER	1981	360	-90
HA-088	519476	5279728	395.8	2.44	AUGER	1981	360	-90
HA-089	519477	5279697	395.5	4.57	AUGER	1981	360	-90
HA-090	519469	5279667	394.8	3.05	AUGER	1981	360	-90
HA-091	519462	5279638	393.7	3.35	AUGER	1981	360	-90
HA-092	519456	5279606	394.1	3.66	AUGER	1981	360	-90
HA-093	519449	5279578	392.6	1.52	AUGER	1981	360	-90
HA-094	519446	5279562	392.1	1.52	AUGER	1981	360	-90
HA-095	519427	5279638	393.6	4.57	AUGER	1981	360	-90
HA-096	519419	5279607	392.3	1.52	AUGER	1981	360	-90
HA-096A	519383	5280105	395.9	2.29	AUGER	1981	360	-90
HA-097	519377	5280076	396.1	4.57	AUGER	1981	360	-90
HA-098	519371	5280045	396.9	3.96	AUGER	1981	360	-90
HA-099	519362	5280017	397.3	4.27	AUGER	1981	360	-90
HA-100	519354	5279985	397.9	4.57	AUGER	1981	360	-90
HA-101	519346	5279955	398.4	4.12	AUGER	1981	360	-90
HA-102	519339	5279926	398.8	1.52	AUGER	1981	360	-90
HA-103	519310	5279806	396.8	1.83	AUGER	1981	360	-90
HA-104	519203	5279526	382.5	1.98	AUGER	1981	360	-90
HA-105	519214	5279498	382.4	2.90	AUGER	1981	360	-90
HA-106	519222	5279476	381.9	2.13	AUGER	1981	360	-90
HA-107	519230	5279455	381.8	1.37	AUGER	1981	360	-90
HA-108	519240	5279424	381.2	1.37	AUGER	1981	360	-90
HA-109	519248	5279397	381.4	1.22	AUGER	1981	360	-90
HA-110	519260	5279370	380.5	1.22	AUGER	1981	360	-90
HA-111	519702	5279098	390.4	2.44	AUGER	1981	360	-90
HA-112	519708	5279068	389.3	1.22	AUGER	1981	360	-90
HA-113	519714	5279039	388.9	1.52	AUGER	1981	360	-90
HA-114	519683	5279030	389.0	0.76	AUGER	1901	360	-90
HA-115	519629	5276992	369.1	0.46	AUGER	1901	360	-90
	519001	5279003	309.7	0.65	AUGER	1901	300	-90
	510575	5279036	390.1	1.07	AUGER	1001	360	-90
	519575	5279015	390.1	0.61	AUGER	1001	360	-90
HA-119	519000	5278970	388.0	0.01	AUGER	1081	360	-90
HA-120	519707	5278962	388.5	0.31	AUGER	1081	360	-90
HA-121	510716	5278030	388.5	0.31	AUGER	1081	360	-90
ΗΔ-122	519710	5278901	388.5	0.51	AUGER	1981	360	-90
ΗΔ-123	519745	5270033	389.0	0.61	AUGER	1981	360	-90
HA-125	519740	5279055	389.2	0.67	AUGER	1981	360	-90
ΗΔ-126	510736	5270087	380.2	0.46	ALIGER	1981	360	-90
ΗΔ-127	519724	5279105	380.8	1.52	AUGER	1981	360	-90
ΗΔ-128	510723	5270130	390.2	3.05	ALIGER	1981	360	-90
ΗΔ-120	519753	5279164	390.3	1 22	AUGER	1981	360	-90
HA-120	510218	5270520	382.6	1.22	ALIGER	1081	360	-90
ΗΔ-131	519224	5279515	382.6	2 50	AUGER	1981	360	-90
HA-132	519230	5279501	382.8	1.37	AUGER	1981	360	-90
	010200	0210001	562.5	1.01			000	00

HA-133	519192	5279508	382.3	2.44	AUGER	1981	360	-90
HA-134	519178	5279504	382.3	1.37	AUGER	1981	360	-90
HA-135	519209	5279512	382.5	2.74	AUGER	1981	360	-90
HA-136	519199	5279494	382.2	2.20	AUGER	1981	360	-90
HA-137	519184	5279490	382.2	2.44	AUGER	1981	360	-90
HA-138	519199	5279493	382.1	1.83	AUGER	1981	360	-90
HA-139	519162	5279464	381.8	1.52	AUGER	1981	360	-90
HA-140	519164	5279449	381.7	0.76	AUGER	1981	360	-90
HA-141	519175	5279468	382.0	0.61	AUGER	1981	360	-90
HA-142	519190	5279473	382.1	2.29	AUGER	1981	360	-90
HA-143	519204	5279479	382.0	2.13	AUGER	1981	360	-90
HA-144	519219	5279483	382.0	2.13	AUGER	1981	360	-90
HA-145	519224	5279469	381.9	1.89	AUGER	1981	360	-90
HA-146	519210	5279464	382.0	2.29	AUGER	1981	360	-90
HA-147	519210	5279448	381.9	1.98	AUGER	1981	360	-90
HA-148	519229	5279455	381.9	1.37	AUGER	1981	360	-90
HA-149	519235	5279436	381.7	1.28	AUGER	1981	360	-90
HA-150	519227	5279415	381.3	0.76	AUGER	1981	360	-90
HA-151	519232	5279401	381.1	0.76	AUGER	1981	360	-90
HA-152	519245	5279406	381.5	1.37	AUGER	1981	360	-90
HA-153	519237	5279385	380.5	0.91	AUGER	1981	360	-90
HA-154	519242	5279371	380.7	1.07	AUGER	1981	360	-90
HA-155	519255	5279384	380.8	1.59	AUGER	1981	360	-90
HA-156	519257	5279356	380.1	0.46	AUGER	1981	360	-90
HA-158	519646	5279291	390.6	3.20	AUGER	1981	360	-90
HA-159	519675	5279300	390.7	1.52	AUGER	1981	360	-90
HA-160	519681	5279320	390.8	3.05	AUGER	1981	360	-90
HA-161	519667	5279314	390.8	4.57	AUGER	1981	360	-90
HA-162	519653	5279309	390.7	1.52	AUGER	1981	360	-90
HA-163	519638	5279303	390.7	3.81	AUGER	1981	360	-90
HA-164	519631	5279318	391.1	4.42	AUGER	1981	360	-90
HA-165	519620	5279338	391.0	1.52	AUGER	1981	360	-90
HA-166	519648	5279354	390.8	4.57	AUGER	1981	360	-90
HA-167	519639	5279365	391.0	4.57	AUGER	1981	360	-90
HA-168	519612	5279355	391.1	3.96	AUGER	1981	360	-90
HA-169	519605	5279364	391.0	4.57	AUGER	1981	360	-90
HA-170	519585	5279371	390.7	2.13	AUGER	1981	360	-90
HA-171	519597	5279377	390.9	4.57	AUGER	1981	360	-90
HA-172	519578	5279382	390.7	0.61	AUGER	1981	360	-90
HA-173	519630	5279389	391.2	4.57	AUGER	1981	360	-90
HA-174	519505	5279515	390.7	0.46	AUGER	1981	360	-90
HA-175	519519	5279523	391.5	3.05	AUGER	1981	360	-90
HA-176	519546	5279538	390.7	3.05	AUGER	1981	360	-90
HA-177	519559	5279546	390.7	1.37	AUGER	1981	360	-90
HA-178	519550	5279561	390.9	2.29	AUGER	1981	360	-90
HA-179	519537	5279554	391.0	2.29	AUGER	1981	360	-90
HA-180	519510	5279539	390.9	3.20	AUGER	1981	360	-90
HA-181	519497	5279531	390.6	1.10	AUGER	1981	360	-90
HA-182	519491	5279544	390.8	2.13	AUGER	1981	360	-90
HA-183	519503	5279552	391.4	2.35	AUGER	1981	360	-90
HA-184	519529	5279569	391.3	4.57	AUGER	1981	360	-90
HA-165	510522	5270591	391.1	1.00	AUGER	1901	300	-90
HA-100	510406	5270566	391.4	4.07	AUGER	1001	300	-90
HA-10/	510490	5270550	391.9	4.57	AUGER	1001	360	-90
ΗΔ_120	519402	5279554	391.7	4.57	AUGER	1021	360	-90
114-103	010471	5213554	001.7	ч.57	AUGLIN	1001	000	30

HA-190 519436 5279544 391.2 4.57 AUGER 1981 380 -90 HA-192 519436 5279572 392.5 4.57 AUGER 1981 380 -90 HA-193 519475 5279572 392.5 4.57 AUGER 1981 380 -90 HA-195 519501 5279560 382.4 4.57 AUGER 1981 380 -90 HA-195 519516 5279560 382.6 3.81 AUGER 1981 380 -90 HA-195 519468 5279563 383.2 4.57 AUGER 1981 380 -90 HA-201 519456 5279567 392.3 4.57 AUGER 1981 380 -90 HA-202 519429 5279567 392.3 4.57 AUGER 1981 380 -90 HA-203 519394 5279567 390.3 1.52 AUGER 1981 380 -90 HA-204<									
HA-191 519436 5279549 302.0 4.57 AUGER 1981 300 -90 HA-193 519463 5279572 302.5 4.57 AUGER 1981 300 -90 HA-194 519468 5279503 302.2 4.57 AUGER 1981 300 -90 HA-194 519501 5279503 302.2 4.57 AUGER 1981 300 -90 HA-195 519505 5279503 392.2 2.23 AUGER 1981 300 -90 HA-196 519465 5279503 393.2 4.57 AUGER 1981 300 -90 HA-201 519465 5279578 393.3 4.57 AUGER 1981 300 -90 HA-202 519429 5279567 390.3 2.44 AUGER 1981 300 -90 HA-205 519400 5279567 390.3 2.44 AUGER 1981 300 -90 HA-205<	HA-190	519455	5279544	391.2	4.57	AUGER	1981	360	-90
HA-132 619463 5276564 332.4 4.57 AUGER 1981 360 -90 HA-134 519475 5276572 332.5 4.57 AUGER 1981 360 -90 HA-135 519501 5276580 332.4 4.57 AUGER 1981 360 -90 HA-136 519506 5276568 332.4 4.57 AUGER 1981 360 -90 HA-195 519408 5276568 333.2 4.57 AUGER 1981 360 -90 HA-200 519426 527657 392.3 4.57 AUGER 1981 360 -90 HA-201 519429 527657 390.3 1.52 AUGER 1981 360 -90 HA-203 519366 527657 390.3 1.52 AUGER 1981 360 -90 HA-204 519394 527657 390.3 1.52 AUGER 1981 360 -90 HA-205	HA-191	519436	5279549	390.9	4.57	AUGER	1981	360	-90
HA-133 6519476 5279502 392.2 4.57 AUGER 1981 360 -90 HA-186 6519601 5279560 392.2 4.57 AUGER 1981 360 -90 HA-186 519516 5279509 392.4 4.57 AUGER 1981 360 -90 HA-187 519506 5279503 392.6 4.57 AUGER 1981 360 -90 HA-200 519465 5279578 393.0 4.57 AUGER 1981 360 -90 HA-201 519462 5279578 393.3 4.57 AUGER 1981 360 -90 HA-202 519429 5279577 390.3 1.52 AUGER 1981 360 -90 HA-203 519380 5279577 391.4 4.57 AUGER 1981 360 -90 HA-204 519447 5279557 392.3 4.57 AUGER 1981 360 -90 HA-20	HA-192	519463	5279564	392.4	4.57	AUGER	1981	360	-90
NA-194 519488 5279580 392.2 4.57 AUGER 1981 360 -90 NA-195 519501 5279596 392.6 3.81 AUGER 1981 360 -90 NA-195 519508 5279509 392.6 4.57 AUGER 1981 380 -90 NA-195 519451 5279508 393.2 4.57 AUGER 1981 360 -90 NA-200 519454 5279576 392.3 4.57 AUGER 1981 360 -90 NA-201 519426 5279570 392.3 4.57 AUGER 1981 360 -90 NA-203 519366 5279571 390.3 1.52 AUGER 1981 360 -90 NA-204 514407 5279577 390.4 4.27 AUGER 1981 360 -90 NA-205 51442 5279577 391.4 4.57 AUGER 1981 360 -90 NA-204 </th <th>HA-193</th> <th>519475</th> <th>5279572</th> <th>392.5</th> <th>4.57</th> <th>AUGER</th> <th>1981</th> <th>360</th> <th>-90</th>	HA-193	519475	5279572	392.5	4.57	AUGER	1981	360	-90
NA-195 519501 5279588 392.4 4.57 AUGER 1981 360 -90 NA-197 519505 5279560 392.9 2.29 AUGER 1981 360 -90 NA-198 519461 5279563 392.6 4.57 AUGER 1981 360 -90 NA-200 519445 5279578 393.0 4.57 AUGER 1981 360 -90 NA-201 5194429 5279562 391.4 4.57 AUGER 1981 360 -90 NA-202 519300 5279573 390.3 2.44 AUGER 1981 360 -90 NA-203 519340 5279570 390.8 4.27 AUGER 1981 360 -90 NA-204 519340 5279577 391.4 4.57 AUGER 1981 360 -90 NA-205 519447 5279593 392.7 4.57 AUGER 1981 360 -90 NA-216	HA-194	519488	5279580	392.2	4.57	AUGER	1981	360	-90
NA-196 519515 5279596 392.6 3.81 AUGER 1981 360 -90 NA-198 519468 5279593 392.6 4.57 AUGER 1981 360 -90 NA-209 519468 5279585 393.2 4.57 AUGER 1981 360 -90 NA-201 519442 5279570 392.3 4.57 AUGER 1981 360 -90 NA-202 519386 5279562 391.4 4.57 AUGER 1981 360 -90 NA-203 519386 5279563 390.3 1.52 AUGER 1981 360 -90 NA-204 519391 5279567 390.8 4.27 AUGER 1981 360 -90 NA-205 519420 527957 391.4 4.57 AUGER 1981 360 -90 NA-206 519447 5279579 391.4 4.57 AUGER 1981 360 -90 NA-206 </th <th>HA-195</th> <th>519501</th> <th>5279588</th> <th>392.4</th> <th>4.57</th> <th>AUGER</th> <th>1981</th> <th>360</th> <th>-90</th>	HA-195	519501	5279588	392.4	4.57	AUGER	1981	360	-90
HA-197 5 15080 5279609 392.9 2.29 AUGER 1981 360 -90 HA-199 519481 5279585 393.2 4.57 AUGER 1981 360 -90 HA-200 519442 5279578 393.3 4.57 AUGER 1981 360 -90 HA-201 519442 5279576 391.3 4.57 AUGER 1981 360 -90 HA-202 519345 5279565 390.3 2.44 AUGER 1981 360 -90 HA-204 513394 5279563 390.5 3.05 AUGER 1981 360 -90 HA-205 513447 5279563 392.7 4.57 AUGER 1981 360 -90 HA-206 519447 5279593 392.7 4.57 AUGER 1981 360 -90 HA-216 519447 5279593 392.7 4.57 AUGER 1981 360 -90 HA-216	HA-196	519515	5279596	392.6	3.81	AUGER	1981	360	-90
HA-198 519488 5279583 392.6 4.57 AUGER 1981 360 -90 HA-200 519485 5279578 333.0 4.57 AUGER 1981 360 -90 HA-201 519442 5279570 392.3 4.57 AUGER 1981 360 -90 HA-202 519422 5279567 390.3 1.52 AUGER 1981 360 -90 HA-203 519396 5279563 390.3 2.44 AUGER 1981 360 -90 HA-204 519407 5279577 391.4 4.57 AUGER 1981 360 -90 HA-205 519407 5279577 391.4 4.57 AUGER 1981 360 -90 HA-208 519442 5279577 393.8 4.57 AUGER 1981 360 -90 HA-208 519446 5279585 392.3 4.57 AUGER 1981 360 -90 HA-214<	HA-197	519508	5279609	392.9	2.29	AUGER	1981	360	-90
HA-199 519468 5279576 393.2 4.57 AUGER 1981 360 -90 HA-201 519455 5279570 392.3 4.57 AUGER 1981 360 -90 HA-202 519442 5279570 392.3 4.57 AUGER 1981 360 -90 HA-203 519366 5279547 390.3 2.44 AUGER 1981 360 -90 HA-205 519394 5279570 390.8 4.27 AUGER 1981 360 -90 HA-206 519407 5279570 390.8 4.27 AUGER 1981 360 -90 HA-208 519447 5279593 392.7 4.57 AUGER 1981 360 -90 HA-208 519447 5279593 392.7 4.57 AUGER 1981 360 -90 HA-214 519478 5279503 393.7 1.457 AUGER 1981 360 -90 HA-215	HA-198	519481	5279593	392.6	4.57	AUGER	1981	360	-90
HA-200 519442 5279570 393.0 4.57 AUGER 1981 360 -90 HA-201 519429 5279562 391.4 4.57 AUGER 1981 360 -90 HA-202 519306 52795562 390.3 1.52 AUGER 1981 360 -90 HA-204 519306 5279556 390.3 2.44 AUGER 1981 360 -90 HA-205 519407 5279570 390.4 4.57 AUGER 1981 360 -90 HA-208 519447 5279577 391.4 4.57 AUGER 1981 360 -90 HA-210 519447 5279501 393.8 4.57 AUGER 1981 360 -90 HA-213 519465 5279603 393.3 1.98 AUGER 1981 360 -90 HA-214 519465 5279623 393.3 1.98 AUGER 1981 360 -90 HA-215	HA-199	519468	5279585	393.2	4.57	AUGER	1981	360	-90
HA-201 519442 5279570 392.3 4.57 AUGER 1981 360 -90 HA-202 519366 5279547 390.3 1.52 AUGER 1981 360 -90 HA-204 519386 5279553 390.3 2.44 AUGER 1981 360 -90 HA-205 519394 5279570 390.8 4.27 AUGER 1981 360 -90 HA-206 5194407 5279577 391.4 4.57 AUGER 1981 360 -90 HA-207 519420 5279507 392.3 4.57 AUGER 1981 360 -90 HA-215 519420 5279608 392.9 4.57 AUGER 1981 360 -90 HA-213 519501 5279603 393.3 1.98 AUGER 1981 360 -90 HA-214 519493 5279606 393.2 4.57 AUGER 1981 360 -90 HA-215	HA-200	519455	5279578	393.0	4.57	AUGER	1981	360	-90
HA.202 519429 5279562 391.4 4.57 AUGER 1981 360 -90 HA.204 519380 5279555 390.3 2.44 AUGER 1981 360 -90 HA.205 519394 5279557 390.5 3.05 AUGER 1981 360 -90 HA.206 519407 5279577 391.4 4.57 AUGER 1981 360 -90 HA.208 519447 5279567 392.3 4.57 AUGER 1981 360 -90 HA.208 519447 5279601 392.3 4.57 AUGER 1981 360 -90 HA.211 519466 5279615 393.7 4.57 AUGER 1981 360 -90 HA.213 519465 5279626 393.3 1.98 AUGER 1981 360 -90 HA.214 519493 5279626 393.3 4.57 AUGER 1981 360 -90 HA.215<	HA-201	519442	5279570	392.3	4.57	AUGER	1981	360	-90
HA-203 519306 5279547 390.3 1.52 AUGER 1981 360 -90 HA-204 519330 5279555 390.5 3.05 AUGER 1981 360 -90 HA-205 519430 5279570 390.8 4.27 AUGER 1981 360 -90 HA-206 5194407 5279577 391.4 4.57 AUGER 1981 360 -90 HA-208 519444 5279565 332.3 4.57 AUGER 1981 360 -90 HA-210 519447 5279608 392.7 4.57 AUGER 1981 360 -90 HA-213 519466 5279615 393.3 1.98 AUGER 1981 360 -90 HA-214 519493 5279626 393.3 1.98 AUGER 1981 360 -90 HA-215 519465 5279621 393.3 4.57 AUGER 1981 360 -90 HA-216	HA-202	519429	5279562	391.4	4.57	AUGER	1981	360	-90
HA.204 519380 5279555 390.3 2.44 AUGER 1981 360 -90 HA.205 519340 5279570 390.8 4.27 AUGER 1981 360 -90 HA.207 519420 5279577 391.4 4.57 AUGER 1981 360 -90 HA.208 519434 5279553 392.3 4.57 AUGER 1981 360 -90 HA.210 519462 5279601 393.8 4.57 AUGER 1981 360 -90 HA.211 519462 5279608 392.9 4.57 AUGER 1981 360 -90 HA.213 519408 5279636 393.9 1.38 AUGER 1981 360 -90 HA.214 519406 5279593 392.5 4.57 AUGER 1981 360 -90 HA.218 519439 5279506 393.2 4.57 AUGER 1981 360 -90 HA.218<	HA-203	519366	5279547	390.3	1.52	AUGER	1981	360	-90
HA-206 519394 5279563 390.5 3.06 AUGER 1981 360 -90 HA-206 519407 5279577 391.4 4.57 AUGER 1981 360 -90 HA-208 519443 5279583 392.7 4.57 AUGER 1981 360 -90 HA-208 519442 5279593 392.7 4.57 AUGER 1981 360 -90 HA-210 519462 5279601 393.8 4.57 AUGER 1981 360 -90 HA-213 519501 5279623 393.7 4.57 AUGER 1981 360 -90 HA-214 519495 5279623 393.3 1.98 AUGER 1981 360 -90 HA-215 519465 5279621 393.3 4.57 AUGER 1981 360 -90 HA-215 519436 5279592 391.7 2.29 AUGER 1981 360 -90 HA-224<	HA-204	519380	5279555	390.3	2.44	AUGER	1981	360	-90
HA.206 519407 5279570 390.8 4.27 AUGER 1981 360 -90 HA.208 519434 5279577 391.4 4.57 AUGER 1981 360 -90 HA-209 519444 5279585 392.7 4.57 AUGER 1981 360 -90 HA-210 519462 5279601 393.8 4.57 AUGER 1981 360 -90 HA-211 519465 5279601 393.3 4.57 AUGER 1981 360 -90 HA-213 519501 5279623 393.3 1.98 AUGER 1981 360 -90 HA-214 519493 5279606 393.2 4.57 AUGER 1981 360 -90 HA-215 519445 5279606 393.2 4.57 AUGER 1981 360 -90 HA-218 519415 5279582 391.7 2.29 AUGER 1981 360 -90 HA-224<	HA-205	519394	5279563	390.5	3.05	AUGER	1981	360	-90
HA-207 519420 5279577 391.4 4.57 AUGER 1981 360 -90 HA-208 519434 5279585 392.3 4.57 AUGER 1981 360 -90 HA-210 519447 5279503 392.7 4.57 AUGER 1981 360 -90 HA-211 519476 5279603 392.8 4.57 AUGER 1981 360 -90 HA-212 519486 5279615 393.7 4.57 AUGER 1981 360 -90 HA-213 519501 5279626 393.3 1.98 AUGER 1981 360 -90 HA-214 519455 5279599 392.5 4.57 AUGER 1981 360 -90 HA-215 519465 5279599 392.7 4.57 AUGER 1981 360 -90 HA-216 519471 5279599 392.7 AUGER 1981 360 -90 HA-220 51947	HA-206	519407	5279570	390.8	4.27	AUGER	1981	360	-90
HA.208 519434 5279565 392.3 4.57 AUGER 1981 360 -90 HA.209 519447 5279503 392.7 4.57 AUGER 1981 360 -90 HA.211 519462 5279601 393.8 4.57 AUGER 1981 360 -90 HA.212 519466 5279615 393.7 4.57 AUGER 1981 360 -90 HA.214 519465 5279623 393.3 1.98 AUGER 1981 360 -90 HA.215 519465 5279626 393.2 4.57 AUGER 1981 360 -90 HA.216 519433 5279626 393.2 4.57 AUGER 1981 360 -90 HA.219 519393 5279582 391.7 2.29 AUGER 1981 360 -90 HA.220 519431 5279626 393.9 4.57 AUGER 1981 360 -90 HA.222<	HA-207	519420	5279577	391.4	4.57	AUGER	1981	360	-90
HA-209 519447 5279593 392.7 4.57 AUGER 1981 360 -90 HA-210 519462 5279601 393.8 4.57 AUGER 1981 360 -90 HA-211 519486 5279605 392.9 4.57 AUGER 1981 360 -90 HA-213 519486 5279623 393.3 1.98 AUGER 1981 360 -90 HA-214 519493 5279626 393.2 4.57 AUGER 1981 360 -90 HA-216 519433 5279606 393.2 4.57 AUGER 1981 360 -90 HA-218 519415 5279592 391.7 2.29 AUGER 1981 360 -90 HA-221 519431 527952 391.7 2.29 AUGER 1981 360 -90 HA-221 519431 5279626 393.9 4.57 AUGER 1981 360 -90 HA-222 </th <th>HA-208</th> <th>519434</th> <th>5279585</th> <th>392.3</th> <th>4.57</th> <th>AUGER</th> <th>1981</th> <th>360</th> <th>-90</th>	HA-208	519434	5279585	392.3	4.57	AUGER	1981	360	-90
HA-210 519462 5279601 393.8 4.57 AUGER 1981 360 -90 HA-211 519468 5279608 392.9 4.57 AUGER 1981 360 -90 HA-213 519501 5279623 393.3 1.98 AUGER 1981 360 -90 HA-214 519465 5279621 393.3 4.57 AUGER 1981 360 -90 HA-216 519455 5279606 393.2 4.57 AUGER 1981 360 -90 HA-217 519426 5279592 391.7 2.29 AUGER 1981 360 -90 HA-219 519319 5279584 391.0 1.52 AUGER 1981 360 -90 HA-221 519471 5279642 393.9 4.57 AUGER 1981 360 -90 HA-223 519476 5279662 393.9 4.57 AUGER 1981 360 -90 HA-224<	HA-209	519447	5279593	392.7	4.57	AUGER	1981	360	-90
HA-211 519473 527608 392.9 4.57 AUGER 1981 360 -90 HA-212 519486 5279615 393.7 4.57 AUGER 1981 360 -90 HA-214 519493 5279623 393.3 1.98 AUGER 1981 360 -90 HA-215 519465 5279621 393.3 4.57 AUGER 1981 360 -90 HA-216 519439 5279606 333.2 4.57 AUGER 1981 360 -90 HA-217 519426 5279599 392.5 4.57 AUGER 1981 360 -90 HA-218 519415 5279522 391.7 2.29 AUGER 1981 360 -90 HA-221 519411 5279564 393.9 4.57 AUGER 1981 360 -90 HA-223 519411 5279642 393.9 4.57 AUGER 1981 360 -90 HA-224 </th <th>HA-210</th> <th>519462</th> <th>5279601</th> <th>393.8</th> <th>4.57</th> <th>AUGER</th> <th>1981</th> <th>360</th> <th>-90</th>	HA-210	519462	5279601	393.8	4.57	AUGER	1981	360	-90
HA:212 519486 527615 393.7 4.57 AUGER 1981 360 -90 HA:213 519501 5279623 393.3 1.98 AUGER 1981 360 -90 HA:214 519493 5279636 393.2 4.57 AUGER 1981 360 -90 HA:216 519465 5279621 393.3 4.57 AUGER 1981 360 -90 HA:217 519426 5279593 392.5 4.57 AUGER 1981 360 -90 HA:217 519426 5279592 391.7 2.29 AUGER 1981 360 -90 HA:220 519415 5279526 393.9 4.57 AUGER 1981 360 -90 HA:223 519431 5279626 393.9 4.57 AUGER 1981 360 -90 HA:223 519471 5279626 393.9 4.57 AUGER 1981 360 -90 HA:223 519478 5279626 394.9 4.57 AUGER 1981 360	HA-211	519473	5279608	392.9	4.57	AUGER	1981	360	-90
HA-213 519501 5279623 393.3 1.98 AUGER 1981 360 -90 HA-214 519465 5279621 393.3 1.98 AUGER 1981 360 -90 HA-216 519433 5279606 393.2 4.57 AUGER 1981 360 -90 HA-217 519426 5279599 392.5 4.57 AUGER 1981 360 -90 HA-218 519415 5279592 391.7 2.29 AUGER 1981 360 -90 HA-220 519431 5279619 393.1 4.27 AUGER 1981 360 -90 HA-223 519445 5279642 393.9 4.57 AUGER 1981 360 -90 HA-224 519471 5279649 394.6 4.27 AUGER 1981 360 -90 HA-225 519478 5279640 393.5 4.57 AUGER 1981 360 -90 HA-226<	HA-212	519486	5279615	393.7	4.57	AUGER	1981	360	-90
HA-214 519493 5279636 333.9 1.98 AUGER 1981 360 -90 HA-215 519465 5279621 393.3 4.57 AUGER 1981 360 -90 HA-217 519426 5279599 392.5 4.57 AUGER 1981 360 -90 HA-218 519415 5279592 391.7 2.29 AUGER 1981 360 -90 HA-219 519399 5279584 391.0 1.52 AUGER 1981 360 -90 HA-221 519431 5279626 393.9 4.57 AUGER 1981 360 -90 HA-222 519471 5279629 394.6 4.57 AUGER 1981 360 -90 HA-224 519476 5279649 394.9 4.57 AUGER 1981 360 -90 HA-225 519478 5279648 393.8 4.57 AUGER 1981 360 -90 HA-226 519473 5279648 393.8 4.57 AUGER 1981 360	HA-213	519501	5279623	393.3	1.98	AUGER	1981	360	-90
HA-215 519465 5279621 393.3 4.57 AUGER 1981 360 -90 HA-216 519439 5279606 393.2 4.57 AUGER 1981 360 -90 HA-218 519415 5279599 392.5 4.57 AUGER 1981 360 -90 HA-219 519399 5279584 391.0 1.52 AUGER 1981 360 -90 HA-220 519431 5279619 393.1 4.27 AUGER 1981 360 -90 HA-222 519471 5279626 393.9 4.57 AUGER 1981 360 -90 HA-223 519476 5279642 393.9 4.57 AUGER 1981 360 -90 HA-224 519476 5279642 393.8 4.57 AUGER 1981 360 -90 HA-225 519476 5279640 393.5 4.57 AUGER 1981 360 -90 HA-225<	HA-214	519493	5279636	393.9	1.98	AUGER	1981	360	-90
HA-216 519439 5279606 393.2 4.57 AUGER 1981 360 -90 HA-217 519426 5279599 392.5 4.57 AUGER 1981 360 -90 HA-218 519415 5279592 391.7 2.29 AUGER 1981 360 -90 HA-220 519431 5279592 393.1 4.27 AUGER 1981 360 -90 HA-221 519445 5279626 393.9 4.57 AUGER 1981 360 -90 HA-223 519486 5279642 393.9 4.57 AUGER 1981 360 -90 HA-224 519478 5279662 394.7 4.57 AUGER 1981 360 -90 HA-225 519478 5279662 394.7 4.57 AUGER 1981 360 -90 HA-226 519495 5279670 394.8 4.57 AUGER 1981 360 -90 HA-228<	HA-215	519465	5279621	393.3	4.57	AUGER	1981	360	-90
HA-217 519426 5279599 392.5 4.57 AUGER 1981 360 -90 HA-218 519415 5279592 391.7 2.29 AUGER 1981 360 -90 HA-219 519339 5279584 331.0 1.52 AUGER 1981 360 -90 HA-220 519431 5279619 393.1 4.27 AUGER 1981 360 -90 HA-223 519471 5279642 393.9 4.57 AUGER 1981 360 -90 HA-223 519486 5279649 384.6 4.27 AUGER 1981 360 -90 HA-224 519492 5279670 394.9 4.57 AUGER 1981 360 -90 HA-225 519478 5279642 393.8 4.57 AUGER 1981 360 -90 HA-226 519450 5279648 393.5 4.57 AUGER 1981 360 -90 HA-228<	HA-216	519439	5279606	393.2	4.57	AUGER	1981	360	-90
HA-218 519415 5279582 391.7 2.29 AUGER 1981 360 -90 HA-219 519399 5279584 391.0 1.52 AUGER 1981 360 -90 HA-220 519431 5279626 393.9 4.57 AUGER 1981 360 -90 HA-222 519471 5279626 393.9 4.57 AUGER 1981 360 -90 HA-223 519486 5279642 393.9 4.57 AUGER 1981 360 -90 HA-224 519470 394.9 4.57 AUGER 1981 360 -90 HA-225 519478 5279662 394.7 4.57 AUGER 1981 360 -90 HA-226 519450 5279640 393.5 4.57 AUGER 1981 360 -90 HA-228 519437 5279619 392.7 2.44 AUGER 1981 360 -90 HA-230 519349 </th <th>HA-217</th> <th>519426</th> <th>5279599</th> <th>392.5</th> <th>4.57</th> <th>AUGER</th> <th>1981</th> <th>360</th> <th>-90</th>	HA-217	519426	5279599	392.5	4.57	AUGER	1981	360	-90
HA-219 519399 5279584 391.0 1.52 AUGER 1981 360 -90 HA-220 519431 5279626 393.1 4.27 AUGER 1981 360 -90 HA-221 519445 5279626 393.9 4.57 AUGER 1981 360 -90 HA-222 519471 5279642 393.9 4.57 AUGER 1981 360 -90 HA-223 519486 5279649 394.6 4.27 AUGER 1981 360 -90 HA-224 519478 5279670 394.9 4.57 AUGER 1981 360 -90 HA-225 519478 5279662 393.8 4.57 AUGER 1981 360 -90 HA-226 5194150 5279640 393.5 4.57 AUGER 1981 360 -90 HA-229 519377 5279619 392.1 0.91 AUGER 1981 360 -90 HA-230	HA-218	519415	5279592	391.7	2.29	AUGER	1981	360	-90
HA-220 519431 5279619 393.1 4.27 AUGER 1981 360 -90 HA-221 519445 5279626 393.9 4.57 AUGER 1981 360 -90 HA-222 519471 5279642 393.9 4.57 AUGER 1981 360 -90 HA-223 519486 5279649 394.6 4.27 AUGER 1981 360 -90 HA-224 519478 5279662 394.7 4.57 AUGER 1981 360 -90 HA-225 519478 5279662 392.7 2.44 AUGER 1981 360 -90 HA-226 519437 5279619 392.7 2.44 AUGER 1981 360 -90 HA-230 519397 5279614 390.9 0.76 AUGER 1981 360 -90 HA-231 519334 5279614 390.8 1.52 AUGER 1981 360 -90 HA-232<	HA-219	519399	5279584	391.0	1.52	AUGER	1981	360	-90
HA-221 519445 5279626 393.9 4.57 AUGER 1981 360 -90 HA-222 519471 5279642 393.9 4.57 AUGER 1981 360 -90 HA-223 519486 5279649 394.6 4.27 AUGER 1981 360 -90 HA-224 519492 5279670 394.9 4.57 AUGER 1981 360 -90 HA-225 519478 5279662 394.7 4.57 AUGER 1981 360 -90 HA-226 519437 5279643 393.5 4.57 AUGER 1981 360 -90 HA-229 519397 5279610 392.1 0.91 AUGER 1981 360 -90 HA-230 519349 5279617 390.8 1.52 AUGER 1981 360 -90 HA-231 519334 5279614 390.8 0.91 AUGER 1981 360 -90 HA-232<	HA-220	519431	5279619	393.1	4.27	AUGER	1981	360	-90
HA-222 519471 5279642 393.9 4.57 AUGER 1981 360 -90 HA-223 519486 5279649 394.6 4.27 AUGER 1981 360 -90 HA-224 519492 5279670 394.9 4.57 AUGER 1981 360 -90 HA-225 519450 5279662 394.7 4.57 AUGER 1981 360 -90 HA-226 519450 5279643 393.5 4.57 AUGER 1981 360 -90 HA-227 519437 5279640 393.5 4.57 AUGER 1981 360 -90 HA-228 519411 5279626 392.7 2.44 AUGER 1981 360 -90 HA-230 519349 5279619 392.1 0.91 AUGER 1981 360 -90 HA-231 519349 5279614 390.8 1.52 AUGER 1981 360 -90 HA-232 519324 5279607 390.8 1.52 AUGER 1981 360	HA-221	519445	5279626	393.9	4.57	AUGER	1981	360	-90
HA-223 519486 5279649 394.6 4.27 AUGER 1981 360 -90 HA-224 519492 5279670 394.9 4.57 AUGER 1981 360 -90 HA-225 519478 5279662 394.7 4.57 AUGER 1981 360 -90 HA-226 519450 5279648 393.8 4.57 AUGER 1981 360 -90 HA-227 519437 5279640 392.7 2.44 AUGER 1981 360 -90 HA-229 519397 5279619 392.1 0.91 AUGER 1981 360 -90 HA-230 519349 5279614 390.9 0.76 AUGER 1981 360 -90 HA-231 519324 5279607 390.8 1.52 AUGER 1981 360 -90 HA-232 519315 5279614 390.8 0.91 AUGER 1981 360 -90 HA-233 519324 5279630 390.8 1.52 AUGER 1981 360	HA-222	519471	5279642	393.9	4.57	AUGER	1981	360	-90
HA-224 519492 5279670 394.9 4.57 AUGER 1981 360 -90 HA-225 519478 5279662 394.7 4.57 AUGER 1981 360 -90 HA-226 519450 5279642 393.8 4.57 AUGER 1981 360 -90 HA-226 519471 5279640 393.5 4.57 AUGER 1981 360 -90 HA-228 519411 5279640 392.1 0.91 AUGER 1981 360 -90 HA-229 519397 5279619 392.1 0.91 AUGER 1981 360 -90 HA-230 519343 5279607 390.8 1.52 AUGER 1981 360 -90 HA-231 519321 5279614 390.8 0.91 AUGER 1981 360 -90 HA-232 519321 5279614 390.8 0.91 AUGER 1981 360 -90 HA-233 519343 5279629 390.6 0.61 AUGER 1981 360	HA-223	519486	5279649	394.6	4.27	AUGER	1981	360	-90
HA-225 5194/8 52/9662 394.7 4.57 AUGER 1981 360 -90 HA-226 519450 5279648 393.8 4.57 AUGER 1981 360 -90 HA-227 519437 5279640 393.5 4.57 AUGER 1981 360 -90 HA-228 519411 5279626 392.7 2.44 AUGER 1981 360 -90 HA-228 519397 5279619 392.1 0.91 AUGER 1981 360 -90 HA-230 519349 5279614 390.8 1.52 AUGER 1981 360 -90 HA-232 519321 5279614 390.8 0.91 AUGER 1981 360 -90 HA-233 519315 5279614 390.8 0.91 AUGER 1981 360 -90 HA-234 519324 5279630 390.8 1.52 AUGER 1981 360 -90 HA-235 519343 5279629 390.6 0.61 AUGER 1981 360	HA-224	519492	5279670	394.9	4.57	AUGER	1981	360	-90
HA-22651945052/9648393.84.57AUGER1981360-90HA-2275194375279640393.54.57AUGER1981360-90HA-2285194115279626392.72.44AUGER1981360-90HA-2295193975279619392.10.91AUGER1981360-90HA-2305193495279607390.81.52AUGER1981360-90HA-2315193345279607390.81.52AUGER1981360-90HA-2325193215279600390.71.22AUGER1981360-90HA-2335193155279614390.80.91AUGER1981360-90HA-2345193245279600390.71.22AUGER1981360-90HA-2355193435279629390.60.61AUGER1981360-90HA-2365194015279643393.01.68AUGER1981360-90HA-2375194145279650393.83.81AUGER1981360-90HA-2385194545279673395.14.57AUGER1981360-90HA-2395194695279673395.34.57AUGER1981360-90HA-2405194675279672394.04.57AUGER1981360-90HA-24451945552797	HA-225	519478	5279662	394.7	4.57	AUGER	1981	360	-90
HA-2275194375279640393.54.57AUGER1981360-90HA-2285194115279626392.72.44AUGER1981360-90HA-2295193975279619392.10.91AUGER1981360-90HA-2305193495279614390.90.76AUGER1981360-90HA-2315193345279607390.81.52AUGER1981360-90HA-2325193215279600390.71.22AUGER1981360-90HA-2335193155279614390.80.91AUGER1981360-90HA-2345193245279630390.81.52AUGER1981360-90HA-2355193435279629390.60.61AUGER1981360-90HA-2365194015279643393.01.68AUGER1981360-90HA-2375194145279673395.14.57AUGER1981360-90HA-2385194545279673395.34.57AUGER1981360-90HA-2395194695279657395.43.81AUGER1981360-90HA-2405194875279672394.04.57AUGER1981360-90HA-2425194205279672394.04.57AUGER1981360-90HA-24351944152797	HA-226	519450	5279648	393.8	4.57	AUGER	1981	360	-90
HA-228 519411 5279626 392.7 2.44 AUGER 1981 360 -90 HA-229 519397 5279619 392.1 0.91 AUGER 1981 360 -90 HA-230 519349 5279614 390.9 0.76 AUGER 1981 360 -90 HA-231 519334 5279607 390.8 1.52 AUGER 1981 360 -90 HA-232 519321 5279600 390.7 1.22 AUGER 1981 360 -90 HA-233 519315 5279614 390.8 0.91 AUGER 1981 360 -90 HA-234 519324 5279630 390.8 1.52 AUGER 1981 360 -90 HA-235 519343 5279629 390.6 0.61 AUGER 1981 360 -90 HA-236 519401 5279643 393.0 1.68 AUGER 1981 360 -90 HA-235 519444 5279673 395.1 4.57 AUGER 1981 360	HA-227	519437	5279640	393.5	4.57	AUGER	1981	360	-90
HA-2295193975279619392.10.91AUGER1981360-90HA-2305193495279614390.90.76AUGER1981360-90HA-2315193345279607390.81.52AUGER1981360-90HA-2325193215279600390.71.22AUGER1981360-90HA-2335193155279614390.80.91AUGER1981360-90HA-2345193245279630390.81.52AUGER1981360-90HA-2355193435279629390.60.61AUGER1981360-90HA-2365194015279643393.01.68AUGER1981360-90HA-2375194145279650393.83.81AUGER1981360-90HA-2385194545279673395.14.57AUGER1981360-90HA-2395194695279680395.34.57AUGER1981360-90HA-2405194875279677395.43.81AUGER1981360-90HA-2425194205279672394.04.57AUGER1981360-90HA-2435194415279700394.80.55AUGER1981360-90HA-2445194555279707395.04.57AUGER1981360-90HA-24551946852797	HA-228	519411	5279626	392.7	2.44	AUGER	1981	360	-90
HA-2305193495279614390.90.76AUGER1981360-90HA-2315193345279607390.81.52AUGER1981360-90HA-2325193215279600390.71.22AUGER1981360-90HA-2335193155279614390.80.91AUGER1981360-90HA-2345193245279630390.81.52AUGER1981360-90HA-2355193435279629390.60.61AUGER1981360-90HA-2365194015279643393.01.68AUGER1981360-90HA-2375194145279650393.83.81AUGER1981360-90HA-2385194545279673395.14.57AUGER1981360-90HA-2395194695279680395.34.57AUGER1981360-90HA-2405194875279657395.43.81AUGER1981360-90HA-2415194615279691395.34.57AUGER1981360-90HA-2435194415279707394.04.57AUGER1981360-90HA-2445194555279707395.04.57AUGER1981360-90HA-2455194685279715395.33.05AUGER1981360-90	HA-229	519397	5279619	392.1	0.91	AUGER	1981	360	-90
HA-2315193345279607390.81.52AUGER1981360-90HA-2325193215279600390.71.22AUGER1981360-90HA-2335193155279614390.80.91AUGER1981360-90HA-2345193245279630390.81.52AUGER1981360-90HA-2355193435279629390.60.61AUGER1981360-90HA-2365194015279643393.01.68AUGER1981360-90HA-2375194145279650393.83.81AUGER1981360-90HA-2385194545279673395.14.57AUGER1981360-90HA-2395194695279680395.34.57AUGER1981360-90HA-2405194875279657395.43.81AUGER1981360-90HA-2415194615279672394.04.57AUGER1981360-90HA-2435194415279700394.80.55AUGER1981360-90HA-2445194555279707395.04.57AUGER1981360-90HA-2455194685279715395.33.05AUGER1981360-90	HA-230	519349	5279614	390.9	0.76	AUGER	1981	360	-90
HA-2325193215279600390.71.22AUGER1981360-90HA-2335193155279614390.80.91AUGER1981360-90HA-2345193245279630390.81.52AUGER1981360-90HA-2355193435279629390.60.61AUGER1981360-90HA-2365194015279643393.01.68AUGER1981360-90HA-2375194145279650393.83.81AUGER1981360-90HA-2385194545279673395.14.57AUGER1981360-90HA-2395194695279680395.34.57AUGER1981360-90HA-2405194875279657395.43.81AUGER1981360-90HA-2415194615279691395.34.57AUGER1981360-90HA-2425194205279672394.04.57AUGER1981360-90HA-2435194415279700394.80.55AUGER1981360-90HA-2445194555279707395.04.57AUGER1981360-90HA-2455194685279715395.33.05AUGER1981360-90	HA-231	519334	5279607	390.8	1.52	AUGER	1901	360	-90
HA-2335193135279614390.80.91AUGER1981360-90HA-2345193245279630390.81.52AUGER1981360-90HA-2355193435279629390.60.61AUGER1981360-90HA-2365194015279643393.01.68AUGER1981360-90HA-2375194145279650393.83.81AUGER1981360-90HA-2385194545279673395.14.57AUGER1981360-90HA-2395194695279680395.34.57AUGER1981360-90HA-2405194875279657395.43.81AUGER1981360-90HA-2415194615279691395.34.57AUGER1981360-90HA-2425194205279672394.04.57AUGER1981360-90HA-2435194415279707395.04.57AUGER1981360-90HA-2445194555279707395.04.57AUGER1981360-90HA-2455194685279715395.33.05AUGER1981360-90	HA-232	519321	5279600	390.7	0.01	AUGER	1001	360	-90
HA-2345135245279630390.61.52AOGER1981360-90HA-2355193435279629390.60.61AUGER1981360-90HA-2365194015279643393.01.68AUGER1981360-90HA-2375194145279650393.83.81AUGER1981360-90HA-2385194545279673395.14.57AUGER1981360-90HA-2395194695279680395.34.57AUGER1981360-90HA-2405194875279657395.43.81AUGER1981360-90HA-2415194615279691395.34.57AUGER1981360-90HA-2425194205279672394.04.57AUGER1981360-90HA-2435194415279700394.80.55AUGER1981360-90HA-2445194555279707395.04.57AUGER1981360-90HA-2455194685279715395.33.05AUGER1981360-90	HA-233	519315	5279614	390.8	0.91	AUGER	1901	360	-90
HA-235519435279623590.00.01AUGER1981360-90HA-2365194015279643393.01.68AUGER1981360-90HA-2375194145279650393.83.81AUGER1981360-90HA-2385194545279673395.14.57AUGER1981360-90HA-2395194695279680395.34.57AUGER1981360-90HA-2405194875279657395.43.81AUGER1981360-90HA-2415194615279691395.34.57AUGER1981360-90HA-2425194205279672394.04.57AUGER1981360-90HA-2435194415279700394.80.55AUGER1981360-90HA-2445194555279707395.04.57AUGER1981360-90HA-2455194685279715395.33.05AUGER1981360-90	HA-234	510242	5279630	390.8	0.61	AUGER	1091	360	-90
HA-2305134015279653535.01.00ACCER1351300-30HA-2375194145279650393.83.81AUGER1981360-90HA-2385194545279673395.14.57AUGER1981360-90HA-2395194695279680395.34.57AUGER1981360-90HA-2405194875279657395.43.81AUGER1981360-90HA-2415194615279691395.34.57AUGER1981360-90HA-2425194205279672394.04.57AUGER1981360-90HA-2435194415279700394.80.55AUGER1981360-90HA-2445194555279707395.04.57AUGER1981360-90HA-2455194685279715395.33.05AUGER1981360-90	HA-235	519343	5279643	393.0	1.68	AUGER	1081	360	-90
HA-2315134145279673395.14.57AUGER198136090HA-2395194695279673395.34.57AUGER1981360-90HA-2405194875279657395.43.81AUGER1981360-90HA-2415194615279691395.34.57AUGER1981360-90HA-2425194205279672394.04.57AUGER1981360-90HA-2435194415279700394.80.55AUGER1981360-90HA-2445194555279707395.04.57AUGER1981360-90HA-2455194685279715395.33.05AUGER1981360-90	HA-230	519414	5279650	393.0	3.81	AUGER	1981	360	-90
HA-239 519469 5279680 395.3 4.57 AUGER 1981 360 -90 HA-240 519487 5279657 395.4 3.81 AUGER 1981 360 -90 HA-241 519461 5279691 395.3 4.57 AUGER 1981 360 -90 HA-242 519461 5279691 395.3 4.57 AUGER 1981 360 -90 HA-243 519420 5279672 394.0 4.57 AUGER 1981 360 -90 HA-243 519420 5279707 395.0 4.57 AUGER 1981 360 -90 HA-244 519455 5279707 395.0 4.57 AUGER 1981 360 -90 HA-245 519468 5279715 395.3 3.05 AUGER 1981 360 -90	HA-238	519454	5279673	395 1	4 57	AUGER	1981	360	-90
HA-240 519487 5279657 395.4 3.81 AUGER 1981 360 -90 HA-241 519461 5279691 395.3 4.57 AUGER 1981 360 -90 HA-242 519420 5279672 394.0 4.57 AUGER 1981 360 -90 HA-243 519441 5279707 395.0 4.57 AUGER 1981 360 -90 HA-244 519455 5279707 395.0 4.57 AUGER 1981 360 -90 HA-245 519468 5279715 395.3 3.05 AUGER 1981 360 -90	HA-239	519469	5279680	395.3	4 57	AUGER	1981	360	-90
HA-241 519461 5279691 395.3 4.57 AUGER 1981 360 -90 HA-242 519420 5279672 394.0 4.57 AUGER 1981 360 -90 HA-243 519441 5279700 394.8 0.55 AUGER 1981 360 -90 HA-244 519455 5279707 395.0 4.57 AUGER 1981 360 -90 HA-245 519468 5279715 395.3 3.05 AUGER 1981 360 -90	HA-240	519487	5279657	395.4	3.81	AUGER	1981	360	-90
HA-242 519420 5279672 394.0 4.57 AUGER 1981 360 -90 HA-243 519441 5279700 394.8 0.55 AUGER 1981 360 -90 HA-244 519455 5279707 395.0 4.57 AUGER 1981 360 -90 HA-245 519468 5279715 395.3 3.05 AUGER 1981 360 -90	HA-241	519461	5279691	395.3	4.57	AUGER	1981	360	-90
HA-243 519441 5279700 394.8 0.55 AUGER 1981 360 -90 HA-244 519455 5279707 395.0 4.57 AUGER 1981 360 -90 HA-245 519468 5279715 395.3 3.05 AUGER 1981 360 -90	HA-242	519420	5279672	394.0	4.57	AUGER	1981	360	-90
HA-244 519455 5279707 395.0 4.57 AUGER 1981 360 -90 HA-245 519468 5279715 395.3 3.05 AUGER 1981 360 -90	HA-243	519441	5279700	394.8	0.55	AUGER	1981	360	-90
HA-245 519468 5279715 395.3 3.05 AUGER 1981 360 -90	HA-244	519455	5279707	395.0	4.57	AUGER	1981	360	-90
	HA-245	519468	5279715	395.3	3.05	AUGER	1981	360	-90

	-							
HA-246	519463	5279731	395.6	4.57	AUGER	1981	360	-90
HA-247	519472	5279752	397.0	4.27	AUGER	1981	360	-90
HA-248	519458	5279744	396.1	4.57	AUGER	1981	360	-90
HA-249	519444	5279741	396.1	4.57	AUGER	1981	360	-90
HA-250	519472	5279766	397.9	3.05	AUGER	1981	360	-90
HA-251	519443	5279759	396.7	4.57	AUGER	1981	360	-90
HA-252	519430	5279755	396.4	2.29	AUGER	1981	360	-90
HA-253	519417	5279748	396.8	0.98	AUGER	1981	360	-90
HA-254	519469	5279782	398.0	4.57	AUGER	1981	360	-90
HA-255	519455	5279778	397.0	4.57	AUGER	1981	360	-90
HA-256	519440	5279774	397.2	2.44	AUGER	1981	360	-90
HA-257	519412	5279766	397.6	0.61	AUGER	1981	360	-90
HA-258	519399	5279763	397.9	0.76	AUGER	1981	360	-90
HA-259	519410	5279777	398.0	1.07	AUGER	1981	360	-90
HA-260	519422	5279784	398.0	4.57	AUGER	1981	360	-90
HA-261	518716	5280120	343.1	0.91	AUGER	1981	360	-90
HA-262	518724	5280112	343.3	2 44	AUGER	1981	360	-90
HA-263	518735	5280101	343.1	1.52	AUGER	1981	360	-90
HA-264	518726	5280090	343 3	1.02	AUGER	1981	360	-90
HA-265	518714	5280100	343.2	2 29	AUGER	1981	360	-90
HA-266	518600	5280096	3/3 1	2.25	AUGER	1081	360	-90
HA-267	519712	5280082	242.2	2.44	AUGER	1091	360	-30
HA-269	518700	5280066	242.1	1.20	AUGER	1091	360	-30
	518600	5280060	242.1	0.46	AUGER	1001	360	-90
HA-209	518699	5260052	343.3	0.46	AUGER	1901	360	-90
HA-270	518695	5260077	343.2	1.52	AUGER	1901	360	-90
HA-2/1	518680	5280092	343.1	2.38	AUGER	1981	360	-90
HA-272	518673	5280076	343.3	2.59	AUGER	1981	360	-90
HA-273	518687	5280066	343.4	3.81	AUGER	1981	360	-90
HA-274	518675	5280056	343.1	3.81	AUGER	1981	360	-90
HA-275	518689	5280047	343.3	2.96	AUGER	1981	360	-90
HA-276	518684	5280036	343.3	4.12	AUGER	1981	360	-90
HA-2//	518669	5280041	343.0	4.57	AUGER	1981	360	-90
HA-278	518668	5280024	343.3	4.57	AUGER	1981	360	-90
HA-279	518681	5280021	343.3	2.13	AUGER	1981	360	-90
HA-280	518686	5280004	343.3	0.91	AUGER	1981	360	-90
HA-281	518670	5280008	343.1	4.57	AUGER	1981	360	-90
HA-282	518657	5279991	343.2	1.52	AUGER	1981	360	-90
HA-283	518674	5279994	343.4	4.57	AUGER	1981	360	-90
HA-284	518693	5279995	343.4	0.46	AUGER	1981	360	-90
HA-285	518689	5279981	343.5	2.29	AUGER	1981	360	-90
HA-286	518672	5279976	343.4	4.57	AUGER	1981	360	-90
HA-287	518679	5279964	343.3	2.23	AUGER	1981	360	-90
HA-288	518691	5279965	343.5	2.13	AUGER	1981	360	-90
HA-289	518698	5279949	343.5	1.40	AUGER	1981	360	-90
HA-290	518682	5279948	343.3	1.52	AUGER	1981	360	-90
HA-291	518690	5279936	343.3	1.22	AUGER	1981	360	-90
HA-292	518699	5279906	343.6	0.61	AUGER	1981	360	-90
HA-293	518700	5279889	343.5	0.46	AUGER	1981	360	-90
HA-294	518702	5279873	343.7	2.74	AUGER	1981	360	-90
HA-295	518708	5279860	344.1	1.22	AUGER	1981	360	-90
HA-296	518718	5279864	343.7	1.98	AUGER	1981	360	-90
HA-297	518730	5279854	343.6	0.76	AUGER	1981	360	-90
HA-298	518718	5279845	343.5	1.22	AUGER	1981	360	-90
HA-299	518728	5279834	343.7	0.46	AUGER	1981	360	-90
HA-300	518740	5279842	343.8	1.37	AUGER	1981	360	-90
HA-301	518755	5279834	343.8	0.76	AUGER	1981	360	-90

HA-302	518742	5279825	343.7	0.91	AUGER	1981	360	-90
HA-303	518774	5279846	344.7	0.82	AUGER	1981	360	-90
HA-304	518783	5279820	343.9	0.76	AUGER	1981	360	-90
HA-305	518796	5279812	343.9	1.52	AUGER	1981	360	-90
HA-306	518801	5279797	343.8	1.62	AUGER	1981	360	-90
HA-307	518814	5279805	343.8	2.13	AUGER	1981	360	-90
HA-308	518822	5279791	343.8	0.46	AUGER	1981	360	-90
HA-309	518804	5279784	344.0	1.52	AUGER	1981	360	-90
HA-310	518808	5279767	343.8	1.52	AUGER	1981	360	-90
HA-311	518825	5279775	344.0	2.29	AUGER	1981	360	-90
HA-312	518831	5279761	344.1	0.91	AUGER	1981	360	-90
HA-313	518816	5279752	343.8	1.52	AUGER	1981	360	-90
HA-314	518803	5279743	344.0	2.29	AUGER	1981	360	-90
HA-315	518804	5279727	344.0	4.57	AUGER	1981	360	-90
HA-316	518818	5279736	344.2	1.68	AUGER	1981	360	-90
HA-317	518833	5279745	344.0	4.54	AUGER	1981	360	-90
HA-318	518846	5279752	344.3	0.52	AUGER	1981	360	-90
HA-319	518852	5279740	344.4	1.16	AUGER	1981	360	-90
HA-320	518840	5279730	344.1	1.01	AUGER	1981	360	-90
HA-321	518822	5279713	344.3	1.22	AUGER	1981	360	-90
HA-322	518830	5279705	344.1	0.55	AUGER	1981	360	-90
HA-323	518845	5279714	344.3	0.85	AUGER	1981	360	-90
HA-324	518856	5279720	344.3	0.82	AUGER	1981	360	-90
HA-325	518850	5279705	344.4	0.85	AUGER	1981	360	-90
HA-326	519436	5279790	398.0	3 35	AUGER	1081	360	-90
HA-320	519452	5279794	397.9	1.68	AUGER	1081	360	-90
LA-229	510491	5270700	207.7	1.00	AUGER	1091	360	00
HA-320	510491	5270795	307.6	4.57	AUGER	1091	360	-30
HA-323	510407	5270805	397.0	4.57	AUGER	1091	360	-30
HA-330	519497	5279803	300.6	3.75	AUGER	1091	360	-90
HA-331	510402	5270824	399.0	1.22	AUGER	1091	360	-90
HA-332	519492	5279024	207.7	2.66	AUGER	1001	360	-90
HA-333	519409	5279000	209 5	3.00	AUGER	1001	360	-90
HA-334	519451	5279011	200.0	4.57	AUGER	1001	360	-90
HA-335	519439	5279013	208.4	1.52	AUGER	1001	360	-90
HA-330	519423	5279602	398.4	4.57	AUGER	1901	360	-90
HA-337	519424	5279010	396.7	4.57	AUGER	1901	300	-90
HA-330	519409	5279616	398.9	4.57	AUGER	1901	360	-90
HA-339	519394	5279622	396.7	4.57	AUGER	1901	360	-90
HA-340	519362	5279820	397.7	4.57	AUGER	1981	360	-90
HA-341	519333	5279832	397.1	0.91	AUGER	1981	360	-90
HA-342	519290	5279829	396.4	1.07	AUGER	1981	360	-90
HA-343	519301	5279626	390.0	1.22	AUGER	1961	360	-90
HA-344	519315	5279823	396.8	0.91	AUGER	1981	360	-90
HA-345	519331	5279819	397.1	2.13	AUGER	1981	360	-90
HA-346	519345	5279815	397.6	3.05	AUGER	1981	360	-90
HA-347	519360	5279812	398.0	4.57	AUGER	1981	360	-90
HA-348	519375	5279808	398.2	4.57	AUGER	1981	360	-90
HA-349	519391	5279804	398.4	4.57	AUGER	1981	360	-90
HA-350	519405	5279800	398.9	4.57	AUGER	1981	360	-90
HA-351	519388	5279790	398.8	2.74	AUGER	1981	360	-90
HA-352	519357	5279798	398.3	4.57	AUGER	1981	360	-90
HA-353	519327	5279804	397.2	3.05	AUGER	1981	360	-90
HA-354	519296	5279810	396.6	0.76	AUGER	1981	360	-90
HA-355	519324	5279789	397.3	4.57	AUGER	1981	360	-90
HA-356	519339	5279786	397.5	4.57	AUGER	1981	360	-90
HA-357	519353	5279782	397.9	4.57	AUGER	1981	360	-90

HA-358	519367	5279778	398.8	4.57	AUGER	1981	360	-90
HA-359	519384	5279774	398.5	3.35	AUGER	1981	360	-90
HA-360	519321	5279751	392.4	2.29	AUGER	1981	360	-90
HA-361	519308	5279756	392.4	1.52	AUGER	1981	360	-90
HA-362	519307	5279740	392.2	1.52	AUGER	1981	360	-90
HA-363	519306	5279725	391.9	1.62	AUGER	1981	360	-90
HA-364	519310	5279712	391.7	1.37	AUGER	1981	360	-90
HA-365	519308	5279697	391.9	1.52	AUGER	1981	360	-90
HA-366	519305	5279679	391.3	2.13	AUGER	1981	360	-90
HA-367	519294	5279669	391.3	1.62	AUGER	1981	360	-90
HA-368	519306	5279661	391.0	1.52	AUGER	1981	360	-90
HA-369	519305	5279645	391.0	1.52	AUGER	1981	360	-90
HA-370	519412	5279831	399.6	1.98	AUGER	1981	360	-90
HA-371	519396	5279835	399.0	4.57	AUGER	1981	360	-90
HA-372	519381	5279837	398.8	4.57	AUGER	1981	360	-90
HA-373	519366	5279841	398.3	1.83	AUGER	1981	360	-90
HA-374	519352	5279844	397.9	3.05	AUGER	1981	360	-90
HA-375	519341	5279846	397.5	1.07	AUGER	1981	360	-90
HA-376	519341	5279860	397.9	0.52	AUGER	1981	360	-90
HA-377	519369	5279856	398.7	3.05	AUGER	1981	360	-90
HA-378	519400	5279850	399.9	4.57	AUGER	1981	360	-90
HA-379	519416	5279847	400.5	4.57	AUGER	1981	360	-90
HA-380	519415	5279892	401.2	3.05	AUGER	1981	360	-90
HA-381	519404	5279862	400.6	4.57	AUGER	1981	360	-90
HA-382	519389	5279867	400.1	3.66	AUGER	1981	360	-90
HA-383	519371	5279870	399.2	2.84	AUGER	1981	360	-90
HA-384	519359	5279872	398.5	3.05	AUGER	1981	360	-90
HA-385	519344	5279874	397.9	1.22	AUGER	1981	360	-90
HA-386	519328	5279876	397.8	0.76	AUGER	1981	360	-90
HA-387	519336	5279890	398.0	0.61	AUGER	1981	360	-90
HA-388	519348	5279894	398.4	2.13	AUGER	1981	360	-90
HA-389	519378	5279887	399.8	4.57	AUGER	1981	360	-90
HA-390	519408	5279880	401.5	4.57	AUGER	1981	360	-90
HA-391	519423	5279876	402.0	3.05	AUGER	1981	360	-90
HA-392	519427	5279891	402.6	3.81	AUGER	1981	360	-90
HA-393	519411	5279896	401.1	4.57	AUGER	1981	360	-90
HA-394	519396	5279899	401.0	4.57	AUGER	1981	360	-90
HA-395	519380	5279902	399.8	4.57	AUGER	1981	360	-90
HA-396	519367	5279905	399.1	3.81	AUGER	1981	360	-90
HA-397	519351	5279908	398.5	3.05	AUGER	1981	360	-90
HA-398	519336	5279911	398.4	0.76	AUGER	1981	360	-90
HA-399	519355	5279923	399.4	4.36	AUGER	1981	360	-90
HA-400	519385	5279917	400.3	4.57	AUGER	1981	360	-90
HA-401	519415	5279910	402.1	4.27	AUGER	1981	360	-90
HA-402	519434	5279921	403.6	4.42	AUGER	1981	360	-90
HA-403	519418	5279924	402.8	1.07	AUGER	1981	360	-90
HA-404	519404	5279927	401.8	1.07	AUGER	1981	360	-90
HA-405	519388	5279930	401.1	4.57	AUGER	1981	360	-90
HA-406	519373	5279933	400.3	4.57	AUGER	1981	360	-90
HA-407	519358	5279936	399.5	2.90	AUGER	1981	360	-90
HA-408	519342	5279939	398.7	2.44	AUGER	1981	360	-90
HA-409	519326	5279942	397.6	1.22	AUGER	1981	360	-90
HA-410	519312	5279945	396.9	1.52	AUGER	1981	360	-90
HA-411	519300	5279949	396.2	2.44	AUGER	1981	360	-90
HA-412	519285	5279952	395.4	1.83	AUGER	1981	360	-90
HA-413	519270	5279955	395.3	2.74	AUGER	1981	360	-90

HA-414	519259	5279976	395.1	2.44	AUGER	1981	360	-90
HA-415	519272	5279973	395.1	3.05	AUGER	1981	360	-90
HA-416	519289	5279969	395.3	2.44	AUGER	1981	360	-90
HA-417	519302	5279965	396.0	3.05	AUGER	1981	360	-90
HA-418	519318	5279961	396.7	3.66	AUGER	1981	360	-90
HA-419	519332	5279958	397.7	3.11	AUGER	1981	360	-90
HA-420	519361	5279950	399.2	4.27	AUGER	1981	360	-90
HA-421	519392	5279945	401.1	4.57	AUGER	1981	360	-90
HA-422	519421	5279938	403.0	4.57	AUGER	1981	360	-90
HA-423	519425	5279953	402.8	3.81	AUGER	1981	360	-90
HA-424	519411	5279956	401.7	4.57	AUGER	1981	360	-90
HA-425	519395	5279960	400.6	4.57	AUGER	1981	360	-90
HA-426	519381	5279963	399.8	4.57	AUGER	1981	360	-90
HA-427	519365	5279966	398.9	4.57	AUGER	1981	360	-90
HA-428	519351	5279970	398.2	4.57	AUGER	1981	360	-90
HA-429	519337	5279973	397.6	4.27	AUGER	1981	360	-90
HA-430	519322	5279977	396.4	2.74	AUGER	1981	360	-90
HA-431	519308	5279981	395.9	3.81	AUGER	1981	360	-90
HA-432	519293	5279984	395.1	4.42	AUGER	1981	360	-90
HA-433	519278	5279988	394.9	3.66	AUGER	1981	360	-90
HA-434	519264	5279991	394.9	2.29	AUGER	1981	360	-90
HA-435	519262	5280007	394.8	2.29	AUGER	1981	360	-90
HA-436	519281	5280002	394.8	3.66	AUGER	1981	360	-90
HA-437	519297	5279999	395.0	4.57	AUGER	1981	360	-90
HA-438	519312	5279995	395.5	4.57	AUGER	1981	360	-90
HA-439	519328	5279992	396.4	2.90	AUGER	1981	360	-90
HA-440	519342	5279988	397.4	2.74	AUGER	1981	360	-90
HA-441	519369	5279983	398.6	4.57	AUGER	1981	360	-90
HA-442	519400	5279976	400.4	4.57	AUGER	1981	360	-90
HA-443	519431	5279969	402.0	4.57	AUGER	1981	360	-90
HA-444	519449	5279980	402.4	4.57	AUGER	1981	360	-90
HA-445	519434	5279984	401.6	4.57	AUGER	1981	360	-90
HA-446	519420	5279987	400.7	4.27	AUGER	1981	360	-90
HA-447	519404	5279990	400.1	4.57	AUGER	1981	360	-90
HA-448	519389	5279994	399.2	4.57	AUGER	1981	360	-90
HA-449	519374	5279998	398.3	4.57	AUGER	1981	360	-90
HA-450	519358	5280000	397.6	4.57	AUGER	1981	360	-90
HA-451	519345	5280003	397.1	2.44	AUGER	1981	360	-90
HA-452	519330	5280007	396.3	1.77	AUGER	1981	360	-90
HA-453	519316	5280009	395.5	3.20	AUGER	1981	360	-90
HA-454	519300	5280013	395.1	4.57	AUGER	1981	360	-90
HA-455	519285	5280016	394.8	4.57	AUGER	1981	360	-90
HA-456	519266	5280023	394.7	3.96	AUGER	1981	360	-90
HA-457	519289	5280034	394.6	3.66	AUGER	1981	360	-90
HA-458	519304	5280029	394.9	2.29	AUGER	1981	360	-90
HA-459	519319	5280025	395.3	2.59	AUGER	1981	360	-90
HA-460	519330	5280023	395.8	1.98	AUGER	1981	360	-90
HA-461	519349	5280018	396.7	0.91	AUGER	1981	360	-90
HA-462	519377	5280013	398.0	4.57	AUGER	1981	360	-90
HA-463	519408	5280006	399.4	4.57	AUGER	1981	360	-90
HA-464	519438	5279999	401.3	4.57	AUGER	1981	360	-90
HA-465	519457	5280010	401.3	4.57	AUGER	1981	360	-90
HA-466	519441	5280013	400.7	4.57	AUGER	1981	360	-90
HA-467	519427	5280016	400.3	4.57	AUGER	1981	360	-90
HA-468	519411	5280020	399.3	4.57	AUGER	1981	360	-90
HA-469	519396	5280024	398.5	4.57	AUGER	1981	360	-90

HA-470	519380	5280027	397.8	4.57	AUGER	1981	360	-90
HA-471	519365	5280031	397.0	4.12	AUGER	1981	360	-90
HA-472	519353	5280032	396.6	0.52	AUGER	1981	360	-90
HA-473	519337	5280038	395.3	0.46	AUGER	1981	360	-90
HA-474	519324	5280041	395.1	2.44	AUGER	1981	360	-90
HA-475	519308	5280044	394.8	2.29	AUGER	1981	360	-90
HA-476	519765	5279161	390.4	0.91	AUGER	1981	360	-90
HA-477	519759	5279147	390.2	1.16	AUGER	1981	360	-90
HA-478	519744	5279151	389.9	1.68	AUGER	1981	360	-90
HA-479	519732	5279155	390.4	2.59	AUGER	1981	360	-90
HA-480	519721	5279144	390.6	3.05	AUGER	1981	360	-90
HA-481	519746	5279134	389.9	1.68	AUGER	1981	360	-90
HA-482	519757	5279129	390.4	1.07	AUGER	1981	360	-90
HA-483	519740	5279119	390.1	1.68	AUGER	1981	360	-90
HA-484	519727	5279127	390.2	3.05	AUGER	1981	360	-90
HA-485	519714	5279133	390.7	3.05	AUGER	1981	360	-90
HA-486	519703	5279124	390.8	3.05	AUGER	1981	360	-90
HA-487	519715	5279117	390.7	2.44	AUGER	1981	360	-90
HA-488	519731	5279110	391.4	2.74	AUGER	1981	360	-90
HA-489	519737	5279097	389.7	1.52	AUGER	1981	360	-90
HA-490	519716	5279091	389.9	2.29	AUGER	1981	360	-90
HA-491	519687	5279102	391.1	2.20	AUGER	1981	360	-90
HA-492	519677	5279090	390.7	2.20	AUGER	1981	360	-90
HA-493	519688	5279087	390.4	2.13	AUGER	1981	360	-90
HA-494	519706	5279081	390.0	1.40	AUGER	1981	360	-90
HA-495	519724	5279077	388.6	2.13	AUGER	1981	360	-90
HA-496	519737	5279074	389.3	1.98	AUGER	1981	360	-90
HA-497	519745	5279062	389.5	0.91	AUGER	1981	360	-90
HA-498	519721	5279064	389.2	0.91	AUGER	1981	360	-90
HA-499	519689	5279072	389.9	1.68	AUGER	1981	360	-90
HA-500	519681	5279059	389.6	1.37	AUGER	1981	360	-90
HA-501	519695	5279056	388.9	1.83	AUGER	1981	360	-90
HA-502	519708	5279051	389.0	1.83	AUGER	1981	360	-90
HA-503	519724	5279047	389.0	1.52	AUGER	1981	360	-90
HA-504	519743	5279042	389.1	1.52	AUGER	1981	360	-90
HA-505	519742	5279006	388.9	1.07	AUGER	1981	360	-90
HA-506	519728	5279026	388.8	0.91	AUGER	1981	360	-90
HA-507	519713	5279027	388.8	2.29	AUGER	1981	360	-90
HA-508	519699	5279040	388.9	2.13	AUGER	1981	360	-90
HA-509	519676	5279042	389.4	1.07	AUGER	1981	360	-90
HA-510	519697	5279026	388.8	1.52	AUGER	1981	360	-90
HA-511	519678	5279016	389.1	1.52	AUGER	1981	360	-90
HA-512	519663	5279017	389.2	0.52	AUGER	1981	360	-90
HA-513	519647	5279018	389.2	0.61	AUGER	1981	360	-90
HA-514	519633	5279011	389.3	0.67	AUGER	1981	360	-90
HA-515	519617	5279004	389.6	1.10	AUGER	1981	360	-90
HA-516	519581	5279026	390.0	1.22	AUGER	1981	360	-90
HA-517	519591	5279014	390.0	0.61	AUGER	1981	360	-90
HA-518	519597	5278990	389.6	1.04	AUGER	1981	360	-90
HA-519	519608	5278982	389.3	1.22	AUGER	1981	360	-90
HA-520	519613	5278992	389.3	1.52	AUGER	1981	360	-90
HA-521	519640	5278996	389.1	0.91	AUGER	1981	360	-90
HA-522	519716	5278980	388.5	1.22	AUGER	1981	360	-90
HA-523	519705	5278970	388.5	0.76	AUGER	1981	360	-90
HA-524	519701	5278950	388.5	0.91	AUGER	1981	360	-90
HA-525	519714	5278950	388.5	0.76	AUGER	1981	360	-90

HA-526	519626	5278977	389.3	1.22	AUGER	1981	360	-90
HA-527	519624	5278962	389.2	0.91	AUGER	1981	360	-90
HA-528	519621	5278951	389.2	0.61	AUGER	1981	360	-90
HA-529	519610	5278959	389.2	0.55	AUGER	1981	360	-90
HA-530	519638	5278958	389.2	0.73	AUGER	1981	360	-90
HA-531	519702	5278939	388.5	1.22	AUGER	1981	360	-90
HA-532	519720	5278910	388.5	0.61	AUGER	1981	360	-90
HA-533	519724	5278881	388.4	1.52	AUGER	1981	360	-90
HA-534	519730	5278840	388.3	1.52	AUGER	1981	360	-90
HA-535	519734	5278817	388.2	2.44	AUGER	1981	360	-90
HA-536	519746	5278976	388.5	1.52	AUGER	1981	360	-90
HA-537	519746	5278961	388.5	1.52	AUGER	1981	360	-90
HA-538	519745	5278944	388.5	1.52	AUGER	1981	360	-90
HA-539	519531	5279872	401.8	3.05	AUGER	1981	360	-90
HA-540	519535	5279887	402.8	3.05	AUGER	1981	360	-90
HA-541	519539	5279903	403.9	3.05	AUGER	1981	360	-90
HA-542	519553	5280008	395.4	1.83	AUGER	1981	360	-90
HA-543	519558	5280025	395.3	2.29	AUGER	1981	360	-90
HA-544	519414	5280035	398.9	4.57	AUGER	1981	360	-90
HA-545	519383	5280042	397.3	4.27	AUGER	1981	360	-90
SDK-S1	519487	5279949	405.7	15.55	SONIC	1986	360	-90
SDK-S2	519530	5279925	405.3	10.97	SONIC	1986	360	-90
SDK-S3	519463	5279836	399.8	8.23	SONIC	1986	360	-90
SDK-S4	519465	5279643	394.2	13.11	SONIC	1986	360	-90
SDK-S5	519496	5279597	393.0	11.58	SONIC	1986	360	-90
SDK-S6	519590	5279435	390.6	7.32	SONIC	1986	360	-90
SDK-S7	519570	5279483	390.6	8.84	SONIC	1986	360	-90
87-004	519687	5279268	390.7	0.31	SONIC	1987	360	-90
87-007	519441	5279766	397.1	4.88	SONIC	1987	360	-90
87-008	519466	5279669	395.0	6.55	SONIC	1987	360	-90
87-009	519525	5279562	391.4	10.82	SONIC	1987	360	-90
87-010	519584	5279456	390.6	6.71	SONIC	1987	360	-90
87-011	519642	5279349	391.2	7.62	SONIC	1987	360	-90
87-012	519737	5279366	390.6	9.14	SONIC	1987	360	-90
87-013	519752	5279340	390.6	3.96	SONIC	1987	360	-90
87-014	519778	5279354	390.6	0.91	SONIC	1987	360	-90
07-015	519764	5279361	390.6	0.91	SONIC	1907	360	-90
07-010	519725	5279392	390.0	2.13	SONIC	1907	300	-90
07-010	519090	5279370	390.0	0.71	SONIC	1907	300	-90
87-020	510608	5279332	390.0	1.02	SONIC	1007	360	-90
87-020	519660	5279311	390.6	4.00	SONIC	1087	360	-90
87-022	519650	5270270	390.6	0.61	SONIC	1087	360	-90
87-024	519672	5279219	390.0	2.13	SONIC	1087	360	-90
87-024	519657	5279290	390.7	9.45	SONIC	1987	360	-90
87-026	519684	5279337	390.6	11 58	SONIC	1987	360	-90
87-027	519669	5279363	390.6	10.36	SONIC	1987	360	-90
87-028	519655	5279390	390.6	4 57	SONIC	1987	360	-90
87-029	519628	5279376	391.2	13 41	SONIC	1987	360	-90
87-030	519613	5279402	390.9	10.06	SONIC	1987	360	-90
87-030A	519613	5279402	390.9	10.97	SONIC	1987	360	-90
87-031	519598	5279429	390.6	7.62	SONIC	1987	360	-90
87-032	519569	5279482	390.6	5.03	SONIC	1987	360	-90
87-032A	519569	5279482	390.6	5.18	SONIC	1987	360	-90
87-033	519555	5279509	390.6	5.49	SONIC	1987	360	-90
87-034	519540	5279536	390.7	2.44	SONIC	1987	360	-90

87-036	519442	5279587	392.6	8.84	SONIC	1987	360	-90
87-037	519413	5279640	393.3	2.74	SONIC	1987	360	-90
87-038	519434	5279736	396.1	5.18	SONIC	1987	360	-90
87-039	519377	5279757	397.7	3.81	SONIC	1987	360	-90
87-040	519537	5279898	403.7	3.81	SONIC	1987	360	-90
87 -0 41	519450	5279797	398.1	0.76	SONIC	1987	360	-90
87-042	519481	5279853	401.7	10.06	SONIC	1987	360	-90
87-043	519537	5279898	403.7	5.49	SONIC	1987	360	-90
87-045	519360	5279942	399.4	3.35	SONIC	1987	360	-90
87-046	519315	5280015	395.4	3.35	SONIC	1987	360	-90
87-050	519388	5280060	396.8	5.79	SONIC	1987	360	-90
87-051	519403	5280120	396.0	1.98	SONIC	1987	360	-90
87-052	519373	5280127	395.5	1.07	SONIC	1987	360	-90
87-053	519344	5280134	394.7	3.05	SONIC	1987	360	-90
87-054	519351	5280164	394.9	1.98	SONIC	1987	360	-90
87-055	519410	5280150	395.6	1.52	SONIC	1987	360	-90
87-056	519498	5280128	396.3	4.57	SONIC	1987	360	-90
87-058	519439	5280143	395.9	3.66	SONIC	1987	360	-90
87-059	519432	5280113	396.6	3.35	SONIC	1987	360	-90
87-063	519484	5280069	398.6	7.16	SONIC	1987	360	-90
87-065	519425	5280083	397.3	4.27	SONIC	1987	360	-90
87-066	519396	5280090	396.4	3.96	SONIC	1987	360	-90
87-067	519366	5280097	395.3	3.05	SONIC	1987	360	-90
87-068	519359	5280068	395.7	1.52	SONIC	1987	360	-90
87-069	519418	5280053	397.9	3.05	SONIC	1987	360	-90
87-070	519477	5280039	399.8	7.77	SONIC	1987	360	-90
87-072	519469	5280010	401.8	7.62	SONIC	1987	360	-90
87-074	519411	5280024	399.3	5.18	SONIC	1987	360	-90
87-075	519381	5280031	397.8	6.40	SONIC	1987	360	-90
87-076	519344	5280008	397.0	2.44	SONIC	1987	360	-90
07-077	519265	5260023	394.7	4.57	SONIC	1907	360	-90
07-079	519278	5279993	394.9	5.03	SONIC	1907	360	-90
97-091	510229	5279900	395.7	2.31	SONIC	1097	360	-90
97-093	510207	5279979	400.6	2.74	SONIC	1097	360	-90
87-084	519397	5279903	400.0	4.12	SONIC	1087	360	-90
87-086	519455	5279954	400.1	11 43	SONIC	1987	360	-90
87-087	519462	5279980	402.9	6.71	SONIC	1987	360	-90
87-088	519522	5279965	404.4	6.40	SONIC	1987	360	-90
87-089	519485	5279943	405.8	14 17	SONIC	1987	360	-90
87-090	519515	5279935	405.6	15.70	SONIC	1987	360	-90
87-091	519508	5279905	405.5	14.78	SONIC	1987	360	-90
87-092	519448	5279921	404.5	13.72	SONIC	1987	360	-90
87-094	519330	5279949	397.6	1.22	SONIC	1987	360	-90
87-095	519352	5279913	398.8	3.05	SONIC	1987	360	-90
87-096	519382	5279905	399.9	5.49	SONIC	1987	360	-90
87-098	519457	5279888	403.9	13.72	SONIC	1987	360	-90
87-099	519486	5279881	404.2	12.19	SONIC	1987	360	-90
87-100	519500	5279876	402.8	11.13	SONIC	1987	360	-90
87-101	519493	5279847	401.0	9.14	SONIC	1987	360	-90
87-102	519451	5279864	402.6	12.19	SONIC	1987	360	-90
87-103	519375	5279875	399.4	3.66	SONIC	1987	360	-90
87-104	519368	5279846	398.5	3.96	SONIC	1987	360	-90
87-106	519442	5279830	400.2	10.67	SONIC	1987	360	-90
87-108	519487	5279820	399.2	3.96	SONIC	1987	360	-90
87-109	519479	5279789	397.9	8.08	SONIC	1987	360	-90

87-110	519435	5279799	398.1	3.05	SONIC	1987	360	-90
87-112	519324	5279795	397.2	4.27	SONIC	1987	360	-90
87-115	519472	5279758	397.0	5.18	SONIC	1987	360	-90
87-116	519464	5279729	395.6	9.14	SONIC	1987	360	-90
87-117	519421	5279743	396.3	0.10	SONIC	1987	360	-90
87-118	519347	5279759	397.7	7.62	SONIC	1987	360	-90
87-119	519476	5279709	395.6	5.49	SONIC	1987	360	-90
87-120	519451	5279699	394.9	0.03	SONIC	1987	360	-90
87-121	519421	5279671	394.0	5.03	SONIC	1987	360	-90
87-122	519405	5279653	393.8	1.98	SONIC	1987	360	-90
87-123	519439	5279655	394.7	10.36	SONIC	1987	360	-90
87-124	519493	5279684	395.3	5.18	SONIC	1987	360	-90
87-125	519481	5279642	394.2	6.10	SONIC	1987	360	-90
87-126	519444	5279622	393.8	9.45	SONIC	1987	360	-90
87-127	519427	5279613	392.6	2.90	SONIC	1987	360	-90
87-128	519415	5279571	390.9	8.38	SONIC	1987	360	-90
87-129	519468	5279601	393.1	10.36	SONIC	1987	360	-90
87-130	519456	5279560	392.1	13.11	SONIC	1987	360	-90
87-131	519483	5279574	392.1	9.45	SONIC	1987	360	-90
87-132	519511	5279588	392.3	7.01	SONIC	1987	360	-90
87-133	519551	5279573	390.9	1.98	SONIC	1987	360	-90
87-134	519498	5279547	391.1	12.80	SONIC	1987	360	-90
87-135	519465	5279530	391.2	12.19	SONIC	1987	360	-90
87-136	519321	5280171	394.7	2.44	SONIC	1987	360	-90
87-137	519302	5280175	394.5	1.52	SONIC	1987	360	-90
87-139	519336	5280104	394.8	4.88	SONIC	1987	360	-90
87-140	519330	5280075	394.6	5.18	SONIC	1987	360	-90
87-141	519299	5280082	394.0	0.61	SONIC	1987	360	-90
87-142	519293	5280052	394.1	3.05	SONIC	1987	360	-90
87-143	519322	5280045	395.0	2.74	SONIC	1987	360	-90
87-144	519352	5280038	396.4	0.91	SONIC	1987	360	-90
87-200	519428	5279866	401.7	3.66	SONIC	1987	360	-90
87-201	519420	5279831	400.1	10.06	SONIC	1987	360	-90
87-202	519414	5279803	399.6	9.14	SONIC	1987	360	-90
87-203	519359	5279814	398.2	7.62	SONIC	1987	360	-90
87-204	519436	5279897	403.3	10.67	SONIC	1987	360	-90
87-205	519505	5280158	396.0	0.31	SONIC	1987	360	-90
87-206	519355	5280180	394.9	1.37	SONIC	1987	360	-90
87-547	519388	5279557	390.3	7.93	SONIC	1987	360	-90
87-548	519429	5279545	390.8	14.63	SONIC	1987	360	-90
87-549	519402	5279530	390.3	5.64	SONIC	1987	360	-90
87-550	519370	5279526	390.5	1.83	SUNIC	1987	360	-90
87-551	519444	5279519	390.7	7.62	SONIC	1987	360	-90
87-552	519423	5279506	390.5	1.83	SONIC	1987	360	-90
07-000	519513	5279521	390.7	1.22	SONIC	1967	360	-90
87-554	519560	5279547	390.7	1.52	SONIC	1987	360	-90
07-000	519460	5279300	390.7	2.74	SONIC	1907	360	-90
87-557	519555	5270407	390.0	3.00	SONIC	1907	360	-90
97_559	510596	5270207	390.0	7.62	SONIC	1097	300	-90
87 550	519500	5270269	390.0	6.10	SONIC	1907	360	-90
87-560	510615	5270324	390.9	0.10	SONIC	1087	360	-90
87-561	510620	5270307	300.7	2.74	SONIC	1087	360	-90
87-562	519619	5270440	300 6	2.14	SONIC	1087	360	-00
87-563	519604	5279466	390.6	3.66	SONIC	1987	360	-90
87-564	519590	5279493	390.6	6 71	SONIC	1987	360	-90
	0.0000	02.0100	000.0		001110		000	50

87-565	519574	5279520	390.6	7.01	SONIC	1987	360	-90
87-566	519386	5279625	392.1	0.91	SONIC	1987	360	-90
87-567	519529	5279998	402.2	5.64	SONIC	1987	360	-90
87-568	519544	5279928	405.0	4.12	SONIC	1987	360	-90
87-642	519361	5279543	390.3	4.88	SONIC	1987	360	-90
87A-100	519515	5279875	402.6	9.75	SONIC	1987	360	-90
00-001	519539	5279903	403.9	4.57	SONIC	2000	360	-90
00-002	519524	5279906	404.7	11.43	SONIC	2000	360	-90
00-003	519508	5279905	405.5	14.17	SONIC	2000	360	-90
00-004	519494	5279911	406.5	16.15	SONIC	2000	360	-90
00-005	519479	5279916	406.1	18.14	SONIC	2000	360	-90
00-006	519466	5279918	405.8	16.31	SONIC	2000	360	-90
00-007	519448	5279921	404.5	12.19	SONIC	2000	360	-90
00-008	519438	5279934	404.1	10.21	SONIC	2000	360	-90
00-009	519419	5279930	402.8	7.93	SONIC	2000	360	-90
00-010	519493	5279847	401.0	8.53	SONIC	2000	360	-90
00-011	519481	5279853	401.7	10.06	SONIC	2000	360	-90
00-012	519464	5279858	402.9	10.82	SONIC	2000	360	-90
00-013	519451	5279864	402.6	12.34	SONIC	2000	360	-90
00-014	519428	5279866	401.7	12.04	SONIC	2000	360	-90
00-015	519404	5279871	401.0	7.01	SONIC	2000	360	-90
00-016	519479	5279789	397.9	5.79	SONIC	2000	360	-90
00-017	519451	5279811	398.5	5.49	SONIC	2000	360	-90
00-018	519414	5279803	399.6	8.84	SONIC	2000	360	-90
00-019	519391	5279812	398.4	8.84	SONIC	2000	360	-90
00-020	519522	5279965	404.4	7.16	SONIC	2000	360	-90
00-021	519494	5279975	403.7	7.93	SONIC	2000	360	-90
00-022	519462	5279980	402.9	5.94	SONIC	2000	360	-90
00-023	519475	5279898	406.3	14.17	SONIC	2000	360	-90
00-024	519454	5279904	404.2	13.26	SONIC	2000	360	-90
00-025	519435	5279848	401.6	13.26	SONIC	2000	360	-90
00-026	519469	5279601	392.4	10.82	SONIC	2000	360	-90
00-027	519497	5279597	392.8	10.67	SONIC	2000	360	-90
00-028	519508	5279570	391.7	8.84	SONIC	2000	360	-90
00-029	519444	5279622	393.8	9.75	SONIC	2000	360	-90
00-030	519453	5279530	390.7	11.89	SONIC	2000	360	-90
00-031	519403	5279530	390.4	5.33	SONIC	2000	360	-90
00-032	519205	5279496	382.1	6.40	SONIC	2000	360	-90
00-A01	519497	5280031	400.4	3.96	AUGER	2000	360	-90
00-A02	519487	5280092	397.5	3.05	AUGER	2000	360	-90
00-A03	519396	5280077	396.5	3.05	AUGER	2000	360	-90
00-A04	519241	5279405	381.3	1.07	AUGER	2000	360	-90
00-A05	519240	5279413	381.4	1.22	AUGER	2000	360	-90
00-A06	519251	5279373	380.6	0.91	AUGER	2000	360	-90
00-A07	519389	5279925	400.9	3.05	AUGER	2000	360	-90

APPENDIX II

Listing of Significant Drill Intersects from the Gowganda Tailings Drill Holes

87-007 0.00 4.88 4.88 4.65 87-009 0.00 9.45 9.45 54.9 87-011 0.00 6.10 6.10 35.6 87-029 6.40 11.58 5.18 48.1 87-032A 1.07 4.27 3.20 40.8 87-039 0.00 8.84 8.84 44.8 87-039 0.00 10.06 10.06 53.7 87-050 0.00 5.79 5.79 45.5 87-058 0.00 3.66 3.66 41.0 87-066 0.00 7.62 7.62 45.2 87-074 0.00 5.18 5.18 41.5 87-075 0.00 6.40 6.40 51.7 87-083 0.00 4.57 4.57 46.9 87-086 0.00 8.84 8.84 56.3 87-086 0.00 6.71 6.71 4.57 87-088 0.00 6.36 <th>HOLE-ID</th> <th>FROM</th> <th>ТО</th> <th>WIDTH</th> <th>AG (G/T)</th>	HOLE-ID	FROM	ТО	WIDTH	AG (G/T)
87-009 0.00 9.45 9.45 54.9 87-011 0.00 6.10 6.10 35.6 87-029 6.40 11.58 5.18 48.1 87-036 0.00 8.84 8.84 44.8 87-036 0.00 3.81 3.81 40.3 87-042 0.00 10.06 10.06 53.7 87-050 0.00 5.79 5.79 45.5 87-058 0.00 7.16 7.16 40.3 87-063 0.00 7.62 7.62 45.2 87-074 0.00 5.18 518 41.5 87-075 0.00 6.40 6.40 51.7 87-083 0.00 4.11 4.11 38.7 87-084 0.00 8.84 8.84 56.3 87-086 0.00 6.40 6.40 36.6 87-089 0.00 10.36 10.36 60.0 87-089 0.00 13.72 <th>87-007</th> <th>0.00</th> <th>4.88</th> <th>4.88</th> <th>46.5</th>	87-007	0.00	4.88	4.88	46.5
87-011 0.00 6.10 6.10 35.6 87-029 6.40 11.58 5.18 48.1 87-032A 1.07 4.27 3.20 40.8 87-036 0.00 8.84 8.84 44.8 87-039 0.00 3.81 3.81 40.3 87-042 0.00 10.06 10.06 53.7 87-050 0.00 5.79 5.79 45.5 87-058 0.00 3.66 3.66 41.0 87-066 0.00 3.96 3.96 36.0 87-072 0.00 7.16 7.16 40.3 87-066 0.00 4.57 4.57 45.9 87-074 0.00 6.40 6.40 51.7 87-084 0.00 4.57 4.57 46.9 87-085 0.00 6.71 6.71 41.5 87-086 0.00 6.40 6.40 36.6 87-087 0.00 6.40 <th>87-009</th> <th>0.00</th> <th>9.45</th> <th>9.45</th> <th>54.9</th>	87-009	0.00	9.45	9.45	54.9
87-029 6.40 11.58 5.18 48.1 87-032A 1.07 4.27 3.20 40.8 87-036 0.00 8.84 8.84 44.8 87-037 0.00 3.81 3.81 40.3 87-042 0.00 10.06 10.06 53.7 87-050 0.00 5.79 5.79 45.5 87-058 0.00 3.66 3.66 41.0 87-056 0.00 7.62 7.62 45.2 87-072 0.00 7.62 7.62 45.2 87-074 0.00 5.18 5.18 41.5 87-075 0.00 6.40 6.40 51.7 87-083 0.00 4.57 4.57 46.9 87-084 0.00 4.57 4.57 46.9 87-086 0.00 6.40 6.40 36.6 87-087 0.00 6.71 6.71 41.5 87-088 0.00 10.36 <th>87-011</th> <th>0.00</th> <th>6.10</th> <th>6.10</th> <th>35.6</th>	87-011	0.00	6.10	6.10	35.6
87-032A 1.07 4.27 3.20 40.8 87-036 0.00 8.84 8.84 44.8 87-039 0.00 3.81 3.81 40.3 87-042 0.00 10.06 10.06 5.37 87-050 0.00 5.79 5.79 45.5 87-058 0.00 7.16 7.16 40.3 87-063 0.00 7.16 7.16 40.3 87-064 0.00 3.96 3.86 36.0 87-072 0.00 7.62 7.62 45.2 87-074 0.00 5.18 5.18 41.5 87-075 0.00 6.40 640 51.7 87-084 0.00 4.57 4.57 46.9 87-086 0.00 6.71 6.71 41.5 87-087 0.00 6.71 6.71 41.5 87-089 0.00 10.36 10.36 60.0 87-099 0.00 13.72 <th>87-029</th> <th>6.40</th> <th>11.58</th> <th>5.18</th> <th>48.1</th>	87-029	6.40	11.58	5.18	48.1
87-036 0.00 8.84 8.84 44.8 87-039 0.00 3.81 3.81 40.3 87-042 0.00 10.06 5.79 5.79 87-050 0.00 3.66 3.66 41.0 87-053 0.00 7.16 7.16 40.3 87-066 0.00 3.96 3.96 36.0 87-074 0.00 5.18 5.18 41.5 87-075 0.00 6.40 6.40 51.7 87-084 0.00 4.11 4.11 38.7 87-085 0.00 4.41 4.84 56.3 87-086 0.00 6.40 6.40 51.7 87-086 0.00 6.44 6.40 36.6 87-087 0.00 6.71 6.71 41.5 87-088 0.00 6.40 6.40 36.6 87-090 0.00 10.36 10.36 60.0 87-090 0.00 13.72 <th>87-032A</th> <th>1.07</th> <th>4.27</th> <th>3.20</th> <th>40.8</th>	87-032A	1.07	4.27	3.20	40.8
87-039 0.00 3.81 3.81 40.3 87-042 0.00 10.06 10.06 53.7 87-050 0.00 5.79 5.79 45.5 87-053 0.00 3.66 3.66 41.0 87-063 0.00 7.16 7.16 40.3 87-072 0.00 7.62 7.62 45.2 87-074 0.00 5.18 5.18 41.5 87-075 0.00 6.40 6.40 51.7 87-083 0.00 4.11 4.11 38.7 87-084 0.00 4.57 4.57 46.9 87-086 0.00 8.84 8.84 56.3 87-087 0.00 6.71 6.71 41.5 87-088 0.00 10.36 10.36 68.3 87-089 0.00 10.36 10.36 66.3 87-092 0.00 13.72 13.72 64.5 87-093 0.00 13.7	87-036	0.00	8.84	8.84	44.8
87-042 0.00 10.06 10.06 53.7 87-050 0.00 5.79 5.79 45.5 87-058 0.00 3.66 3.66 41.0 87-066 0.00 3.96 3.96 36.0 87-072 0.00 7.62 7.62 45.2 87-074 0.00 5.18 5.18 41.5 87-075 0.00 6.40 6.40 51.7 87-084 0.00 4.57 4.57 46.9 87-086 0.00 8.84 8.84 56.3 87-086 0.00 6.40 6.40 36.6 87-086 0.00 6.40 6.40 36.6 87-087 0.00 10.36 10.36 58.1 87-088 0.00 10.36 10.36 66.3 87-090 0.00 10.36 10.36 66.3 87-092 0.00 13.72 13.72 58.2 87-098 0.00 13	87-039	0.00	3.81	3.81	40.3
87-050 0.00 5.79 5.79 45.5 87-058 0.00 3.66 3.66 41.0 87-063 0.00 7.16 7.16 40.3 87-066 0.00 3.96 3.96 3.96 87-072 0.00 7.62 7.62 45.2 87-074 0.00 5.18 5.18 41.5 87-075 0.00 6.40 6.40 51.7 87-083 0.00 4.11 4.11 38.7 87-084 0.00 4.57 4.57 46.9 87-086 0.00 8.84 8.84 56.3 87-087 0.00 6.71 6.71 41.5 87-088 0.00 10.36 10.36 60.0 87-099 0.00 10.36 10.36 66.3 87-099 0.00 13.72 13.72 64.5 87-098 0.00 13.72 13.72 58.2 87-096 0.00 5.49	87-042	0.00	10.06	10.06	53.7
87-058 0.00 3.66 3.66 41.0 87-063 0.00 7.16 7.16 40.3 87-066 0.00 3.96 3.96 3.60 87-072 0.00 7.62 7.62 45.2 87-074 0.00 5.18 5.18 41.5 87-075 0.00 6.40 6.40 51.7 87-083 0.00 4.11 4.11 38.7 87-086 0.00 4.84 8.84 56.3 87-086 0.00 6.40 6.40 36.6 87-088 0.00 6.71 6.71 41.5 87-088 0.00 6.40 6.40 36.6 87-090 0.00 10.36 10.36 66.3 87-090 0.00 10.36 10.36 66.3 87-090 0.00 13.72 13.72 64.5 87-090 0.00 13.72 13.72 58.2 87-099 0.00 12.1	87-050	0.00	5.79	5.79	45.5
87-063 0.00 7.16 7.16 40.3 87-066 0.00 3.96 3.96 3.96 87-072 0.00 7.62 7.62 45.2 87-074 0.00 5.18 5.18 41.5 87-075 0.00 6.40 6.40 51.7 87-083 0.00 4.11 4.11 38.7 87-084 0.00 4.57 4.57 46.9 87-086 0.00 8.84 8.84 56.3 87-087 0.00 6.71 6.71 41.5 87-088 0.00 10.36 10.36 58.1 87-090 0.00 10.36 10.36 66.3 87-092 0.00 13.72 13.72 64.5 87-092 0.00 13.72 13.72 58.2 87-099 0.00 12.19 12.19 57.4 87-100 0.00 6.10 6.10 53.4 87-101 0.00 3.	87-058	0.00	3.66	3.66	41.0
87-066 0.00 3.96 3.97 3.97 0.00 6.40 6.40 6.40 3.96 3.97 3.97 46.9 3.97 <	87-063	0.00	7.16	7.16	40.3
87-072 0.00 7.62 7.62 45.2 87-074 0.00 5.18 5.18 41.5 87-075 0.00 6.40 6.40 51.7 87-083 0.00 4.11 4.11 38.7 87-084 0.00 4.57 4.57 46.9 87-085 0.00 6.71 6.71 41.5 87-086 0.00 6.40 6.40 36.6 87-087 0.00 6.40 6.40 36.6 87-088 0.00 10.36 10.36 66.3 87-090 0.00 10.36 10.36 66.3 87-091 0.00 10.36 10.36 66.3 87-092 0.00 13.72 13.72 64.5 87-098 0.00 12.19 12.19 57.4 87-100 0.00 6.10 6.10 53.4 87-101 0.00 9.14 9.14 39.6 87-102 0.00 12	87-066	0.00	3.96	3.96	36.0
87-074 0.00 5.18 5.18 41.5 87-075 0.00 6.40 6.40 51.7 87-083 0.00 4.11 4.11 38.7 87-084 0.00 4.57 4.57 46.9 87-086 0.00 8.84 8.84 56.3 87-087 0.00 6.71 6.71 41.5 87-088 0.00 6.40 6.40 36.6 87-089 0.00 10.36 10.36 66.3 87-090 0.00 10.36 10.36 66.3 87-091 0.00 10.36 10.36 66.3 87-092 0.00 13.72 13.72 58.2 87-098 0.00 12.19 12.19 57.4 87-100 0.00 6.10 6.10 53.4 87-102 0.00 12.19 11.7 87.10 87-102 0.00 12.19 51.7 45.7 43.3 87-102 <td< th=""><th>87-072</th><th>0.00</th><th>7.62</th><th>7.62</th><th>45.2</th></td<>	87-072	0.00	7.62	7.62	45.2
87-075 0.00 6.40 6.40 51.7 87-083 0.00 4.11 4.11 38.7 87-084 0.00 4.57 4.57 46.9 87-086 0.00 8.84 8.84 56.3 87-087 0.00 6.71 6.71 41.5 87-088 0.00 6.40 36.6 87-089 0.00 10.36 10.36 60.0 87-090 0.00 10.36 10.36 66.3 87-091 0.00 10.36 10.36 66.3 87-092 0.00 13.72 13.72 64.5 87-098 0.00 13.72 13.72 58.2 87-099 0.00 12.19 12.19 57.4 87-101 0.00 6.10 6.10 53.4 87-102 0.00 12.19 12.19 51.7 87-103 0.00 3.66 3.66 41.3 87-104 0.00 3.96 <t< th=""><th>87-074</th><th>0.00</th><th>5.18</th><th>5.18</th><th>41.5</th></t<>	87-074	0.00	5.18	5.18	41.5
87-083 0.00 4.11 4.11 38.7 87-084 0.00 4.57 4.57 46.9 87-086 0.00 8.84 8.84 56.3 87-087 0.00 6.71 6.71 41.5 87-088 0.00 6.40 6.40 36.6 87-089 0.00 10.36 10.36 58.1 87-090 0.00 10.36 10.36 66.3 87-091 0.00 10.36 10.36 66.3 87-092 0.00 13.72 13.72 64.5 87-098 0.00 13.72 13.72 58.2 87-099 0.00 12.19 57.4 57.4 87-100 0.00 6.10 6.10 53.4 87-101 0.00 9.14 9.14 39.6 87-102 0.00 12.19 12.19 51.7 87-103 0.00 3.66 3.66 41.3 87-104 0.00 <td< th=""><th>87-075</th><th>0.00</th><th>6.40</th><th>6.40</th><th>51.7</th></td<>	87-075	0.00	6.40	6.40	51.7
87-084 0.00 4.57 4.57 46.9 87-086 0.00 8.84 8.84 56.3 87-087 0.00 6.71 6.71 41.5 87-088 0.00 6.40 6.40 36.6 87-089 0.00 10.36 10.36 60.0 87-090 0.00 10.36 10.36 66.3 87-091 0.00 10.36 10.36 66.3 87-092 0.00 13.72 13.72 64.5 87-098 0.00 13.72 13.72 58.2 87-099 0.00 12.19 12.19 57.4 87-100 0.00 6.10 6.10 53.4 87-102 0.00 12.19 12.19 51.7 87-103 0.00 3.66 3.66 41.3 87-104 0.00 3.96 3.96 44.3 87-105 0.00 5.18 5.18 36.2 87-118 0.00 <t< th=""><th>87-083</th><th>0.00</th><th>4.11</th><th>4.11</th><th>38.7</th></t<>	87-083	0.00	4.11	4.11	38.7
87-086 0.00 8.84 8.84 56.3 87-087 0.00 6.71 6.71 41.5 87-088 0.00 6.40 6.40 36.6 87-089 0.00 10.36 10.36 68.1 87-090 0.00 10.36 10.36 66.3 87-091 0.00 10.36 10.36 66.3 87-092 0.00 13.72 13.72 64.5 87-096 0.00 5.49 5.49 36.5 87-098 0.00 12.19 12.19 57.4 87-100 0.00 6.10 6.10 53.4 87-101 0.00 9.14 9.14 39.6 87-102 0.00 12.19 12.19 51.7 87-103 0.00 3.66 3.96 44.3 87-104 0.00 5.79 5.79 37.2 87-105 0.00 5.18 5.18 36.2 87-118 0.00	87-084	0.00	4.57	4.57	46.9
87-087 0.00 6.71 6.71 41.5 87-088 0.00 6.40 6.40 36.6 87-089 0.00 10.36 10.36 58.1 87-090 0.00 10.36 10.36 60.0 87-091 0.00 10.36 10.36 66.3 87-092 0.00 13.72 13.72 64.5 87-098 0.00 13.72 13.72 58.2 87-098 0.00 13.72 13.72 58.2 87-099 0.00 12.19 12.19 57.4 87-100 0.00 6.10 6.10 53.4 87-101 0.00 9.14 9.14 39.6 87-102 0.00 12.19 12.19 51.7 87-103 0.00 3.66 3.66 41.3 87-104 0.00 3.96 3.96 44.3 87-105 0.00 5.18 5.18 36.2 87-115 0.00	87-086	0.00	8.84	8.84	56.3
87-088 0.00 6.40 6.40 36.6 87-089 0.00 10.36 10.36 58.1 87-090 0.00 10.36 10.36 60.0 87-091 0.00 10.36 10.36 66.3 87-092 0.00 13.72 13.72 64.5 87-096 0.00 5.49 5.49 36.5 87-098 0.00 13.72 13.72 58.2 87-099 0.00 12.19 12.19 57.4 87-100 0.00 6.10 6.10 53.4 87-102 0.00 12.19 12.19 51.7 87-103 0.00 3.66 3.66 41.3 87-104 0.00 3.96 3.96 44.3 87-105 0.00 5.79 5.79 37.2 87-104 0.00 5.18 5.18 36.2 87-115 0.00 5.18 5.18 36.0 87-121 1.22 <t< th=""><th>87-087</th><th>0.00</th><th>6.71</th><th>6.71</th><th>41.5</th></t<>	87-087	0.00	6.71	6.71	41.5
87-089 0.00 10.36 10.36 58.1 87-090 0.00 10.36 10.36 60.0 87-091 0.00 10.36 10.36 66.3 87-092 0.00 13.72 13.72 64.5 87-096 0.00 5.49 5.49 36.5 87-098 0.00 13.72 13.72 58.2 87-099 0.00 12.19 12.19 57.4 87-100 0.00 6.10 6.10 53.4 87-102 0.00 12.19 12.19 51.7 87-103 0.00 3.66 3.66 41.3 87-104 0.00 3.96 3.96 44.3 87-105 0.00 4.57 4.57 43.3 87-106 0.00 4.57 4.57 43.3 87-109 0.00 5.18 5.18 36.2 87-118 0.00 7.62 7.62 50.1 87-121 1.22 <t< th=""><th>87-088</th><th>0.00</th><th>6.40</th><th>6.40</th><th>36.6</th></t<>	87-088	0.00	6.40	6.40	36.6
87-090 0.00 10.36 10.36 60.0 87-091 0.00 10.36 10.36 66.3 87-092 0.00 13.72 13.72 64.5 87-096 0.00 5.49 5.49 36.5 87-098 0.00 13.72 13.72 58.2 87-099 0.00 12.19 12.19 57.4 87-100 0.00 6.10 6.10 53.4 87-101 0.00 9.14 9.14 39.6 87-102 0.00 12.19 12.19 51.7 87-103 0.00 3.66 3.66 41.3 87-104 0.00 3.96 3.96 44.3 87-105 0.00 5.79 5.79 37.2 87-115 0.00 5.18 5.18 36.2 87-118 0.00 7.62 7.62 50.1 87-121 1.22 5.03 3.81 107.5 87-123 0.00 <td< th=""><th>87-089</th><th>0.00</th><th>10.36</th><th>10.36</th><th>58.1</th></td<>	87-089	0.00	10.36	10.36	58.1
87-091 0.00 10.36 10.36 66.3 87-092 0.00 13.72 13.72 64.5 87-096 0.00 5.49 5.49 36.5 87-098 0.00 13.72 13.72 58.2 87-099 0.00 12.19 12.19 57.4 87-100 0.00 6.10 6.10 53.4 87-101 0.00 9.14 9.14 39.6 87-102 0.00 12.19 12.19 51.7 87-103 0.00 3.66 3.66 41.3 87-104 0.00 3.96 3.96 44.3 87-105 0.00 4.57 4.57 43.3 87-109 0.00 5.79 5.79 37.2 87-118 0.00 7.62 7.62 50.1 87-121 1.22 5.03 3.81 107.5 87-123 0.00 10.36 10.36 50.5 87-124 0.00 <td< th=""><th>87-090</th><th>0.00</th><th>10.36</th><th>10.36</th><th>60.0</th></td<>	87-090	0.00	10.36	10.36	60.0
87-092 0.00 13.72 13.72 64.5 87-096 0.00 5.49 5.49 36.5 87-098 0.00 13.72 13.72 58.2 87-099 0.00 12.19 12.19 57.4 87-100 0.00 6.10 6.10 53.4 87-101 0.00 9.14 9.14 39.6 87-102 0.00 12.19 12.19 51.7 87-102 0.00 12.19 12.19 51.7 87-103 0.00 3.66 3.66 41.3 87-104 0.00 3.96 3.96 44.3 87-105 0.00 4.57 4.57 43.3 87-109 0.00 5.79 5.79 37.2 87-115 0.00 5.18 5.18 36.2 87-118 0.00 7.62 7.62 50.1 87-121 1.22 5.03 3.81 107.5 87-123 0.00 1	87-091	0.00	10.36	10.36	66.3
87-096 0.00 5.49 5.49 36.5 87-098 0.00 13.72 13.72 58.2 87-099 0.00 12.19 12.19 57.4 87-100 0.00 6.10 6.10 53.4 87-101 0.00 9.14 9.14 39.6 87-102 0.00 12.19 12.19 51.7 87-103 0.00 3.66 3.66 41.3 87-104 0.00 3.96 3.96 44.3 87-105 0.00 4.57 4.57 43.3 87-106 0.00 4.57 4.57 43.3 87-109 0.00 5.79 5.79 37.2 87-115 0.00 5.18 5.18 36.2 87-118 0.00 7.62 7.62 50.1 87-121 1.22 5.03 3.81 107.5 87-123 0.00 10.36 10.36 50.5 87-124 0.00 5.1	87-092	0.00	13.72	13.72	64.5
87-098 0.00 13.72 13.72 58.2 87-099 0.00 12.19 12.19 57.4 87-100 0.00 6.10 6.10 53.4 87-101 0.00 9.14 9.14 39.6 87-102 0.00 12.19 12.19 51.7 87-103 0.00 3.66 3.66 41.3 87-104 0.00 3.96 3.96 44.3 87-106 0.00 4.57 4.57 43.3 87-109 0.00 5.79 37.2 57.9 87-115 0.00 5.18 5.18 36.2 87-118 0.00 7.62 7.62 50.1 87-121 1.22 5.03 3.81 107.5 87-123 0.00 10.36 10.36 50.5 87-124 0.00 5.18 5.18 32.0 87-125 2.74 6.10 3.35 42.4 87-126 0.00 9.4	87-096	0.00	5.49	5.49	36.5
87-099 0.00 12.19 12.19 57.4 87-100 0.00 6.10 6.10 53.4 87-101 0.00 9.14 9.14 39.6 87-102 0.00 12.19 12.19 51.7 87-102 0.00 12.19 12.19 51.7 87-103 0.00 3.66 3.66 41.3 87-104 0.00 3.96 3.96 44.3 87-105 0.00 4.57 4.57 43.3 87-109 0.00 5.79 37.2 57.9 87-115 0.00 5.18 5.18 36.2 87-118 0.00 7.62 7.62 50.1 87-121 1.22 5.03 3.81 107.5 87-123 0.00 10.36 10.36 50.5 87-124 0.00 5.18 5.18 32.0 87-125 2.74 6.10 3.35 42.4 87-126 0.00 9.4	87-098	0.00	13.72	13.72	58.2
87-100 0.00 6.10 6.10 53.4 87-101 0.00 9.14 9.14 39.6 87-102 0.00 12.19 12.19 51.7 87-103 0.00 3.66 3.66 41.3 87-104 0.00 3.96 3.96 44.3 87-106 0.00 4.57 4.57 43.3 87-109 0.00 5.79 5.79 37.2 87-115 0.00 5.18 5.18 36.2 87-118 0.00 7.62 7.62 50.1 87-119 0.00 5.49 5.49 35.0 87-121 1.22 5.03 3.81 107.5 87-123 0.00 10.36 10.36 50.5 87-124 0.00 5.18 5.18 32.0 87-125 2.74 6.10 3.35 42.4 87-126 0.00 9.45 9.45 46.0 87-128 0.00 4.27 <th>87-099</th> <th>0.00</th> <th>12.19</th> <th>12.19</th> <th>57.4</th>	87-099	0.00	12.19	12.19	57.4
87-101 0.00 9.14 9.14 9.14 39.6 87-102 0.00 12.19 12.19 51.7 87-103 0.00 3.66 3.66 41.3 87-104 0.00 3.96 3.96 44.3 87-106 0.00 4.57 4.57 43.3 87-109 0.00 5.79 5.79 37.2 87-115 0.00 5.18 5.18 36.2 87-118 0.00 7.62 7.62 50.1 87-119 0.00 5.49 5.49 35.0 87-121 1.22 5.03 3.81 107.5 87-123 0.00 10.36 10.36 50.5 87-124 0.00 5.18 5.18 32.0 87-125 2.74 6.10 3.35 42.4 87-126 0.00 9.45 9.45 46.0 87-128 0.00 4.27 4.27 29.9 87-130 0.00 <th>87-100</th> <th>0.00</th> <th>6.10</th> <th>6.10</th> <th>53.4</th>	87-100	0.00	6.10	6.10	53.4
87-102 0.00 12.19 12.19 51.7 87-103 0.00 3.66 3.66 41.3 87-104 0.00 3.96 3.96 44.3 87-106 0.00 4.57 4.57 43.3 87-109 0.00 5.79 5.79 37.2 87-115 0.00 5.18 5.18 36.2 87-118 0.00 7.62 7.62 50.1 87-119 0.00 5.49 5.49 35.0 87-121 1.22 5.03 3.81 107.5 87-123 0.00 10.36 10.36 50.5 87-124 0.00 5.18 5.18 32.0 87-125 2.74 6.10 3.35 42.4 87-126 0.00 9.45 9.45 46.0 87-128 0.00 4.27 4.27 29.9 87-129 0.00 10.36 10.36 79.7 87-130 0.00 13.11	87-101	0.00	9.14	9.14	39.6
87-103 0.00 3.66 3.66 41.3 87-104 0.00 3.96 3.96 44.3 87-106 0.00 4.57 4.57 43.3 87-109 0.00 5.79 5.79 37.2 87-115 0.00 5.18 5.18 36.2 87-118 0.00 7.62 7.62 50.1 87-119 0.00 5.49 5.49 35.0 87-121 1.22 5.03 3.81 107.5 87-123 0.00 10.36 10.36 50.5 87-124 0.00 5.18 5.18 32.0 87-125 2.74 6.10 3.35 42.4 87-126 0.00 9.45 9.45 46.0 87-128 0.00 4.27 4.27 29.9 87-129 0.00 10.36 10.36 79.7 87-130 0.00 13.11 13.11 43.5 87-131 0.00 8.23<	87-102	0.00	12.19	12.19	51.7
87-104 0.00 3.96 3.96 3.96 44.3 87-106 0.00 4.57 4.57 43.3 87-109 0.00 5.79 5.79 37.2 87-115 0.00 5.18 5.18 36.2 87-118 0.00 7.62 7.62 50.1 87-119 0.00 5.49 5.49 35.0 87-121 1.22 5.03 3.81 107.5 87-123 0.00 10.36 10.36 50.5 87-124 0.00 5.18 5.18 32.0 87-125 2.74 6.10 3.35 42.4 87-126 0.00 9.45 9.45 46.0 87-128 0.00 4.27 4.27 29.9 87-129 0.00 10.36 10.36 79.7 87-130 0.00 13.11 13.11 43.5 87-131 0.00 8.23 8.23 42.1 87-132 0.00<	87-103	0.00	3.66	3.66	41.3
87-106 0.00 4.57 4.57 43.3 87-109 0.00 5.79 5.79 37.2 87-115 0.00 5.18 5.18 36.2 87-115 0.00 7.62 7.62 50.1 87-119 0.00 5.49 5.49 35.0 87-121 1.22 5.03 3.81 107.5 87-123 0.00 10.36 10.36 50.5 87-124 0.00 5.18 5.18 32.0 87-125 2.74 6.10 3.35 42.4 87-126 0.00 9.45 9.45 46.0 87-128 0.00 4.27 4.27 29.9 87-128 0.00 4.27 4.27 29.9 87-130 0.00 13.11 13.11 43.5 87-131 0.00 8.23 8.23 42.1	87-104	0.00	3.96	3.96	44.3
87-109 0.00 5.79 5.79 37.2 87-115 0.00 5.18 5.18 36.2 87-115 0.00 7.62 7.62 50.1 87-118 0.00 7.62 7.62 50.1 87-119 0.00 5.49 5.49 35.0 87-121 1.22 5.03 3.81 107.5 87-123 0.00 10.36 10.36 50.5 87-124 0.00 5.18 5.18 32.0 87-125 2.74 6.10 3.35 42.4 87-126 0.00 9.45 9.45 46.0 87-128 0.00 4.27 4.27 29.9 87-129 0.00 10.36 10.36 79.7 87-130 0.00 13.11 13.11 43.5 87-131 0.00 8.23 8.23 42.1 87-132 0.00 7.01 67.3	87-106	0.00	4.57	4.57	43.3
87-115 0.00 5.18 5.18 36.2 87-118 0.00 7.62 7.62 50.1 87-119 0.00 5.49 5.49 35.0 87-121 1.22 5.03 3.81 107.5 87-123 0.00 10.36 10.36 50.5 87-124 0.00 5.18 5.18 32.0 87-125 2.74 6.10 3.35 42.4 87-126 0.00 9.45 9.45 46.0 87-128 0.00 4.27 4.27 29.9 87-129 0.00 10.36 10.36 79.7 87-130 0.00 13.11 13.11 43.5 87-131 0.00 8.23 8.23 42.1	87-109	0.00	5.79	5.79	37.2
87-118 0.00 7.62 7.62 50.1 87-119 0.00 5.49 5.49 35.0 87-121 1.22 5.03 3.81 107.5 87-123 0.00 10.36 10.36 50.5 87-124 0.00 5.18 5.18 32.0 87-125 2.74 6.10 3.35 42.4 87-126 0.00 9.45 9.45 46.0 87-128 0.00 4.27 4.27 29.9 87-129 0.00 10.36 10.36 79.7 87-130 0.00 13.11 13.11 43.5 87-131 0.00 8.23 8.23 42.1	87-115	0.00	5.18	5.18	36.2
87-119 0.00 5.49 5.49 35.0 87-121 1.22 5.03 3.81 107.5 87-123 0.00 10.36 10.36 50.5 87-124 0.00 5.18 5.18 32.0 87-125 2.74 6.10 3.35 42.4 87-126 0.00 9.45 9.45 46.0 87-128 0.00 4.27 4.27 29.9 87-129 0.00 10.36 10.36 79.7 87-130 0.00 13.11 13.11 43.5 87-131 0.00 8.23 8.23 42.1	87-118	0.00	7.62	7.62	50.1
87-121 1.22 5.03 3.81 107.3 87-123 0.00 10.36 10.36 50.5 87-124 0.00 5.18 5.18 32.0 87-125 2.74 6.10 3.35 42.4 87-126 0.00 9.45 9.45 46.0 87-128 0.00 4.27 4.27 29.9 87-129 0.00 10.36 10.36 79.7 87-130 0.00 13.11 13.11 43.5 87-131 0.00 8.23 8.23 42.1 87-132 0.00 7.01 67.3	87-119	0.00	5.49	5.49	35.0
87-123 0.00 10.36 10.36 30.3 87-124 0.00 5.18 5.18 32.0 87-125 2.74 6.10 3.35 42.4 87-126 0.00 9.45 9.45 46.0 87-128 0.00 4.27 4.27 29.9 87-129 0.00 10.36 10.36 79.7 87-130 0.00 13.11 13.11 43.5 87-131 0.00 8.23 8.23 42.1 87-132 0.00 7.01 67.3	07-121	1.22	5.03	3.01	107.5
87-124 0.00 5.18 5.18 5.18 32.0 87-125 2.74 6.10 3.35 42.4 87-126 0.00 9.45 9.45 46.0 87-128 0.00 4.27 4.27 29.9 87-129 0.00 10.36 10.36 79.7 87-130 0.00 13.11 13.11 43.5 87-131 0.00 8.23 8.23 42.1 87-132 0.00 7.01 67.3	07-123	0.00	TU.30	TU.30	30.5
87-123 2.74 6.10 3.35 42.4 87-126 0.00 9.45 9.45 46.0 87-128 0.00 4.27 4.27 29.9 87-129 0.00 10.36 10.36 79.7 87-130 0.00 13.11 13.11 43.5 87-131 0.00 8.23 8.23 42.1 87-132 0.00 7.01 67.3	07-124	0.00	5.16	0.10	32.0
87-120 0.00 5.45 5.45 40.0 87-128 0.00 4.27 4.27 29.9 87-129 0.00 10.36 10.36 79.7 87-130 0.00 13.11 13.11 43.5 87-131 0.00 8.23 8.23 42.1 87-132 0.00 7.01 67.3	87-125	-125 2.74 6.10		0.55	42.4
87-129 0.00 10.36 10.36 79.7 87-130 0.00 13.11 13.11 43.5 87-131 0.00 8.23 8.23 42.1 87-132 0.00 7.01 67.3	87-120	87-128 0.00 9.45		9.40 A 97	20.0
87-130 0.00 13.11 13.11 43.5 87-131 0.00 8.23 8.23 42.1 87-132 0.00 7.01 67.3	87-120	0.00	4.27	4.27	29.9
87-131 0.00 8.23 8.23 42.1 87-132 0.00 7.01 67.3	87-129	0.00	13 11	13.11	13.1
87-132 0.00 7.01 7.01 67.3	87-131	0.00	8 23	8.23	42.1
	87-132	0,00	7.01	7.01	67.3

87-134	0.00	10.67	10.67	66.9
87-135	1.22	12.19	10.97	60.2
87-200	0.00	3.66	3.66	38.2
87-201	0.00	4.57	4.57	55.8
87-202	0.00	4.57	4.57	88.2
87-203	0.00	4.57	4.57	45.3
87-204	0.00	9.14	9.14	62.5
87-547	4.27	7.92	3.66	41.2
87-548	0.00	12.19	12.19	55.5
87-549	0.00	5.64	5.64	91.5
87-551	1.22	6.10	4.88	53.8
87-559	0.00	6.10	6.10	47.0
87-567	0.00	5.64	5.64	39.9
87A-100	0.00	9.75	9.75	47.4
DP-001	0.00	16.15	16.15	87.0
DP-002	0.00	5.64	5.64	32.8
DP-004	0.00	7.47	7.47	76.7
DP-005	0.00	7.62	7.62	46.2
DP-006	0.00	6.10	6.10	46.1
DP-035	0.00	10.67	10.67	73.7
DP-040	0.00	8.23	8.23	37.4
DP-044	0.00	8.38	8.38	42.2
DP-047	0.00	6.10	6.10	42.5
DP-048	0.00	8.23	8.23	52.9
DP-049	0.00	7.01	7.01	46.6
DP-062	0.00	6.25	6.25	41.0
DP-064	0.00	6.10	6.10	36.2
DP-071	0.00	5.70	5.70	39.1
DP-073	0.00	6.40	6.40	43.0
DP-082	0.00	6.40	6.40	63.8
DP-085	0.00	7.32	7.32	44.9
DP-093	0.00	7.32	7.32	43.5
DP-097	0.00	8.69	8.69	61.9
DP-105	0.00	4.57	4.57	37.0
DP-113	0.00	7.13	7.13	39.1
DP-114	0.00	4.57	4.57	70.4
HA-001	0.00	4.57	4.57	167.4
HA-003	0.00	4.57	4.57	84.8
HA-004	0.00	4.57	4.57	43.5
HA-006	0.00	4.57	4.57	35.9
HA-008	0.00	4.57	4.57	36.3
HA-009	0.00	4.57	4.57	44.5
HA-010	0.00	4.57	4.57	69.0
HA-011	0.00	4.57	4.57	101.3
HA-012	0.00	4.57	4.57	189.7
HA-013	0.00	4.57	4.57	50.3
HA-015	0.00	4.57	4.57	32.1
HA-017	0.00	4.11	4.11	49.9
HA-018	0.00	4.57	4.57	47.0
HA-019	0.00	4.57	4.57	55.7
HA-020	0.00	3.66	3.66	37.1
HA-021	0.00	4.57	4.57	47.0
HA-022	0.00	4.57	4.57	48.8
HA-023	0.00	4.57	4.57	46.3
HA-024	0.00	4.57	4.57	47.9
HA-025	0.00	4.57	4.57	43.7

HA-026	0.00	4.57	4.57	40.3
HA-029	0.00	4.57	4.57	33.7
HA-032	0.00	4.57	4.57	38.2
HA-034	0.00	4.57	4.57	40.2
HA-035	0.00	4.57	4.57	38.9
HA-036	0.00	4.57	4.57	41.3
HA-037	0.00	4.57	4.57	45.6
HA-038	0.00	4.57	4.57	48.7
HA-039	0.00	4.57	4.57	45.7
HA-040	0.00	4.57	4.57	45.7
HA-041	0.00	4.57	4.57	43.9
HA-042	0.00	4.57	4.57	37.1
HA-043	0.00	4.57	4.57	41.4
HA-044	0.00	4.57	4.57	52.6
HA-045	0.00	4.57	4.57	69.6
HA-046	0.00	4.57	4.57	40.7
HA-051	0.00	4.11	4.11	45.7
HA-052	0.00	4.57	4.57	36.5
HA-053	0.00	4.57	4.57	54.1
HA-054	0.00	4.57	4.57	39.5
HA-055	0.00	4.57	4.57	44.0
HA-056	0.00	4.27	4.27	39.8
HA-059	0.00	3.96	3.96	28.7
HA-060	0.00	4.57	4.57	38.7
HA-061	0.00	4.57	4.57	62.3
HA-062	0.00	4.57	4.57	91.4
HA-063	0.00	4.57	4.57	113.4
HA-064	0.00	4.57	4.57	80.0
HA-065	0.00	4.57	4.57	59.5
HA-066	0.00	4.57	4.57	40.3
HA-067	0.00	4.57	4.57	35.4
HA-072	0.00	4.57	4.57	47.9
HA-073	0.00	4.57	4.57	42.9
HA-074	0.00	4.57	4.57	49.6
HA-075	0.00	4.57	4.57	72.2
HA-076	0.00	4.57	4.57	71.2
HA-077	0.00	4.57	4.57	106.1
HA-079	0.00	3.51	3.51	54.0
HA-080	0.00	4.57	4.57	43.9
HA-084	0.00	4.57	4.57	55.0
HA-091	0.00	3.35	3.35	67.0
HA-092	0.00	3.66	3.66	54.3
HA-097	0.00	4.57	4.57	44.3
HA-098	0.00	3.96	3.96	44.2
HA-099	0.00	4.27	4.27	42.5
HA-100	0.00	4.57	4.57	45.6
HA-101	0.00	4.11	4.11	47.4
HA-158	0.00	3.20	3.20	31.0
HA-161	0.00	4.57	4.57	39.5
HA-163	0.00	3.81	3.81	40.3
HA-164	0.00	4.42	4.42	52.3
HA-166	0.00	4.57	4.57	41.3
HA-100	0.00	3.90	3.90	71.5
HA-109	0.00	4.37	4.37	71.0
HA-173	0.00	4.07	4.07	30.1 27.9
HA-100	0.00	3.20	5.20	57.0

HA-184	0.00	4.57	4.57	46.4
HA-186	0.00	4.57	4.57	89.5
HA-187	0.00	4.57	4.57	57.1
HA-188	0.00	4.57	4.57	32.1
HA-189	0.00	4.57	4.57	35.1
HA-191	0.00	4.57	4.57	45.2
HA-192	0.00	4.57	4.57	42.5
HA-193	0.00	4.57	4.57	40.9
HA-194	0.00	4.57	4.57	184.7
HA-195	0.00	4.57	4.57	101.5
HA-196	0.00	3.81	3.81	67.5
HA-198	0.00	4.57	4.57	104.7
HA-199	0.00	4.57	4.57	50.7
HA-200	0.00	4.57	4.57	44.7
HA-201	0.00	4.57	4.57	44.2
HA-202	0.00	4.57	4.57	37.8
HA-209	0.00	4.57	4.57	34.1
HA-210	0.00	4.57	4.57	65.5
HA-211	0.00	4.57	4.57	122.1
HA-212	0.00	4.57	4.57	180.7
HA-215	0.00	4.57	4.57	96.7
HA-216	0.00	4.57	4.57	50.5
HA-217	0.00	4.57	4.57	36.3
HA-220	0.00	4.27	4.27	35.6
HA-221	0.00	4.57	4.57	48.2
HA-222	0.00	4.57	4.57	36.1
HA-225	0.00	4.57	4.57	31.1
HA-226	0.00	4.57	4.57	55.3
HA-237	0.00	3.81	3.81	67.8
HA-241	0.00	4.57	4.57	41.0
HA-244	0.00	4.57	4.57	40.8
HA-246	0.00	4.57	4.57	31.0
HA-247	0.00	4.27	4.27	35.1
HA-248	0.00	4.57	4.57	40.0
HA-249	0.00	4.57	4.57	41.3
HA-251	0.00	4.57	4.57	34.4
HA-254	0.00	4.57	4.57	39.9
HA-255	0.00	4.57	4.57	53.0
HA-328	0.00	4.57	4.57	37.8
HA-330	0.00	3.75	3.75	53.7
HA-333	0.00	3.66	3.66	50.1
HA-334	0.00	4.57	4.57	36.1
HA-337	0.00	4.57	4.57	50.7
HA-338	0.00	4.57	4.57	45.6
HA-339	0.00	4.57	4.57	43.1
HA-340	0.00	4.57	4.57	41.5
HA-347	0.00	4.57	4.57	38.6
HA-348	0.00	4.57	4.57	32.7
HA-349	0.00	4.57	4.57	37.5
HA-350	0.00	4.57	4.57	37.4
HA-352	0.00	4.57	4.57	39.7
HA-355	0.00	4.57	4.57	53.6
HA-356	0.00	4.57	4.57	37.8
HA-357	0.00	4.37	4.37	41.9
HA-330	0.00	4.07	4.07	40.0
HA-359	0.00	5.55	3.30	45.5

HA-378	0.00	4.57	4.57	37.6
HA-379	0.00	4.57	4.57	33.7
HA-381	0.00	4.57	4.57	38.3
HA-382	0.00	3.66	3.66	36.5
HA-389	0.00	4.57	4.57	35.5
HA-390	0.00	4.57	4.57	44.2
HA-392	0.00	3.81	3.81	52.3
HA-399	0.00	4.36	4.36	43.8
HA-400	0.00	4.57	4.57	39.5
HA-401	0.00	4.27	4.27	56.3
HA-402	0.00	4.42	4.42	64.7
HA-405	0.00	4.57	4.57	47.0
HA-406	0.00	4.57	4.57	38.7
HA-418	0.00	3.66	3.66	48.0
HA-419	0.00	3.11	3.11	44.8
HA-420	0.00	4.27	4.27	34.6
HA-421	0.00	4.57	4.57	41.6
HA-422	0.00	4.57	4.57	54.3
HA-423	0.00	3.81	3.81	49.8
HA-424	0.00	4.57	4.57	40.8
HA-425	0.00	4.57	4.57	41.0
HA-426	0.00	4.57	4.57	36.6
HA-427	0.00	4.57	4.57	33.7
HA-428	0.00	4.57	4.57	43.0
HA-429	0.00	4.27	4.27	47.5
HA-431	0.00	3.81	3.81	33.3
HA-433	0.00	3.66	3.66	38.5
HA-438	0.00	4.57	4.57	41.1
HA-441	0.00	4.57	4.57	36.0
HA-442	0.00	4.57	4.57	34.7
HA-443	0.00	4.57	4.57	98.5
HA-444	0.00	4.57	4.57	47.9
HA-445	0.00	4.57	4.57	41.4
HA-446	0.00	4.27	4.27	38.6
HA-447	0.00	4.57	4.57	43.4
HA-448	0.00	4.57	4.57	38.4
HA-449	0.00	4.57	4.57	32.1
HA-450	0.00	4.57	4.57	43.0
HA-453	0.00	3.20	3.20	34.1
HA-455	0.00	4.57	4.57	42.0
HA-456	0.00	3.96	3.96	52.6
HA-457	0.00	3.66	3.66	76.5
HA-462	0.00	4.57	4.57	37.0
HA-463	0.00	4.57	4.57	35.2
HA-464	0.00	4.57	4.57	45.1
HA-465	0.00	4.57	4.57	47.2
HA-466	0.00	4.57	4.57	45.0
HA-467	0.00	4.57	4.57	37.9
HA-468	0.00	4.57	4.57	38.7
HA-470	0.00	4.57	4.57	39.8
HA-471	0.00	4.11	4.11	40.5
HA-544	0.00	4.57	4.57	39.1
SDK-S1	0.00	14.33	14.33	71.0
SDK-S2	0.00	9.14	9.14	50.3
SDK-53	0.00	4.57	4.57	03.8
SUK-54	0.00	12.80	12.80	40.0

SDK-S5	0.00	10.67	10.67	73.8
00-002	0.00	11.43	11.43	44.8
00-003	0.00	14.17	14.17	61.2
00-004	0.00	16.15	16.15	77.8
00-005	0.00	17.83	17.83	76.3
00-006	0.00	16.15	16.15	70.2
00-007	0.00	10.97	10.97	63.8
00-008	0.00	10.15	10.15	54.0
00-009	0.00	7.92	7.92	49.7
00-011	0.00	10.06	10.06	60.7
00-012	0.00	10.82	10.82	57.8
00-013	0.00	12.34	12.34	64.1
00-014	0.00	11.89	11.89	51.2
00-015	0.00	6.71	6.71	43.7
00-016	0.00	5.79	5.79	45.1
00-017	0.00	5.33	5.33	44.6
00-018	0.00	8.84	8.84	47.3
00-019	0.00	4.57	4.57	36.2
00-020	0.00	6.10	6.10	41.3
00-021	0.00	7.92	7.92	46.2
00-022	0.00	5.94	5.94	47.9
00-023	0.00	14.17	14.17	79.6
00-024	0.00	13.26	13.26	90.4
00-025	0.00	4.57	4.57	38.1
00-025	9.14	13.26	4.11	142.6
00-026	0.00	10.82	10.82	48.6
00-027	0.00	10.52	10.52	68.3
00-028	0.00	8.84	8.84	57.0
00-029	0.00	8.84	8.84	48.7
00-030	4.27	10.67	6.40	36.0