

CONQUEST RESOURCES LIMITED

Technical Report on Exploration at the Alexander Gold Project in Red Lake, Ontario

NI43-101 Technical Report – November 21, 2012

Prepared by: Benjamin Batson, P.Geo

Contents

1.	Summary	
2.	Introduction	11
3.	Reliance on Other Experts	
4.	Property Description and Location	13
5.	Accessibility, Climate, Local Resources, Infrastructure and Physiography	16
6.	History	19
7.	Geological Setting and Mineralization	23
Ċ	Geological Setting	23
S	Structural Geology	27
Ν	Vineralization and Alteration	29
8.	Deposit Types	
9.	Exploration	
۵	Data Review	
L	ine Cutting	
Ċ	Geophysics	
Т	Frenching	
10.	Drilling	
Ċ	General Overview and Previous Reporting	
2	2004 Winter Drilling	42
2	2008 Goldcorp Drilling	
2	2009 Drilling	44
2	2010 Drilling	44
2	2011 Drilling	45
C	Drill Hole Summaries	49
11.	Sampling Preparation, Analyses and Security	77
12.	Data Verification	
13.	Mineral Processing and Metallurgical Testing	79

14.	Mineral Resource Estimates	79			
15.	Adjacent Properties	79			
R	Red Lake District	79			
A	Adjacent Gold Mines, Deposits and Mineralized Zones	80			
A	Adjacent Exploration Properties	85			
16.	Other Relevant Data and Information				
S	Summary of Exploration Expenditure				
17.	Interpretation and Conclusions	88			
18.	Recommendations				
Р	Phase I – Pre-Drilling				
Acquisition and Interpretation of Goldcorp Geophysical Data					
Excalibur/Abitibi/Strategex Geophysical Targets					
Lithogeochemical Sampling (Trenches and Drill Core)					
	Soil Geochemical Reconnaissance Mapping and Sampling	92			
	Borehole Geophysics	92			
	Adjacent Mine Geology Input Data				
Ρ	Phase I and Phase II - Drilling	94			
	Drill Program	94			
В	Budget				
19.	References				
20.	Date and Signature Page	102			
21.	Qualifications Certificate	103			
APP	PPENDIX: Diamond Drill Logs				
APP	PENDIX: Maps	753			
APP	PENDIX: Vertical Cross Sections	PPENDIX: Vertical Cross Sections			

List of Figures

Figure 1: Claim Location Map14

Figure 2: Location Map by Company Holding	15
Figure 3: Physiography and Topography	18
Figure 4: Modified from Sanborn-Barrie (2004) - Major assemblages and plutonic suites of the Red greenstone belt, showing U-Pb determinations of volcanic and plutonic rocks (Modified from Stott, 1991).	Lake 25
Figure 5: Property Scale Geology with Local Grid	26
Figure 6: Relative chronology of the main geological features (from Dubé, 2002)	28
Figure 7: From Dubé (2002) – A schematic evolution model of the Campbell-Red Lake Deposit relative t deformation, based on a geological compilation by Goldcorp Inc. and Dubé et al (2001)	to D₂ 29
Figure 8: Local Grid Location Map on Satellite Image	34
Figure 9: Annotated photograph of Pyrite-Arsenopyrite mineralized and carbonate-chlorite-(biotite-s altered, strongly sheared basalt in CSS Zone Trench (2010)	silica) 38
Figure 10: Trenching Structural Geology Stereonet Mean Vector Pole Plots	39
Figure 11: Trenching Structural Geology – Rose Diagrams	40
Figure 12: Drilling Timeline Schematic	47
Figure 13: Adjacent Properties Annotated by Project	80
Figure 14: A schematic illustrating the proximity of the adjacent mine workings to Conquest's Alexa Property (shown in grey).	inder 81
Figure 15: Simplified Geology Legend for Location Map and Vertical Cross Sections	. 754
Figure 16: Drill Hole Location Map	. 755
Figure 17: Resistivity and IP Survey Interpretation Map (from Barrie, 2005)	. 756
Figure 18: Total Magnetic Intensity Interpretation Map (from Barrie, 2003)	. 757
Figure 19: VLF-EM and Magnetic Survey Data Interpretation Base Map (from Boniwell, 2003c)	. 758
Figure 20: Central Sulphide Shear Zone Trench Map (2010)	. 759
Figure 21: Trenching Location and Geology Map No. 1 (2004)	. 760
Figure 22: Trenching Location and Geology Map No. 2 (2004)	. 761
Figure 23: Trenching Location and Geology Map No. 3 (2004)	. 762
Figure 24: Trenching Location and Geology Map No. 4 (2004)	. 763
Figure 25: Vertical Cross Section 24+00E	. 765
Figure 26: Vertical Cross Section 23+00E	. 766

Figure 27: Vertical Cross Section 22+00E	
Figure 28: Vertical Cross Section 20+00E	
Figure 29: Vertical Cross Section 19+00E	
Figure 30: Vertical Cross Section 18+00E	770
Figure 31: Vertical Cross Section 17+00E	771
Figure 32: Vertical Cross Section 15+00E	772
Figure 33: Vertical Cross Section 14+00E	
Figure 34: Vertical Cross Section 13+00E	774
Figure 35: Vertical Cross Section 12+00E	775
Figure 36: Vertical Cross Section 11+00E	
Figure 37: Vertical Cross Section 10+00E	777
Figure 38: Vertical Cross Section 9+00E	
Figure 39: Vertical Cross Section 8+00E	779
Figure 40: Vertical Cross Section 7+00E	
Figure 41: Vertical Cross Section 6+00E	
Figure 42: Vertical Cross Section 5+00E	
Figure 43: Vertical Cross Section 4+00E	
Figure 44: Vertical Cross Section 3+00E	
Figure 45: Vertical Cross Section 2+00E	
Figure 46: Vertical Cross Section 1+00E	
Figure 47: Vertical Cross Section 0+00W	
Figure 48: Vertical Cross Section 1+00W	
Figure 49: Vertical Cross Section 2+00W	
Figure 50: Vertical Cross Section 3+00W	
Figure 51: Vertical Cross Section 4+00W	

List of Tables

ble 1: List of Patented Mining Claims

Table 2: Summary Table of Property Tenure and Interests	9
Table 3: Summary Table of Historical Drill Holes	3
Table 4: Summary Table of Drill Holes 4	2
Table 5: Summary Table of Conquest Drilling - Winter 2004 4	3
Table 6: Summary Table of Goldcorp Drilling onto Conquest's Property	3
Table 7: Summary Table of Conquest Drilling 2009 4	4
Table 8: Summary Table of Conquest Drilling 20104	5
Table 9: Summary Table of Conquest Drilling 20114	5
Table 10: Summary of Significant Assays for the Period Fall 2004 to Winter 2011 4	8
Table 11: CR-04-026 Assay Results > 200 ppb 4	.9
Table 12: CR-04-027 Assay Results > 200 ppb5	0
Table 13: CR-04-028 Assay Results > 200 ppb5	0
Table 14: CR-04-029 Assay Results > 200 ppb5	0
Table 15: CR-04-031 and CR-04-031A Assay Results > 200 ppb5	2
Table 16: CR-04-032 Assay Results > 200 ppb5	2
Table 17: CR-09-033 Assay Results > 200 ppb5	3
Table 18: CR-09-034 Assay Results > 200 ppb	4
Table 19: CR-09-035 Assay Results > 200 ppb5	5
Table 20: CR-09-036 Assay Results > 200 ppb5	6
Table 21: CR-09-037 Assay Results > 200 ppb5	8
Table 22: CR-09-038 Assay Results > 200 ppb6	0
Table 23: CR-10-039 Assay Results > 200 ppb6	2
Table 24: CR-10-039-W1 Assay Results > 200 ppb6	3
Table 25: CR-10-040 Assay Results > 200 ppb (with additional infill sampling)	4
Table 26: CR-10-040-W1 Assay Results > 200 ppb6	5
Table 27: CR-10-040-W2 Assay Results > 200 ppb6	6
Table 28: CR-10-041 Assay Results > 200 ppb 6	7
Table 29: CR-10-042 Assay Results > 200 ppb	7

Table 30: CR-11-044 Assay Results > 200 ppb	. 69
Table 31: CR-11-045 Assay Results > 200 ppb	. 70
Table 32: CR-11-046 Assay Results > 200 ppb	. 71
Table 33: CR-11-047 Assay Results > 200 ppb	. 72
Table 34: CR-11-047-W1 Assay Results > 200 ppb	. 72
Table 35: CR-11-048 Assay Results > 200 ppb	. 73
Table 36: CR-11-049 Assay Results > 200 ppb	. 74
Table 37: CR-11-050 Assay Results > 200 ppb	. 75
Table 38: CR-11-051 Assay Results > 200 ppb	. 76
Table 39: Summary Table of Exploration Expenditure on the Alexander Property	. 87

1. Summary

The principal objective of this technical report is to provide a review of material scientific and technical information concerning mineral exploration on the Alexander Gold Project ("Alexander Property" or "Property") completed during the period 2004 through 2012 by Conquest Resources Limited ("Conquest" or the "Company"). The Property is 100% owned by Conquest and is 448 hectares in size. It is situated in Balmer Township located immediately west of the Red Lake Complex and Balmer Complex headframes at Goldcorp's Red Lake Gold Mines within the Red Lake mining district in northwestern Ontario.

The geology of the area is complex at regional and property scales where at least three phases of deformation and at least two mineralizing events have been recognized. An abundance of industry-led and academicfocused journal articles, thesis projects, and government/industry collaborative study efforts have characterized the unconventional and spectacularly high-grade gold deposits of the Red Lake mining district.

Mineralization at Red Lake is controlled by the structural setting of the area, which has acted as conduits for gold emplacement and remobilization, and by stratigraphic units whose folded complexities have uniquely acted upon the mineralizing fluids as physical and chemical traps. The immense volume of hydrothermal fluids and the resulting high-grade concentrations of gold in the Red Lake mining district are the topics of ongoing research which has yet to explain the cause for exceptionally high-grade, Archean-aged, structurally-controlled, greenstone belt gold deposits in this locality.

Economically viable gold mineralization in the area tends to form in moderate to steep south-dipping and westerly raking lenses which at the Campbell, former Dickenson and High Grade Zone deposits have been demonstrated to form spatially "stacked" lense deposits.

Much of the early work in the district during the 1940's focused on near surface quartz-(carbonate)-pyrite-(arsenopyrite±galena) vein hosted gold showings. Early prospecting, drilling and inexpensive shallow development work led to further discoveries of gold showings that are now recognized at Campbell and Red Lake as the surface expressions of much larger, deep-seated gold deposits.

Throughout time, exploration in the Red Lake mining district has become increasingly more expensive due to the increasing depths to which complex drilling programs must be executed. These exploration programs require extensive financial backing and long-term support from the investment community. The bulk of the detailed exploration resulting in the discovery of gold resources continues to stem from exploration guided by the ongoing mining efforts from the sole gold producer in the camp, Red Lake Gold Mines of Goldcorp Inc. Several companies have joint ventured projects in the vicinity of the mine proper, and the resulting relationship in combination with the exploration potential due to proximity is leveraged to create drilling exploration programs of significant size to make gold discoveries.

Conquest owns an undivided 100% interest in the Alexander Property. A 2% NSR was reserved at the time of option during 2002 by the previous owner, a holding company, which is controlled by the present Chairman of Conquest. Conquest is the sole operator of the Alexander Property.

Since the acquisition of the Red Lake Alexander Property in 2002, Conquest has completed a total of 31,086 metres of surface exploration diamond drilling in fifty-five (55) drill holes.

During 2003 and 2004, 6,088 metres of drilling comprising twenty-five (25) drill holes were completed during a drill program designed to test near-surface geophysical and soil geochemical anomalies. This drilling is summarized in a report entitled "Technical Report on Exploration" (Marmont, 2004) which was prepared and filed on SEDAR following completion of drilling in April, 2004. An additional 2,073 metres of drilling comprising seven (7) drill holes were completed during Winter 2004, the results of which are discussed in the body of this report.

During August through November of 2009, a total of 4,129 metres of drilling in six (6) exploration diamond drill holes were drilled from surface into the upper 700 metres of the Property under the western and central portions of the patented claim group. Gold mineralization was intersected in all six NQ-sized holes ranging from 0.10 to 9.64 grams per tonne ("gpt") over one (1) metre widths.

During 2010, Conquest completed eight (8) holes comprising 9,030 metres of surface exploration diamond drilling which intersected elevated gold values from 0.10 to 12.67 gpt over one (1) metre widths. The 2010 phase of drilling included three (3) shallow holes which were less than 410 metres in vertical depth and two (2) deep parent holes containing a total of three (3) wedge holes. The deepest of these wedged holes was completed to a total vertical depth of 2,040 metres.

Concurrent with the planning of Conquest's 2009/2010 surface exploration diamond drilling programs, an exploration program was conducted by Goldcorp Inc. ("Goldcorp") on their mine claims which lie immediately adjacent to the western Alexander Property claim boundary. As part of that program, four (4) exploration drill holes were collared on the adjacent Goldcorp owned property at surface, which intersected the Conquest Alexander property boundary at depth. One of these located a significant gold intersection of 4.97 gpt gold over 1.82 metres, including 14.25 gpt over 0.61m. This program was conducted entirely by Goldcorp during the fall months of 2008 without Conquest supervision. Information pertaining to those hole segments which lie under the Alexander Property, which totals 1,911 metres of drilling, was provided digitally to Conquest by Goldcorp and is summarized within the body of this report.

During 2009, Goldcorp also provided Conquest with regional and property scale airborne geophysical data interpretations. The information was supplied in graphical form as coloured contour maps at the property-scale over the Alexander claim group and portions of the area immediately surrounding Conquest's claims, which are currently owned by Goldcorp. Gold mineralization at the adjacent mines is very deep and is often not identifiable in the structures which are present at surface. Due to the limitations of the technology to

detect these deep mineralized structures, the findings of the interpretations provided to Conquest by Goldcorp are limited and are not extensively discussed in this report. Recommendations are made however to acquire the underlying data which should be integrated into a new geophysical interpretation of the Property for the purposes of target generation for future drill programs.

During 2011, Conquest completed a further 9,802 metres of NQ-sized drilling. This drilling focused on three areas. The deep target area under the western portion of the property was in-part tested by a parent and wedge hole pair of drill holes collared from Goldcorp's Red Lake mine property which crossed on to Conquest's Alexander Property at depth. A sulphide bearing shear zone in the center of the property, named the Central Sulphide Shear Zone, was tested at depth with three (3) drill holes to hole depths of 1,479 metres. A third area was tested with four (4) holes to depths of 1,095 metres following the discovery of a sulphide-bearing shear zone independent of Conquest's Central Sulphide Shear Zone.

Drilling activities conducted by Conquest over the period commencing in the Summer of 2009 up to the end of 2011 comprise a large portion of the aggregate total exploration expenditure to date on the Alexander Property. Accordingly, the results of the 2009, 2010 and 2011 drilling programs form the primary basis for the body of this report. Other work completed during the period 2004 through 2011 has also been summarized. Exploration activities on the Property during the five (5) year period December 2004 through August 2009 were relatively limited. This work includes an induced polarization (IP) geophysical survey conducted during 2004 and 2010.

Drill hole logs for the period 2004 through 2011 are provided in the scheduled appendices attached hereto.

No mineral resource or reserve estimates have been identified or calculated for the Property.

Additional work is recommended to fully evaluate the mineral potential of the Alexander Property due to the close proximity of the Property to the world-class gold deposits at Red Lake and on the basis that anomalous gold mineralization has been located through drilling and trenching on the Property at shallow depths, while mining and exploration activities by Goldcorp at the adjacent Red Lake mine continue to successfully add resources to the gold reserve on a yearly basis.

Exploration programs on the Alexander Property have been limited in size and scale due to the limited availability of funding. A property-wide, extensive deep drilling program of 20,000 metres of drilling combined with down-hole electromagnetic and induced polarization geophysics will provide the best chance of making a gold discovery of significant size at depth under the Alexander Property.

2. Introduction

Conquest Resources Limited (the "Company" or "Conquest") is a Toronto-based mineral exploration and development company. It is a reporting issuer in the Provinces of Ontario, British Columbia and Alberta, and its common shares are listed on the TSX Venture Exchange (the "Exchange") under the symbol "CQR".

The term "Technical Report" is used within the body of this report and implies that the content and format of the referenced report has been prepared under the guidance, rules and regulations of the National Instrument 43-101 ("NI 43-101") and Form 43-101F1 as at May 29, 2012.

This Technical Report is being filed on SEDAR in order to provide an update to the public on the results of exploration work conducted by the Company, and where relevant, by other companies operating on or adjacent to the Alexander Property. Additional work is recommended for future exploration activities on the Property within this Technical Report.

The Alexander Property is comprised of 27 patented mining claims spanning 448 hectares (1,107 acres) in size, within the Red Lake Mining Camp in Ontario. The patented mining claims are 100% owned by Conquest. The surface rights to this property are owned by Goldcorp Inc. ("Goldcorp").

This Technical Report has been prepared by Benjamin Batson, P. Geo., Vice President of Exploration for Conquest. Mr. Batson is a licensed member of the Association of Professional Geoscientists of Ontario (APGO) and is a Qualified Person within the meaning of NI 43-101.

Since the acquisition of the Alexander Property during 2002, Conquest has completed a total of 31,086 metres of surface exploration diamond drilling in fifty-five (55) drill holes, of which twenty-five (25) holes representing 6,052 metres of drilling were previously summarized in the report filed by Conquest on SEDAR entitled "Technical Report on Exploration for the Period February 2003 to April 2004, Alexander Property, Balmer Township, Red Lake Mining District, Ontario" (Marmont, 2004).

This report contains references to reports and memoranda which in some instances are not published in the public domain. The material content contained in these unpublished documents that is pertinent to the Property is cited in the body of this report. Complete references to all documents including industry-led and the academic-focused journal articles, thesis projects, and government/industry collaborative study efforts used in the preparation of this Technical Report are listed in Section 19: "References" of this report.

This report summarizes the drill log information compiled from 25,034 metres of diamond drilling from thirty (30) exploration diamond drill holes completed following the 2004 Marmont Report. Other work completed during the period 2004 through 2012 is also summarized within the body of this report including the interpretation of an induced polarization (IP) geophysical survey conducted during 2004 and 2005, and mapping information collected during a surface trench mapping and sampling program during 2004 and 2010.

The author of this report was present on-site for the duration of the 2009 drilling season. During 2010 and 2011, the author performed regular inspections of operations.

3. Reliance on Other Experts

This report contains information of a scientific and technical nature. The author intends that the reader consider the report in its entirety to represent a summary of exploration activities completed on Conquest's Alexander Property.

Drill core for the historic surface exploration drilling programs conducted during 1946, 1971, 1980, 1981, 2003, and 2004 has not been stored or made available for the compilation of historical data relevant to the Alexander Property for the purposes of preparing this technical report. The author relies upon the scientific and technical description of core found in the retained drill logs as written by the project geologist during past exploration programs. The author of this report has critically reviewed the pertinent information contained in the aforementioned records and in most cases assumes the authors of the historic information to be competent and qualified geoscientists.

Terence McKillen, Professional Geologist ("P.Geo.") is relied upon for the preparation of information disclosed in the 2003 NI 43-101 Technical Report (*see* McKillen, 2003 in the References section of this report). Mr. McKillen is also relied upon for the supervision of the Winter 2004 drilling program for which the drill hole logs for those holes interpreted in this report were prepared.

Christopher Marmont, P.Geo. is relied upon for the preparation of information disclosed in the 2003 and 2004 NI 43-101 Technical Reports (*see* Marmont, 2003 and Marmont, 2004).

Pierre Bérubé, Engineer and Geophysicist ("eng." Ingénieur Québec) of Abitibi Geophysics is relied upon for the preparation of information disclosed in and the principle authoring of the report entitled "2004 Logistics and Interpretation Report for Resistivity and Induced Polarization Survey (Phase 1) conducted on the Alexander Property" (*see* Bérubé, 2004).

Helene Rivest, a Geophysicist for Abitibi Geophysics is relied upon for the preparation of information disclosed within the report entitled "2005 Logistics and Interpretation Report for Resistivity and Induced Polarization Survey (Phase 2) conducted on the Alexander Property" (*see* Rivest, 2005).

Camille St-Hilaire, a Geophysicist for SIAL Geosciences Inc. is relied upon for the preparation of information disclosed within the report entitled "2001 Project Report for the Combined magnetic, electromagnetic, VLF and radiometric helicopter surveys completed in the vicinity of the Alexander Property for Goldcorp during October and November of 2000" (*see* St-Hilaire, 2000).

Wherever possible, the author has cited historic reporting and journal articles with reference to relevant information obtainable in documents which are readily available in the public domain; however, in some

cases, unpublished reports, internal letters and memoranda have been referenced which are not publicly filed and remain the property of the Company.

The author of this Technical Report is Benjamin Batson who is a professional geoscientist and Qualified Professional under the meaning of NI 43-101 and is licensed under the Association of Professional Geoscientists of Ontario (APGO). Mr. Batson is Vice President Exploration for the Company.

The author is unable to verify the information of a technical nature disclosed in Section 15: "Adjacent Properties". This information is not necessarily indicative of the mineralization that is present on the Alexander Property.

4. Property Description and Location

The Company owns a 100% interest in the Alexander Property. Ownership of the Alexander property is subject to a 2% net smelter royalty reserved through the executed Letter Agreement dated April 14, 2002 between Conquest and Energold Minerals Inc. whereby Conquest earned it's undivided interest through the expenditure of a minimum \$500,000 of exploration prior to December 31, 2006.

The Alexander Property comprises 27 patented mineral claims (*see* Table 1: List of Patented Mining Claims) spanning 1,107 acres (448 hectares) in size located in the central part of Balmer Township, Red Lake area, Ontario (Figure 1: Claim Location Map and Figure 2: Location Map by Company Holding). The claims were initially acquired by Alexander Red Lake Mines Limited ("ARLM") in 1945. The claims were legally surveyed and patented during October 1966. In September 1972, the surface rights were severed and sold to Medlee Limited (Goldcorp Inc. is the current owner of the surface rights). The mining rights were subsequently transferred to Senlac Resources Inc. ("Senlac"). In July 1980, the mining rights were transferred to Getty Canadian Minerals Limited ("Getty"). Upon a corporate restructuring in 1992, the interest was transferred to Total Energold Corporation and in October 1992, the mining rights were transferred to Energold Minerals Inc.

All of the claims are in good standing. No action is required other than the payment of annual taxes. The claims adjoin the Goldcorp Inc. ("Goldcorp") Red Lake mine property.

Table 1:	List of	Patented	Mining	Claims
----------	---------	----------	--------	--------

Red Lake Mining District - Patented Mining Claims				
KRL20303 KRL20485		KRL20519	KRL20749	
KRL20304	KRL20486	KRL20520	KRL20750	
KRL20305	KRL20487	KRL20553	KRL20751	
KRL20437	KRL20488	KRL20554	KRL20752	
KRL20438	KRL20516	KRL20555	KRL20753	
KRL20439	KRL20517	KRL20556	KRL20754	
KRL20440	KRL20518	KRL20748		

ALEXANDER PROPERTY, RED LAKE, ONTARIO

Goldcorp discharges its tailings and decant waters through a series of settling and polishing ponds located across the northwestern part of the Property (*see* Figure 3: Physiography and Topography). An explosives magazine is maintained by Goldcorp on the Alexander Property that is used to temporarily store explosives for the operation of the Red Lake mine. The author is not aware of any environmental liabilities to which the property is subject other than through the permitted operations of Goldcorp.

The author is not aware of the necessity to obtain any permits for regular surface exploration, other than the permission of Goldcorp, as surface rights owner, for access prior to conducting any work. Goldcorp has cooperated with Conquest during past exploration programs and continues to readily facilitate access to the Alexander Property through the security gate at the Red Lake Complex. The Ontario Ministry of Labour performs routine inspections of the drilling activities at the Red Lake mine and commonly inspects exploration activities on the Alexander Property.

Access to drill stations during the spring melt can result in the flooding of bush trails, which do not require permitting application but nonetheless are treated in practice as stream crossings where logs are placed to allow water to run-off without damage to the seasonal drainage-ways.

Figure 1: Claim Location Map

Figure 2: Location Map by Company Holding

5. Accessibility, Climate, Local Resources, Infrastructure and Physiography

Much of the Alexander Property is accessible by truck on graveled roads which are maintained and are accessible for year round use. An extensive road network extending from the adjacent Goldcorp mine site provides good road access on two graveled roads oriented east-west in direction through the centre of the Property. Additional access exists at the eastern end of the claim group by truck on a municipal road through Goldcorp's "Gate 12" road gate.

The Municipality of Red Lake is located in northwestern Ontario. The closest major city is Winnipeg, Manitoba located approximately 475 kilometres to the southwest of Red Lake. Red Lake is accessible year round by vehicle on Highway 105, a paved road which extends north from the Trans-Canada Highway (Highway 17) at Vermillion Bay, which is located approximately 50 kilometres west of Dryden, Ontario. Daily scheduled flights are available on several small commercial airlines in and out of the newly reconstructed Red Lake Municipal Airport in Cochenour which is regulated by the Thunder Bay Airport Authority. Rail freight service is available approximately 150 kilometres to the south in the community of Red Lake Road.

The adjacent towns of Red Lake, Balmertown, and Cochenour are commonly referred to collectively as one place, although they have each independently served as townsites for gold mining through history in what is known today as the Red Lake mining district. For example, the Red Lake Gold Mine is located in the village of Balmertown and the Cochenour Gold Mine is located in the village of Cochenour.

Approximately 5,000 people live in Red Lake and the adjacent communities of Cochenour and Balmertown. All of the major services and elements of a northern community are present within the municipality including a hospital, schools, government services and community complexes for curling, ice hockey, swimming, bowling and baseball. Fuel, grocery, hardware and clothing stores in addition to hotel businesses are all present in the town of Red Lake. Networks for wired and cellular communication are available throughout the area immediately surrounding Red Lake.

Red Lake, being the long-standing centre of mining activity in northwestern Ontario, has many services and resources necessary for mine development and operations including adequate sources of power, water, potential tailings storage areas, potential custom milling facilities, assay laboratory and a trained labour force. Businesses in the area make Red Lake an ideal expediting hub for the adjacent northern outpost communities and exploration camps located within a couple hundred miles of the municipality.

The climate of the Red Lake area is humid continental with warm summers and cold winters. Snow usually starts falling in late October and melts during April. Wind during winter months is often very cold and temperatures may drop to below -35 degrees Celsius ("°C"). Temperatures range from a maximum high of 37°C in June to a maximum low of -26°C in January. Mean daily temperatures range from 20°C in July to -20°C in January.

As is the case in most northern Ontario regions, the seasonal threat of forest fires is ever-present during June through August annually. Forest fires in May, September and October in the area are not uncommon during periods of time of prolonged dry weather.

Exploration activities may be conducted year-round. The seasonal nature of certain exploration activities, specifically drilling, imposes logistical concerns such as freezing conditions which may cause the freezing of long-length water lines during cold winters. Water sources for the purposes of exploration drilling are typically easier to locate during spring and fall seasons. Similarly, trenching and outcrop mapping activities are best conducted during May and October when the hazards associated with hot and dry weather pose less of a threat for forest fires.

Much of the Alexander Property and surrounding area is covered by Quaternary deposits consisting primarily of boulder, sandy, silty till and glaciofluvial outwash sands and lacustrine clay. Swamps are present in topographically low areas (Cameron, 2003).

The project and surrounding area is entirely within the administrative boundary of Balmer Township located on the NTS 052-N-04 (National Topographic Survey) map sheet. Data relating to topography and physiography is continuously updated on the NTS map sheet.

6. History

Since the original staking of the twenty-seven (27) mining claims during 1946, the Property has been subject to multiple agreements including corporate reorganizations and asset transfer agreements. Table 2: (Summary Table of Property Tenure and Interests) summarizes the history of the Property in this regard.

Year	Document	Company
1946	Original Acquisition by Staking	Alexander Red Lake Mines Limited
1966	Claims Patented	Alexander Red Lake Mines Limited
1971	Joint Venture	Alexander Red Lake Mines Limited and Senlac Resources Limited
1972	Surface Rights Severed	Meldee Limited (Subsequently sold present owners Goldcorp Inc.)
1977	Corporate Acquisition	Alexander Red Lake Mines Limited became Senlac Resources Limited
1979	Option	Getty Canadian Minerals Limited (70%) Senlac Resources Limited (30%)
1982	Dilution of Interest	Getty Canadian Minerals Limited (76.5%) Senlac Resources Limited (23.5%)
1020c	Corporate Acquisition	Getty Canadian Minerals Limited (76.5%) as before; and,
19003		Senlac Resources Limited becomes Heenan Senlac Resources Limited (23.5%)
1000	O Asset Purchase Agreement	Getty Canadian Minerals Limited (76.5%) as before; and,
1990		Laurasia Resources Limited (23.5%) Heenan Senlac Resources Limited (NSR)
1000	Assignment and Nevation Agreement	Getty Canadian Minerals Limited (76.5%) as before; and,
1990	Assignment and Novation Agreement	Laurasia Resources Limited (23.5%)
1002	2 Asset Purchase Agreement	Total Energold Corporation (76.5%) acquires Getty Canadian Minerals Limited Assets
1992		Laurasia Resources Limited (23.5%)
1000c	Assot Rurchasa Agroomont	Total Energold Corporation (76.5%)
19903	Asset Fulchase Agreement	Total Energold Corporation (23.5%) accquires from Laurasia Resources Limited
1992	Asset Purchase Agreement	Energold Minerals Inc. (100%) acquires asset from Total Energold Corporation
2002	Letter Agreements	Conquest Resources Limited (100%)
2002		Energold Minerals Inc. (2% NSR)

Table 2: Summary Table of Property Tenure and Interests

A total of seven (7) drilling exploration programs have been conducted on the Alexander Property since 1946, of which only two of these exploration programs were commenced and completed within a single year. Additional lithogeochemical and geophysical surveys, mapping and outcrop sampling have also been conducted on the Property.

Forty-six (46) AX-sized, shallow, surface exploration drill holes were completed during 1946 and 1947 by ARLM following a significant influx of interest and investment in the Red Lake area staking rush of 1945 being just prior to the initial production of gold from the adjacent Dickenson gold mine in 1948. These holes were generally drilled less than 100 metres in depth with the exception of one 400 metre hole in 1947 through an informal joint venture between ARLM and Dickenson Mines Limited.

The initial drilling program (Alexander Red Lake Mines, 1947) established that sulphide-bearing metasediments, later established to be part of the Huston Formation, and the underlying tholeiitic basalt volcanics belonging to the Balmer Assemblage occur extensively across the Alexander Property. No significant discoveries of gold mineralization were made during this program, although many sheared quartz-carbonate

bearing volcanics were located, which since that time have been established as a primary ingredient for gold mineralization in Red Lake. The most significant grade gold intersection found in this program was from hole 46-17 which contained up to 3% arsenopyrite and a narrow mineralized quartz stringer found to contain 0.35 ounces per ton ("opt") gold (10.9 grams per tonne, "gpt") over 1.4 feet (0.43 metres) of core.

During 1951, E.O. Chisholm of the Ontario Department of Mines mapped Balmer Township at a scale of 1:12,000 (Chisholm, 1954). Subsequent government-led mapping took place during 1977 and 1978 by J. Pirie of the Ontario Geological Survey (Pirie, 1978) and then again during 2001 and 2004 by Sanborn-Barrie of the Geological Survey of Canada (Sanborn-Barrie, 2001 and Sanborn-Barrie, 2004).

During the late 1960's, one (1) surface exploration drill hole was drilled along the former Dickenson-Robin claim boundary (formerly Robin Red Lake Mines and Dickenson Red Lake Mines that historically controlled the current Red Lake gold mine claims contiguous to the Alexander Property western and southwestern boundaries) (Hutton, 1971). The log for this exploration hole was not available to the author at the time of writing this report.

During October 1969, ARLM cut five local grids on the Property to facilitate a Horizontal Loop Electromagnetic (HLEM) survey. An HLEM survey was carried out during December 1969.

During 1971, further exploration work was carried out on the property by D.A. Hutton for a possible joint venture between Cochenour Mining Company, Selco Exploration Company Limited and Alexander Red Lake Mines Limited. This agreement never materialized. The Property was mapped on a scale of 1:3,600 (1" to 300') and a ground magnetic survey using Scintrex MF-2 survey equipment (Floyd, 1987).

During 1971, under a joint venture between Senlac and ARLM, four (4) exploration drill holes were planned and carried out totaling 439 metres of drilling. All gold and silver values were trace except for one sample taken from hole 71-04 which yielded 0.32 opt silver (10 gpt) over 2.5 feet (0.76 metres) (Alexander Red Lake Mines Limited, 1971).

During September 1978, an airborne electromagnetic survey of the Red Lake area was conducted by Questor Surveys Limited for the Ministry of Natural Resources and was released as an open file report.

During March 1980, Getty conducted an airborne Dighem EM, resistivity, and magnetic survey over the Property to assist with the planning of drill holes for the fall winter season. A total of 252 line kilometres were flown using a helicopter with an average electromagnetic receiver height of 35 metres from the ground surface. A few moderate conductors were interpreted from the data.

During May 1980, a regional geochemical survey of the Red Lake camp was completed, providing data for the determination of background and anomalous gold and arsenic values.

Line cutting was also carried out during May 1980 for the purposes of geological mapping (1:5,000 scale) and a property scale geochemical survey.

Sampling of outcrop by Getty (1980) was analyzed for major oxides together with gold, silver, boron, arsenic, zinc, molybdenum and copper. The gold and arsenic values appear to be indicative of gold mineralization. A study of the major oxides suggests that the rocks are andesites, dacites and basalts of calc-alkaline and tholeiitic affinity. (McKillen, 2003). Research indicates that the Red Lake and Campbell gold deposits are hosted mainly by iron-rich tholeiitic basalt and more locally by basaltic komatiite of the Mesoarchean-aged Balmer assemblage (Dubé, 2002).

A follow-up ground VLF-EM survey, on the southern half of the property, further delineated the conductors and outlined a weak to moderate conductor that extended the known gold bearing zone and was utilized to locate the 1980 drill holes (Sutherland, 1981).

On the basis of results from the geophysical and geochemical surveys, geological mapping and previous drilling (ARLM 1946), Getty planned and completed five (5) exploration drill holes during the fall of 1980. The core was thoroughly sampled and assayed for gold and silver but no significant gold or silver values were located (Sutherland, 1981). A quartz-carbonate vein zone was observed in the mafic volcanic unit which assayed 0.056 opt (1.6 gpt) gold over 1.0 metres in drill hole 80-03 (Sutherland, 1983).

From October through December in the year following (1981), three additional holes were completed by Getty in the same vicinity as the 1980 drilling only deeper and further west. A total of fifty-five (55) samples were analyzed for gold, silver, arsenic, molybdenum, boron, copper and zinc. Again, no significant values were intersected (highest value 0.03 opt over 3.3 feet, or 1.0 gpt over 1.1 metres) (Sutherland, 1982).

During 1982, a paper published in the CIM Mine Geology Bulletin entitled: "Meter-wide veins and a kilometerwide anomaly, wall rock alteration at the Campbell Red Lake and Dickenson gold mines, Red Lake Ontario" (MacGeehan, Hodgson, and Saunders, 1982) two areas are described with arsenic anomalies (> 20 ppm), one centred over the Campbell and Red Lake mines in the Western Volcanic Complex and one over the Eastern Volcanic Belt. The arsenic anomalies are coincidental with an area of high peraluminosity index ("PAI") >2.0. In Balmer Township, most unaltered samples of mafic flows have a PAI of 0.5. The PAI changes to approximately 1.0, for samples collected from areas with increasing spilitic alteration, being bleached domains of Na-Si enrichment and Fe-Mg depletion. In contrast, rocks affected by feldspar destructive alteration generally have a PAI > 3.0. According to McGeehan et al, this is because the aluminum in the rocks is almost entirely contained within sericite and chlorite alteration minerals.

The arsenic anomaly situated over the Eastern Volcanic Complex is of comparable size to that associated with the Campbell and Red Lake mines and appears as an extensive two (2) kilometre long, arsenic anomaly. It is situated approximately two (2) kilometres southeast of the Goldcorp mine, placing it entirely within the central portion of the Alexander Property (McKillen, 2002), to the north of the gabbro contact and coincident with several of the arsenic lithogeochemical anomalies outlined by Getty (1981) (Sutherland, 1982).

A long period of inactivity followed the drilling completed by Getty in 1981 until Conquest Resources Limited conducted ground work initially during 2002 on the Property under option from Energold Minerals Inc. (successor to Total Energold Corporation and Getty Canadian Minerals Limited).

During 2001, while conducting exploration on their adjacent Gullrock property, Goldcorp conducted mobile metal ion ("MMI") soil geochemical sampling on an area approximately 800 metres by 300 metres in the southeastern corner of the Alexander Property. An anomaly exists on two lines which were spaced 200 metres apart that is comprised of elevated gold, silver and palladium values. Exploration activities are recommended for this target area in the body of this report (*see* Section 18 Recommendations).

During 2002, Conquest conducted a desktop compilation study entitled: "Phase I Geological Report on the Alexander Project" (hereinafter "2002 Technical Report") (McKillen, 2003). Ground work performed during 2002 by Conquest is described in this report including a soil sampling program conducted during October and November 2002 comprising 840 B-horizon samples on a local grid cut in the same year which crudely reestablished the Getty (1980) local grid. A total of thirty-one (31) gold and/or arsenic anomalies are described in the 2002 Technical Report (McKillen, 2002).

Also during 2002, a reinterpretation of the Getty (1980) Dighem airborne EM survey was completed by J. Bonniwell of Excalibur International Consultants Limited (Boniwell, 2003a), a summary of which is discussed in the 2002 Technical Report (McKillen, 2003).

During February and March 2003, ground VLF-EM and aeromagnetic surveys were conducted over the Property (Marmont, 2004). The 2002 local grid was surveyed in full except for the part of the northwestern area that is covered by mine tailings. The ground VLF-EM survey was conducted with a Geonics EM16 instrument utilizing the Cutler, Maine NAA transmission. The airborne magnetic survey was flown under contract by Terraquest using a Piper Navajo at a terrain clearance of 60 metres. Again an interpretation of this datum was prepared by J. Boniwell of Excalibur International Consultants Limited (Boniwell, 2003b, 2003c), which is summarized in the 2004 Technical Report (Marmont, 2004). Distinct VLF-EM anomalies with long strike length were noted by Boniwell located adjacent to the contacts of a central mafic intrusive as well as a shorter distinct anomaly within the mafic intrusive (Bonniwell, 2003c).

During 2003, a total of fifteen (15) narrow trenches were excavated as part of a broader outcrop mapping program which was ultimately delayed until the summer of 2004. Due to the limited availability of surface water in the area, these trenches were mapped during the following spring and summer seasons following the spring run-off. The results of this work are discussed in the body of this report.

During November 2003, a Mobile Metal Ion B-Horizon ("MMI-B") soil geochemical survey was conducted over the southern portion of the 2002 local grid (450 x 2,900 metres) over Conquest's Central Sulphide Shear Zone (formerly the "Main Shear") (Boniwell, 2003c) interpreted from the aeromagnetic data. Samples were tested for gold, silver, cobalt, nickel and palladium. The data and interpretation for this survey is summarized in the 2004 Technical Report (Marmont, 2004). The overall values for gold were relatively low, however by plotting

the response ratios for gold and silver (Au+Ag/Ag), a strong correlation is present between the MMI-B data and the Boniwell VLF-EM targets (Boniwell 2003b and 2003c), which represented many of the targets tested in later drilling during 2003 and 2004.

During 2003 and 2004, twenty-five (25) holes were completed by Conquest (see Table 3: Summary Table of Historical Drill Holes) and were summarized in the 2003 and 2004 Technical Reports (Marmont, 2003 and Marmont, 2004).

Year	Company	No. of Holes	Meterage
1946	Alexander Red Lake Mines Limited	46	6,854
1971	(J.V.) Alexander Red Lake Mines Limited and Senlac Resources Incorporated	4	439
1980	Canadian Getty Minerals Limited	5	919
1981	Canadian Getty Minerals Limited	3	1,370
2003	Conquest Resources Limited	10	2,648
2004	Conquest Resources Limited (Phase I)	15	3,404
Total		83	15,634

Table 3: Summary Table of Historical Drill Holes

No production of any mineral of economic interest has taken place on the Property.

7. Geological Setting and Mineralization

The Alexander Property is situated in the central to southeastern portion of the Red Lake gold mining camp within an enclave of Archean volcanic and sedimentary rocks which form a western extension of the Birch-Uchi Lake greenstone belt (Goodwin, 1977).

There are some thirty (30) current and past-producing gold mines (Lichtblau, 2008) in the Red Lake District which have produced in excess of twenty-six (26) million ounces of gold. The majority of this gold production has been mined from geological structures hosted within Archean-aged volcanic rocks.

Geological Setting

During 2001, Sanborn-Barrie, Skulski and Parker of the Continential Geoscience Division of the Geological Survey of Canada released a Current Research report on the tectonic history for the Red Lake area in a report entitled, "Three hundred million years of tectonic history recorded by the Red Lake greenstone belt, Ontario", the abstract of which is below and for the purposes of this report appropriately introduces the regional geological setting for the Red Lake mining district.

"The Red Lake belt records ca. 300 Ma of episodic magmatism, sedimentation, and tectonothermal activity along the south margin of the three (3) billion year old (Ga) North Caribou terrane. Autochthonous assemblages reflect initial (2.99-2.96 Ga) plume magmatism, 2.94 to 2.91 Ga arc magmatism, 2.90 to 2.89 Ga sedimentation, and protracted Neoarchean continental arc and intra-arc rift related magmatism (2.75-2.73

Ga). A ca. 2.85 Ga oceanic assemblage containing mid-ocean ridge-basalts (MORB)-like basalt may have been accreted and caused early uplift and erosion prior to Neoarchean magmatism. This was followed by collisional orogenesis at ca. 2.72 Ga, the Uchian phase of the Kenoran Orogeny, which was accompanied by extensive hydrothermal alteration and gold mineralization" (Sanborn-Barrie 2001).

The greenstone belt is further subdivided into several distinct tectonic assemblages (Pirie, 1981; Wallace, 1986; Stott, 1991; Sanborn-Barrie, 2001; Sanborn-Barrie, 2004). Some of these tectonic assemblages are common to other greenstone belts within the Uchi Subprovince. In the Red Lake greenstone belt the assemblages from oldest to youngest are the: Balmer Assemblage, Ball Assemblage, Bruce Channel Formation, Woman Assemblage, Confederation Assemblage, Huston Assemblage, and the Graves assemblage (Sanborn-Barrie, 2004). Of these assemblages, only the Balmer, Huston and Bruce Channel rocks are present on the Alexander Property (*see* Figures 4 and 5). Younger volcanic assemblages occur within the Uchi Subprovince in the greenstone belts west of the Red Lake greenstone belt (Penczak, 1996).

The Balmer assemblage is interpreted to have been deposited in an environment typified by oceanic to local shallow submarine volcanism (Stott, 1991). The Ball, Bruce Channel, Woman, and Confederation assemblages are considered to have formed in an island arc environment (Penzcak, 1997).

The Balmer assemblage hosts major gold deposits in the Red Lake greenstone belt including the Campbell and Red Lake mines. The Balmer assemblage includes the Lower Mafic Sequence (Pirie, 1981) and Cycle I Sequence (Wallace, 1986). This assemblage comprises 50% of the Red Lake greenstone belt (Stott, 1991). The Balmer assemblage represents the oldest volcanic rocks in the Uchi Subprovince ranging in age from about 2,992 to 2,958 Ma (Corfu, 1986; Corfu, 1987; Stott, 1991), and consist primarily of tholeiitic and komatiitic basalt flows with minor interbeds of magnetite-quartz iron formation and thin units of rhyolitic pyroclastic breccia/fine-grained tuffs (Penczak, 1996).

The Bruce Channel formation consists of basalt flows overlain by minor units of felsic pyroclastic rocks dated at 2,894 Ma (Corfu, 1986; Corfu 1987) and by clastic sedimentary rocks and iron formations (Stott, 1991). The Bruce Channel formation tectonically underlies the older Balmer assemblage and is in fault with the Confederation assemblage along its southern boundary (Penczak, 1996). Conglomerates occur at the fault boundary between the Balmer and Confederation assemblages and have been included by Stott (1991) in the Bruce Channel formation.

The Huston assemblage is a clastic succession separating the two main stages of Neoarchean volcanic activity at 2,742 to 2,733 Ma. The assemblage comprises coarse and fine clastic detritus which unconformably to conformably overlies the McNeely sequence from the Confederation assemblage and underlies the Graves assemblage. At the property scale, the Huston sedimentary assemblage is mainly comprised of a thin veneer of clastic detritus, chiefly sulphide-bearing cemented conglomerate; however, elsewhere in the Red Lake greenstone belt, and to a lesser extent to the south of the Alexander Property, the assemblage forms a thick

succession of well-bedded argillite and turbiditic wacke suggesting that an erosional surface of considerable relief was present during deposition in a hiatus in Neoarchean volcanic activity (Sanborn-Barrie, 2004).

Figure 4: Modified from Sanborn-Barrie (2004) - Major assemblages and plutonic suites of the Red Lake greenstone belt, showing U-Pb determinations of volcanic and plutonic rocks (Modified from Stott, 1991)

At the property scale, Balmer assemblage rocks form a thick complex succession of mafic metavolcanic rocks with minor interbedded felsic metavolcanic and metasedimentary rocks. The units have undergone low-grade greenschist metamorphism and regional deformation.

Gold occurs as native gold and accessory mineralization includes arsenopyrite, pyrite, pyrrhotite, tourmaline, fuchsite, scheelite and silver (Sutherland, 1983). The major gold bearing veins in the area have a strike length of approximately a thousand metres in an east-west direction dipping 55 to 70° to the south.

Structural Geology

At least three phases of deformation ($D_1 D_2$ and D_3) have acted upon Red Lake stratigraphy which are discussed at length by Dubé (2002) and referred to extensively by Sanborn-Barrie (2001 and 2004), the most significant of which, to the formation of Red Lake orebodies, being the latter two phases (D_2 and D_3).

The Campbell, Dickenson and Red Lake faults are developed within a CO_2 -rich hydrothermal corridor that coincides spatially with most of the ore zones. The flattened F_{2a} folds with highly strained limbs, the southeast-trending faults, and the associated corridor of alteration and mineralization define a southeast-trending structural lineament known as the "Cochenour-Gullrock Lake deformation zone (Andrews, 1986) or the "Red Lake Mine Trend" ("Mine Trend"). The Mine Trend lineament is traced from the Campbell-Red Lake deposit northwest at least to the Cochenour mine (see Sanborn-Barrie, 2001) and corresponds to a zone of heterogeneous, protracted D_2 strain (Dubé, 2002).

The combination and complex interference of D_2 and D_3 (or D_{2ab} and D_{2c} , see Dubé 2002) strain is a structural signature of the Red Lake greenstone belt which characterizes the subvertical to vertical attitude of the stratigraphy through the widespread development of a penetrative L-S fabric.

From Dubé (2002), "the main stage of high-grade, gold-rich silica was contemporaneous with the D_2 boudinage of carbonate veins" (See Figure 6: Relative Chronology of the Main Geological Features, from Dubé, 2002). Gold mineralization is synchronous with D_2 shortening, a protracted event characterized mainly by continuous shortening that caused folding of a layered sequence and synchronous emplacement of axial-planar fissure veins as well as bedding-parallel and discordant vein, followed by attenuation and transposition of the limbs and ultimately reverse-sinistral faulting. The F_{2a} fold hinges deforming the basalt-basaltic komatiite contact control the distribution of the high-grade gold mineralization. The auriferous silica-rich fluid was focused into these lower pressure F_{2a} hinge zones as a result of a combination of factors including competence contrasts, tangential longitudinal strain, and southeast-trending high-strain zones." (Dubé 2002).

	D ₁	D ₂		
		D _{2a}	D _{2b}	D _{2c} / D ₃ (?)
N-S-trending F ₁ open folds				
Carbonate veins network	?—?-			
ESE F _{2a} folds deforming lithology				
ESE trending S ₂ main foliation				
Carbonate veins boudinage				
Biotite alteration				
Au-rich silica and arsenopyrite replacement				
SW F _{2b} folds deforming veins				
ESE-trending high strain / shear zones				
SW-plunging L _{2b} stretching lineation				
ESE reverse-sinistral brittle-ductile faulting				
FP dykes				
Lamprophyre dykes				
Barren quartz veins				
Au remobilization				

Figure 6: Relative chronology of the main geological features (from Dubé, 2002)

Dubé (2002) schematically illustrates (See Figure 7 from Dubé, 2002): the relationship of D_2 fabric to the spatial orientations of the ore bodies at the Campbell-Red Lake deposit located approximately 1,000 metres due west of the Alexander Property.

Figure 7: From Dubé (2002) – A schematic evolution model of the Campbell-Red Lake Deposit relative to D₂ deformation, based on a geological compilation by Goldcorp Inc. and Dubé et al (2001)

Mineralization and Alteration

The Campbell and Red Lake gold deposits are hosted mainly by iron-rich tholeiitic basalt and more locally by basaltic komatiite of the Mesoarchean-aged Balmer assemblage. Peridotite komatiite, variolitic basalt, rhyolite, mafic intrusions, and synvolcanic sedimentary rocks complete this assemblage in the mine sequence (Penczak, 1997).

The ore zones of the Campbell and Red Lake gold mines occur within a broadly stratiform, anomalously fissile and deformed zone of altered, mainly mafic volcanic and subvolcanic intrusive rocks adjacent to a local sedimentary basin in the south east part of the Red Lake greenstone belt. Minor volumes of felsic volcanic rocks and mainly post-deformation mafic to quartz-feldspar porphyry felsic dykes occur within the area of the mine workings (MacGeehan, 1981a).

The ore-hosting volcanic rocks are intensely hydrothermally altered, both locally near the ore zones, and within a kilometer-wide zone encompassing the mines. This larger-scale alteration zone, which is interpreted to have been a major syn-volcanic hydrothermal discharge zone, is characterized by: (a) anomalously high gold

and arsenic concentrations, (b) abundant dolomite-ferrodolomite-ankerite, in a myriad of small and variably transposed veinlets formed by remobilization of dispersed carbonate in the rock during metamorphism and deformation, (c) values of peraluminosity index (mole $\% Al_2O_3(Na_2O + K_2O + CaO)$ of greater than two (2), and by (d) pervasive feldspar destructive alteration and variable silicification (MacGeehan, 1981b). The resulting alteration envelopes exist as small, elusive targets within very large volumes of pervasively altered rocks (Floyd, 1987).

Within the mineralized zones at the mines adjacent to the Alexander Property, the rocks have been silicified, carbonatized, and contain significant pervasive biotite alteration and quartz-carbonate vein overprinting. Alkali depletion is also common locally. Major structural features (faults and shear zones) strike at an azimuth of 090 to 120°.

A noticeable feature of the mafic volcanic rocks on the Alexander Property is the abundance of veining present. The host volcanic is generally siliceous and variably chloritized with localizations of pervasive biotite alteration and quartz-carbonate veining near zones of shearing. Quartz-carbonate veins are present in most outcrops and in core with varying vein density/frequency. The majority of veins are carbonate rich, principally calcite, and to a lesser extent, ankerite, dolomite, and quartz-carbonate veins. In outcrop, the veins strike southeast (100 to 130° AZ) and dip steeply to the southwest (65 to 80°) and are generally one (1) to two (2) centimetres in width.

Prospecting and drilling has located several styles of sub-economic mineralization on the Property.

The first style of mineralization, located in the 1946/47 drill program by ARLM, by Getty in 1980/81, and by Conquest from 2003 to 2011, consists of gold mineralization associated with quartz-carbonate vein systems within mafic volcanic and near the mafic intrusive-volcanic contact. The system is crudely oriented subparallel and along strike with the Red Lake mine property structures however the best assays to date are narrow and are moderately low in gold grade.

The second style of mineralization has been encountered in 1980/81 Getty drill holes (80-03, 81-01, and 81-02) and during Conquest drilling in holes collared in the Central Shear Zone and Eastern Shear Zone areas (See Section 10: Drilling), consisting of a sulphide rich zone with up to 30% sulphides locally (pyrite < pyrrhotite << arsenopyrite << chalcopyrite) hosted within sheared and quartz-carbonate veined, fine to medium grained Basalts belonging to the Balmer assemblage.

The third style of mineralization occurs within sheared late felsic to intermediate composition intrusives which locally contain zones of disseminated sulphides, chiefly arsenopyrite and pyrite, with values up to 31.25 gpt gold over 0.53 metres (Conquest 2011 drilling, hole CR-11-051).

8. Deposit Types

The Alexander Property is located immediately adjacent the Red Lake gold mine from which the first gold was mined during 1948. High grades and complex geometry characterize the ore that has been mined from the Red Lake mining district.

Red Lake gold deposits are not considered to be typical greenstone-hosted quartz-carbonate deposits (Dubé and Gosselin, 2007). It is difficult to apply traditional deposit classification conventions to wholly characterize the nature of the deposits at the Red Lake mine, specifically at the High Grade Zone ("HGZ") because of the uniqueness of the mineralization style, mode of emplacement, and remobilization characteristics which challenge the defining characteristics of conventional deposit model type-sets.

A specific characteristic of Red Lake deposits is the occurrence locally of spectacularly high gold grades in ore as seen in Goldcorp's HGZ at the Red Lake mine. The very rich ore of the HGZ is characterized by a remarkably abundant distribution of visible native gold. Textural observations of ore within carbonate veins as well as crosscutting relationships suggest peak-metamorphic emplacement for at least some of the gold. Postlamprophyre dyke remobilization of gold is locally observed in the HGZ. Structure and dilatancy are the key elements for localization ore at the Red Lake gold mine. Ore occurs where a fault trend intersects folded ultramafic volcanic rock that created a semi-permeable cap-rock to ore fluids ascending the "feeder" structure (Twomey, 2002).

Adjacent to the Red Lake mine (at the former Dickenson mine surface infrastructure) is the Campbell mine which is an example of an epithermal (vein-) deposit type. Epithermal (vein-) deposits, which compared to the low-grade, bulk-tonnage porphyry deposits, are typically small in size and consequently have a shorter mining life. Epithermal gold deposits can however reach high grades, being a few to several tens of grams per tonne ("gpt"), or more in exceptional cases; Campbell being one of such high grade examples. For vein-style epithermal deposits, the gold grades of Canadian examples (most ranging 2.5 to 25 gpt gold) are similar to those of the majority of 'mesothermal' quartz-carbonate deposits but are of generally smaller size, and are distinguished from the latter by higher silver to gold ratios (Taylor, 2007).

Only two of the historic producers in the Red Lake gold district are operating today: the Goldcorp Campbell mine (formerly Placer Dome's Campbell mine) and the Goldcorp Red Lake mine (formerly Dickenson Mines' Red Lake gold mine). A third historic mine, Goldcorp's Cochenour gold mine is slated to resume production in the near future. The Red Lake and Campbell mine properties are contiguous and share a large hydrothermal system comprising a number of individual ore zones. (Twomey, 2002).

The target grade and tonnage for the Alexander Property exceeds 1,000,000 tonnes grading greater than 8 grams per tonne gold, being approximately equal to the head grade of ores produced at the historic Dickenson mine during the forty-eight (48) years of production prior to the discovery of the HGZ.

9. Exploration

The Alexander Property has undergone sporadic exploration from 1946 to 2011, none of which has led to the discovery of economic mineralization. During the same period, aggressive exploration on the adjacent Red Lake and Campbell mine properties have led to the development of the highest grade gold mine complex in North America that has consistently produced between 300,000 and 800,000 ounces of gold per year for the most recent 30 years of production (excluding years for which a protracted labour dispute forced the suspension of production). In fact, the majority of the gold production has come from the Red Lake complexes which have no surface expression and in the exceptional case of the HGZ portion of the Red Lake mine, the deposit is "blind" above 1,300 metres depth.

Limited property scale exploration on the Alexander Property prior to 2009 has consisted of ground and airborne geophysics, minor trenching and shallow drilling to depths not exceeding more than 400 metres.

Data Review

A significant effort has been made to compile an electronic database and to organize and interpret the geology at the Alexander Property and the surrounding area. This database continues to be updated and revised as information is made available to the Company by means of ongoing exploration on, or adjacent to, the Property.

Data from historic exploration programs on the Alexander Property has been assembled and reviewed by the author of this Technical Report. The historic data comprises the reporting and correspondence of ARLM (1946-77), drill logs from ARLM (1946/47 and 1971), summary reports prepared by Getty Canadian Minerals Limited (1980/81/82), drill logs from Getty Canadian Minerals Limited (1980/81), an independent report prepared by Orequest Consultants Limited for Paget Resources Limited (1987), and various geophysical and geochemical surveys, and compilation reports prepared over the period 1978 to the present. All geochemical, geophysical, and drill hole data from work conducted by Conquest and in part by Goldcorp Inc. has been integrated in to the data review compilation which as a whole provided a solid basis to resume exploration that followed the "2004 Technical Report" (Marmont, 2004), and for which this Technical Report has been prepared.

The work completed by Terraquest Limited for the aeromagnetic geophysical survey also resulted in the compilation of a digital elevation model which was used extensively during 2003 and 2004 drilling by Conquest. Ground surveying by EXP Geomatics Incorporated (formerly Trow Geomatics) during 2009 through 2011 provided elevation data which when compared to the Terraquest data (Barrie, 2003) fell within three (3) metres of the 2003 digital elevation model, which is acceptable for its purpose for surface exploration drilling.

It is important to recognize the wide range of the usage of specific field terminology and how the application of qualitative descriptions of geology in outcrops and drill core has changed through time. For example, "QFP/Quartz-feldspar-porphyry" was commonly used to characterize the porphyritic texture and lithological

composition of quartz monzonites and quartz monzodiorites on the Alexander Property. Similarly, the term "acidic lava" was used occasionally to describe dacite and "basic lava" for andesite and basalt, during the 1946/47 drill program. Also, historic andesite descriptions have been recognized as tholeiitic basalt and an extensive gabbro intrusive was formerly characterized as a diorite.

Historically "massive sulphide" was used to describe solid sulphide (mineralization consisting of 70-100% sulphides), near solid sulphide (50-70% sulphides), and well mineralized (20-50% sulphides), a grouping of terminology which the author has separated into the following units: Solid Sulphide, Near Solid Sulphide, Well Mineralized and Disseminated (5-20% sulphides). Similar to traditional lithologies (eg. basalt, rhyolite, etc.), these units have with particular significance with respect to the occurrence of gold mineralization in the Red Lake Camp. Units such as this are logged as "lithologies" instead of "textural qualifiers", which in other geological settings have little relevance to the occurrence of mineral deposits.

During the compilation of data on the Alexander Property, considerable effort has gone into modifying the historic terminology to correspond with the current lithological units used at the adjacent Red Lake mine sites.

Line Cutting

In October 2002, approximately 3,200 metres of baseline and offset cut lines were cut and chained by a crew under the supervision of M. Desmeulles of Red Lake (*see* Figure 8: Local Grid Location Map on Satellite Image). The baseline origin has a Universal Transverse Mercator (UTM) longitude of 450 079 metres east ("mE") and latitude of 5 656 798 metres north ("mN") (UTM Zone 15U), more or less replicating the Getty grid from the early 1980s. The grid origin more or less coincides with the Number Four (4) post of claim KRL 20486, the Number Three (3) post of claim KRL 20752 and the Number One (1) post of claim KRL 20485. The base line has an azimuth orientation of 120°. The offset lines were not extended to the north beyond the southern shoreline of the Goldcorp settling ponds.

Drill stations for the 2003 and 2004 drilling programs were located using the local grid. Soil geochemistry samples were collected along the lines of the local grid during 2003 and later during 2004 and 2005 an Induced Polarization (IP) geophysical survey was carried out along the lines of the local grid.

During 2009, limited clean-up work was performed along the grid locally in the event future work should require the use of the local grid.

Figure 8: Local Grid Location Map on Satellite Image

Geophysics

During January of 2003, the airborne Dighem EM geophysical survey completed by Getty during 1980 was reevaluated by J. Boniwell of Excalibur International Consultants Limited ("Excalibur") for Conquest which resulted in the recognition of three NNW faults and possibly one east-west trending fault (Boniwell, 2003a). At the time, it was thought that the east-west structures at the adjacent Red Lake mine were principal conduits for gold mineralizing fluids despite the fact that most of the historic gold production was from northnorthwesterly ("NNW") offsetting structures. The western-most NNW fault interpreted by Boniwell would in theory coincide with the apparent broadening of the main gabbro intrusive that transects the property along the main D₂ (Dubé, 2002) fabric, although the timing of the interpreted NNW faulting with respect to the emplacement of the gabbro is unclear.

During April of 2003, Conquest flew a high resolution magnetic survey under contract to Terraquest, the interpretation of which by Terraquest was re-contracted to Excalibur (Boniwell, 2003c). Conquest also conducted a ground very-low-frequency electromagnetic (VLF-EM) survey during April of 2003 which was subcontracted by Excalibur locally to a Red Lake surveyor. The results of the ground VLF-EM survey are discussed in the 2003 Technical Report (Marmont, 2003) however the aforementioned airborne magnetic survey (2003) was subject to the reinterpretation by Excalibur (Boniwell 2003c) and was not summarized in the 2004 Technical Report (Marmont, 2004) that followed.

Boniwell (2003c) concluded that the main gabbro intrusive is essentially non-magnetic however within the hanging wall and footwall to this intrusive lie small magnetic high closures which form the basis of geophysical targets, one of which, coincidently, was drilled prior to the completion of the survey during the Spring of 2003 (hole CR-03-010). Up to twenty (20) metres of pyrite and pyrrhotite mineralization is present in basalt from hole CR-03-010. Up to fifteen (15) magnetic targets were identified and ranked as prospecting and potential drill hole targets for the drilling programs that followed (*see* Figures 18 and 19 in Appendix: Maps - Total Magnetic Intensity Interpretation Map from Barrie, 2003 and VLF-EM and Magnetic Survey Data Interpretation Base Map from Boniwell, 2003).

Later during 2005, Conquest contracted yet another re-interpretation of the VLF-EM and magnetic surveys to J. Roth of Strategex Limited ("Strategex") which confirmed that a series of 50 to 200 metre long target areas exist within the Balmer assemblage volcanics (Roth, 2005). A number of these targets were further supported by coincident induced polarization ("IP") anomalies which were determined by an IP survey (see "Abitibi" below) and evaluated by Roth (2005) contemporaneously with the VLF-EM/magnetic re-interpretation. Some of these targets were, in part, tested by previous drilling by Conquest during 2003 and 2004 and during subsequent drilling (2009 through 2011), however no significant gold mineralization was intersected. Those coincident magnetic and IP anomaly targets corresponding to the Central Sulphide Shear Zone (*see* Section 9: Exploration Trenching) represent the most extensively tested targets of the re-interpretation. The remaining un-tested targets of Boniwell (2003c) and Roth (2005) require further assessment to evaluate their significance with respect to geological structures and potential gold mineralization.

During 2004 and 2005, a two-phase resistivity and IP geophysical survey was contracted to Abitibi Geophysics for Conquest. The results of this program were summarized in an unpublished report to Conquest entitled: "Resistivity/Induced Polarization Survey - Logistics and Interpretation Report" (Barrie, 2005) in which six (6) target areas proposed for drilling and other targets were recommended for prospecting (*see* Appendix: Maps - Resistivity and IP Survey Interpretation Map, from Barrie, 2005). Four of the drill holes were recommended to be drilled in southwesterly directions and were dismissed due to the southwesterly dip of the stratigraphy on the property. Following a re-interpretation during 2005 (Roth, 2005) these were ranked for further follow-up exploration on the ground. Drill holes completed during the subsequent 2009 and 2010 drill programs tested many of the recommended target areas by Barrie (2005) and Roth (2005). No significant gold values were encountered. Additional investigation of the untested IP targets to the east and south east of the Central Sulphide Shear Zone (*see* Section 9: Exploration Trenching) is warranted.

During 2009, the interpretation of an airborne geophysical survey performed over the Alexander Property as part of a larger regional program conducted by Goldcorp was provided to Conquest in the form of digital images. Contoured map images were provided to Conquest from Goldcorp of a combined helicopter-borne high-resolution magnetic, electromagnetic, VLF, and radiometric survey conducted during October and November of 2000 over the Alexander Property and surrounding area. The survey was contracted to SIAL Geosciences Inc. by Goldcorp (St-Hilaire, 2001).

The imagery acquired by Goldcorp during 2000 further supports the interpretations of Boniwell (2003c) and Roth (2005). Magnetic trends in the Goldcorp data accurately correlate with the location of the Central Sulphide Shear Zone. The radiometric information does not provide any immediate targets for Conquest at this time. Other features in the electromagnetic data crudely suggest that east-west and north-northwest oriented structures may be present, however drilling during the period 2009 through 2011 does not immediately support these conclusions. Ultimately, the value of imagery provided to Conquest is diminished by the fact that extensive geophysical work and interpretation efforts (described above) had previously characterized the various geophysical aspects of the Property from the contracted work for which the Company has a firm understanding of the collection and quality analysis and control ("QA/QC") of the data.

Further compilation and interpretation of the underlying geophysical data is warranted. If the raw form data can be acquired, a detailed analysis of the Goldcorp (2000) data covering the Alexander Property is likely to result in the selection of anomalies which would be useful for target generation for subsequent drilling programs.

Trenching

During 2010, a trench was excavated exposing a 35 by 80 metre sized window into the bedrock geology at the Central Sulphide Shear Zone ("CSS Zone") area (*see* Figure 20 in Appendix: Maps – Central Sulphide Shear Zone Trench Map). A seven (7) to nine (9) metre true-thickness mineralized and strongly carbonate-silica-biotite-chlorite altered shear zone was uncovered on strike with sulphide mineralization discovered by Conquest in
2003. The trench is located in the central portion of the arsenic anomaly in the Eastern Volcanic Complex described by MacGeehan *et al* (1982) and adjacent to previous trenching which discovered the CSS Zone target during 2003.

The mineralization and alteration observed at the CSS Zone is characterized by disseminated to near solid sulphide stringers with carbonate-silica-biotite-chlorite alteration, which is similar to those mineralized zones that have elevated gold to sulphide content correlativity at the Campbell and Red Lake gold deposits.

The uncovered shear zone is intensely oxidized being the result of a two (2) to five (5) metre deep weathering profile, which is the product of the ongoing circulation of meteoric fluids through the steeply dipping stratigraphy. The bedrock at the trenched exposures is gossanous in nature due to the presence of pitted and weathered out mineral remnants. Carbonate and sulphide minerals have weathered orange and red in colour, such that the bedrock that is reasonably simple to trace during excavation.

Sulphide mineralization is contained within a seven (7) to nine (9) metre thick, strongly sheared zone oriented at 119° in azimuth, dipping 65° to the southwest (*see* Figure 10 and 11). The zone contains moderate to steeply dipping, sheared and folded quartz carbonate veins with pervasive carbonate and biotite alteration throughout (Figure 9: Annotated photograph of Pyrite-Arsenopyrite mineralized and carbonate-chlorite-(biotite-silica) altered, strongly sheared basalt in CSS Zone).

Mineralization is dominated by near-solid sulphide pyrrhotite-pyrite sulphide stringers in the hanging-wall within the upper portion of the shear zone where carbonate-biotite-silica-magnetite alteration is the strongest and most oxidized. Mineralization extending into the footwall of the shear zone is dominated by weaker pyrite-arsenopyrite disseminated sulphide mineralization throughout the sheared, silica-biotite altered host basalt.

Channel samples were cut from the trench on a locally established grid across the entire width of the shear zone. Samples were fire assayed for gold and then further processed for a detailed suite of trace elements using ICP methods at Activation Laboratories in Red Lake and Thunder Bay, Ontario. Anomalous gold values were returned over the most intensely oxidized hanging-wall portions of the shear zone in the range of 50 to 200 ppb. The highest values were found to occur in the footwall of the shear zone between 300 and 400 ppb gold.

It is possible that the CSS Zone is one of several southwest dipping shear zones containing steeply west plunging sulphide mineralized *chutes*. Structures similar to the CSS Zone, with similar alteration, have been found at the adjacent mines in the Red Lake camp to be strongly correlated to high grade gold mineralization.

Figure 9: Annotated photograph of Pyrite-Arsenopyrite mineralized and carbonate-chlorite-(biotite-silica) altered, strongly sheared basalt in CSS Zone Trench (2010)

STRUCTURAL GEOLOGY AT CENTRAL SULPHIDE SHEAR ZONE PLOTTED ON STEREONET AS POLES

Figure 10: Trenching Structural Geology Stereonet Mean Vector Pole Plots

STRUCTURAL GEOLOGY AT CENTRAL SULPHIDE SHEAR ZONE PLOTTED ON STEREONET AS PLANES

During 2003, trenching on a broader scale took place to assess the stratigraphy and structural geology in the central and southern portion of the Property. Trench locations were spotted on the criteria of coincident soil geochemical and/or previous geophysical targets with interpreted stratigraphy from historic mapping. A total of fifteen (15) trenches were excavated during the Fall of 2003. The exposed bedrock was not power-washed due to a general lack of available seasonal surface water. Accordingly, detailed trench mapping was not conducted until the following year (2004) following the spring run-off (*see* Figures 21, 22, 23 and 24 in Appendix: Maps - 2004 Trench Location Maps Nos. 1 through 4).

Bedrock exposure in these trenches ranges in length from five (5) to sixty-five (65) metres and is generally no wider than one (1) metre in width. In numerous cases, the depth of overburden exceeded the capacity of the excavating equipment in use at the time, so bedrock exposure in these trenches is intermittent and discontinuous

The results of the 2004 trenching program provided *high-level* information which assisted in the planning of drill holes for the subsequent drilling programs during 2004. These results did not provide a sound basis for structural interpretations of the CSS Zone, which in later programs, specifically during 2010 and 2011 drilling, was the foundation upon which drilling was directed.

Sampling did not return any significant gold values. Limited whole rock data was collected; however, these samples were poorly described with respect to alteration and mineralization. Resampling for whole rock geochemistry in these trenches is recommended if further classification of the lithology and alteration present is to result in any meaningful conclusion (see Section 18: Recommendations).

10. Drilling

General Overview and Previous Reporting

Conquest has completed fifty-five (55) drill holes on the property since 2003 when it commenced its initial drill program following the Company's acquisition of the Alexander Property (*see* Table 4: Summary Table of Drill Holes).

Table 4: Summary	Table of Drill Holes
------------------	-----------------------------

Year	Company	No. of Holes	Meterage
1946	Alexander Red Lake Mines Limited	46	6,854
1971	(J.V.) Alexander Red Lake Mines Limited and Senlac Resources Incorporated	4	439
1980	Canadian Getty Minerals Limited	5	919
1981	Canadian Getty Minerals Limited	3	1,370
2003	Conquest Resources Limited	10	2,648
2004	Conquest Resources Limited (Phase I)	15	3,404
2004	Conquest Resources Limited (Phase II)	7	2,073
2008	Goldcorp Canada Limited - Red Lake Gold Mines (surface exploration)	4	1,911
2009	Conquest Resources Limited	6	4,129
2010	Conquest Resources Limited	8	9,030
2011	Conquest Resources Limited	9	9,802
Total		117	42,579

The findings of the exploration drilling conducted by Conquest during the Spring of 2003 Drilling Program are summarized in the "Report on Exploration for the Period February 2003 – April 2003, Alexander Property" (Marmont, 2003).

The drilling performed during Spring of 2004 Drilling Program is summarized in the "Technical Report on Exploration for the Period February 2003 to April 2004, Alexander Property" (Marmont, 2004).

2004 Winter Drilling

During the Winter of 2004, the Company completed seven (7) additional exploration drill holes totaling 2,073 metres of BQ-sized drilling under contract to Major Drilling Limited for Conquest (*see* Table 5: Summary Table of Conquest Drilling - Winter 2004) subsequent to the preparation of the 2004 Technical Report (Marmont, 2004).

The highest gold value was intersected in hole CR-04-032 within a southwest dipping quartz-carbonate vein hosted within a narrow sheared zone of gabbro intrusive grading 17.6 gpt gold over 0.10 metres. The significance of this intersection is that gold mineralization of reasonable grade is present within cross-cutting quartz-carbonate vein structures hosted in late gabbro intrusive stocks (and dykes) which have traditionally been interpreted as less prospective, since these units were part of a suite of late post-mineralization event intrusives. The principal targets within the Red Lake mine proper have traditionally existed within the Balmer assemblage volcanics upon which the primary and secondary mineralizing events have acted. The remainder of the holes drilled during 2004 did not locate any further gold mineralization of interest. These holes are summarized in this Section (Section 10: Drilling) of this report under the subheading "Drill Hole Summaries".

Drill holes completed during this program were surveyed on surface by measuring their location relative to the local grid and were downhole surveyed for dip only by acid tests. The logging and sampling of the core obtained during this program was conducted by contract geologists under the supervision of Terence McKillen, P. Geo. in the position of President and CEO of the Company (Chavez, 2005).

HOLE-ID	Meterage
CR-04-026	263
CR-04-027	282
CR-04-028	246
CR-04-029	263
CR-04-030	252
CR-04-031A	380
CR-04-032	387
TOTAL	2,073

Table 5: Summary Table of Conquest Drilling - Winter 2004

2008 Goldcorp Drilling

During 2008, a total of 3,028 metres of drilling was conducted from Goldcorp's Red Lake Mine Property by Goldcorp, of which 1,911 metres of drilling was under Conquest's Alexander Property as the result of four holes that inadvertently crossed the western Goldcorp-Conquest property boundary. The holes were drilled under contract to Boart Longyear Canada Limited ("Boart Longyear") for Goldcorp from its adjacent Red Lake Mine Property as part of a wider program to delineate mineralization within the upper part of the Red Lake gold mine (*see* Table 6: Summary Table of Goldcorp Drilling onto Conquest's Property).

The four inclined holes, which were collared from surface within approximately 1,000 metres of the Red Lake No. 1 Shaft headframe (formerly the Dickenson Shaft), were drilled in a north-easterly direction into the western part of Conquest's property to down-hole depths between 690 and 836 metres.

Goldcorp located a significant gold intersection of 4.97 grams per tonne gold over 1.82 metres, including 14.25 g/t over 0.61m, at a down hole depth of 473 metres at a vertical depth of approximately 300 metres in hole DS641 (2008). The gold assay results were determined by SGS and Accurassay Laboratories in Red Lake and Thunder Bay, Ontario.

HOLE-ID	Total Depth (m)	Meterage on Alexander Property
DS639	692	210
DS640	701	337
DS641	798	580
DS642	837	784
TOTAL	3,028	1,911

Table 6: Summary Table of Goldcorp Drilling onto Conquest's Property

2009 Drilling

During 2009, Conquest completed six (6) exploration drill holes comprising 4,129 metres of NQ-sized drilling under contract to Boart Longyear (*see* Table 7: Summary Table of Conquest Drilling 2009). The 2009 Drill Program was planned to investigate targets in the upper 700 metres of stratigraphy under the western and central portions of the Alexander Property. Anomalous gold mineralization was intersected in all six (6) of the drill holes within the Balmer assemblage. Drill holes completed during this program were located on surface by averaged measurements obtained using a handheld GPS unit (Garmin GPSMAP 60Cx) and were down hole surveyed for aziumuth and dip only by Reflex Maxibor II and Gyro survey equipment. The logging and sampling of core was conducted by Benjamin Batson, P. Geo.

Table 7: Summa	y Table of	Conquest	Drilling	2009
----------------	------------	----------	----------	------

HOLE-ID	Meterage
CR-09-033	600
CR-09-034	510
CR-09-035	687
CR-09-036	357
CR-09-037	979
CR-09-038	996
TOTAL	4,129

Additional drilling was recommended for subsequent phases of drilling to follow up other similar targets within the Balmer Assemblage and Bruce Channel Formation below the 700 metre depth level.

2010 Drilling

During 2010, the Company completed eight (8) exploration drill holes comprising 9,030 metres of NQ-sized drilling under contract to Boart Longyear (*see* Table 8: Summary Table of Conquest Drilling 2010). For the first time on the Alexander Property, deep exploration drilling was conducted with the use of parent and daughter hole wedging to hole depths of 2,389 metres. Drill holes completed during this program were surveyed by EXP Geomatics Incorporated on surface for UTM location and azimuth. Down hole surveys were completed for each hole using Reflex Gyro survey equipment. The logging and sampling of core was conducted by Benjamin Batson, P.Geo. and by Dirk Meckert, P.Geo., a geologist under contract to the Company. Drilling operations were supervised by Benjamin Batson, P.Geo.

HOLE-ID	Meterage	Parent Holes	Wedge Holes	Central Sulphide Zone Drilling
CR-10-039	2,084	2,084		
CR-10-039-W1	906		906	
CR-10-040	1,745	1,745		
CR-10-040-W1	2,000		2,000	
CR-10-040-W2	1,020		1,020	
CR-10-041	486			486
CR-10-042	429			429
CR-10-043	360			360
TOTALS	9,030	3,829	3,926	1,275

Table 8: Summary Table of Conquest Drilling 2010

2011 Drilling

During 2011, the Company completed nine (9) exploration drill holes comprising 9,802 metres of NQ-sized drilling under contract to Boart Longyear for Conquest (see Table 9: Summary Table of Conquest Drilling 2011).

Drill holes completed during this program were surveyed by EXP Geomatics Incorporated on surface for UTM location and departure azimuth. Downhole surveys were completed for each hole using SPT Gyro, Reflex Gyro and Reflex EZ Shot survey equipment. The logging and sampling of core was conducted by Benjamin Batson, P.Geo, and by Dirk Meckert, P. Geo.

Table 9: Summary Table of Conquest Drilling 2011

	Mataraga	Darant Holos	Wadga Halas	Central Sulphide	Eastern Sulphide
	weterage	Parent Holes Wedge Holes		Zone Drilling	Zone Drilling
CR-11-044	1,365			1,365	
CR-11-045	909			909	
CR-11-046	1,017			1,017	
CR-11-047	1,479	1,479			
CR-11-047-W1	1,128		1,128		
CR-11-048	1,095				1,095
CR-11-049	935				935
CR-11-050	876				876
CR-11-051	998				998
TOTALS	9,802	1,479	1,128	3,291	3,904

A table of assay results in *Table 10: Summary of Significant Assays for the Period Fall 2004 to Winter 2011* summarizes those samples from the 2004 through 2011 drilling which returned assay results above 1.00 gpt gold. Samples of intrusive-hosted mineralization, chiefly quartz monzodiorite and gabbro, are bound by basalts belonging to the Balmer assemblage.

The drilling programs were designed to test traditional mineralization targets within structures hosted in Balmer Assemblage stratigraphy. Interestingly, two samples taken from non-conventional metasediments returned grades of 8.32 and 8.49 gpt gold from within sedimentary lithologies belonging to the Huston and Bruce Channel formation assemblages. One sample from hole CR-09-033 located gold mineralization grading 8.32 gpt gold over 0.25 metres taken from quartz veining within a pyrrhotite-clast bearing Conglomerate belonging to the Huston assemblage. The other significant sample was taken at 1,802 metres depth in hole CR-09-039 and was found to contain 8.49 gpt gold over 1.00 metre within a magnetite-rich banded chert unit containing trace sulphide mineralization (Bruce Channel formation). The mechanism and timing of gold mineralizing events of non-conventional occurrences such as these have yet to be fully understood by the industry and academic community. For this reason, it is difficult to quantify their importance in the context of Red Lake gold exploration. Additional drilling is required to follow up these intersections.

Drilling Timeline Schematic

Hole traces shown as solid lines with local grid and property boundary

Figure 12: Drilling Timeline Schematic

HOLE-ID	FROM	то	LENGTH	COMMENTS	GOLD (gpt)	CERTIFICATE	SAMPLE_ID
CR-11-051	497.47	498.00	0.53	Sheared Quartz Monzodiorite with 02% grey sulphides, pyrrhotite and pyrite	31.25	11T532378	E5308693
CR-04-032	98.81	98.91	0.10	Quartz Carbonate Vein, biotite + chlorite alteration, sericite alteration, 1% disseminated Pyrrhotite and trace Arseonpyrite within Gabbro	17.60	TB04089126	20220
CR-10-042	258.15	259.65	1.50	Quartz Monzodiorite with trace Pyrite	12.67	10T432078	E5108180
CR-09-034	206.91	207.30	0.39	Quartz Monzonite (silica-sericite-talc-albite altered) with up to 10% very fine grained	9.64	RL36904	4596
CB-10-039	1802.00	1803.00	1.00	Magnetite-rich Banded Chert with trace subhides	8 4 9	10T406539	F5097521
CR 10 055	1002.00	1005.00	1.00	Pyrrhotite clasts in Conglomerate with Quartz Vein containing eubedral Arsenopyrite	0.45	101400335	25057521
CR-09-033	129.07	129.32	0.25	and chlorite in vein selvage	8.32	RL36843	23022
CR-09-037	487.00	488.00	1.00	silica-quartz-carbonate-biotite altered massive Basalt	7.76	RL37112	18243
CR-11-051	496.76	497.47	0.71	Sheared Quartz Monzodiorite with 01% Pyrite and grey sulphides	7.23	11T532378	E5308692
CR-09-038	17.81	18.81	1.00	Wing Sample: Mudstone containing very finely disseminated Pyrrhotite (01%) in bedding oriented subparallel to magnetic host rock	4.97	RL37213	1658
CR-09-038	311.65	312.65	1.00	Well Mineralized matrix-supported Conglomerate with 20% crystal Pyrite replaced cement	4.40	RL37235	1828
CR-09-037	656.08	657.00	0.92	Medium grained Quartz Monzonite intrusive with blebby 01% Pyrrhotite in groundmass and in dismembered bull quartz-carbonate veins at near upper dyke contact	4.22	RL37166	18396
CR-10-040-W1	750.25	750.75	0.50	Wing Sample: Lamprophyre	4.01	10T436660	E5108664
CR-09-038	106.50	108.00	1.50	Quartz cobble clast supported Conglomerate (80%) up to 15% pervasive silica cement	3.92	RL37213	1707
CR-09-037	657.00	658.00	1.00	Plagioclase phyric Quartz Monzonite containing less than 05% shallow angle (10- 25decCA) quartz-carbonate-chlorite-Pyrrhotite veins	3.89	RL37166	18397
CR-10-042	256.65	258.15	1.50	Quartz Monzodiorite with trace Pyrite	3.47	10T432078	E5108179
CR-09-034	136.53	138.03	1.50	Quartz Monzonite with blue-coloured rounded guartz eyes and trace Pyrrhotite	3.10	RL36904	4532
CR-11-047	1130.61	1132.21	1.60	Quartz Monzodiorite with 01% Pyrite and Pyrrhotite	2.13	11T493513	E5338085
CR-11-047-W1	993.77	993.97	0.20	Quartz veinlet with quartz-carbonate fragments, fine grained tourmaline and medium grained Assengny vite	1.98	11T506935	E5338181
CR-10-040	777 90	779 40	1 50	Well foliated Quartz Monzodiorite	1 90	10T416595	F5097909
CR-10-042	255.15	256.65	1.50	Quartz Monzodiorite with trace Pyrite	1.83	10T432078	E5108178
CR-09-033	144.77	145.37	0.60	Wackestone containing two quartz-carbonate-arsenopyrite veins above sheared	1.77	RL36843	23027
CP-11-046	201 25	202.50	1 25	Unconformity Quartz Monzodiarite with pyrchetite and traces of pyrite and arsonopyrite	1.62	117/00221	E5200856
CR 10 040	770.40	790.00	1.25	Sediments with garnets and iron carbonate at contact to adjacent gabbre intrusive	1.03	107416505	E5303830
CP-10-040-W/1	2086.80	2097 20	0.50	Wing Sample: fine grained Diorite with late quarts veins	1.02	107450535	E5109057
CK-10-040-W1	2060.60	2087.30	0.30	Horphlende-chlorite.(garnet-guartz-carbonate) altered well foliated and locally	1.55	101454521	E3109037
CR-11-044	470.00	471.00	1.00	sheared Basalt with Pyrrhotite, Chalcopyrite and Pyrite in fine groundmass, quartz- carbonate veining and fractures	1.55	11T472814	E5309458
CR-10-039	857.43	858.93	1.50	Bleached Quartz Monzodiorite	1.52	10U399987	E5130145
CR-10-040-W2	726.00	727.00	1.00	Foliated Quartz Monzodiorite with Pyrrhotite and Arsenopyrite	1.52	10T458454	E5309249
CR-11-044	490.00	491.17	1.17	Quartz Monzodiorite with Pyrrhotite and Arsenopyrite	1.49	11T472814	E5309478
CR-09-035	89.35	89.85	0.50	Sulphide-bearing quartz veined and sheared breccia zone within Basalt containing	1.46	RL37002	4652
CR-11-051	499.30	500.60	1.30	Quartz Monzodiorite with trace Pyrite and Arsenopyrite	1.42	11T532378	E5308696
CR-10-040-W1	770.53	771.78	1.25	Quartz Monzodiorite with trace sulphides	1.32	10T436660	E5108666
CR-09-037	746.00	746.65	0.65	Contact: Gabbro with Lamprophyric Dyke	1.28	RL37166	18445
CR-10-039	858.93	860.43	1.50	Biotite bearing Quartz Monzodiorite Sill	1.28	10U399987	E5130146
CR-09-037	636.50	637.50	1.00	Foliated, silica-sericite-biotite altered, Quartz Monzonite with 01% Pyrrhotite	1.25	RL37166	18374
CR-10-040-W2	728.00	729.13	1.13	Foliated Quartz Monzodiorite with Pyrrhotite and Arsenopyrite	1.24	10T458454	E5309252
CR-11-045	318.90	319.85	0.95	Strongly sericitized Quartz Monzodiorite with sulphides	1.09	11T480993	E5309679
CR-10-039	1567.00	1567 50	0.50	Wing Sample: fine chlorite bearing volcaniclastic sediments (Basalt)	1.09	10U401616	E5130301
CR-09-034	205.41	206.91	1.50	Sulphide mineralized silica-sericite-talc-albite altered Quartz Monzonite with	1.08	RL36904	4594
CR-09-036	233.00	233.30	0.30	Intensely quartz-carb veined and sheared Dacite with 05% blebby and disseminated Pyrrhotite and very fine grained disseminations of Arsenopyrite (02%) and trace Pvrite	1.08	RL37060	4989
CR-09-037	566.00	567.00	1.00	Amygdular Basalt with 10 to 15% abundant guartz-carbonate vein overprinting	1.04	RL37112	18316
CR-10-040-W1	742.00	743.50	1.50	Foliated sericite altered Quartz Monzodiorite with trace sulphides	1.04	10T436660	E5108658
CR-10-040-W2	685.89	686.26	0.37	Sheared Basalt with quartz carbonate veining and sulphides, cheifly Pyrite	1.03	10T458454	E5309227
CR-11-048	233.33	233.90	0.57	Biotite altered (up to 20% biotite locally) Basalt greater than 01% Pyrrhotite	1.02	11T512890	E5338277

Table 10: Summary of Significant Assays for the Period Fall 2004 to Winter 2011

Drill Hole Summaries

CR-04-026

Hole CR-04-026 was drilled in a northeasterly direction of 027° azimuth at a dip of -45° to a final depth of 263 meters. The collar is located at UTM 0451005 / 5655890 (NAD83 Zone 15N). The hole targeted east west trending IP, MMI-B and conventional soil geochemical anomalies. These anomalies coincided directly with a mineralized zone of disseminated to massive sulphides, identified through stripping and trenching during 2004.

Drill core from the hole reflects a consistent pattern of a thick diorite unit overlaying a thick massive to pillowed basalt pile. Quartz monzonite (formerly logged as quartz feldspar porphyry dykes) intrusives containing significant amounts of arsenopyrite are irregularly distributed throughout the hole.

A large unit of near solid sulphide ("NSS") stringers (formerly logged as massive sulphides) is present over a core thickness of nearly 37 meters that coincides with the targeted geochemical and geophysical anomalies for which the hole was intended to test.

Elevated assay values for hole CR-04-026 are summarized in Table 11: CR-04-026 Assay Results > 200 ppb.

From	То	Length	Description	Au_ppb
52.22	52.56	0.34	Medium to fine grained Gabbro	210
118.00	118.57	0.57	Intensely sheared medium grained Gabbro	680
194.05	194.62	0.57	Quartz Monzonite Dyke	680
195.10	195.50	0.40	Quartz Monzonite Dyke	420
196.06	196.61	0.55	Quartz Monzonite Dyke	280
197.09	197.66	0.57	Quartz Monzonite Dyke	250
197.09	197.66	0.57	Quartz Monzonite Dyke	300
199.16	199.66	0.50	Quartz Monzonite Dyke	280
200.60	200.92	0.32	Quartz Monzonite Dyke with adjacent qtz-carb veins and disseminated Pyrite	290

Table 11: CR-04-026 Assay Results > 200 ppb

CR-04-027

Hole CR-04-027 was collared 150 meters directly south of hole CR-04-026 and drilled at an azimuth of 028° dipping -50 to the northeast. The collar is located at UTM 0450932 / 5655774 (NAD83 Zone 15N). The hole was completed to a depth of 282 meters. This hole was intended to test for an extension of NSS stringer mineralization at depth below the mineralized zone in a trench located nearby (trench location: 11+50E 1+90S on local grid) that was identified in hole CR-04-026 as a massive sulphide unit.

The hole cut a thick intersection of Gabbro from the surface to the end of the hole. Only two assays above 200 ppb were reported (see Table 12: CR-04-027 Assay Results > 200 ppb).

Table 12: CR-04-027 Assay Results > 200 ppb

From	То	Length	Description				
172.81	173.23	0.42	Quartz Monzonite with adjacent quartz-carbonate veins	240			
233.71	234.03	0.32	Gabbro with quartz veining, biotite-chlorite-sericite alteration and 02% disseminated sulfides (pyrite, pyrrhotite, trace amounts of arsenopyrite)	220			

CR-04-028

Hole CR-04-028 was drilled to a depth of 246 meters at an azimuth of 028° and dip of -50°. The collar is located at UTM 0451142 / 5655805 (NAD83 Zone 15N). The hole targeted the easterly extension of the induced polarization anomaly trend tested by hole CR-04-026.

The stratigraphy intersected in hole CR-04-028 is consistent with that of hole CR-04-026 showing a thick unit of diorite overlaying a thick pile of massive and pillowed basalt with abundant quartz monzonite cross-cutting dykes over irregular narrow intervals.

Elevated assay values for hole CR-04-028 are summarized in Table 13: CR-04-028 Assay Results > 200 ppb.

Table 13: CR-04-028 Assay Results > 200 ppb

From	То	Length	Description	Au_ppb
43.96	44.44	0.48	Quartz Monzonite Dyke	710
159.30	159.83	0.53	Quartz Monzonite with 2" qtz-carb veins and biotite alteration,	290
			trace amounts of disseminated Pyrite	

CR-04-029

Hole CR-04-029 was collared 150 metres southeast of hole CR-04-028 and was completed to a hole depth of 263 meters at an azimuth of 028° dipping northeasterly at -50°. The collar is located at UTM 0451246 / 5655689 (NAD83 Zone 15N). Similar to holes CR-04-026 and CR-04-028, this hole targeted the easterly extension of the IP anomaly tested by CR-04-026 and CR-04-028 to the west.

The stratigraphy intersected in hole CR-04-029 was consistent with the stratigraphy observed in the previous holes drilled nearby. Several zones of shearing were intersected.

Elevated assay values for hole CR-04-029 are summarized in Table 14: CR-04-029 Assay Results > 200 ppb.

From	То	Length	Description	Au_ppb
102.76	103.29	0.53	Quartz Monzonite Dyke	610
103.29	104.00	0.71	Quartz Monzonite Dyke	270
178.93	170.25	0.42	Pillowed Basalt with adjacent chlorite-sericite alteration and	420
	179.55	0.42	adjacent fragmented quartz-carbonate veining	420

Table 14: CR-04-029 Assay Results > 200 ppb

CR-04-030

Hole CR-04-030 was drilled to a depth of 252 meters in a northeasterly direction of 026° at a dip of -50°. The collar is located at UTM 0451730 / 5655874 (NAD83 Zone 15N). The hole targeted a southeast trending IP anomaly with coincident MMI/conventional soil geochemical anomalies.

A thick pile of pillowed and massive basalts (Balmer assemblage) are present throughout the hole which is cut by numerous quartz monzonite intrusives. A thin intersection of fine-grained, dark grey coloured greywacke (1.4 metres thick) was observed in this hole.

One elevated gold value was reported grading 280 ppb gold over 0.31 metres from a biotite-chlorite-quartzcarbonate altered Basalt at 81.39 metres hole depth.

CR-04-031 AND -031A

Hole CR-04-031 was abandoned due to poor ground conditions. Hole CR-04-031A was collared one metre north of CR-04-031 at UTM 0450854 / 5655937 (NAD83 Zone 15N) in a northeasterly direction of 028° at a dip of -50°. From the first hole CR-04-031, one minor gold value was reported by the sample assays of 0.42 gpt over 0.21 meters in a carbonate altered zone located in a fine-grained basalt (Balmer assemblage).

CR-04-031A was drilled to a depth of 380 meters and was intended to test a showing of near solid sulphide stringers mapped in a nearby trench (trench location at 10+00E 2+00S on local grid) with a coincident EM anomaly.

A thick pile of basalt (locally pillowed) is cut by a broad gabbro intrusive in this hole. A near solid sulphide stringer zone is present over 7.37 meters characterized chiefly by semi-massive and disseminated pyrite and pyrrhotite sulphide mineralization. A thin unit of foliated greywacke is present over 0.28 metres.

Elevated assay values for hole CR-04-031A are summarized in Table 15: CR-04-031 and CR-04-031A Assay Results > 200 ppb.

Hole ID	From	То	Length	Description	Au_ppb
CR-04-031	32.23	32.44	0.21	Bleached and silica altered, fine-grained Basalt with quartz- calcite veining and 04% disseminated arsenopyrite	420
CR-04-031	38.16	38.44	0.28	Basalt with narrow zone of shearing at Quartz Monzonite contact. Shear fabric intensity and biotite contact metamorphism increases proportional to proximity to contact. Up to 04% disseminated Pyrite.	340
CR-04-031A	31.08	31.70	0.62	Basalt Shear Zone with strong foliation, many thin quartz calcite veins, strong biotite alteration, minor amounts of chloritic alteration and 07% coarse anhedral and needle grains of Arsenopyrite that increase in concentration towards silicification and bleaching vein.	340
CR-04-031A	84.60	84.87	0.27	Sheared Basalt with quartz-calcite vein and associated biotite alteration and 04% disseminated fine grained arsenopyrite	450
CR-04-031A	301.57	301.74	0.17	Well foliated, sericite altered Quartz Monzonite	260
CR-04-031A	309.22	309.82	0.60	Well foliated, sericite altered Quartz Monzonite	250
CR-04-031A	309.82	309.96	0.14	Well foliated, sericite altered Quartz Monzonite	450

Table 15: CR-04-031 and CR-04-031A Assay Results > 200 ppb

CR-04-032

Hole CR-04-032 was collared in a northeasterly direction of 028° at a dip of -50°. The collar is located at UTM 0450917 / 5655864 (NAD83 Zone 15N). The hole targeted an area in close proximity to previous drilling conducted earlier in 2004 (near CR-04-020), which intersected a gold value of 12.82 gpt over 0.14 metres. It was thought that this intersection could have been a product of a larger gold bearing structure at the convergence of two cross-cutting planar structures interpreted from geophysical surveys on the Property, being: (1) a main E-NW trending planar structure; and, (2) a north northwest trending planar structure.

A thick section of gabbro is present above pillowed Balmer basalts with abundant mafic and quartz monzonite dykes present throughout the hole. The conceptual targeted intersection was not evident in the core from this hole, however assay results did report a significant gold intersection grading 17.6 gpt over 0.10 metres in a sample containing quartz-carbonate veining. Elevated assay values for hole CR-04-032 are summarized in Table 16: CR-04-032 Assay Results > 200 ppb.

Table 16: CR-04-032 Assay Results > 200 ppc	Table 1	16: C	R-04-032	Assay	Results	>	200	ppb
---	---------	-------	----------	-------	---------	---	-----	-----

From	То	Length	Description	Au_ppb
86.66	87.25	0.59	Fractured Mafic Dyke	200
98.81	98.91	0.10	Quartz Carbonate Vein hosted in biotite-chlorite alterated Gabbro with minor sericite associated with vein and 01% Pyrite and Arsenopyrite	17,600

CR-09-033

Hole CR-09-033 was the first hole drilled in Conquest's 2009 Drilling Program with a collar location of UTM 449908 / 5656377 (NAD83 Zone 15N). It was completed to a depth of 600 metres.

The first targeted anomaly was explained at 64 metres by dyking at a fault zone. Arsenopyrite and pyrrhotite are present throughout a weakly magnetic quartz monzodiorite ("I2E") intrusive which has been emplaced along a narrow fault zone. The dyke and fault zone both have elevated magnetic susceptibility values and contain elevated pyrrhotite. Several highly conductive seams (< 100 Ω) are present.

The second targeted anomaly was intersected at 142 metres depth. It is characterized by laminated minor pyrrhotite disseminations within magnetic argillite above a strong conductor, being an interval of NSS (chiefly pyrrhotite with trace arsenopyrite) in wackestone. There is a fault unconformity at the Huston and Balmer assemblage contact at 147 metres depth.

A third geophysical target was intersected at a hole depth of 424 metres being characterized by the basalt contact with the main gabbro intrusive unit located in the centre portion of the Property. The contact is unmineralized and is not conductive as expected from the targeted geophysical conductor.

Several sulphide and oxide iron formations ("IF") are present between 233 and 377 metres depth with extensive silica replacement within a broad interval of chemical chert and siliciclastic cherty metasediments which are similar in alteration character to zones near the Red Lake mine ESC zone. Balmer assemblage hosted IFs are highly prospective in the Red Lake geological setting having associated gold mineralization at the Red Lake deposit.

Elevated assay values for hole CR-09-033 are summarized in Table 17: CR-09-033 Assay Results > 200 ppb.

From	То	Length	Description	Au_ppb
129.07	129.32	0.25	qtz vein with euhedral APY crystals, chlorite in wallrock and PO clasts in conglomerate	8320
144.77	145.37	0.60	two qtz-carb-APY veins in S3 near above sheared unconformity	1770
146.37	147.20	0.83	wing immediately above unconformity zone	412
147.20	148.00	0.80	shallow 20degCA fabric in moderately sheared contact zone with very few irregular qtz-carbonate veins	427
308.25	308.73	0.48	quartz-carb 10cm vein in minor disseminated sulphide granodiorite	311

Table 17: CR-09-033 Assay Results > 200 ppb

CR-09-034

Hole CR-09-034 was collared into metasediments belonging to the Huston formation at UTM 0450073 / 5656249 (NAD83 Zone 15N) at an azimuth of 029° and a dip of -50°. It was drilled to a depth of 509 metres.

The first targeted anomaly, being a NSS Pyrite replacement in conglomerate (Huston) similar to an intersection in CR-03-019 is present in hole CR-09-034 from 57.71 to 60.00 metres depth.

A zone of strongly sheared discordant veining within argillaceous sediments is present from 101 to 113 metres with silica-garnet alteration. It is likely this is the product of contact metamorphism with the extensive basalt pile which underlies the Huston metasediments.

Intersection highlights include strongly sulphidized sediments (argillites, siltstone, and conglomerates) in upper stratigraphy and sheared, quartz-carbonate altered basalt below the unconformity. The geophysical signatures of these units are complex due to the abundant graphite and sulphides in the sediments overlying the Balmer assemblage volcanics.

The basalt-gabbro sheared contact is present with sheared quartz carbonate veins present from 318 to 330 metres hole depth.

Elevated assay values for hole CR-09-034 are summarized in Table 18: CR-09-034 Assay Results > 200 ppb.

From	То	Length	Description	Au_ppb
135.03	136.53	1.50	I2E with blue rounded quartz eyes, trPO	510
136.53	138.03	1.50	I2E with blue rounded quartz eyes, trPO	3100
138.03	139.00	0.97	chl-(qcb) altered pillowed Basalt, nil sulphides	119
205.41	206.91	1.50	Mineralized APY-PY sil-ser-talc-(albite) altered Quartz Monzonite	1080
206.91	207.30	0.39	up to 10% very fine grained needles of APY in Mineralized APY- PY sil-ser-talc-(albite) altered Quartz Monzonite	9640
207.30	208.88	1.58	as above, APY-PY sil-ser-talc-(albite) altered Quartz Monzonite	554
212.78	214.28	1.50	diorite dyke	207
303.50	305.00	1.50	quartz-ser-carb altered sheared basalt structure with trPO	386

Table 18: CR-09-034 Assay Results > 200 ppb

CR-09-035

Hole CR-09-035 was collared into basalt belonging to the Balmer assemblage at a UTM location of 450480 / 5656095 (NAD83 Zone 15N). The hole was completed to a depth of 687 metres at an azimuth of 029° dipping -50° to the northeast.

A black chloritized fault gouge (0.10 metres wide) interval was intersected in a faulted horizon containing 2% pyrrhotite over less than one (1) metre in thickness at 120 metres depth within basalt belonging to the Balmer assemblage. A thick gabbro interval was intersected over 231 metres within five (5) metres of the footwall of the fault and gouge. A second brittle fault with chloritized gouge was intersected at 262 over 0.50 metres. Basalt was present above and below the gabbro intrusive.

A narrow horizon of sheared quartz carbonate veining is present over 27 centimetres at 443.60 metres depth.

Several phases of disseminated sulphide-bearing quartz monzonite to diorite intrusives form dykes/sills within the Balmer basalts. Several sheared and altered basalt intervals present below 600 metres depth returned below detectable gold values. Elevated assay values for hole CR-09-035 are summarized in Table 19: CR-09-035 Assay Results > 200 ppb.

From	То	Length	Description	Au_ppb
89.35	89.85	0.50	narrow sulphide bearing quartz veined shear breccia in Basalt with 15PO 05-10PY trAPY	1460
230.40	231.90	1.50	as above 4666 but very strong sil-ser bleaching with 1% APY flecks	885
231.90	232.92	1.02	as 4667 up to 02% APY needles and flecks in I2G	434
425.20	425.93	0.73	quartz monzodiorite dyke with trace BT, up to 02% PO>PY	264

Table 19: CR-09-035 Assay Results > 200 ppb

CR-09-036

Hole CR-09-036 was collared into basalt belonging to the Balmer assemblage at a UTM location of 450538 / 5655955 (NAD83 Zone 15N). The hole was completed to a depth of 357 metres at an azimuth of 029° dipping -50° to the northeast.

A 1.78 metre wide magnetic, fuchsite-bearing, chemical chert replacement iron formation is present at 107.22 metres depth. This horizon is bound by variably altered Balmer assemblage volcanics. Quartz-carbonate veins are present with silica-(chlorite-actinolite-biotite) alteration in locally pillowed basalts which underlie the iron formation above.

Several mudstone and argillaceous units are interbedded within the mafic Balmer volcanics which are generally very magnetic and contain sulphide mineralization. An interval of variolitic basalt over approximately eleven (11) metres in thickness is present between brecciated undifferentiated sulphide mineralized metasediments and the overlying mudstone interval which contains elevated gold values up to 0.86 gpt gold over 1.29 metres.

A broad dacite interval, approximately 85 metres in apparent thickness is present with an 8.37 metre wide (core length) pyrrhotite-pyrite-arsenopyrite bearing shear zone below the overlying mixed basalt-sediment at a depth of 205.15 to 291.00 metres. Elevated gold values are present in this shear zone up to 1.08 gpt gold over 0.30 metres.

Highlights in the hole include several biotite-carbonate bearing mafic lamprophyre dykes and dacite volcanics with significant silica alteration and zones of shearing. Trenching and drilling in the area demonstrate that elevated silica due to alteration is associated with shearing in the vicinity of hole CR-09-036. Dacite is rarely described elsewhere on the property.

Encouraging values of elevated gold assays are summarized in Table 20: CR-09-036 Assay Results > 200 ppb.

From	То	Length	Description	Au_ppb
78.90	79.65	0.75	strongly sil-ser altered quartz monzodiorite with 02% PO 02% PY and trace APY	460
107.52	108.00	0.48	sil-ser-fuch-MT-(qtz-cb)-PO-(PY) Iron Formation Chert, 07%MT, 05% PO, 01-02%PY	407
170.00	170.30	0.30	cherty argillite with MT-PO-(PY)	69 0
178.00	179.00	1.00	pale green coloured trPO qtz-cb vein(-lets) massive basalt	430
295.00	295.50	0.50	massive siliceous dacite with trace PY Blank Sample	442
185.56	186.06	0.50	bleached bt-PO bearing quartz monzodiorite dyke	291
189.15	189.90	0.75	very fine grained disseminated sulphides in massive siliceous basalt with several narrow cm-scale grey intermediate dykes	386
189.90	191.19	1.29	mixed textured alternating locally variolitic and fg massive basalt beds with trace sulphides	86 2
213.45	214.00	0.55	38degCA sheared Dacite, NIL sulphides	279
214.00	214.38	0.38	sheared Dacite with up to 10% sulphides associated with quartz-carbonate veining in shear	351
232.63	233.00	0.37	shallow quartz carbonate vein with trace sulphides and 01% APY 03-05% PO trace PY in sil-bt-chl-qcb altered Dacite	422
233.00	233.30	0.30	intensely quartz-carb veined blebby and disseminated 05PO and very fine grained disseminations of 02% APY trace PY	1080
233.30	233.60	0.30	intensely quartz-carb veined blebby and disseminated 05% PO and very fine grained disseminations of 02% APY trace PY	279
234.00	234.50	0.50	fine grained needles of 01% APY and 02% PO in sheared Dacite 30degCA	391
237.00	237.50	0.50	very strongly chl-bt-sil altered Dacite with trace sulphides	319
240.30	240.70	0.40	10% PO (replacement blebby) and fine grained disseminations of 01PY and trAPY in sil-bt-chl altered sheared Dacite	250
240.70	241.00	0.30	01-02% APY flecks and 08-10% replacement PO with 10% quartz- carbonate veins in sheared lower contact	360
241.00	241.30	0.30	foliated dark grey green coloured sil-bt-chl altered Dacite with trace sulphides	270
249.00	250.00	1.00	very siliceous, sil-chl-bt altered, trace sulphide bearing Dacite	390
253.97	254.34	0.37	sheared dacite with 04% PO and 01% PY	310
257.75	258.25	0.50	bleached sil-ser felsic intrusive with trace PO	500
257.08	257.50	0.42	blebby 04APY replacement, 05% PO fine grained blebby in sheared lower contact	530
354.50	355.60	1.10	very strongly sil-ser bleached trace APY bearing quartz monzodiorite	900

Table 20: CR-09-036 Assay Results > 200 ppb

CR-09-037

Hole CR-09-037 was collared into conglomerate metasediments belonging to the Huston formation at a UTM location of 449760 / 5656157 (NAD83 Zone 15N). The hole was completed to a depth of 978 metres at an azimuth of 029° dipping -50° to the northeast.

The upper 403 metres of hole CR-09-037 intersected Huston formation metasediments characterized by mixed, abundantly sulphide-mineralized, mudstone and conglomerate units. Heavy sulphide replacement (chiefly pyrrhotite) is present at 372 metres hole depth within conglomerate but did not return significant gold assays.

An unconformity was intersected at the contact of the Huston and Balmer assemblages at 403 metres with no significant associated mineralization. Felsic intrusives have dyked out the unconformity.

A broad gabbro intrusive was intersected over 88 metres at 658 metres depth which contained several lamprophyric and felsic-intermediate dykes. These dykes are broad and may explain IP contrast near lower contact of gabbro dykes due to the presence of disseminated sulphides.

Highlights include extensive quartz-carbonate vein overprinting throughout the pillowed tholeiitic basalt pile below the Huston-Balmer unconformity. The most significant gold assay of 7.7 gpt gold over 1.00 metre was located within an altered basalt. The broad gabbro dyke contains sheared lamp dyking and mineralized quartz monzonite intrusives.

The hole intersected the upper contact of the Bruce Channel formation (BCF) at 868 metres depth which is characterized by a major fault unconformity. BCF contains strongly sheared and altered horizons however it failed to generate significant gold values. Assays from the BCF units returned gold values less than 0.4 gpt over 1.0 metre wide sample intervals.

Elevated assay values for hole CR-09-037 are summarized in Table 21: CR-09-037 Assay Results > 200 ppb.

From	То	Length	Description	Au_ppb
85.00	85.62	0.62	argillite with up to 08PO>PY replacement along beds and disseminations	543
377.78	378.28	0.50	Sulphide Mineralized, 20sil 05gt bearing quartz-lithic clast conglomerate with 10PO replacement	268
388.33	389.00	0.67	ser-sil-carb-alb altered intrusive felsic porphyry with trace sulphides	217
442.00	443.00	1.00	Character Sample: quartz-carbonate selvage filling replacement with trace sulphides in pillowed basalt	264
487.00	488.00	1.00	sil-qcb-(bt) altered basalt with no pillows	7760
557.19	558.58	1.39	Bt-bearing Quartz Monzonite dyke with fine grained 01PO with occasional qtz-chl veins at 1cm scale containing trace sulphides	420
566.00	567.00	1.00	abundant 10-15% quartz-carbonate vein overprinting in amygdular basalt, NIL sulphides	1040
567.00	568.00	1.00	abundant 10-15% quartz-carbonate vein overprinting in amygdular basalt, NIL sulphides	281
568.00	569.00	1.00	5-10% quartz-carbonate vein overprinting in massive basalt, NIL sulphides	688
593.00	594.25	1.25	abundant 10-15% quartz-carbonate vein overprinting in amygdular basalt, NIL sulphides	301
595.25	596.25	1.00	sil-ser-(bt) bleached altered trAPY and 01PO bearing Qtz- Monzonite with one massive white fractured and sulphide barren qtz-carb vein	577
596.25	597.25	1.00	sil-ser-(bt) bleached altered trAPY and 01PO bearing Qtz- Monzonite with one massive white fractured and sulphide barren qtz-carb vein	350
614.25	615.00	0.75	05sil-05chl-03bt-10qcb qtz-amygdular Basalt, NIL sulphides	818
635.50	636.50	1.00	foliated 70degCA 01PO-03bt bearing sil-ser altered Quartz Monzonite	480
636.50	637.50	1.00	foliated 70degCA 01PO-03bt bearing sil-ser altered Quartz Monzonite	1250
637.50	638.12	0.62	foliated 70degCA 01PO-03bt bearing sil-ser altered Quartz Monzonite	298
646.48	647.48	1.00	dark grey coloured, moderate 10-15bt-05chl-02qcb bearing, well foliated Basalt with few minor trace sulphides	201
656.08	657.00	0.92	blebby 01PO in medium grained Qtz-Monzonite intrusive groundmass and in dismembered bull quartz-carb veins at upper dyke contact	4220
657.00	658.00	1.00	<5% shallow 10-25degCA quartz-carb-chl-(PO) veins in plagioclase phyric Quartz-Monzonite	3890
746.00	746.65	0.65	Gabbro at contact with Lamprophyric Dyke	1280
768.00	769.00	1.00	grey coloured, 10sil-10ser-02-(05)bt altered qtz-monzonite with trace PO	356
848.68	849.68	1.00	minor 03chl-03ser-01bt altered Basalt with <5%qcb irregular veins, trPO	308

Table 21: CR-09-037 Assay Results > 200 ppb

From	То	Length	Description	Au_ppb
850.40	851.00	0.60	20% Silty Seds, 03% silty argillite sediments with sulphide PO- (PY) replacement of Carbonate-(qtz) veins, which are fractured and dismembered with PO preferentially replacing carbonate. 08PO and 02PY	862
862.00	863.00	1.00	brecciated pillowed basalt chl-(qtz-chl)-(ser) bleached with trace PO in qtz-chl-(PO) fractures	813
871.45	872.45	1.00	Silty seds interbed with low silica (<3%sil), no QV	260
881.08	881.42	0.34	Sheared MT-bearing Argillite with PO replacement in carbonate. Four (4) folded and dismembered quartz veins. 03PO trPY	312
885.92	886.60	0.68	Sheared Siltstone interbed with decreased silica alteration, irregular quartz-carbonate, and PO-PY fine crystal replacement. 02PO 1PY	499
937.50	938.00	0.50	several (3x) boudinaged 90degCA oriented quartz veins with associated very fine grained PY and few PO replaced vein fragments within Sheared Argillite	379
938.00	939.00	1.00	Sheared Argillite with two (2x) <1cm scale boudinaged trPY QV	256
951.50	952.00	0.50	bt-cb intermediate to mafic Lamprophyric Dyke/sill, NIL sulphides	211
969.32	970.32	1.00	Wing Sample: barren massive grey siltstone, NIL sulphides	400

CR-09-038

Hole CR-09-038 was collared into conglomerate metasediments belonging to the Huston formation at a UTM location of 449915 / 5656009 (NAD83 Zone 15N). The hole was completed to a depth of 996 metres at an azimuth of 029° dipping -50° to the northeast representing the deepest hole completed during the 2009 drill program, and consequently the deepest hole drilled on the Property to that point in time.

The uppermost targets for hole CR-09-038 were planned mostly based on magnetic interpretations from various geophysical surveys completed over the property. These targets were found to lie within geophysically complex metasediments belonging to the Huston formation. Several narrow near solid sulphide intersections throughout thick Huston metasediments were cut with encouraging vein and sulphide associated gold mineralization, up to 4.97 gpt over 1.00 metre.

A well mineralized, matrix-supported, Huston conglomerate is present at 330 metres depth with heavy replacement pyrite however no significant gold values were located.

While several narrow shear zones were intersected within the Balmer assemblage basalts which underlie the Huston formation, it is likely that the abundance of narrow dykes with disseminated sulphides within basalt and gabbro over targeted interval are responsible for several IP geophysical anomalies which were targeted in this hole.

Highlights include several heavily sulphidized sediment horizons, broad altered basalt intervals below Huston contact, and the intersection of the Bruce Channel Formation at 986 metres depth. Elevated assay values for hole CR-09-038 are summarized in Table 22: CR-09-038 Assay Results > 200 ppb.

	From	То	Length	Description	Au_ppb
	17.81	18.81	1.00	Wing Sample: very fine disseminated PO in bedding sub CA in magnetic Mudstone (no shearing) containing 01PO.	4970
-	76.20	77.20	1.00	05-10% silica altered, matrix supported Conglomerate with 02PO and trPY.	330
_	106.50	108.00	1.50	80% quartz cobble, clast-supported, 15% silica altered, Conglomerate with 02PO 03PY.	3920
_	163.50	164.35	0.85	Quartz clast-supported Conglomerate with 01PY 03PO mineralized cement	258
	176.50	177.75	1.25	40% magnetic sulphidized muddy cement within 50% matrix- supported Qtz-Lithic Conglomerate. 05% quartz veins. 03PO 03PY. Sulphide replaced clasts/fragments.	301
	229.00	229.94	0.94	Wing Sample: silty Mudstone with 02PY and trPO	514
-	234.50	235.00	0.50	Sheared and brecciated silty and muddy Wackestone with up to 40% folded and fragmented quartz veins. One undulating continuous PY-PO fracture sub CA. 08PO 02PY.	223
	306.00	307.25	1.25	Mixed muddy Wacke and Conglomeratic sediments with 04PY 02PO. PY-replaced and rounded carbonate blebs	307
	311.65	312.65	1.00	Well mineralized crystal PY replaced cement matrix-supported Conglomerate with 20PY.	4400
	415.95	416.65	0.70	30cm of Basalt and 40cm of bleached, plag phyric, grey coloured, 10si-05ser-02bt bearing Quartz Monzonite with flecks of trace PY and PO	274
	424.40	425.40	1.00	bt-bearing, sil-ser altered, trace PO-PY mineralized Quartz Monzonite dyke.	401
	441.85	443.00	1.15	10% broad quartz-carbonate selvage replacement in pillowed basalt. Trace PY	280
-	479.40	480.77	1.37	Infill Wing: 05% quartz veins in chlorite basalt	933
-	513.00	514.00	1.00	Intensely bleached bt-15sil-15ser altered, foliated Quartz Monzonite with trace APY 01PO and trPY	201
-	549.03	550.00	0.97	sil-ser-trAPY-trPY-trPO massive Quartz Monzonite dyke. One (1) cross-cutting quartz vein at 45degCA.	290
-	732.31	733.70	1.39	Quartz-Monzonite with 01PY disseminated blebs with sub CA thin qtz-PY veins. Broad irregular quartz veining at Lower Contact of dyke. 01% blebby PY.	526
	959.24	960.24	1.00	Wing Sample: 10% silica altered Basalt. NIL sulphides.	208

Table 22: CR-09-038 Assay Results > 200 ppb

CR-10-039

Hole CR-10-039 was the first hole drilled during the 2010 drilling season. It was collared in the southeast corner of the Property within 500 hundred meters of Goldcorp's Balmer Shaft at a UTM location of 449570 / 5656010 (NAD83 Zone 15N) at an orientation of 022° in azimuth and a dip of -83°. The purpose of the hole was to test the potential for steeply dipping shear zones in Balmer Basalt in areas immediately adjacent to Goldcorp's Far East Zone and to test for the potential for gold mineralization below the Balmer-Bruce Channel unconformity.

The drill hole was collared in mixed Huston formation sediments comprised mostly of argillitic mudstones and siltstones with intermittent conglomerate units. The Balmer Assemblage basalts are present below 799 metres hole depth.

A favourable zone of shearing and alteration was intersected between 827.98 and 838.00 metres. The central gabbro intrusive was intersected between 1,085.41 and 1,232.28 metres. It was discovered that at this depth no basalt is present in the gabbro footwall, but that gabbro is in contact with chert dominated sediments belonging to the BCF. After passing through an andesite, garnetiferous Basalt between 1,821.85 and 1,960.20 metres depth, another six (6) metre-wide fault zone was intersected. It is unclear if this marks a lithological change within the Balmer assemblage or if the fault zone characterizes the Balmer-BCF unconformity. The hole was terminated at 2,084 metres after going through several alternating chert – gabbro units.

No significant gold values were encountered in the Huston Formation. Gold mineralization within the Balmer assemblage basalt was weak, with the exception of an intersection grading 1.40 gpt over 3 metres in quartz monzodiorite at 857.43 metres depth.

Sampling from metasediments belonging to the BCF yielded gold values in the double digit ppb range over long intervals occasionally reaching significant values of: 1.08 gpt at 1,567 metres over 0.50 metres in a chloritic sediment, 0.73 gpt at 1,738 metres over 1.50 metres in a Near Solid Sulphide, and 8.50 gpt at 1,802 metres over 1.00 metre in banded and magnetite rich Chert.

An encouraging structural feature characterized by abundant irregularly-oriented, thin arsenopyrite healed fractures in a banded Chert was encountered between 2,061 and 2,066 metres depth which yielded gold values between 0.12 gpt and 0.72 gpt over 1.00 metre intervals.

Elevated assay values for hole CR-10-039 are summarized in Table 23: CR-10-039 Assay Results > 200 ppb.

From	То	Length	Description	Au_ppb
811.41	812.73	1.32	Lamprophyre	696
857.43	858.93	1.50	Quartz Monzodiorite, light colored quenched contact	1,521
858.93	860.43	1.50	Quartz Monzodiorite, biotite richer center of sill	1,278
1059.74	1060.83	1.09	Argillite with up to 05% Pyrrhotite and trace Pyrite. PO PY likely being primary sulphides.	297
1567.00	1567.50	0.50	Wing Sample: fine clastic sediment of volcanic origin, likely Basalt	1,087
1624.75	1625.25	0.50	Dark grey coloured Mudstone with high sulphide content	407
1738.00	1739.50	1.50	More than 90% Pyrite in Near Solid Sulphide interval	729
1725.91	1726.25	0.34	Brecciated Near Solid Sulphide	269
1802.00	1803.00	1.00	Banded, magnetite rich, trace sulphide bearing Chert	8,490
2063.00	2064.00	1.00	Chert with minor quartz veins, Pyrrhotite and Arsenopyrite	519
2064.00	2065.00	1.00	Chert with minor quartz veins, Pyrrhotite and Arsenopyrite	276
2065.00	2066.00	1.00	Chert with minor quartz veins, Pyrrhotite as above but with more Arsenopyrite	717

Table 23: CR-10-039 Assay Results > 200 ppb

CR-10-039-W1

Hole CR-10-039-W1 was wedged off the parent hole CR-10-039 at a depth of 320 metres. All measurements of down hole intervals are measured by the total length of the drill rod string required to reach the hole depth described in the log.

The hole was planned to test a wedge of Balmer assemblage volcanics situated up-dip of those sheared and altered horizons intersected in CR-10-039 and to test the up-dip extension of mineralization encountered within the chert intersection in the BCF in hole CR-10-039.

The Huston-Balmer contact is present at a depth of 736.17 metres. Hole CR-10-039-W1 intersected sheared zones of various sheared intensities at the following depths: 740.09 to 742.11, 779 to 782, 832.06 to 835 and 883.13 to 885.08 metres.

A zone with clastic and tuffaceous material is situated between 898.60 and 914.14 metres. The unconformity zone between the gabbro and Huston metasediments at 1186.73 metres is twenty-four (24) metres wide and contains assimilated blocks of basalt.

The hole was terminated early due to mechanical complication on the part of the drilling contractor after losing circulation and getting the bit stuck at 1,226 metres in BCF metasediments.

Weak mineralization in this wedge hole correlates with that of the parent hole within the Balmer volcanics. Only one carbonate bearing shear zone of moderate intensity between 779 and 782 metres depth yielded an assay of 0.81 gpt gold at 780 metres over 1.00 metre from irregular quartz carbonate veining. Elevated assay values for hole CR-10-039-W1 are summarized in Table 24: CR-10-039-W1 Assay Results > 200 ppb.

Table 24: CR-10-039-W1	Assay Results >	> 200 ppb
------------------------	-----------------	-----------

From	То	Length	Description	Au_ppb					
737.17	738.32	1.15	Quartz vein at contact to basalt	214					
780.00	781.00	1.00	Weak carbonaceous sheared basalt	809					
1205 72	1206.18	1206 18	1206 18	1206 18	1206 18	1206.18 0.45	0.45	Mottled Quartz Monzodiorite with PY and fine APY + milky	228
1205.75		0.43	quartz vein.	330					

CR-10-040

Hole CR-10-040 was collared less than 400 metres east of hole CR-10-039 at a UTM location of 449941 / 5655973 (NAD83 Zone 15N) along the southern boundary of the property at an azimuth of 080° and a dip of - 86°. As in CR-10-039 the drill hole was collared into mixed Huston formation metasediments, but with a lesser quantity of intrusives encountered compared to CR-10-039.

A marble unit is present over 51 metres at a depth of 422.52 metres in the hole. The Huston-Balmer contact is present at 541.27 metres depth. Several intervals of shearing of varying intensities exist within the Balmer basalts at depths of: 564.93 to 576.69, 682.68 to 683.63, 693.14 to 693.50, 740.84 to 741.60, 758.88 to 759.59 and 828.00 to 828.87 metres. These intervals of shearing are dominated by carbonate and to a lesser extent silicification and sulphidization are also present.

In the footwall of the central Gabbro intrusion (874.51m to 1144.88m) another 48 metre wide intersection of bleached basalt is present.

The hole tested the BCF chert horizon encountered in hole CR-10-039 above an garnetiferous andesitic basalt marker horizon which did not contain significant gold mineralization.

Intervals of sheared and altered basalt did not produce any significant gold assays in this hole. Two intersections of quartz monzodiorite intrusives which cross-cut a broad basalt pile were found to contain elevated gold values, most notably of 1.76 gpt over 3.00 metres between 777.90 and 780.90 metres. The other quartz monzodiorite intrusive assayed 0.10 gpt and 0.41 gpt over 1.50 metres respectively from 798.95 to 807.95 metres. The tested chert horizon demonstrates gold mineralization mostly in the double digit ppb range.

Elevated assay values for hole CR-10-040 are summarized in Table 25: CR-10-040 Assay Results > 200 ppb (with additional infill sampling).

From	То	Length	Description	Au_ppb
777.90	779.40	1.50	Quartz Monzodiorite with strong foliation	1900
779.40	780.90	1.50	Quartz Monzodiorite with strong foliation	16 20
798.95	800.45	1.50	Foliated Quartz Monzodiorite	155
800.45	801.95	1.50	Foliated Quartz Monzodiorite	100
801.95	803.45	1.50	Foliated Quartz Monzodiorite	405
803.45	804.95	1.50	Foliated Quartz Monzodiorite	176
804.95	806.45	1.50	Foliated Quartz Monzodiorite	328
806.45	807.95	1.50	Foliated Quartz Monzodiorite	107
873.53	874.13	0.60	Banded Ironstone and Mudstone with pyrrhotite	208

Table 25: CR-10-040 Assay Results > 200 ppb (with additional infill sampling)

CR-10-040-W1

Hole CR-10-040-W1 was wedged from the parent hole CR-10-040 at a depth of 390 metres. The purpose of this hole was to test: (a) the Balmer basalts above the parent hole; (b) the Bruce Channel Chert above the andesitic Basalt; (c) the chert horizon encountered in CR-10-039 at approximately 2,000 metres depth; and, (d) the volcanics from surface mapping at depth below the BCF.

The drill hole intersected Balmer basalt at 528.30 metres depth. Two shear zones are present at depths of 549.91 to 560.75 and 787.32 to 789.79 metres. The central gabbro intrusion extends from 805.82 to 1,114.17 metres, past which more Balmer basalt is present from 1,114.17 to 1183.22 metres depth. Another gabbro intrusion follows before the Balmer-BCF unconformity at 1,223 metres depth. The garnetiferous andesitic basalt intersected in CR-10-040 was intersected from 1,722.47 to 1,825.83 metres hole depth which contains a seven (7) metre-wide fault zone similar to the faulting in CR-10-039. The units below the fault comprise alternating gabbro and mixed metasedimentary units conformable to those units intersected in CR-10-039. Bleached and discoloured basalt is present between 2,092.02 and 2,141.86 metres depth. Below the bleached basalts are schistose rocks of quartz monzodiorite to monzodiorite intrusive origin alternating with schistose rocks of basaltic origin.

As in the parent hole, the Balmer basalt itself is poorly mineralized beyond disseminated sulphides occurring locally which are poorly correlated to zones of shearing and alteration. As before, some quartz monzodiorite intrusions show anomalous gold values, most notably: 0.86 gpt from 668.30 to 669.30 metres, 0.65 gpt from 739.44 to 743.50 metres and 1.32 gpt from 770.53 to 771.78 metres. Other significant gold values are present in close association to minor quartz veining: 4.01 gpt over 0.50 metres in a lamprophyric dyke at 750.25 metres depth, and 1.59 gpt over 0.50 metres in a diorite intrusive at 2,086.80 metres depth.

The mineralized chert horizon intersected in CR-10-039 between 2,061.00 and 2066.00 metres is also present in this hole at a depth of 1938.68 to 1947.00 metres. Gold values in this chert include 0.13 gpt over 1.32 metres and 0.62 g/t over 1.00 metre.

Elevated assay values for hole CR-10-040-W1 are summarized in Table 26: CR-10-040-W1 Assay Results > 200 ppb.

From	То	Length	Description	Au_ppb
668.30	669.30	1.00	Quartz Monzodiorite with trace sulphides	864
739.44	740.50	1.06	Quartz Monzodiorite, foliated with sericite and trace sulphides	742
740.50	742.00	1.50	Quartz Monzodiorite, foliated with sericite and trace sulphides	201
742.00	743.50	1.50	Quartz Monzodiorite, foliated with sericite and trace sulphides	1040
750.25	750.75	0.50	Wing sample, Lamprophyre	4010
770.53	771.78	1.25	Quartz Monzodiorite with trace sulphides	1320
1145.10	1146.35	1.25	Quartz Monzodiorite with fair amount of blebby and disseminated sulphides	300
1833.00	1834.00	1.00	Banded Chert with magnetite	201
1940.00	1941.00	1.00	Brecciated Chert with fair amount of sulphides and magnetite. Sulphides in fractures, veins and in sediment. Magnetite-PO- APY-CPY.	367
1941.00	1942.00	1.00	Brecciated Chert as above	627
1943.00	1944.00	1.00	Brecciated Chert as above	251
1945.00	1946.00	1.00	Brecciated Chert as above	334
1959.00	1960.00	1.00	Brecciated Chert as above	350
2086.00	2086.80	0.80	Brecciated Chert with chlorite-(actinolite) bands, pyrrhotite magnetite and trace arsenopyrite	408
2086.80	2087.30	0.50	Wing sample, fine grained Diorite with late quartz veins	1590
2274.93	2276.00	1.07	Contact sheared Basalt with occasional sulphide streaks	577

Table 26: CR-10-040-W1 Assay Results > 200 ppb

CR-10-040-W2

Hole CR-10-040-W1 was wedged from the parent hole (CR-10-040) at a depth of 200 metres. The objective was to further test the shear zones and sulphide mineralization encountered in CR-10-040-W1 within Balmer basalt and to establish the location of the Balmer-BCF unconformity.

The Balmer basalt was intersected at a depth of 508.47 metres. Shear zones were encountered between 685.89 to 691.60 and 794.32 to 803.21 metres respectively. The latter zone of shearing is associated with the basalt-gabbro contact and interflow sediments. The main gabbro unit was cut from 803.21 to 1,096.82 metres. Basalt is present below the gabbro to a depth of 1,131.19 metres. The Balmer-BCF unconformity was intersected at a hole depth of 1,206 metres. The hole was terminated at 1219.85 metres depth within the BCF.

A zone of shearing was intersected between 685.89 and 691.60 metres which returned an assay of 1.04 gpt gold over 0.37 metres. Quartz monzodiorite intrusives again show significantly elevated gold levels including 0.87 gpt gold from 723.86 to 729.13 metres depth; 0.33 gpt gold from 736.00 to 740.39 metres depth; 0.97 gpt gold from 757.00 to 757.94 metres depth; and, 0.29 gpt gold from 1131.92 to 1134.55 metres depth.

Elevated assay values for hole CR-10-040-W2 are summarized in Table 27: CR-10-040-W2 Assay Results > 200 ppb.

From	То	Length	Description	Au_ppb
685.89	686.26	0.37	Thin carbonaceous shear with sulphides.	1030
723.86	725.00	1.14	Foliated Quartz Monzodiorite with pyrrhotite and arsenopyrite.	609
725.00	726.00	1.00	Foliated Quartz Monzodiorite with pyrrhotite and arsenopyrite	983
726.00	727.00	1.00	Foliated Quartz Monzodiorite with pyrrhotite and arsenopyrite	1520
728.00	729.13	1.13	Foliated Quartz Monzodiorite with pyrrhotite and arsenopyrite	1240
736.00	737.00	1.00	Quartz Monzodiorite with no sericite but equal amounts of pyrrhotite and arsenopyrite with quartz vein with larger biotite masses	515
738.00	739.00	1.00	Quartz Monzodiorite with no sericite but equal amounts of pyrrhotite and arsenopyrite with quartz vein with larger biotite masses	608
757.00	757.94	0.94	Quartz Monzodiorite with blebby pyrrhotite and minimal traces of arsenopyrite.	976
1131.92	1133.18	1.26	Quartz Monzodiorite with blebby pyrite, pyrrhotite and trace arsenopyrite	257
1133.18	1134.55	1.37	Quartz Monzodiorite as above with blebby pyrite, pyrrhotite and trace arsenopyrite	321

Table 27: CR-10-040-W2 Assay Results > 200 ppb

CR-10-041

Hole CR-10-041 was collared into the main gabbro intrusion located south of the baseline at a UTM location of 451081 / 5655644 (NAD83 Zone 15N) in the center of the Property at an orientation of 010° azimuth dipping - 60° north. The hole targeted a zone of shearing called the Central Sulphide Shear Zone (CSS Zone) within the Balmer basalt volcanics located immediately into the footwall of the gabbro intrusive.

A zone of strongly sheared basalt was intersected between 280.78 and 302.16 metres hole depth. A second shear zone of lesser intensity was intersected from 402.24 to 404.42 metres. The hole was terminated at a depth of 486 metres in a minor gabbro intrusion below the targeted shear zone.

The targeted shear zone returned gold assay values in the double digit ppb range. Assay results from 345.38 and 353.92 metres returned values from 0.07 gpt gold over 1.50 metres depth to 0.67 gpt gold over 1.04 metres depth. The highest anomalous gold values were obtained from a quartz monzodiorite intrusive from within the sheared basalt unit.

Elevated assay values for hole CR-10-041 are summarized in Table 28: CR-10-041 Assay Results > 200 ppb.

Table 28: CR-10-041 Assay Results > 200 ppb

From	То	Length	Description	Au_ppb
352.88	353.92	1.04	Bleached and sericitized Quartz Monzodiorite with up to 01% arsenopyrite and 01% pyrrhotite and trace pyrite	671
455.04	456.00	0.96	Monzodiorite with trace pyrite, pyrrhotite and arsenopyrite	339

CR-10-042

Hole CR-10-042 was collared at the same location as CR-10-041 but with an azimuth of 030° and a dip of -64°. This hole was drilled to test the eastern depth extent of the CSS Zone. The shear zone is present at a depth of 274.85 to 280.88 metres and is characterized by an elevated presence of silica alteration with a less developed quartz-carbonate vein network and occurrence of sulphide mineralization as noted in CR-11-041. Two further minor shear zones are present at 322.48 to 323.60 and 334.06 to 336.12 metres depths respectively. The hole was terminated at a depth of 429 metres in basalt.

The targeted CSS Zone as in CR-10-041 contains double digit ppb gold values, the most significant of which yielding 0.27 gpt gold over 1.00 metre. A sample taken from weakly biotite altered basalt with NIL sulphides returned 0.41 gpt gold from a depth of 356.00 to 357.00 metres. The highest gold values in the hole are located in a quartz monzodiorite dyke located within the gabbro located in the hanging wall of the CSS Zone. A quartz monzodiorite dyke is present at 259 metres depth containing 4.64 gpt gold over 6.00 metres which includes 12.67 g/t gold over 1.50 metres.

Elevated assay values for hole CR-10-042 are summarized in Table 29: CR-10-042 Assay Results > 200 ppb.

From	То	Length	Description	Au_ppb
253.65	255.15	1.50	Quartz Monzodiorite with trace Pyrite and Arsenopyrite	571
255.15	256.65	1.50	Quartz Monzodiorite with trace Pyrite and Arsenopyrite	1830
256.65	258.15	1.50	Quartz Monzodiorite with trace Pyrite and Arsenopyrite	3470
258.15	259.65	1.50	Quartz Monzodiorite with trace Pyrite and Arsenopyrite	12670
259.65	260.45	0.80	Quartz Monzodiorite with trace Pyrite and Arsenopyrite	232
260.45	261.81	1.36	Quartz Monzodiorite with trace Pyrite and Arsenopyrite	602
261.81	262.31	0.50	Wing Sample: Gabbro	563
274.35	274.85	0.50	Wing Sample: Fine grained gabbro with chloritized contact	250
277.00	278.00	1.00	Silicious Shear Zone with Pyrrhotite and lesser proportions Pyrite and Arsenopyrite	273
356.00	357.00	1.00	Weak biotite alteration with trace disseminated Pyrite	415

Table 29: CR-10-042 Assay Results > 200 ppb

CR-10-043

Hole CR-10-043 was collared at a UTM location of 451014 / 5655991 (NAD83 Zone 15N) at an azimuth of 026° dipping -60° to the northeast. It was located very close to the baseline, less than a hundred meters south of

the center of the known surface expression of the CSS Zone which was uncovered by trenching during 2010. Hole CR-10-043 was collared into the same central gabbro intrusion as CR-10-041 and CR-10-042 and was designed to test the CSS Zone and to establish if additional zones of shearing exist into the footwall of the CSS Zone. The hole was shut down as planned at a depth of 360 metres in Balmer basalt.

The CSS Zone was intersected between 87.84 and 99.69 metres and did not contain significant gold mineralization. Similar to the adjacent drilling nearby, the highest anomalous gold values are located within two quartz monzodiorite intrusives which were found to contain 0.31 gpt gold over 1.48 metres at 130.52 metres depth, 0.31 gpt gold over 1.48 metres, and 0.34 gpt gold over 1.50 metres at a depth of 225.95 metres.

Hole CR-11-043 was terminated in basalt belonging to the Balmer assemblage at a depth of 360 metres.

CR-11-044

Hole CR-11-044 was collared at a UTM location of 450649 / 5655691 (NAD83 Zone 15N) at an azimuth of 008° dipping -86° to the north and was completed at a depth of 1,365 metres. The hole was designed as an exploratory offset test hole for the CSS Zone. Several zones of shearing were intersected.

The hole was collared into Balmer basalt with localized zones of shearing and alteration above a broad intersection of the main gabbro intrusion. Basalt is present below the gabbro which also contains additional zones of alteration and shearing.

A zone of low angle shearing is present above the BCF unconformity which is characterized by mixed argillaceous metasedimentary units with basalt. Near solid sulphide is present within the uppermost part of the BCF which is comprised of 65% semi massive retrograde pyrite with 25% replacement pyrrhotite.

A total of five encouraging intervals are present comprising five sheared/altered intersections within basalt belonging to the Balmer assemblage at 302.38 to 318.54, 373.65 to 382.27, 461.72 to 492.59, 1246.85 to 1254.00, and 1337.45 to 1338.10 metres depth. While the alteration and veining pattern appear encouraging, only the sheared and altered horizon at 461.72 metres depth returned significantly elevated gold levels, being: 0.72 gpt gold over 0.97 metres at 461.72 to 462.69 metres, and 1.55 gpt gold over 1.00 metre at 470.00 to 471.00 metres depth. Strong hornblende-chlorite alteration appears to correlate well to the presence of elevated gold in this hole.

Several quartz monzodiorite and monzodiorite intrusives yielded elevated gold assays. The most significant of these intrusives contains gold mineralization grading 1.49 gpt gold over 1.17 metres at 490.00 metres depth.

Elevated assay values for hole CR-11-044 are summarized in Table 30: CR-11-044 Assay Results > 200 ppb.

From	То	Length	Description	Au_ppb
461.72	462.69	0.97	Moderate biotite alteration with disseminated pyrrhotite and arsenopyrite	724
470.00	471.00	1.00	hb-chl Basalt, well foliated to sheared with garnets, pyrrhotite, chalcopyrite and pyrite in matrix, veining and fractures	1550
485.95	487.40	1.45	Quartz Monzodiorite with pyrrhotite and arsenopyrite	319
490.00	491.17	1.17	Quartz Monzodiorite with pyrrhotite and arsenopyrite	1490
503.55	505.05	1.50	Moderate biotite alteration with disseminated pyrrhotite and arsenopyrite	295
727.30	728.50	1.20	Monzodiorite with pyrite and minor biotite	509
728.50	729.50	1.00	Monzodiorite with pyrite and minor biotite	342
729.50	730.45	0.95	Monzodiorite with pyrite and minor biotite	356
844.94	846.44	1.50	Foliated and sericite altered Quartz Monzodiorite with pyrite, pyrrhotite and arsenopyrite	295
918.66	919.80	1.14	Quartz Monzodiorite with pyrite, pyrrhotite and arsenopyrite	243
926.33	927.45	1.12	Quartz Monzodiorite with minimum trace sulphides	568
1114.58	1115.80	1.22	Quartz Monzodiorite with trace arsenopyrite, pyrrhotite and pyrite	288
1115.80	1117.20	1.40	Quartz Monzodiorite as above with trace arsenopyrite, pyrrhotite and pyrite	207
1118.60	1120.00	1.40	Quartz Monzodiorite with trace arsenopyrite, pyrrhotite and pyrite	225
1120.00	1121.20	1.20	Quartz Monzodiorite with trace arsenopyrite, pyrrhotite and pyrite	231
1121.20	1122.48	1.28	Quartz Monzodiorite with trace arsenopyrite, pyrrhotite and pyrite	341

Table 30: CR-11-044 Assay Results > 200 ppb

CR-11-045

Hole CR-11-045 was collared at a UTM location of 450690 / 5655987 (NAD83 Zone 15N) at an azimuth of 008° dipping -75° to the north. The hole was designed as an exploratory offset test hole for the CSS Zone.

The hole was collared into Balmer basalt with a three (3) metre wide zone of shearing at 19.56 metres depth above a broad intersection of the main gabbro intrusion at 103 metres depth. Basalt is present below the gabbro from 264.53 to 898.52 metres depth. Several quartz monzodiorite and lamprophyre dykes are present within the basalt which underlies the main gabbro intrusive unit. The BCF is characterized in this hole by a mudstone dominated unit with minor pyrrhotite sulphides. The hole was terminated at a depth of 909 metres in the BCF.

Hole CR-11-045 did not intersect any significant structures within the Balmer assemblage. Several minor structures were tested but did not return significantly elevated levels of gold mineralization. A strongly sericite altered quartz monzodiorite is present at a depth of 314.40 metres containing 0.49 gpt gold over 5.45 metres.

Elevated assay values for hole CR-11-045 are summarized in Table 31: CR-11-045 Assay Results > 200 ppb.

From	То	Length	Description	Au_ppb
94.13	95.14	1.01	Quartz Monzodiorite, quartz eye bearing, 01 % disseminated sulphides, arsenopyrite bearing	288
95.14	95.86	0.72	Quartz Monzodiorite, quartz eye bearing, 01 % disseminated sulphides, arsenopyrite bearing	333
314.40	315.90	1.50	Sericitized Quartz Monzodiorite with sulphides	505
317.40	318.90	1.50	Strongly sericitized Quartz Monzodiorite with sulphides	546
318.90	319.85	0.95	Strongly sericitized Quartz Monzodiorite with sulphides	1090
362.37	363.87	1.50	Quartz Monzodiorite, marginal sericite and low level sulphides. Mostly pyrrhotite at 0.2 % in irregular distribution.	245

Table 31: CR-11-045 Assay Results > 200 ppb

CR-11-046

Hole CR-11-046 was collared at a UTM location of 450584 / 5655805 (NAD83 Zone 15N) at an azimuth of 014° dipping -75° to the north-northeast. The hole was designed as an exploratory offset test hole for the CSS Zone.

The hole was terminated early due to a mechanical malfunction on the part of the drilling contractor at a depth of 1,017 metres. Approximately 800 metres of NQ rods remain stuck in the lower portion of the hole which must be considered if this hole is to be used for subsequent down hole geophysical surveying.

The hole was collared into a brecciated basalt which is covered in approximately nine (9) metres of overburden, beneath which there are several sheared and altered horizons hosted in basalt at 93.42 to 109.39, 195.07 to 201.35, and, 1003.80 to 1005.61 metres depth. While the quartz-carbonate-(biotite) alteration assemblage in these structures is favourable, the structures and adjacent wallrock did not yield significant gold values. Several irregularly dispersed quartz monzodiorite and mafic lamprophyre dykes are present throughout the hole. Approximately 80 metres of gabbro intrusive intersections are present below 896 metres depth.

A reactivated fault zone is present over 1003.80 to 1005.61 metres depth which contains strong biotite-silica-(albite-sericite) alteration with irregular and dismembered quartz-carbonate veining. Minor pyrite and chalcopyrite is present. Samples taken from this interval did not contain elevated gold values. The distance over which the fault has offset the adjacent basalts cannot be resolved from this single intersection. The interpretation of additional drilling in the area should attempt to resolve the geometry of this fault.

Several quartz monzodiorite intrusives contain elevated gold values, most notably 1.63 gpt gold over 1.25 metres at 391.25 metres depth.

Elevated assay values for hole CR-11-046 are summarized in Table 32: CR-11-046 Assay Results > 200 ppb.

From	То	Length	Description	Au_ppb
130.45	131.95	1.50	Quartz Monzodiorite with sericite, trace pyrrhotite and trace arsenopyrite	477
197.89	198.57	0.68	Quartz Monzodiorite with angular aggregates of pyrite. Trace pyrrhotite and chalcopyrite	256
285.69	287.19	1.50	Quartz Monzodiorite with sericite, arsenopyrite and pyrite	224
390.00	391.25	1.25	Quartz Monzodiorite with pyrrhotite and traces of pyrite and arsenopyrite	369
391.25	392.50	1.25	Quartz Monzodiorite with pyrrhotite and traces of pyrite and arsenopyrite	1630
544.10	545.60	1.50	Quartz Monzodiorite with some fine sulphides and cordierite	277
627.00	628.26	1.26	Quartz Monzodiorite with prrhotite, pyrite and trace Arsenopyrite	202
633.00	634.20	1.20	Quartz Monzodiorite with low sulphides	252
966.00	967.00	1.00	Quartz Monzodiorite 03% pyrite and trace arsenopyrite	257
967.00	968.00	1.00	Quartz Monzodiorite 03% pyrite and trace arsenopyrite	278

Table 32: CR-11-046 Assay Results > 200 ppb

CR-11-047

Hole CR-11-047 was collared at a UTM location of 449468 / 5655827 (NAD83 Zone 15N) on Goldcorp's Red Lake mine property and drilled on to Conquest's Property at depth. The hole was commenced at an azimuth direction of 004° at a dip of -87° to the north.

The upper 870 metres of drilling in hole CR-11-047 was conducted upon and beneath Goldcorp's mine property. The core recovered from this interval is not discussed in this report.

The Huston-Balmer unconformity was intersected at 1,038.97 metres and is characterized as a seven (7) centimetre wide, stongly silica-sericite altered, well healed fault breccia. The underlying basalt immediately beneath the unconformity is well foliated, locally sheared and contains a significant abundance of quartz-carbonate veining and fracture healing at 70 to 90° to the core axis. A broad interval of gabbro was cut from 1,283.00 to 1,449.23 metres depth. Basalt was not intersected below the main gabbro intrusive, as in other locations on the property. Instead, mudstones belonging to the BCF with several quartz diorite dykes are present. The hole was terminated in the BCF at a final depth of 1,479 metres.

Several zones of shearing and alteration zones were intersected in Balmer basalt, however gold values are not significantly elevated over these intervals.

A short section of Balmer interflow sediments between 1,278.53 and 1,279.77 metres yielded an assay of 0.25 gpt gold. Additionally, a quartz monzodiorite is hosted within basalt at 1,130.61 metres depth which contains 2.13 gpt gold over 1.6 metres.

Elevated assay values for hole CR-11-047 are summarized in Table 33: CR-11-047 Assay Results > 200 ppb.

Table 33: CR-11-047 Assay Results > 200 ppb

From	То	Length	Description	Au_ppb
1130.61	1132.21	1.60	Quartz Monzodiorite with 01% pyrite and pyrrhotite	2130
 1278.53	1279.77	1.24	Mixed sediments, Chert, Mudstone and Conglomerate.	249
 12/0.00	12/01//		Disturbed bedding with pyrrhotite.	
 1/150 75	1461.00	1 25	Quartz Diorite with 01% pyrite, 02% pyrrhotite and trace	210
 1459.75	1401.00	1.25	arsenopyrite	319

CR-11-047-W1

Hole CR-11-047-W1 was wedged from the parent hole (CR-11-047) at a depth 320 metres on Goldcorp's Red Lake mine property. The hole was drilled on to Conquest's Property at depth and was terminated at a final hole depth of 1,448 metres.

The upper 730 metres drilled in CR-11-047-W1, being comprised of 320 metres in the parent hole (CR-11-047) and 410 metres in the daughter hole (CR-11-047-W1) were drilled on Goldcorp mine property. The core recovered from this interval is not discussed in this report.

Basalt was intersected at a depth of 961.60 metres below a brecciated and sericite-carbonate-silica altered unconformity. Several minor shear and alteration zones are hosted in basalt below the unconformity, however, none of these structures yield elevated gold values. A narrow mixed interflow metasedimentary unit is present from 1,112.02 to 1,112.56 metres depth. The main gabbro intrusive is present from 1,186.00 to 1,396.50 metres depth with several additional intermediate intrusives cutting the gabbro body. The BCF unconformity is present at 1,446.77 metres over 1.08 metres with and is characterized by mudstone fault gouge. The hole was terminated in mudstone belonging to the BCF.

A narrow quartz-tourmaline-arsenopyrite veinlet containing fragments of quartz-carbonate is present between 993.77 and 993.97 metres depth. A sample collected from this vein yielded an assay of 1.98 gpt gold over 0.20 metres.

Elevated assay values for hole CR-11-047-W1 are summarized in Table 34: CR-11-047-W1 Assay Results > 200 ppb.

From	То	Length	Description	Au_ppb
993.77	993.97	0.20	Basalt with quartz-carbonate-tourmaline vein and medium grain sized arsenopyrite	1980
 1072.88	1074.38	1.50	Monzodiorite with pyrrhotite and associated biotite	200
 1171.00	1171.78	0.78	Quartz Monzodiorite with 01 to 02% pyrite and trace arsenopyrite	486
 1204.03	1205.53	1.50	Quartz Monzodiorite with 01 to 02% pyrrhotite	764

Table 34: CR-11-047-W1 Assay Results > 200 ppb
CR-11-048

Hole CR-11-048 was collared at a UTM location of 451312 / 5655400 (NAD83 Zone 15N) at an azimuth of 024° dipping -70° to the north-northeast. The hole was designed to test a near-to-surface breccia discovered during the 1980 Getty drill program. As a secondary conceptual target, the hole was projected deep into the footwall of the targeted upper breccia (from Getty) on the basis that additional sheared horizons may exist as spatially "stacked" lenses as observed in the adjacent mine sequence.

A zone of shearing with pyrrhotite-pyrite sulphide mineralization and strongly pervasive biotite-quartzcarbonate alteration was discovered at a depth of 787.35 to 803.17 metres in hole CR-11-048. Drilling throughout the remainder of the 2011 drilling program focused on this area which was subsequently named the Eastern Sulphide Shear Zone ("ESS Zone").

The upper structural target (from Getty) was located from 231.23 to 244.73 metres depth. The zone is characterized by a shear and alteration structure in the footwall of the main Gabbro intrusive within altered basalt. A narrow zone of strong biotite alteration at the immediate contact area yielded an assay of 1.02 gpt gold over 0.57 metres.

In crude terms, hole CR-11-048 was collared into the main gabbro intrusive which contains several sheared intervals. The gabbro is underlain by a thick basalt pile which is host to the ESS Zone and otherwise contains many quartz monzodiorite intrusives in the form of sills and possible dykes. A fault unconformity is present at 1,073.67 under which sulphidized mudstone is present. The hole was terminated in the BCF at a depth of 1,095 metres.

Sampling from several quartz monzodiorite intrusives returned elevated gold values of up to 0.9 gpt gold over 1.25 metres. Elevated assay values for hole CR-11-048 are summarized in Table 35: CR-11-048 Assay Results > 200 ppb.

From	То	Length	Description	Au_ppb
233.33	233.90	0.57	Basalt with 20% biotite alteration, >01% pyrrhotite.	1020
234.33	235.33	1.00	Basalt with 20% biotite alteration, >01% pyrrhotite, trace arsenopyrite, and trace pyrite	260
295.00	295.50	0.50	Wing Sample: grey coloured Basalt with 1% veining, pillow selvage	677
562.34	563.65	1.31	Sericite altered Quartz Monzodiorite with <01% pyrite, trace arsenopyrite	248
645.58	647.08	1.50	Quartz Monzodiorite with 03% biotite and trace pyrite, and trace arsenopyrite	403
647.08	648.58	1.50	Quartz Monzodiorite with 03% biotite and trace pyrite, and trace arsenopyrite	304
736.25	737.50	1.25	Quartz Monzodiorite with 01% biotite and trace pyrite	900

Table 35: CR-11-048 Assay Results > 200 ppb

CR-11-049

Hole CR-11-048 was collared at a UTM location of 451203 / 5655421 (NAD83 Zone 15N) at an azimuth of 024° dipping -70° to the north-northeast. The hole was designed to follow up the discovery of the ESS Zone in hole CR-11-048.

Hole CR-11-048 was collared into basalt belonging to the Balmer assemblage. The main gabbro intrusion is bound by a fault at 75.20 metres depth and a sharp angular disconformity at a depth of 260.68 metres. The gabbro is underlain by basalt with several minor intersections of sheared horizons and abundant quartz monzodiorite and lamprophyre dykes.

A shear zone comparable to the shear discovered in hole CR-11-048 is present between 854.90 and 861.37 metres hole depth. Irregular well mineralized quartz-carbonate stringers are present over this interval however assays from within the zone did not return significant gold values.

The hole was terminated in basalt after drilling 75 metres into the footwall of the ESS Zone to a depth of 935 metres.

Elevated assay values for hole CR-11-049 are summarized in Table 36: CR-11-049 Assay Results > 200 ppb.

Table 36: CR-11-049 Assay Results > 200 ppb

From	То	Length	Description	Au_ppb
454.00	455.00	1.00	Quartz Monzodiorite with trace Pyrite and trace Arsenopyrite	414
882.15	883.65	1.50	Sericite altered Quartz Monzodiorite with trace to 01% pyrite, trace arsenopyrite. Blotchy bleaching, brecciation and quartz / quartz-carbonate veining.	244

CR-11-050

Hole CR-11-050 was collared at the same location as CR-11-049 at UTM location of 451203 / 5655421 (NAD83 Zone 15N) at an azimuth of 024° dipping -53° to the north-northeast. The hole was designed to follow up the discovery of the ESS Zone in hole CR-11-048 at an up-dip piercement point above hole CR-11-049.

A shear zone comparable to the one encountered in holes CR-11-048 and CR-11-049 is present from 795.91 to 812.38 metres. While the quartz carbonate veining and alteration are favourable over this interval, the zone did not return elevated gold assays.

As in hole CR-11-049, the hole is cut through a section crudely comprised of a thick basalt pile which is crosscut by a quartz monzodiorite dyke and narrow zones of shearing which contain quartz-carbonate vein overprinting. The main gabbro dyke is present from 67.71 to 225.00 metres. The hole was terminated in basalt at 876.00 metres depth. Of particular note are two unusually thick quartz-carbonate veins which are present between 339.19 and 339.82 metres depth that contain 0.61 gpt gold. Elevated assay values for hole CR-11-050 are summarized in Table 37: CR-11-050 Assay Results > 200 ppb.

From	То	Length	Description	Au_ppb
339.19	339.82	0.63	Basalt with two thick quartz-carbonate veins spanning nearly 60cm in combined total with pyrite pyrrhotite and grey sulphides	612
858.23	859.23	1.00	Quartz Monzodiorite with 02% arsenopyrite and trace pyrite	350

Table 37: CR-11-050 Assay Results > 200 ppb

CR-11-051

Hole CR-11-051 was the last hole completed to date on the Alexander Property. It was collared at a UTM location of 451102 / 5655453 (NAD83 Zone 15N) at an azimuth of 024° dipping -70° to the north-northeast. The hole was designed to test for a western extension to the ESS Zone intersected in holes CR-11-048 and CR-11-049.

Similar to hole CR-11-050, hole CR-11-051 cut a thick pile of basalt which overlies the main gabbro intrusive under the southeastern portion of the Property. The ESS Zone with quartz carbonate stringers and pervasive biotite-chlorite-(carbonate)-(silica) wallrock alteration was encountered between 927.90 and 940.92 metres depth. The assays from this zone did not return significant gold values. The hole was terminated after coring 22 metres into the footwall of the ESS Zone.

A second, less pronounced horizon of shearing is present from 966.63 to 976.30 metres depth. While alteration and mineralization in this interval appear favorable, the intersection did not contain elevated gold values.

A strongly sheared quartz monzodiorite is present over ten (10) metres width from 491.26 to 501.82 metres. This shear zone between 497.47 and 498.00 metres contains pyrite, pyrrhotite and grey sulphides and grades 31.25 gpt gold. Gold is present above and below this high-grade intersection.

Elevated assay values for hole CR-11-051 are summarized in Table 38: CR-11-051 Assay Results > 200 ppb.

From	То	Length	Description	Au_ppb
491.26	492.76	1.50	Quartz Monzodiorite with trace pyrite and trace arsenopyrite	654
494.26	495.76	1.50	Quartz Monzodiorite with trace pyrite and trace arsenopyrite	384
495.76	496.76	1.00	Quartz Monzodiorite with trace pyrite and trace arsenopyrite	359
496.76	497.47	0.71	Sheared Quartz Monzodiorite with 01% pyrite and grey sulphides	7,230
497.47	498.00	0.53	Sheared Quartz Monzodiorite with 02% grey sulphides, pyrrhotite and pyrite	31,250
498.00	499.30	1.30	Quartz Monzodiorite with trace pyrite and trace arsenopyrite	434
499.30	500.60	1.30	Quartz Monzodiorite with trace pyrite and trace arsenopyrite	1,420
939.00	940.17	1.17	Quartz Monzodiorite as before with two 30cm sections of sheared Basalt	200
962.72	964.22	1.50	Quartz Monzodiorite with trace pyrite and trace arsenopyrite	200

Table 38: CR-11-051 Assay Results > 200 ppb

11. Sampling Preparation, Analyses and Security

Core recovery at the Alexander Property is generally very good. Core samples are selected from intervals for splitting with obvious alteration features, fracturing, veining, visible sulphide mineralization or for specific lithological or structural reasons. Sample size generally ranges from 0.5 to 1.5 metres in width but can be less, depending on lithological or structural boundaries.

During 2004, samples were analyzed at ALS Chemex in Thunder Bay, Ontario using their 50 element inductively coupled plasma mass spectroscopy (ICP-MS) technique with sample aqua regia digestion on a 50 gram sized charge (ME-MS41 ALS Chemex sample code) with fire atomic absorption (FAA) finish.

During 2009, samples were analyzed for gold by SGS Mineral Services in Red Lake, Ontario using their Au-FAA313 method (gold assay to 5 parts-per-billion by 50 gram pulp sample – Fire Atomic Absorption Spectroscopy).

During 2010 and 2011, samples were analyzed by AGAT Laboratories in Mississauga, Ontario using a 50 gram pulp fire atomic absorption assay technique (#201052 AGAT assay code) with inductively coupled plasma optical emission spectrometry (ICP-OES) finish.

Conquest employs the use of standards, blanks, and duplicate samples to maintain confidence in the analytical techniques used to determine gold content in its core. Fifteen percent of the samples submitted to the laboratory comprise samples used for quality assurance and control for gold content. Double splits are also prepared by SGS and AGAT which are verified by alternate certified laboratories. SGS and AGAT also employ the use of standards, blanks and duplicate samples to calibrate on a regular basis within batches.

Conquest and drilling contractor personnel have exclusive custody of the core during drilling, logging and sampling. Conquest transports the samples directly to either SGS Mineral Services in Red Lake where samples are prepared and analyzed or to AGAT Labs in Mississauga, Ontario via Gardewine North trucking and shipping. Authorized signatures are required to ship and receive samples. All remnant core is stored at the Goldcorp Core Facility in Cochenour, Ontario (2009) and at Conquest's core yard on the Alexander Property (2010 and 2011).

12. Data Verification

The quality analysis and control program of the Company for core sampling includes insertion of certified standards every twenty (20) samples, blanks at least every twenty (20) samples and field or lab duplicates every twenty (20) samples. Samples from significant drill intercepts are sent to two additional laboratories to verify gold analyses. The remaining half core is retained onsite for verification and reference purposes.

Gold standards for the drilling programs were obtained at Rocklabs Limited in Auckland, New Zealand and WCM Minerals Limited through WCM Sales Limited in Vancouver, British Columbia, Canada. The gold standard reference material was prepared and analyzed using qualified analytical laboratories and generally accepted assay procedures. Gold standard reference material must assay within 15% of the certified value by the laboratory in order to have confidence that the laboratory's reported values are accurate. In a few instances, the laboratory re-analyzed the samples at Conquest's request in batches where the initial reported values for the reference standards were out of the acceptable verification range. The author is confident that the assayed values are correct for the samples collected during the various programs summarized in this report.

Historic maps and interpretations were generally spatially located by geo-referencing the claim boundary and/or local grid coordinates. Locations for historic drill holes, geochemical targets, and geophysical targets were resolved in a digital database using ESRI ArcMap and Gemcom GEMS computer software. The author has field tested the resulting location data and is confident that the historical work has been accurately geo-referenced.

Historic drill core cannot be located to any great extent. There are remnants of what the author believes to be the "Abacus Shack" (by ARLM) in the south west tree-line at the southeast end of the Goldcorp settling pond on the Alexander Property. Two rotten piles of core boxes and weathered AX-sized core, standing approximately one (1) metre in height, are believed to be all that remains of core from the drilling completed during 1946/47.

Core from the 2003, 2004 and 2009 drilling from Conquest is stored in cross-piled stacks at the Goldcorp core storage facility in Cochenour. Recently the core was relocated to a temporary holding area located 500 metres northeast of the recently upgraded Cochenour headframe (2011). It is unclear at the time of the authoring of this report if the BQ-sized core from 2003 and 2004 drilling and the NQ-sized core from the 2009 drilling will be further relocated. This core may be located and partially usable for additional logging, however the author is doubtful as to the condition and completeness of the core inventory.

Core obtained during the 2010 and 2011 drilling programs is stored in core racks covered with rigid steelroofing at the Conquest core storage area on the Alexander Property. Core is in good condition and is accessible for the purposes of further interpretation and sampling if needed.

13. Mineral Processing and Metallurgical Testing

No study of mineral processing or metallurgical testing has been conducted for the Alexander Property.

14. Mineral Resource Estimates

No mineral resource estimates have been calculated for the Alexander Property.

15. Adjacent Properties

Red Lake District

The communities of the Red Lake district, Red Lake, Balmertown, Cochenour and Madsen were established as the result of the discovery of various gold deposits. The first discovery was made by the Northwestern Ontario Exploration Company during 1897. After minor development work, the prospect was abandoned.

Prospecting activity remained low until 1922 when a press report was released detailing the discovery of quartz and argentiferous galena in the area. E. L. Bruce, a provincial geologist working south of the area, heard of the activity and investigated. The resulting report was published during 1924 which spurred considerable interest in the area.

During the following year in 1925, L. Howey and G. McNeely found quartz stringers containing native gold and staked claims for what subsequently became the Howey gold mine. To the southwest, R. Howey and his partner discovered gold mineralization which became the Hasaga mine property. These discoveries started the gold rush staking activities in Red Lake.

Subsequent to the staking rush, the Howey gold mine was put into production during 1930, as was the McKenzie Red Lake mine (1935), the Red Summit mine (1935), the Red Lake Gold Shore mine (1936), the Gold Eagle mine (1937), the Madsen mine (1938), the Hasaga mine (1938), the Cochenour Willians mine (1939), the MacMarmac mine (1940), the Dickenson mine (later the A.W. White mine and Red Lake mine) (1948), the Starratt Olsen mine (1948), the Campbell Red Lake mine (1948), the H.G. Young mine (1960), and the Mount Jamie mine during 1976 (Floyd, 1976).

Figure 13: Adjacent Properties Annotated by Project

Adjacent Gold Mines, Deposits and Mineralized Zones

Figure 13: "Adjacent Properties Annotated by Project" illustrates the location of the properties nearby Conquest's Alexander Property which are discussed in this section (Section 15: Adjacent Properties).

RED LAKE GOLD MINE

The Red Lake gold deposit consists of many ore bodies which in practical terms can be crudely grouped spatially into three ore bodies by the historic production, being: the former Campbell mine and the former Red Lake (Dickenson) mine area, which by extension includes the Red Lake High Grade Zone ("HGZ"). Today these mines have proven and probable reserves totaling 3.95 million ounces of gold (Goldcorp, 2012a). Since 1948 until the end of 2010, the "former" Red Lake mine (Dickenson and HGZ) has mined and treated a total of 10.3 million tonnes of ore grading 26.71 grams of gold per tonne, producing 8,331,845 ounces of gold. Similarly, since 1946 until the end of 2010, 20.4 million tonnes of ore grading 19.78 grams of gold per tonne has been mined at the Campbell gold mine, producing a total of 12,113,448 ounces of gold (Goldcorp, 2012b).

The HGZ contains the highest grade gold mineralization by far in the camp. On March 29, 1995, Goldcorp announced that it had discovered a high grade zone of mineralization (subsequently named the High Grade Zone) at the bottom of its Red Lake mine. *"The first nine drill holes intersecting this zone produced an average, uncut gold assay value of 9.1 ounces per ton (311.3 gpt) over an average intercept length of 7.6 feet (2.32 metres)* (Goldcorp, 2000).

During 2000, Goldcorp unexpectedly disseminated a compilation of its proprietary geological data in the form of a competition (the "Goldcorp Challenge") with \$500,000 in prizes. The industry and academic community was effectively tasked with the project of determining the best exploration method for discovering high grade gold mineralization at Red Lake and, in doing so, Goldcorp triggered a new gold rush.

The content of the Goldcorp Challenge forms the primary basis upon which Conquest has based its understanding of the geology and mineralization at the adjacent former Dickenson and Campbell gold mines. At the time, the HGZ database subset contained 1,008 drill hole intercepts which included 5,521 assays within the below 30 level database which is comprised 1,842 drill holes totaling approximately 251,000 metres of drilling (Goldcorp, 2000). It is rumored that 110 sites were identified as prospective targets, of which approximately 50% of these sites were previously known to Goldcorp. Of these new targets, some 80% yielded significant gold intersections.

Figure 14: A schematic illustrating the proximity of the adjacent mine workings to Conquest's Alexander Property (shown in grey).

In a news release dated December 18, 2002, Goldcorp Inc. ("Goldcorp") indicated that it "believes that the high grade mineralization at both the Red Lake mine and the Campbell mine are controlled by distinct linear structures and that more than 75% of all gold discovered at the Red Lake mine occur along, or adjacent to, such a structure." Goldcorp also stated that it "believes more gold will be discovered along extensions of this known structure and potentially along similar parallel structures which are interpreted to occur in the Far East Zone, and to the west in the Western Complex Area." In the same news release, Goldcorp suggested that the exploration model for the Far East Zone, to the east of the Red Lake mine, "has the potential to host a repeat sequence of our mine" and went on to report that several intersections of high grade mineralization obtained from the Far East Zone "support our model which suggests the mineralization intersected from the 16 Level lies along the upward extension of the key structure hosting the High Grade Zone and that the mineralization

intersected from the 34 Level lies along a parallel structure to the east" (Goldcorp, 2002) [i.e. toward the Alexander Property] (McKillen, 2002).

During 2008, a total of 3,028 metres of drilling was conducted from Goldcorp's Red Lake mine property by Goldcorp, of which 1,911 metres of drilling was on Conquest's Alexander Property, being the result of four holes that inadvertently crossed the western Goldcorp-Conquest property boundary. The holes were drilled as part of a wider program to delineate mineralization within the upper part of the Red Lake gold mine from surface within 1,000 metres of the former Dickenson headframe.

Information for these drill holes detailing the geology and assay information was provided digitally by Goldcorp to Conquest. Hole DS641 of the 2008 Goldcorp program located a significant gold intersection of 4.97 grams per tonne gold over 1.82 metres, including 14.25 g/t over 0.61m, at a down hole depth of 473 metres at a vertical depth of approximately 300 metres.

On November 24, 2009, Goldcorp published an update entitled: "Update on 2009 Exploration" which stated that, "up-plunge and to the east of the Red Lake High Grade Zone lies an under explored area called the Far East Zone. Assay results in 2009 indicate an ore grade gold zone at the 16 level that will continue to be tested as drilling moves closer to the surface" (Goldcorp, 2009). Assays from underground drilling on the 16 Level at Red Lake were reported in this update to contain "29.83 grams per tonne gold over 9.24 metres" within 21 metres of the subsurface drill collar.

Goldcorp located the Far East Zone in an area previously thought to have limited potential. According to Goldcorp, the Far East Zone area has the potential to host both sulphide and high grade mineralization.

Recently, Goldcorp's 2011 Annual Information Form (dated as at March 28, 2012), states that "[During] 2011, exploration and development work continued to advance the Upper Red Lake Complex, the Far East Zone and the Footwall Zones into sustained production as alternate sources of ore and to complement the fill the mills program." (Goldcorp, 2012b).

Conquest believes that the surface expression of the Far East Zone mineralization is in close proximity to the southwestern corner of the Alexander Property (McKillen, 2002).

GOLD EAGLE GOLD PROPERTY

On September 25, 2008, Goldcorp acquired the Bruce Channel deposit and former Gold Eagle mine with the acquisition of 100% of Gold Eagle Mines Ltd. ("Gold Eagle") in a transaction valued at \$1.2 billion.

The Gold Eagle property is host to the Bruce Channel deposit and the former Gold Eagle mine and is situated approximately eight (8) kilometres west of the Conquest's Alexander Property along the Red Lake "Mine Trend".

"The Gold Eagle property, which now forms part of the Cochenour Complex, was originally staked in 1926 and re-staked in 1932. From 1932 to 1934, there was a period of surface exploration. In 1934, a shaft was collared and completed to 160 metres, with lateral work on four levels. The mill was brought into production in 1937. In 1938, an internal winze was sunk from the 152 metre level to the 223 metre level which was deepened to 305 metres in 1939. Underground exploration failed to locate additional ore and the mine was closed in 1941. During this time, production appears to have been approximately 184,160 tonnes hoisted and 147,870 tonnes milled for a recovered grade of 7.65 grams per tonne of gold. From 1940 to 1959, mineralization was tested with a number of diamond drill programs, and, in 1959, the small Gold Eagle South Zone was discovered. A joint venture between Exall Resources Ltd. and Southern Star Resources Inc. commenced modern exploration activity in 2003. Work comprised the establishment of a surface grid, geophysical surveying consisting of spectral induced polarization, resistivity, magnetometer, and very low frequency electromagnetic surveys, soil sampling, geological mapping and prospecting over geophysical anomalies, and core drilling. This led to the discovery of the Bruce Channel and Western Discovery Zone deposits in 2004 and such deposits comprise what is now known as the Cochenour Complex. A Mineral Resource estimate was prepared for the Western Discovery Zone in 2004 and Gold Eagle Mines Ltd. was created in 2006.

The Gold Eagle Deformation Corridor is located to the west of the Cochenour Mine workings and is approximately 50 to 100 metres wide, is a north to south-trending Gold Eagle Shear ("GES"), dipping to the west at 65 to 70 degrees in close proximity to the faulted unconformity with Bruce Channel assemblage rocks. The intersection of the Cochenour thrust with the GES defines a shallow plunge to the south to southwest, with gold mineralization discovered to date in this area confined to the footwall of the thrust and the GES. Gold mineralization is located parallel to and partially within the deformation corridor and/or immediately in the footwall. Over its considerable vertical (more than 1,500 metres) and horizontal strike (more than 800 metres) extent the zone is characterized by several styles of mineralization, including: i) quartz-actinolite flooding and/or large brecciated quartz carbonate veins, ii) strongly brecciated mafic volcanics with quartz-carbonate veining with biotite and carbonate alteration, and iii) strongly brecciated intermixed iron formation and mafic volcanics with quartz actinolite veining plus or minus arsenopyrite. Sulphides of pyrrhotite and pyrite may also be present and are more abundant within the metasedimentary units (cherts, banded iron formation and argillite). The mineralization is typically two to five metres wide, but is also commonly present as a series of stacked or multiple mineralized structures." (Goldcorp, 2012b)

The valuation of \$1.2 billion by Goldcorp for the Gold Eagle transaction during 2008 is significant. In the junior mining exploration industry, the scarcity of financing often limits the scale of programs which may ultimately be funded. Without substantial investment into these mining exploration companies for mineral exploration, there stands very little chance to make a mineral discovery of significance. The magnitude of the acquisition of Gold Eagle by Goldcorp created a resurgence of investment interest in the Red Lake mining district.

It is encouraging for the Company that Conquest is the sole owner of the mineral rights for the last remaining property along the Mine Trend through which a fractional (dilutive) interest is not owned by either Goldcorp

or Rubicon. By comparison, the Alexander Property is significantly under-explored with the investment in exploration conducted to date on the Alexander Property totaling \$6.1 million (*see* Section 16: Other Relevant Data and Information – Summary of Exploration Expenditures).

F2 GOLD SYSTEM - PHOENIX GOLD PROPERTY

Rubicon Minerals Corporation ("Rubicon") owns the Phoenix Gold Property, which surrounds the former underground McFinley gold mine and related infrastructure and hosts the F2 Gold System located in Bateman Township situated approximately six (6) kilometres north of the Goldcorp Red Lake gold mine. The project is located at the northern end of the McFinley Peninsula and is partly under the waterbody of East Bay on Red Lake. It comprises thirty-eight (38) contiguous blocks covering 510 hectares of land consisting of sixteen (16) patented mining claims, one (1) unpatented staked claim, one (1) mining lease and twenty-five (25) licenses of occupation.

Rubicon has conducted extensive exploration programs since acquiring the property including numerous drilling, mapping, high resolution airborne and ground geophysical programs, as well as the re-logging and compilation of historic drill holes. A total of 313,030 metres of diamond drilling has been completed during the period commencing in 2002 (acquisition) and ending in February 28, 2011 (Smith *et al*, 2011).

Rubicon has reported mineral resource estimates calculated independent of Rubicon by AMC Mining Consultants (Canada) Limited ("AMC") as of August 8, 2011 of 1.023 million tonnes grading 14.5 gpt totaling 477,000 ounces of gold (indicated mineral resource category) and 4.230 million tonnes grading 17.0 gpt totaling 2.317 million ounces of gold (inferred mineral resource category) using a block modeling approach based upon all drilling up to February 28, 2011 (Smith *et al*, 2011).

On June 29, 2011, Rubicon announced the positive finding of a preliminary economic assessment ("PEA") which was completed by AMC with the metallurgical sections completed by Soutex Inc. which suggests that a 92.5% gold recovery is possible with a diluted grade of 13.87 gpt for a twelve (12) year life of mine using a captive cut and fill method with up to six horizons being mined simultaneously. The average annual production would total 180,000 ounces (Rubicon, 2011).

Adjacent Exploration Properties

RAHILL-BONANZA PROJECT

The Rahill-Bonanza Project is an exploration joint-venture between Goldcorp (51%) and Premier Gold Mines Limited ("Premier Gold") (49%) where Goldcorp is the operator of the property.

The Rahill-Bonanza property is 738 hectares in size and is comprised of six (6) staked claims, thirty-four (34) patented claims, and four (4) mining leases located approximately three (3) kilometres south of the past producing Cochenour mine, less than three (3) kilometres west of the Red Lake gold mine (Campbell Complex) and is immediately east of the Bruce Channel discovery purchased by Goldcorp for \$1.2 Billion in 2008. The property is host to the recently discovered Bonanza gold deposit and the two historic gold deposits: Wilmar and West Granodiorite.

Goldcorp has begun construction of a high-speed tram to connect the Red Lake Gold Mines Complex and the Cochenour (Bruce Channel) Mine Complex to develop its Cochenour/Bruce Channel deposit. In a press release dated May 23, 2012, Premier announced that *"the haulage drift that is being constructed to line the Red Lake Gold Mines Complexes to the Cochenour Complex has intersected multiple mineralized quartz-carbonate vein structures since crossing onto the Rahill-Bonanza Joint Venture Project"* (Premier, 2012a).

"Structurally, the property appears to be underlain by an anticlinal structure centered on the Balmer volcanic rocks and flanked to the north and south by synchronous synclinal structures cored by Bruce Channel sedimentary and volcanic rocks. Faults or penetrative strain zones appear to be concordant with bedding directions, which trend approximately 060° in the west, to 090° in the eastern part of the Bonanza Project. Mineralization is associated with strongly to intensely silicified sediments, dominantly greywacke, conglomerate and iron formation. Visible gold is present but not common. Sulfide content in mineralization ranges from 0.5% in silicified greywacke to locally 20% in some iron formations. Visible sulphides are dominantly pyrite and pyrrhotite, with minor amounts of chalcopyrite, sphalerite and arsenopyrite" (Premier, 2012b).

It is significant to Conquest that gold mineralization is also locally associated with silicified sediments, similar to those present under the Alexander Property. These gold showings in metasedimentary rocks represent unconventional targets for mineralization in the Red Lake mining district and should be considered as valid hosts for mineralization on the Alexander Property during future target generation and drill hole planning.

LENNIE GOLD PROPERTY

To the north of the Conquest's Alexander patented claim group lies the Lennie Property consisting of ten (10) patented mining claims covering 120 hectares of limited outcropping rocks belonging to the Balmer and Bruce Channel formation assemblages in Dome Township.

Small scale drilling, geophysical, and limited mapping projects have been conducted by Lennie Red Lake Mines Limited, Dome Exploration Limited, Pan American Gold Corporation (formerly Tri Lateral Investments Corporation) and recently by Premier Gold Mines ("Premier").

During 2009 and 2010, Premier conducted an eight (8) hole deep drilling program comprising approximately 8,940 metres of drilling to test large scale geological structures interpreted to exist at depth on the property. Drill holes were collared within 1,000 metres of Conquest's Alexander Property spaced approximately 400 metres apart and were drilled in steep northerly directions, directed away from the Alexander Property.

Premier, as optionee, returned the property to the owner upon completion of the 2009/10 drilling program, who subsequently sold the property to the present owner, Goldcorp.

GOLD CENTRE PROPERTY

To the south of the Alexander Property lies the adjoining Gold Centre property owned by Rupert Resources Limited ("Rupert"). The Gold Centre property comprises 16 mining claims under a twenty-one (21) year mining lease (issued December 1, 1994) covering 252 hectares of land owned by Rupert with a 1.5% NSR reserved to Camp McMan Red Lake Mines Limited.

A total of sixteen (16) holes have been drilled by the former Dickenson Mines Limited, Onaping Resources Limited, and Rupert (with its former joint venture partner ITL Capital Corporation). A report written by Roscoe Postle Associates Incorporated ("RPA") has been filed by Rupert on SEDAR detailing the exploration activities on the property (Wallis, 2003).

During the period December 2004 through October 2008, Rupert completed an estimated 12,800 metres of additional deep drilling subsequent to the 2003 RPA Technical Report on the Gold Centre property to hole depths exceeding 3,300 metres. Disclosure of a technical nature regarding these holes was made public by means of press releases published by Rupert. No gold mineralization of interest has been located on the Gold Centre property to date.

GULLROCK PROPERTY

The Goldcorp Gullrock property is an exploration property that lies to the southeast of the Alexander Property. It is contiguous with Conquest's patented mining claims and adjoins along its western boundary to the Rupert Gold Centre property.

Outcrop exposure is limited due to extensive glaciofluvial and lacustrine sediment deposits covering much of the area. Swampy vegetation, trees and brush growth can be very thick in this area which can limit accessibility to conduct exploration during the spring, summer, and fall months.

During 2001, Goldcorp conducted mobile metal ion ("MMI") soil geochemical sampling on Conquest's Property over an area approximately 800 metres by 300 metres in the southeastern corner of the Alexander

Property while conducting exploration on their Gullrock property. The results for the program defined a target area where a two-line, gold-silver-palladium anomaly exists over lines spaced 200 metres apart. The anomaly is crudely located between Line 25+00E and 27+00E on Conquest's local grid within 100 metres of the southern Property boundary. Other exploration work has been conducted on the Goldcorp Gullrock Property including limited drilling exploration further to the south and east of Conquest's Property which is of lesser significance than the 2001 MMI sampling and is publicly available on the Ontario government assessment filing database.

Goldcorp otherwise controls the remainder of the property surrounding Conquest's Alexander Property.

16. Other Relevant Data and Information

Summary of Exploration Expenditure

As of March 31, 2012, the Company had spent \$6,143,000 on exploration on the Alexander Gold Project since its acquisition by Conquest during 2002. Table 39 ("Summary Table of Exploration Expenditure on the Alexander Property") summarizes the annual exploration expenditure compiled from Conquest's audited financial statements which are available on SEDAR (www.sedar.com).

Vear		Annual Exploration	Cummulative Annual					
i cai		Expenditure	Exploration Expenditure					
2002	\$	64,579.00	\$	64,579.00				
2003	\$	340,109.00	\$	404,688.00				
2004	\$	933,647.00	\$	1,338,335.00				
2005	\$	60,387.00	\$	1,398,722.00				
2006	\$	12,402.00	\$	1,411,124.00				
2007	\$	10,013.00	\$	1,421,137.00				
2008	\$	9,294.00	\$	1,430,431.00				
2009	\$	494,400.00	\$	1,924,831.00				
2010	\$	2,135,983.00	\$	4,060,814.00				
2011	\$	2,047,755.00	\$	6,108,569.00				
Aggregate Total o	of Exploration Expenditure	\$6 108	569	00				
	(as at December 31, 2012)	\$9,108,569.00						

Table 39: Summary Table of Exploration Expenditure on the Alexander Property

17. Interpretation and Conclusions

The Alexander Property is located within approximately 700 metres of the underground workings at the Red Lake gold mine. At the Red Lake gold mine, high grade gold mineralization is present in concentrations exceeding 300 gpt gold as observed in drill core obtained from holes collared from the underground workings by Goldcorp. There exist modeled ore zones with average grades in excess of 60 gpt over mineable thicknesses with no recognizable mineralization above 1,300 metres vertical depth.

A compilation of all available geological data has been prepared for the Property and surrounding area. The stratigraphy under the Property from surface to depth of 300 metres has been tested with drilling, geophysical, and geochemical programs and techniques in the western and central portions of the claim block which have not resulted in the discovery of correlatable high grade gold mineralization between showings.

A total of 42,579 metres of drilling in 117 exploration drill holes have been completed on the Property since 1946. Only five (5) drill holes have been drilled on the Property below the 1,300 metre level. The highest gold grade found on the Property was located in the last drill hole completed on the Property during 2011 grading 31.25 gpt over 0.53 metres at a hole depth of approximately 500 metres, in hole CR-11-051.

There is the potential that a high grade gold deposit could exist at depth as repetition of the adjacent deposits at Goldcorp's Red Lake gold mine. Geometrically, the Property is of ample size to accommodate such a gold deposit. The stratigraphy under the Property remains essentially untested below 700 metres depths.

The structures and lithological units present at the adjacent Red Lake gold mines are largely present on the Alexander Property. Basalts belonging to the Balmer assemblage are crosscut by late mafic dykes and contain intermediate lamprophyre sills and other felsic intrusives. Some of the local marker horizons noted at the Red Lake gold mines have not been located on Conquest's Property such as the peridotitic komatiites (PK) and felsic volcanic facies (rhyolite), however it is likely that dacite noted during recent drilling by Conquest is compositionally similar to the rhyolite at the mine site.

The stratigraphy under the Alexander Property has been demonstrated to host elevated gold values in the range of 1 to 31 grams per tonne in both conventional and nonconventional hosts. The Balmer assemblage is cross-cut by late intrusives in dykes and sills which contain locally elevated gold mineralization.

Gold mineralization is consistently elevated in those samples collected from felsic to intermediate intrusives on the Property. Assay results range from generally elevated gold values, being 0.20 to 0.50 gpt gold over broad one to five metre intersections, to significant grades of 10 to 32 gpt gold over 0.30 to 1.50 metres. In these instances, true thickness widths of the intrusives which are emplaced as sills are calculated by applying a dip correction factor of 0.70 to the intersection widths.

During 2011, Goldcorp published that the company is exploring for gold resources within close proximity to the Red Lake mine infrastructure. *"Evaluation of the potential of near-surface, bulk long-hole mining, based*

on recent results from surface drilling, will continue into mid-2012" (Goldcorp, 2012b). While it has not historically been a viable option, it may become possible at some stage to incorporate unconventional, intrusive hosted gold mineralization, into the development of future gold resources. In this case, extensive work would be required to locate the source of the gold bearing intrusives on the Alexander Property.

Other unconventional gold mineralization has also been located on the Property from drilling within the Bruce Channel formation. Sulphide mineralization is characterized throughout much of the formation as disseminated to locally near solid sulphide and is easily correlated from hole to hole. Gold mineralization however is rare but nevertheless present locally (up to 8 gpt over 1.50 metres) which further supports that gold is present throughout the stratigraphic sequence under the Property. It is unlikely that metasedimentary hosted gold targets should form the primary basis of exploration, as is the case at the nearby Goldcorp-Premier joint venture project, where the Bonanza gold deposit is hosted in metasediments, since these target horizons are often deep and have not yet been economically demonstrated as a source of gold production in the Red Lake mining district. If prospective Bruce Channel formation target horizons can be tested in conjunction with other Balmer targets in the overlying stratigraphy then it follows that the costs may be manageable to further investigate this of style mineralization.

A thick layer of sulphide-bearing metasedimentary rocks belonging to the Huston assemblage overlies the favourable Balmer assemblage volcanics along the southern boundary of the Property. These rocks are geophysically complex and do not allow most geophysical survey techniques to *see through* the locally conductive and magnetic cover rock.

Exploration drill hole targets based on geophysical surveys are best located on the Property within volcanic rocks that are defined by short strike-length magnetic highs with moderate conductivity (from IP geophysics). These targets have been demonstrated to host sulphide mineralization in sheared volcanic rocks. So far, these areas have been tested by drilling near the main gabbro intrusive which transects the length of the Property, however gold mineralization has not been found to exist in any great concentration in these otherwise encouraging Balmer assemblage hosted shear zones.

Extensive planning and research is required if geophysical surveys are to be further completed over the Huston assemblage units in this area. Hole-to-hole borehole IP may be effective to locate chargeable horizons within the underlying Balmer volcanics by using the drill holes which were left open and accessible from drilling conducted by Conquest during 2009, 2010 and 2011. These geophysical techniques have traditionally been restricted to holes which are closely spaced, however with modern improvements, it may be made feasible to resolve targets using drill holes of a wider hole spacing.

Soil geochemical surveys at the property scale are limited in effectiveness to the southern Portion of the property due to the potential for trace element contamination from the tailings ponds which are maintained by Goldcorp on the northern portion of the Property. Other logistical planning is required to conduct geophysical surveys in which the Goldcorp explosives magazine may need to be considered. During the 2004

IP survey, Goldcorp facilitated the emptying of their magazine for a short period of time to allow for the IP survey to be conducted.

Additional work is recommended to: (a) establish and drill test targets through a compilation of existing exploration drilling, geophysics, and geochemistry; (b) follow-up previous geophysical work conducted by Goldcorp on the Alexander Property and their adjacent mine property; (c) conduct geochemical surveys on the ground and using existing drill core to establish new drill hole targets; and, (d) to research and conduct a modern bore-hole EM and IP geophysical survey which utilizes the 2009, 2010, and 2011 drill holes which have been maintained for this purpose.

18. Recommendations

The following recommendation for exploration is focused on activities that will advance the exploration on the Alexander Property in the near term. The first study is comprised of exploration geophysics and geochemistry and ground reconnaissance work which should be carried out immediately prior to and in anticipation of the second phase of exploration drilling activities, however it is not critical that all of Phase I be completed prior to the commencement of Phase II. In this respect, drill hole meterage has been reserved in the following budget estimation to follow-up the findings of Phase I, while other targets have been prioritized on the basis of drilling at the CSS and ESS Zones and other compilation targets.

Phase I – Pre-Drilling

ACQUISITION AND INTERPRETATION OF GOLDCORP GEOPHYSICAL DATA

During 2009, contoured map interpretation images were provided to Conquest by Goldcorp of a combined helicopter-borne high-resolution magnetic, electromagnetic, VLF, and radiometric survey conducted during October and November of 2000 over the Alexander Property and surrounding area. The survey was conducted under contract to SIAL Geosciences Inc. ("SIAL") by Goldcorp (St-Hilaire, 2001).

The underlying raw data that supports the interpretation map images that were provided to Conquest from Goldcorp should be obtained and re-processed by Conquest. The objective of the resulting interpretation by Conquest is to generate an anomaly target list for follow-up drilling. SIAL performed a similar interpretation at the time of contracting for Goldcorp, however the findings were not provided in the data transfer during 2009. It would be helpful to acquire the SIAL anomaly list for the Alexander Property to integrate into the Conquest re-interpretation of the raw data.

It is critical that the processing and interpretation of the raw data by Conquest integrates the adjacent mine property geophysical signatures. It is recommended that multiple expert opinions be obtained during the modeling and selection of anomalies from the processing raw data.

The cost of this program will vary depending on the turn-around time expected by Conquest. An estimated budget of \$10,000 to reprocess data is expected for a two (2) month turn-around time.

EXCALIBUR/ABITIBI/STRATEGEX GEOPHYSICAL TARGETS

A further study of the compilation of interpretations made by Boniwell (2003), Barrie (2005), and Roth (2005) is recommended by means of a detailed ground reconnaissance of interpreted structures in bedrock. This exercise should be conducted following the preparation of the recommended interpretation of the Goldcorp raw geophysical data from the 2000 SIAL survey in order to incorporate the findings of this data.

The objective of this ground reconnaissance is to qualify the opinions in the past geophysical reports based on the physical rock record on the ground. In some cases, fault interpretations have conflicted meaning in the structural context of the regional setting. Specifically the crudely north-south interpreted brittle faults vary in the interpretations as much as 60° in strike and it is unclear how steep and in which direction these structures should dip.

The eastern portion of the property has limited outcrop exposure. An extensive investment of surface mapping in this area is not likely to resolve conclusive findings. The central and southern portions of the property should be thoroughly mapped with respect to the aforementioned structural interpretations.

A mapping program is recommended for a suggested ten (10) period which is estimated to cost \$10,000.

LITHOGEOCHEMICAL SAMPLING (TRENCHES AND DRILL CORE)

Limited whole rock samples were collected during the 2003/4 trenching program, however these samples were poorly described with respect to alteration and mineralization. Consequently these samples are difficult to classify and in the author's opinion cannot be utilized for the purposes of targeting areas of increased alteration. Resampling for whole rock geochemistry in these trenches is recommended if further classification of the lithology and alteration present is to result in any meaningful conclusion.

During the 2010 drilling program, whole rock samples were collected and extensively described with respect to lithology, alteration, mineralization and structure. Additional sampling is recommended from drilling conducted during 2011. The altered chemistry of interest in these volcanic rocks is not significantly affected by meteoric conditions.

A whole rock lithogeochemical sampling program is recommended comprising approximately 100 core samples and up to 50 outcrop and trench samples. Samples should be collected and described at 50 metre intervals in core and at 25 metre intervals along the outcrop exposed during the 2003/4 trenching program. The cost of this sampling including the collection and analysis of the proposed samples is estimated at \$22,500.

SOIL GEOCHEMICAL RECONNAISSANCE MAPPING AND SAMPLING

Goldcorp conducted a soil geochemical sampling program during 2001 on their Gullrock property located adjacent to Conquest's Property to the south. During this program, an area covering approximately 800 metres by 300 metres in the southeastern corner of the Alexander Property was soil sampled and processed for MMI geochemistry. An anomaly exists on two lines which were spaced 200 metres apart that is comprised of elevated gold, silver and palladium values. It is of considerable interest that an anomaly striking 200 metres in length exists in the general vicinity of the ESS Zone recently discovered by Conquest during the 2011 drilling season.

Conquest also completed an MMI-B soil geochemical survey over much of the Property. The Goldcorp (2001) MMI anomaly was represented in the 2003 Conquest MMI-B reported values. Due to a thick overburden cover, relatively little is otherwise known about this part of the Property. Drilling conducted during 2004 by Conquest in holes CR-04-022A and CR-04-023 targeted prospective soil geochemical anomalies located between Line 24+00E and Line 25+00E, north of the Baseline, but failed to explain the elevated values from the soils profile. These holes confirmed that tholeiitic basalt is present under the thick overburden which ranges from two (2) to twenty (20) metres in thickness.

It is recommended that a mapping and sampling reconnaissance study be conducted over the area bounded by Line 19+00E, Line 29+00E, Tie Line 5+00S and Tie Line 5+00N. The Balmer Deforestation Road provides access through the middle of the subject area. Multispectral remote imagery captured during September of 2009 (SPOT, 2009) by the SPOT satellite network indicates that vegetation is thick mixed boreal and swampy in nature, and therefore an effort to locate prospective areas for outcrop should be made prior to visiting the Property. Detailed structural information should be collected at each outcrop, in addition to detailed lithological, alteration and mineralization descriptions. Samples for whole-rock lithogeochemistry and gold assay (if mineralized) should be collected at outcrop locations.

The recommended study is estimated to last ten (10) days in duration and cost \$10,000.

BOREHOLE GEOPHYSICS

A borehole combined time-domain transient EM (TDEM), magnetometric resistivity ("MNR") and IP survey may be warranted in the vicinity of the CSS and ESS Zones. In the past, drill holes which pierced the CSS Zone were not maintained for geophysical surveying. Also, there were previously no drillholes in the vicinity of the ESS Zone prior to 2011. Due to recent advancements in borehole IP technology, it may be to possible measure geophysical properties of rock between drill holes using down-hole IP instrumentation. Additional research in this advancing field is warranted with the guidance of expert advice.

It is not clear if the sulphide content of these sheared horizons will respond to TDEM/MNR/IP geophysical techniques. As such, it is critical that a trial be conducted on site to assess the effectiveness of the technology. During 2003, Discovery Geophysics Incorporated was contracted by Conquest to test survey hole CR-03-002

using a down-hole IP-EM-radiometric-magnetic susceptibility geophysical probe. The resulting data correlated well to the geological information collected during logging. Sulphide mineralized units were present in the EM datum and magnetite and pyrrhotite mineralization were present in the magnetic susceptibility logs.

It is recommended that several contactors should be contacted to determine if their respective equipment will favourably respond to these zones. A total of ten holes at the CSS and ESS Zones are available to survey ranging in depth from 200 to 1,000 metres depth. The limited nature of the geophysical response at depths below 500 metres is expected to limit the extent to which the program can be executed. Crone Geophysics and Exploration has expressed interest in conducting a trial assessment using their TDEM and MNR equipment. Additionally, Caracle Creek International Consulting Inc. anticipates that within the next year, their company will debut its deep penetrating, hole-to-hole IP system capable of surveying to 1,200 metres depth.

The objective of this combined TDEM-MNR-IP survey is to vector towards areas along the sheared zones which characterize the CSS and ESS zones towards areas which contain elevated amounts of sulphide mineralization. Additionally, other sheared horizons containing disseminated sulphide mineralization and strong silicification are prospective and should respond to IP survey techniques.

It is possible that only some geophysical techniques may work based on field trials. The survey would be expected to last five (5) to ten (10) days in duration, and the cost of which is estimated to range between \$75,000 and \$150,000 depending on the extent of the survey.

ADJACENT MINE GEOLOGY INPUT DATA

The Goldcorp Challenge (2000) proprietary dataset forms the primary foundation upon which Conquest bases its understanding of the geology and mineralization at the adjacent former Dickenson and Campbell gold mines. During the twelve (12) years since the release of this dataset, Goldcorp has significantly advanced what has become the richest gold deposit in North America through the development of the HGZ.

It is the opinion of the author and that of the Company that a collaborative effort should be made with the mine and regional exploration departments at Goldcorp to accelerate the advancement of Conquest's Alexander Property. It is believed that the combined knowledge and expertise of the collaboration would provide a strong foundation upon which to base further exploration on Conquest's Property.

A data sharing arrangement for the mutual benefit of Goldcorp and Conquest would focus on the mine modeling and exploration drilling information collected during the time since the Challenge (2000) from the underground mine workings between Level 16 and below the bottom of the mine (estimated Level 53) and the drilling conducted on surface between the Balmer and former Dickenson headframes conducted by the mine and regional exploration departments at Goldcorp.

Continued database management is recommended in the absence of such a strategic partnership, by means of incorporating the content of technical information contained within the public filings of Goldcorp on their adjacent properties.

Phase I and Phase II - Drilling

DRILL PROGRAM

The following drill program may be executed using two to three drill rigs during a single phase of drilling lasting ten to twelve months in duration depending on the number of drill rigs utilized to carry out the program. A phased approach to drilling may be preferable to the Company, whereby the respective ESS Zone, CSS Zone, and deep western Alexander areas are targeted during independent phases of drilling.

Drilling targets have been located and prioritized on the basis of encouraging geophysical and geochemical criteria and proximity to shearing and alteration observed in outcrop, trenching and drill holes. Holes proposed for the ESS Zone and CSS Zone require a combination of additional drilling and borehole geophysics to identify further areas of interest that may require additional drilling.

Seven (7) proposed drill stations named CR-12-A, CR-12-B, CR-12-C, CR-12-D, CR-12-E, CR-12-F and CR-12-J should be drilled during winter months under frozen ground conditions to simplify operations due to soft and wet ground during summer months. The remaining six (6) holes (CR-12-G, CR-12-H, CR-12-K, CR-12-L, CR-12-M and CR-12-M-W1) may be drilled under spring, summer, fall or winter conditions. Additional targets should be prioritized based on access and seasonal ground conditions as needed based on the success of drilling and other Phase I ground work.

Meterage for drilling during the latter portion of the program should be reserved for additional drill hole targets as the result of a strategic partnership, should an agreement be formed (see Phase I – Adjacent Mine Input Data). The proposed budget assumes 10,000 metres of "Collaboration Drilling" which may be adjusted as needed based on the success of drilling and the number of targets resulting from the partnership.

The cost for this program is estimated in the "Budget" portion of this section (See 18. Recommendations – Budget).

Target Name	UTM mE	UTM mN	Planned Depth	Planned AZ	Planned Dip	Primary Target Depth	Secondary Target Depth	Other Target Depths	Comments
CR-12-A	451421	5655388	1,010	024	-50	700	985	120	ESS Zone and footwall Balmer targets. Collar into main gabbro intrusive. PP of CSS Zone below gabbro-basalt contact.
CR-12-B	451506	5655365	1,065	024	-70	720	1,040	65	ESS Zone and footwall Balmer targets. Collar into main gabbro intrusive. PP of CSS Zone below gabbro-basalt contact.
CR-12-C	451594	5655347	665	024	-60	640			ESS Zone
CR-12-D	451684	5655332	1,045	024	-70	620	1,035		ESS Zone and footwall Balmer targets
CR-12-E	451769	5655321	1,025	024	-50	530	930		ESS Zone and footwall Balmer targets
CR-12-F	452067	5655300	1,300	030	-50	345			Eastern extension of ESS Zone and full stratigraphic section of southeast corner of property
CR-12-G	451900	5655853	510	024	-50	100	475	510	ESS Zone, footwall Balmer, and BCF targets up to northern Property boundary
CR-12-H	452030	5655684	605	024	-50	120	270	370	Upper ESS Zone and footwall Balmer targets up to BCF (580m). Coincident Fault/Shear intersection and MMI anomaly. Interpreted shearing adjacent gabbro at 270m. Access from drill road westbound off Balmer Deforestation Road.
CR-12-J	452600	5655295	745	024	-50	500-600	720		Eastern extension of shearing and schistose Basalt target. End of hole at BCF contact.
CR-12-K	450825	5655725	945	024	-50	445	875	920	ESS and CSS Zone and footwall Balmer target. BCF at EOH.
CR-12-L	450865	5655725	1,135	024	-65	610	1,000	1,110	ESS and CSS Zone and footwall Balmer target. BCF at EOH.
CR-12-M	450312	5656005	1,200	000	-80	1,150			ESS deep target
CR-12-M-W1	450312	5656005	2,000	024	-89	1,190	1,700		Wedge hole from 800m depth in Parent Hole. Targets at ESS and below BCF in Balmer.

Budget

Phase I - Pre-Drilling Phase I - Pre-Drilling	Acquire and Interpret				
Phase I - Pre-Drilling Phase I - Pre-Drilling	Acquire and Interpret				
Phase I - Pre-Drilling	Acquire and Interpret				
	Goldcorp Geophysical Data	Property-scale interpretation	1	\$ 10,000.00	\$ 10,000.00
Phase I - Pre-Drilling	Ground Reconnaissance for Geophysical Interpretations	Perform ground reconnaissance mapping at interpreted locations of structures	10	\$ 1,000.00	\$ 10,000.00
Phase I - Pre-Drilling	Core Lithogeochemistry	Sample Collection (18 days with geologist and technician with room and board, transportation and equipment)	18	\$ 1,000.00	\$ 18,000.00
Phase I - Pre-Drilling	Core Lithogeochemistry	Whole Rock Analysis	150	\$ 30.00	\$ 4,500.00
Phase I - Pre-Drilling	Ground Reconnaissance for Geochemical Interpretations	Mapping and sampling over southeast claims (10 days with geologist and technician with room and board, transportation and equipment)	10	\$ 1,000.00	\$ 10,000.00
Phase I - Pre-Drilling	Bore Hole Geophysics	Ten (10) holes totaling approximately 850m per hole	1	\$ 77,000.00	\$ 77,000.00
Phase I - Pre-Drilling	Contingency		15%		\$ 19,425.00
Phase I - Pre-Drilling	TOTAL ESTIMATED COST				\$ 148,925.00
PHASE I - Drilling					
Phase I - Drilling	Drilling *	ESS Zone NQ Drilling	10,050	\$ 165.00	\$ 1,658,250.00
Phase I - Drilling	Drilling *	CSS Deep Parent Hole and Wedging	3,200	\$ 230.00	\$ 736,000.00
Phase I - Drilling	Contingency	ESS Zone, CSS Zone and IP/EM/Mag/Geochem Contingency	15%		\$ 359,137.50
Phase I - Drilling	TOTAL ESTIMATED COST				\$ 2,753,387.50
PHASE II - Drilling					
Phase II - Drilling	Drilling *	Drilling to test targets generated from interpretation of IP/EM/Mag/Geochem	2,500	\$ 165.00	\$ 412,500.00
Phase II - Drilling	Drilling *	Collaboration target drilling	10,000	\$ 230.00	\$ 2,300,000.00
Phase II	TOTAL ESTIMATED COST				\$ 2,712,500.00

Phase I and II

TOTAL PHASED EXPLORATION COST

\$ 5,614,812.50

* Drilling rates are estimated on All-Inclusive basis (including contract cost, personnel, sampling, and room and board)

19. References

Alexander Red Lake Mines 1947, Drill hole logs for drilling conducted during 1946 and 1947 by Alexander Red Lake Mines Limited.

Alexander Red Lake Mines 1971, Drill hole logs for drilling conducted during 1971 by Alexander Red Lake Mines Limited.

Andrews A. J. et al 1986, The Anatomy of a Gold-Bearing Greenstone Belt: Red Lake Northwestern, Ontario, Canada, Proceedings of Gold '86 Symposium, Toronto, p. 3 - 22.

Barrie, C.Q. 2003, Operations Report, High Sensitivity Magnetic Airborne Survey, Alexander Project, Balmertown, Ontario, from Terraquest Limited for Conquest Resources Limited, (Internal Report) June 17, 2003.

Bérubé, P. 2004, Resistivity and Induced Polarization Survey (Phase 2) Logistics and Interpretation Report on the Alexander Mining Property, Balmer Township, Red Lake Mining District, Ontario, Canada, prepared for Conquest Resources Limited (Internal Report), November 2004.

Boniwell, J.B. 2003a, Alexander Property, Red Lake, Ontario, Reinterpretation of Dighem Airborne Geophysical Survey performed for Getty Mines Limited, 1980, Unpublished Memorandum to Conquest Resources Limited, January 9, 2003.

Boniwell, J.B. 2003b, VLF-Survey Results, Alexander Property, Red Lake, Ontario, Unpublished Memorandum to Conquest Resources Limited, March 27, 2003.

Boniwell, J.B. 2003c, VLF and Recent Aeromagnetic Surveying of the Alexander Claims, Red Lake, Ontario, by Excalibur International Consultants Limited for Conquest Resources Limited, (Internal Report) June 24, 2003.

Cameron, E. 2003, Report on MMI-B Data from the Alexander Property, Balmer Township, Red Lake, Eion Cameron Geochemical Inc. for Conquest Resources Limited (Internal Report), December 2003.

Chavez, E. 2005, Summary of Results of Winter 2004 Drilling – Alexander Property, Unpublished Memorandum to Terence McKillen of Conquest Resources Limited, January 19, 2005.

Chisholm, E.O. 1954, Geology of Balmer Township, Ontario Department of Mines Annual Report for 1951, v. 60, Part 10, p. 62.

Corfu, F., Andrews, A.J. 1987, Geochronological constraints of the timing of magmatism, deformation and gold mineralization in the Red Lake greenstone belt, northwestern Ontario, Canadian Journal of Earth Sciences, vol. 24, p. 1302 – 1320.

Corfu, F., Wallace, H. 1986, U-Pb zircon ages for magmatism in the Red Lake greenstone belt, northwestern Ontatio, Canadian Journal of Earth Sciences, vol. 23, p. 27 – 42.

Dubé, B, Williamson, K., Malo, M. 2001, Preliminary report on the geology and controlling parameters of the Goldcorp Inc. High Grade zone, Red Lake mine, Ontario, Geological Survey of Canada, Current Research 2001 – C18.

Dubé, B., Williamson, K., Malo, M. 2002, Geology of the Goldcorp Inc. High Grade zone, Red Lake mine, Ontario: an update; Geological Survey of Canada, Current Research 2002-C26, p.1 -13.

Dubé, B., Gosselin, P. 2007, Greenstone-hosted quartz-carbonate vein deposits, *in* Goodfellow, W.D., ed., Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods: Geological Association of Canada, Mineral Deposits Division, Special Publication No. 5, p. 49-73.

Floyd, A. 1987, Report on the Alexander Red Lake Property, Balmer Township, Ontario for Paget Resources Limited, Orequest Consultants Limited (Internal Report), Vancouver, April 16, 1987.

Goldcorp 2000, The Challenge, Summary from An Audit of the December 1999 Reserves of the Red Lake Mine for Goldcorp by Watts, Griffis and McQuat Limited for Goldcorp Inc., February 1, 2000

Goldcorp 2002, Press Release: "Continuing Deeper & Richer, New High Grade Gold Mineralization at Depth", Goldcorp Inc., December 18, 2002.

Goldcorp 2009, Press Release: "Update on 2009 Exploration", Goldcorp Inc., November 24, 2009.

Goldcorp 2012a , Webpage entitled: "Reserves & Resources", Website: http://www.goldcorp.com/ Investor-Resources/Reserves-and-Resources/default.aspx, Goldcorp Inc., May 29, 2012.

Goldcorp 2012b, Red Lake Gold Mines, Canada, Annual Information Form for the Financial Year Ended December 31, 2011, Goldcorp Inc., March 28, 2012, p. 26-35.

Goodwin, A.M. 1977, Archean volcanism in the Superior Province, Canadian Shield; in Volcanic Regimes in Canada, Geological Association of Canada, Special Paper 16, p 205-241.

Hutton, D.A. 1971, An Exploration Proposal for the Balmer Township Mining Claims, Red Lake District, Ontario (Internal Report), Alexander Red Lake Mines Limited

Lichtblau, A.F., Ravnaas, C., Storey, C.C., Hinz, P., Bongfeldt, J. 2008, Report of Activities 2007, Resident Geologist Program, Red Lake Regional Resident Geologist Report, Red Lake and Kenora Districts, Ontario Geological Open File Report 6216, 80 p.

Lydon, J. W. 2007, An overview of the economic and geological contexts of Canada's major mineral deposit types, *in* Goodfellow, W.D., ed., Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods: Geological Association of Canada, Mineral Deposits Division, Special Publication No. 5, p. 3-48.

McKillen, T.N. 2003, Phase I Geological Report, Alexander Project, Red Lake Mining District, Ontario for Conquest Resources Limited, January 17, 2003.

MacGeehan, P.J., Hodgson C.J. 1981a, Environments of Gold Mineralization in the Campbell Red Lake and Dickenson Mines, Red Lake District, Ontario, Geology of Canadian Gold Deposits

MacGeehan, P.J., Hodgson, C.J., Sanders, T. 1981b, Geochemical characterization of the alteration halo flanking the Campbell-Dickenson gold-bearing vein systems, Red Lake District, Ontatio, resented at the Annual Meeting, Prospectors and Developers Association, Toronto, March 10, 1981.

MacGeehan, P.J., Sanders, T. Hodgson, C.J. 1982, Meter-wide veins and a kilometer-wide anomaly, wall rock alteration at the Campbell Red Lake and Dickenson gold mines, Red Lake Ontario, CIM Bulletin, vol. 75, no. 841, p 90 – 102.

Marmont, C. 2003, Report on Exploration for the Period February to April 2003, Alexander Property, Balmer Township, Red Lake Mining District, Ontario, Conquest Resources Limited, June 16, 2003.

Marmont, C. 2004, Technical Report on Exploration for the Period February 2003 to April 2004, Alexander Property, Balmer Township, Red Lake Mining District, Ontario, Conquest Resources Limited, April 30, 2004.

Pirie, J., Grant, A. 1978, Balmer Township: Ontario Geological Survey, Preliminary Map P. 1976a, Scale 1:20,000.

Pirie, J. 1981, Regional geological setting of gold deposits in the Red Lake area, northwestern Ontario, Genesis of Archean volcanic-hosted gold deposits, Ontario Geological Survey, Miscellaneous Paper no. 97, p 71 – 93.

Penczak, R.S. 1996, The geological setting of alteration and gold mineralization at the Campbell mine, Red Lake District, Ontario, Masters of Science Thesis, Queen's University, Kingston, May 1996.

Penczak, R. and Mason, R. 1997, Metamorphosed Archean epithermal Au-As-Sb-Zn-(Hg) vein mineralization at the Campbell mine, northwestern Ontario; Economic Geology, v. 92, p. 696-719.

Premier 2012a, Press Release: "Red Lake Haulage Drift Intersects Favourable Structures and Gold Mineralization on the Rahill-Bonanza JV Property", Premier Gold Mines Limited, May 23, 2012.

Premier 2012b, Website: "Rahill-Bonanza Project", http://www.premiergoldmines.com/s/Rahill-Bonanza.asp, Premier Gold Mines Limited, May 29, 2012.

Rivest, H. 2005, Resistivity and Induced Polarization Survey (Phase 2) Logistics and Interpretation Report on the Alexander Mining Property, Balmer Township, Red Lake Mining District, Ontario, Canada, prepared for Conquest Resources Limited (Internal Report), May 2005.

Roth, J. 2005, Re-interpretation of VLF-EM, magnetic, and IP surveys conducted over the Alexander Property during 1980, 2003 and 2004 (Unpublished Maps), January and February 2005.

Rubicon Minerals Corporation, 2011, Press Release: "Rubicon Minerals Receives Positive Preliminary Economic Assessment for F2 Gold System, Phoenix Gold Project, Red Lake, Ontario", June 29, 2011.

Sanborn-Barrie, M. Skulski, T., Parker, J. 2001, Three hundred million years of tectonic history recorded by the Red Lake greenstone belt, Ontario, Geological Survey of Canada, Current Research 2001, C19, 19 p.

Sanborn-Barrie, M., Skulski, T., and Parker, J. 2004, Geology, Red Lake greenstone belt, western Superior Province, Ontario; Geological Survey of Canada, Open File 4594, scale 1:50 000.

Smith, H., Shannon, J.M., Nussipakynova, D., Pitman, C., Caron, S., Roy, P. 2011, Technical Report on F2 Gold System – Phoenix Gold Project, Bateman Township, Red Lake by AMC Mining Consultants (Canada) Limited for Rubicon Minerals Corporation, August 8, 2011.

SPOT 2009, SPOT5 multispectral remote image capture of Red Lake mine area, September 2009.

St-Hilaire, C. 2001, Combined Magnetic, Electromagnetic, VLF and Radiometric Helicopter Surveys – Mine Block and Extra Lines, Red Lake Area, Ontario, Unpublished Project Report by Sial Geosciences Inc. for Goldcorp Inc., January 2001.

Stott, G.M., Corfu, F. 1991, Uchi Subprovince, Geology of Ontario, Ontario Geological Survey Special Volume 4, part 1, p 145 – 236.

Sutherland, K. 1981, 1980 Summary Report Red Lake Property, Red Lake, Ontario For Getty Canadian Minerals Limited N.T.S. 52-N/2 (Internal Report), February 1981.

Sutherland, K. 1982, 1981 Summary Report Red Lake Property, Red Lake, Ontario for Getty Canadian Minerals Limited and Senlac Resources Incorporated N.T.S. 52-N/4 (Internal Report), January 1982.

Sutherland, K. 1983, 1982 Summary Report Red Lake Property, Red Lake, Ontario for Getty Canadian Minerals Limited and Senlac Resources Incorporated N.T.S. 52-N/4 (Internal Report), February 1983.

Taylor, B.E. 2007, Epithermal gold deposits *in* Goodfellow, W.D., ed., Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods: Geological Association of Canada, Mineral Deposits Division, Special Publication No. 5, p. 113-139.

Twomey, T. and McGibbon, S. 2002, The Geological Setting and Estimation of Gold Grade of the High-grade Zone, Red Lake Mine, Goldcorp Inc., Exploration Mining Geology, Canadian Institute of Mining, Metallurgy and Petroleum, Vol. 10, Nos. 1 and 2, p 19-34.

Wallace, H., Thurston, P.C., Corfu, F. 1986, Developments in stratigraphic correlation: western Uchi Subprovince, Volcanology and Mineral Deposits, Ontario Geological Survey Miscellaneous Paper no. 129, p 88 – 102.

Wallace, C.S. 2003, Technical Report on the Gold Centre Property, Red Lake, Northern Ontario, Prepared for Rupert Resources Limited, Roscoe Postle Associates Incorporated, June 30, 2003.

20. Date and Signature Page

This report entitled "Technical Report on Exploration at the Alexander Gold Project in Red Lake, Ontario" dated November 21, 2012 was prepared and signed by the author.

SIGNED & SEALED

Signed at Toronto, Ontario Dated November 21, 2012 Benjamin Batson, B. Sc., P. Geo. Professional Geoscientist, Ontario Member 1853

21. Qualifications Certificate

Benjamin C. E. Batson, B.Sc., P.Geo. Vice President Exploration, Conquest Resources Limited Suite 700 – 220 Bay Street Toronto, Ontario, Canada M5J 2W4

QUALIFICATIONS CERTIFICATE

I, Benjamin Batson, P. Geo. Do hereby certify that:

- 1. I graduated with a degree entitled Bachlor of Applied Science in Geological Engineering from Queen's University in Kingston, Ontario in 2006
- 2. I am a Practicing Member in good standing of the Association of Professional Geoscientists of Ontario.
- 3. I have worked as a geologist for six (6) years since my graduation from university.
- 4. I have read the definition of "qualified person" set out in National Instrument 43-101 ("NI 43-101") and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purposes of NI 43-101.
- 5. I am responsible for the preparation of the technical report entitled "Technical Report on Exploration at the Alexander Gold Project in Red Lake, Ontario" and dated November 21, 2012 (the "Technical Report") relating to the Alexander Property of Conquest Resources Limited. This report is based upon the work that was performed between May 1, 2004 through November 21, 2012.
- 6. Prior to my involvement on the drilling program detailed in this report, I worked for five consecutive months in the position of Exploration Manager for Conquest Resources Limited.
- 7. I am not aware of any material fact or material change with respect to the subject matter of the Technical Report that is not reflected in the Technical Report, whereby the omission to disclose such fact makes the Technical Report misleading. The Technical Report is current as at November 21, 2012.
- 8. I have been granted options to purchase shares in Conquest Resources Limited comprising 100,000 shares prior to March 13, 2014 and 500,000 shares prior to June 2, 2016.
- 9. I have supervised exploration activities on site including: drilling, trenching and ground preparation during 2009 through 2012 for periods ranging from two (2) to 81 days in duration.
- 10. I am currently employed by Conquest Resources Limited in the position of Vice President Exploration.
- 11. I have read National Instrument 43-101 and Form 43-101F1. The Technical Report has been prepared in compliance with that instrument and form.

Dated this Twenty-first day of November, 2012.

SIGNED & SEALED

Dated at Toronto, Ontario November 21, 2012 Benjamin Batson, B. Sc., P. Geo. Professional Geoscientist, Ontario Member 1853

APPENDIX: Diamond Drill Logs

The following drill logs represent a subset of the complete description of the drill hole for which they describe. A full drill hole log for drilling completed during period 2009 through 2011 is comprised of the following worksheets:

- 1. Header Record
- 2. Major Lithology Record
- 3. Minor Lithology Record
- 4. Structure Record *
- 5. Alteration Record *
- 6. Mineralization Record *
- 7. Assay Record
- 8. Rock Mass Quality Record *
- 9. Magnetic Susceptibility Record *
- 10. Survey Record

Note: (*) indicates those sheets that have been omitted for the purposes of minimizing the size of this report. Information contained within these omitted records from the complete drill log, where relevant and significant has been summarized in the body of this report.

Diamond Drill Log

Drill Hole ID	CR-04-26		<u>Property</u> <u>Township</u>	Alexander Balmer			<u>NTS</u> <u>District</u>	52 N/04 Red Lake	
Collar Location	Easting: Northing: Elevation: Projection:	451005.0r 5655890.0r 381.0 r NAD83 Zone	nE G nN n 15N	rid:	m m	Azimuth: Dip: Lenght	27.0° -45.0° 263.00m	Hole Status: Date Started: Date Finished:	Completed November 6, 2004 : November 12, 2004

Purpose of Hole

Test IP anomaly and MMI/conventional geochem anomalies coincident with sulphides in sheared basalt found in trenches

Proposed depth: 270.00m

	<u>Survey</u>	Data		Drilling Information			Logging and Sampling Information			
Depth(m)	Azimuth	Dip	Method	Contractor:	Major Drilling		Geology Logged by:	SD		
50.00	28°	-44°	Acid					00		
100.00	28°	-40°	Acid	Hole Type:	DD		Geotechnical Logging by			
150.00	28°	-37°	Acid	Core Size:	BQ		Sampling by:	SD, RT		
200.00	28°	-34°	Acid	Drill Rig:	Major 37					
250.00	28°	-31°	Acid	Casing Left:		32m	Horizontal Trace:		m	
				Casing Lett.		5211	Vertical Trace:		m	
				Comments						
				Casing stuck	Could not pull it out					
				Casing stack.						

										Diamon	d Drill Log	- CR-04-26
FROM	то	CODE			DESCRIPTION	Sample	From	То	Int	Au(ppb)	Fe(%)	As(ppm)
0.00	32.00	OB	CASING - C	OVERBU	RDEN							
32.00	52.87	DIO	MEDIUM TO) FINE (GRAINED DIORITE							
			35.85		QCV, biotite rim, 3% disseminated sulfides (pyrrhotite, pyrite) LCA=3°	19758	49.52	51.10	1.58	10.0	3.52	7.6
			36.16		QCV, biotite rim, 10 mm, 2% disseminated sulfides (pyrrhotite, pyrite)	19757	51.10	51.70	0.60	5.0	6.36	0.4
					LCA=51°	19756	51.70	52.39	0.69	5.0	6.28	2.0
			36.80		QCV, biotite rim, 10mm, no mineralization LCA=42°	19760	52.22	52.56	0.34	210.0	6.01	29.5
			37.71		QCV, 10mm, no mineralization LCA=47°	19755	52.39	52.87	0.48	10.0	5.82	2.4
			37.95		QCV, chlorite alteration, 5mm, no mineralization LCA=55°							
			38.73		QCV, chlorite alteration, 5mm, no mineralization LCA=43°							
			39.00		QCV, chlorite alteration, 15 mm, no mineralization LCA=46°							
			39.53		QCV, epidote staining, chlorite alteration, 70mm, 1 % disseminated sulfides (pyrite) LCA=72°							
			41.37		QCV, many small over a 15 cm, sericite alteration							
			43.50		Some thin QCV, patches of epidote and chlorite alteration							
			45.25		QCV, 12 mm, biotite alteration, & chlorite alteration rim approximately 5 mm, sericite alteration in vein, surrounding vein 3% disseminated sulfides in 30 mm halo LCA=20°							
			46.28		QCV, 9cm, Bioitie + Chlorite + Sericite alteration LCA=67°							
			46.28	46.88	Moderately sheared diorite							
			46.88	47.62	Fine grained diorite							
			46.88		QCV, no mineralization LCA=60°							
			47.62	51.07	Moderately sheared diorite							
			47.99		QCV, biotite rim, 15mm LCA=43°							
			51.07	52.87	Highly sheared diorite LCA=50°							
			51.07		QCV, 15mm, chlorite alteration halo (5mm)							
			51.15		QCV, 10mm, 3% disseminated sulfides (pyrrhotite), biotite alteration rim, chlorite alteration LCA=68°							
52.87	62.74	QFP	QUARTZ FE	ELDSPA	R PORPHYRY DYKE							
			53.15		QCV, 5mm, biotite rim, 4% disseminated sulfides (pyrite) LCA=51°							
			54.85		QCV, 20 mm, biotite rim LCA=24°							
62.74	72.29	DIO	MEDIUM G	RAINED	DIORITE							
			62.74	72.29	Medium grained diorite							
			65.27		QCV, irregular, no mineralization							
			65.37		QC phenocrysts, 50 mm, chlorite halo (10mm)							
			65.90		multiple QCV, average 10mm over 22cm, chlorite + sericite alteration and biotite alteration rim							
			66.51		some thin QCV, patches of epidote and chlorite alteration LCA=68°							
			71.14		QCV, 6mm, biotite + chlorite + sericite alteration LCA=49°							
			71.91		Felsic finger, 50 mm LCA=70°							
72.29	79.00	QFP	QUARTZ FE	ELDSPA	RPORPHYRY DYKE							

										Diamon	d Drill Log	- CR-04-26
FROM	то	CODE			DESCRIPTION	Sample	From	То	Int	Au(ppb)	Fe(%)	As(ppm)
79.00	129.44	DIO	MEDIUM T	O COUR	SE GRAINED DIORITE							
			79.00	80.10	Moderately sheared diorite, 4% disseminated sulfides (pyrite, pyrrhotite,	31001	85.55	85.79	0.24	70.0	3.17	110.0
					arsenopyrite), chlorite alteration, biotite alteration, numerous QCV	31002	85.79	86.13	0.34	20.0	4.37	122.0
			70.40		(running in no specific direction) LCA=54°	31003	86.13	86.40	0.27	20.0	3.38	1060.0
			79.13	05 40	QCV, 2mm, biotite alteration LCA=25 ⁻	31004	86.40	86.95	0.55	20.0	3.24	397.0
			80.10	85.42	disseminated sulfides (pyrite, pyrrhotite)	31005	86.95	87.40	0.45	20.0	4.39	3340.0
			85.27		QCV, 1% disseminated sulfides (pyrrhotite) LCA=80°	31006	87.40	87.61	0.21	10.0	5.03	3290.0
			85.41	88.09	sheared diorite, 8 % disseminated sulfides (2% arsenopyrite, 3% pyrite,	31007	87.61	88.08	0.47	20.0	6.41	1645.0
					and 3% pyrrhotite)	31008	88.08	88.46	0.38	10.0	5.33	903.0
			85.55	87.68	2-4 % arsenopyrite altered zone	31009	88.46	88.73	0.27	20.0	3.32	88.2
			88.09	109.93	Coarse grained crystalline, massive, trace amounts of disseminated	31011	96.05	96.38	0.33	10.0	2.47	18.4
					sulfides (pyrite, pyrrhotite, aresonpyrite?), chlorite alteration	31012	97.48	97.75	0.27	10.0	2.53	21.6
			90.62		QCV, 2 mm LCA=15°	31267	117.53	118.00	0.47	50.0	6.04	2.7
			92.07		QUV, 2mm LCA=25°	31268	118.00	118.57	0.57	680.0	7.64	3.8
			96.05	96.38	increase zone of arsenopyrite (1-2%)	31269	118.57	119.17	0.60	10.0	0.46	1.5
			97.48	97.75	increase zone of arsenopyrite (1-2%)							
			104.46	104.59	small shear zone LCA=52°							
			104.48		QCV, 2 mm LCA=80°							
			106.85		QUV LUA=46°							
			107.13	129.44	medium grained diorite							
			112.75	117.53	disseminated sulfides (pyrite, pyrrhotite) trace amounts of arsenopyrite LCA=65°							
			113.16		QCV, 1% disseminated sulfides (pyrrhotite, pyrite) LCA=50°							
			113.40		chlorite vein LCA=10°							
			114.13		QCV, trace amount disseminated sulfides (pyrite) LCA=60°							
			114.51		QCV, 2", biotite alteration, chlorite alteration LCA=50°							
			117.53	119.17	intensely sheared medium grained diorite							
			119.17	120.43	moderate sheared medium grained diorite							
129.44	131.04	BAS	FINE GRA	INED BA	SALT							
			129.70		QCV, 4% disseminated sulfides (pyrite, pyrrhotite) found along the edge,	19780	129.67	129.80	0.13	5.0	6.48	52.3
					chlorite + biotite alteration rim, 2" LCA=60°	19759	129.80	130.60	0.80	10.0	5.60	3.5
			129.77		QCV, 1% disseminated sulfides (pyrite, pyrrhotite), chlorite + biotite alteration, 2.5" LCA=35°	19753	130.60	131.00	0.40	5.0	10.30	20.7
			129.87		QCV, 1% disseminated sulfides (pyrite, pyrrhotite), biotite + chlorite alteration, trace amount of arsenopyrite, 2" LCA=70°							
			130.49		QCV, trace amount disseminated sulfides (pyrite), chlorite + biotite alteration, 1cm LCA=75°							
										Diamon	d Drill Log	- CR-04-26
--------	------------------	--------	---	---	--	----------------	------------------	------------------	--------------	------------	--------------	------------
FROM	то	CODE			DESCRIPTION	Sample	From	То	Int	Au(ppb)	Fe(%)	As(ppm)
131.04	167.23	MBAS	MASSIVE	SULFIDE	ES IN BASALT							
			131.10	131.31	Massive sulfides 25% (pyrite, pyrrhotite), quartz carbonate alteration, moderately sheared, biotite alteration	19754 19781	131.31 131 70	131.70 132 49	0.39 0.79	5.0 5.0	8.64 4.02	8.8 3.8
			131.48	131.65	increase zone of biotite alteration 30 %	19782	132 49	132.95	0.46	20.0	3.61	1.4
			131.99		QCV, 1" LCA=75°	19783	132.95	133 72	0.77	5.0	4 69	7.0
			132.23		QCV, trace amounts of sulfides (pyrite, pyrrhotite), biotite alteration, 2"	19784	133.72	134.45	0.73	5.0	4.06	2.6
					LCA=70°	31014	134.45	135.27	0.82	80.0	15.00	108.5
			134.45	147.89	Massive sulfides 65% (pyrite, pyrrhotite), magnetic phenocrysts, biotite alteration	31015	135.27	135.89	0.62	130.0	15.00	45.4
			134.46	135.27	Massive sulfides 60% (pyrite, pyrrhotite, trace amounts of sulfides)	31016	135.89	137.28	1.39	10.0	2.08	4.1
			135.21	147.43	Massive sulfides 40 - 45 % disseminated sulfides (pyrite, pyrrhotite, trace	31017	137.28	137.88	0.60	40.0	15.00	37.0
					amounts of arsenopyrite)		137.88	138.68	0.80	10.0	15.00	20.8
			135.24		QCV, 65% disseminated/massive sulfides (pyrite, pyrrhotite), 1" LCA=74 $^{\rm c}$	31019	138.68	139.41	0.73	10.0	14.05	8.7
			138.56		QCV, 60% disseminated/massive sulfides (pyrite, pyrrhotite), 3", biotite	31020	139.41	140.10	0.69	10.0	15.00	16.8
					alteration LCA=89°	31021	140.10	141.18	1.08	10.0	15.00	18.5
	140.46 144.85			QCV, 15% disseminated sulfides (pyrite, pyrrhotite), 2" LCA=87°	31022	142.28	142.87	0.59	10.0	15.00	39.6	
				QCV, 4% disseminated sulfides (pyrite, pyrrhotite), biotite alteration rim,	31024	143.00	143.69	0.69	10.0	15.00	24.4	
			1// 00		2 LCA=40°	31023	143.00	143.69	0.69	10.0	15.00	27.1
			144.30		alteration. 2" LCA=60°	31025	143.69	144.49	0.80	10.0	15.00	40.6
			145.42		QCV. 30 % disseminated/massive sulfides (pyrite, pyrrhotite), biotite	31026	144.49	145.22	0.73	10.0	15.00	41.1
					alteration, 3" LCA=75°	31027	145.22	146.00	0.78	10.0	15.00	25.4
			145.51		QCV, 25 % disseminated/ massive sulfides (pyrite, pyrrhotite), biotite	31028	146.00	146.64	0.64	10.0	15.00	32.8
					alteration, 3" LCA=79°	31029	146.64	147.43	0.79	10.0	15.00	33.8
			150.63	150.96	30% increase in disseminated/ massive sulfides (pyrite, pyrrhotite),	19790	147.50	148.21	0.65	5.0	11.15	4.9
			150 72		OCV biotite u oblarite alteration 1 cm LCA_60°	19791	148.53	148.72	0.19	5.0	7.59	2.9
			150.72	150.00	QCV, blottle + chlottle alleration, Tcm LCA=60	19792	150.61	150.96	0.35	5.0	5.30	1.1
			131.00	152.52	moderately sheared	31030	101.00	152.27	0.42	30.0	13.05	10.0
			151.72		QCV. 2% disseminated sulfides (pyrite), biotite + chlorite rim, 2cm	31031	153.98	154.21	0.23	10.0	12.45	0.3
			-		LCA=25°	31032	154.21	155.02	0.01	10.0	15.00	4.4
			151.85	152.27	2-3% disseminated sulfides, moderately sheared	10795	155.02	156.19	0.43	5.0	5.00	0.7
			153.98	154.21	10% increase in disseminated/massive sulfides, biotite alteration,	19705	156.18	156.88	0.07	5.0	11 75	0.7
					moderately sheared	10787	156.88	157.64	0.70	5.0	7.54	2.7
			154.63	159.59	20% increased disseminated/massive sulfides (pyrite, pyrrhotite), biotite	19707	157.64	158.30	0.70	5.0	8 79	23
	450.50	164.26	Alteration, chiome alteration, moderately sheared	19789	158 30	159.00	0.00	5.0	6.40	2.0		
			164.20	104.30	$\Omega = 0$	31035	159.02	159.59	0.57	10.0	8.06	3.8
			164.20	167 22	20 % increased disseminated/massive sulfides (nurite nurbatite), intensely	31036	164.37	165.42	1.05	50.0	11.45	9.4
			104.30	107.22	sheared, biotie alteration, chlorite alteration	31037	165.42	166.30	0.88	20.0	9.41	15.0
					, ,	31038	166.30	167.22	0.92	40.0	11.75	9.5

									Diamon	d Drill Log	- CR-04-26
FROM	то	CODE		DESCRIPTION	Sample	From	То	Int	Au(ppb)	Fe(%)	As(ppm)
167.23	192.80) BAS	FINE GRA	INED BASALT							
			167.23	170.66 slightly sheared pillow basalt							
			170.66	171.08 intensely sheared							
			171.08	192.80 moderately sheared							
			173.78	QCV, 5% disseminated sulfieds (pyrrhotite, pyrite) LCA=85°							
			177.30	QCV, 1% disseminated sulfides (pyrrhotite), 1cm LCA=65°							
			184.00	QCV, trace sulfides, chlorite alteration, 2cm LCA=75°							
192.80	205.47	7 QFP	QUARTZ I	FELDSPAR PORPHYRY DYKE							
			201.80	QCV, 4% disseminated sulfides (pyrite), major chlorite alteration, biotite	31039	192.84	193.63	0.79	5.0	1.60	3.3
				alteration, mica, 5-8% arsenopyrite along the rim, 2" LCA=60°	31040	193.63	194.05	0.42	40.0	1.73	9.5
			202.60	QCV, 4% disseminated sulfides (pyrite, pyrrhotite), chlorite alteration rim,	31041	194.05	194.62	0.57	680.0	1.83	831.0
			204 24	Diotite alteration, mica, $2 LCA=38^{-2}$	31042	194.62	195.10	0.48	140.0	1.44	8.6
			204.21	alteration chlorite alteration mica arseonpyrite found in small veins	31043	195.10	195.50	0.40	420.0	1.53	727.0
				numerous QCV making up one zone	31044	195.50	196.06	0.56	160.0	1.45	706.0
					31045	196.06	196.61	0.55	280.0	1.39	1225.0
					31046	196.61	197.09	0.48	100.0	1.63	133.5
					31047	197.09	197.66	0.57	250.0	1.41	1005.0
					31048	197.09	197.66	0.57	300.0	1.49	1205.0
					31049	197.66	198.20	0.54	180.0	1.58	697.0
					31050	198.20	198.59	0.39	100.0	1.46	108.0
					31051	198.59	199.16	0.57	90.0	1.50	120.0
					31052	199.16	199.66	0.50	280.0	1.54	2360.0
					31053	199.66	199.81	0.15	30.0	1.46	63.4
					31054	199.81	200.27	0.46	50.0	1.40	457.0
					31055	200.27	200.60	0.33	10.0	1.37	42.5
					31056	200.60	200.92	0.32	290.0	1.45	405.0
					31057	200.92	201.33	0.41	80.0	1.48	226.0
					31058	201.33	201.75	0.42	10.0	1.37	411.0
					31060	201.75	201.93	0.18	30.0	1.52	1005.0
					31061	201.93	202.40	0.47	80.0	1.28	31.1
					31062	202.40	202.65	0.25	10.0	1.49	71.3
					31063	202.65	202.92	0.27	10.0	1.25	25.8
					31064	202.92	203.34	0.42	60.0	1.39	238.0
					31065	203.34	203.76	0.42	60.0	1.43	367.0
					31066	203.76	204.02	0.26	10.0	1.53	471.0
					31067	204.02	204.62	0.60	5.0	0.78	145.5
					31068	204.62	204.87	0.25	90.0	1.42	21.1
					31069	204.87	205.26	0.39	30.0	1.48	270.0
					31070	204.87	205.26	0.39	40.0	1.55	354.0
					31266	204.88	205.40	0.52	60.0	1.66	1130.0
205.47	206.74	1 PBAS	PILLOW E	BASALT							

Printed: 21/04/2005 2:01:26 PM

									Diamon	d Drill Log	- CR-04-26
FROM	то	CODE		DESCRIPTION	Sample	From	То	Int	Au(ppb)	Fe(%)	As(ppm)
206.74	207.52	QFP	QUARTZ I	FELDSPAR PORPHYRY DYKE							
			206.76	QCV, 1% disseminated sulfides (arsenopyrite, pyrite), chlorite alteration + biotite alteration rim, 1" LCA=35°	31072	207.17	207.48	0.31	5.0	2.05	3.2
			206.84	207.15 QV, 4% disseminated sulfides (pyrite, pyrrhotite, arsenopyrite (trace)), biotite alteration, chlorite alteration LCA=30°							
			207.17	207.48 2-3% disseminated sulfides(pyrite, pyrrhotite, arsenopyrite (trace)), moderately sheared							
207.52	215.46	PBAS	PILLOW E	JASALT							
			213.48	214.10 quartz carbonate alteration, biotite alteration, chlorite alteration, 2-4%	31073	213.48	214.10	0.62	5.0	3.22	52.2
				disseminated sulfides (pyrrhotite, pyrite)	31074	214.10	214.76	0.66	140.0	15.00	286.0
			214.10	214.98 65% massive/disseminated sulfides (pyrite, pyrrhotite)	31075	214.76	214.98	0.22	130.0	15.00	234.0
			215.12	215.46 intensely sheared, 15% disseminated sulfides (pyrite, pyrrhotite)	31076	215.12	215.36	0.24	20.0	12.65	23.8
215.46	216.17	QFP	QUARTZ I	FELDSPAR PORPHYRY DYKE							
					31077	215.46	215.83	0.37	10.0	1.88	10.7
					31078	215.83	216.17	0.34	10.0	1.95	7.3
216.17	217.86	PBAS	PILLOW E	JASALT							
			216.48	216.88 QCV, 5-8% disseminated sulfides (pyrite, pyrrhotite, needles inside QV	31079	216.48	216.88	0.40	10.0	8.62	331.0
				arseonpyrite)	31080	216.88	217.63	0.75	40.0	12.00	26.9
			216.88	217.86 increased zone of sulfides (massive), intensely sheared	31081	217.63	217.86	0.23	10.0	15.00	19.2
217.86	218.00	QFP	QUARTZ I	FELDSPAR PORPHYRY DYKE							
218.00	227.26	PBAS	PILLOW F								
210.00	221.20	1 2/10	218.30	220.85 QCV. 2% disseminated sulfides, biotite alteration	31082	218.30	219.08	0.78	30.0	10.30	21.9
			221.41	222.14 QCV. 1-2% disseminated sulfides (pyrite, pyrrhotite), biotite alteration	31083	219.08	219.76	0.68	60.0	12.20	29.8
				LCA=60°	31084	219.76	220.28	0.52	40.0	15.00	42.2
			221.45	QCV, 5% disseminated sulfieds (pyrrhotite, pyrite), chlorite +biotite	31086	220.28	220.85	0.57	10.0	15.00	6.7
				alteration rim, 1" LCA=20°	31087	221.41	222.14	0.73	5.0	15.00	2.6
			222.69	QCV, 2% disseminated sulfides, biotite alteration							
			224.96	QCV, 2% disseminated sulfides, biotite alteration, 1" LCA=45°							
			225.07	QCV, 2% disseminated sulfides, biotite alteration LCA=70°							
227.26	229.12	QFP	QUARTZ I	FELDSPAR PORPHYRY DYKE							
			227.26	229.12 QCV, 8-10% disseminated sulfides (pyrite, pyrrhotite, trace arsenopyrite)) 31088	227.26	227.44	0.18	5.0	1.97	1.8
			007.00	chlorite alteration, blotite alteration	31089	227.44	227.81	0.37	20.0	3.97	2.9
			227.20	227.44 QCV, 2% disseminated suilides (pyrite, pyrnotite), biotite alteration	31090	227.81	228.13	0.32	5.0	0.51	1.1
					31091	228.13	228.49	0.36	5.0	0.24	0.7
					31092	228.49	228.78	0.29	5.0	0.27	2.1
					31093	228.78	229.12	0.34	10.0	1.45	1.6
229.12	263.00	PBAS	PILLOW E	JASALT							
			233.64	QCV, 1% disseminated sulfides (pyrite), chlorite + biotite alteration rim, 1	19779	238.21	238.41	0.20	5.0	0.71	13.0
			000.00	$LCA=40^{\circ}$	31094	242.89	243.62	0.73	10.0	5.97	0.8
			230.20	244.00. 5.8% discominated sulfides (pyrite, pyrite, pyrite)	31095	243.62	244.00	0.38	20.0	6.95	0.2
			242.09	244.00 $3-0\%$ usseminated sulfides (pyrite, pyrinolite)							
			240.43	QCV, 0% disseminated sumues (pyrite), 2011 LCA=65°							
			245.70								

---- END OF HOLE ---

Drill Hole ID	CR-0)4-27	<u>Property</u> <u>Township</u>	Alexander Balmer			<u>NTS</u> <u>District</u>	52 N/04 Red Lake	
Collar Location	Easting: Northing: Elevation: Projection:	450932.0r 5655774.0r 382.5 r NAD83 Zone	nE G nN n 15N	rid:	m m	Azimuth: Dip: Lenght	28.0° -50.0° 282.00m	Hole Status: Date Started: Date Finished	Completed November 13, 2004 November 17, 2004

Purpose of Hole

Test Trend 2 IP anomaly south of massive sulphides and extension at depth of Trend 1

Proposed depth: 270.00m

	<u>Survey</u>	Data		<u> </u>	Drilling Information		Logging and Sam	pling Information
Depth(m)	Azimuth	Dip	Method	Contracto	r: Major Drilling]	Geology Logged by:	SD
15.00	28°	-45°	Acid					
50.00	28°	-45°	Acid	Hole Type:	: DD		Geotechnical Logging by	/
100.00	28°	-47°	Acid	Core Size:	BQ		Sampling by:	SD, RT
150.00	28°	-40.5°	Acid	Drill Rig:	Major 37			
200.00	28°	-40°	Acid	Casing Le	ft.	m	Horizontal Trace:	m
250.00	28°	-45°	Acid	ousing Le			Vertical Trace:	m
				Comments				
					•			

								Diamon	nd Drill Log	- CR-04-27
FROM	то	CODE	DESCRIPTION	Sample	From	То	Int	Au(ppb)	Fe(%)	As(ppm)
0.00	13.00	OB	CASING - OVERBURDEN							
13.00	33.09	DIO	MEDIUM TO COARSE GRAINED DIORITE							
			13.00 17.45 Coarse grained diorite, slightly sheared, crystalline	31096	13.58	14.44	0.86	5.0	3.57	2.3
			13.58 16.75 Coarse grained diorite, slightly sheared, 1% disseminated sulfides	31097	14.44	15.18	0.74	5.0	3.82	3.1
			15.90 QCV, 1% disseminated sulfides (pyrite) - found close to the edge of the	ne 31098	15.18	15.95	0.77	10.0	3.50	2.3
			vein, chlorite alteration, 2" LCA=40°	31099	15.95	16.75	0.80	10.0	3.58	9.6
			16.50 QCV, 1% disseminated sulfides (pyrite), chlorite alteration, 2" LCA=3	2°						
			17.45 31.96 fine grained diorite, slightly sheared LCA=50°							
			18.05 QCV, chlorite alteration, trace amounts of sulfides (pyrite), LCA=70°							
			18.10 QCV, chlorite alteration, 1/2 ", no mineralization LCA=80°							
			20.86 QCV, biotite + chlorite alteration, 1", no mineralization LCA=70°							
			25.08 QCV, biotite + chlorite rim, trace amounts of sulfides (pyrite, pyrrhotit LCA=45°	e)						
			27.02 QCV, major chlorite alteration, biotite alteration, 1% disseminated sulf (pyrite), 2" LCA=30°	des						
			28.07 28.14 QCV, chlorite alteration, biotite alteration, 1% disseminated sulfides (pyrite, pyrrhotite), trace amounts of arsenopyrite							
			31.81 31.89 Numerous biotite altered veins, running in no specific direction							
			31.96 Coarse grained diorite, intensely sheared, crystalline LCA=70°							
33.09	35.11	QFP	QUARTZ FELDSPAR PORPHYRY DYKE							
			33.48 QCV, chlorite + biotite alteration, no mineralization, 1" LCA=40°							
35.11	35.30	DIO	MEDIUM TO COARSE GRAINED DIORITE							
			35.11 35.30 Medium grained diorite							
35.30	35.77	QFP	QUARTZ FELDSPAR PORPHYRY DYKE							
35.77	51.44	DIO	MEDIUM TO COARSE GRAINED DIORITE							
			35.77 48.50 Coarse grained diorite							
			39.44 39.59 Intensely sheared diorite LCA=62°							
			39.59 QCV, chlorite alteration, sericite alteration, 2", no mineralization LCA	=24°						
			39.86 QCV, chlorite alteration, 1.5", no mineralization LCA=52°							
			41.27 41.31 increased zone of sericite alteration							
			41.62 41.68 increased zone of sericite alteration							
			45.37 QCV, very small, chlorite alteration, no mineralization LCA=55°							
			47.36 47.57 increased zone of chlorite alteration, biotite alteration, trace amounts sulfides, intensely sheared LCA=60°	of						
			49.22 QCV, chlorite alteration, 1% disseminated sulfides (pyrite) LCA=40°							
			51.29 51.44 numerous QC veins							
51.44	51.87	QFP	QUARTZ FELDSPAR PORPHYRY DYKE							
				31101	51.44	51.86	0.42	5.0	2.27	3.9
				31100	51.44	51.86	0.42	10.0	2.56	7.4

										Diamon	d Drill Log	- CR-04-27
FROM	то	CODE		·	DESCRIPTION	Sample	From	То	Int	Au(ppb)	Fe(%)	As(ppm)
51.87	70.13	DIO	MEDIUM -	TO COAR	SE GRAINED DIORITE							
			51.87	58.67	Fine grained diorite	31102	55.48	56.05	0.57	5.0	5.75	406.0
			51.87	52.91	Intensely sheared diorite LCA=70°	31103	64.24	64.72	0.48	60.0	4.45	1.8
			55.48	56.05	increased zone of arsenopyrite 2-5%							
			57.00	57.81	moderately sheared diorite LCA=60°							
			62.68		QCV, chlorite alteration, no mineralization LCA=40°							
			63.10	63.87	moderately sheared diorite LCA=59°							
			63.87	65.21	Intensely sheared diorite LCA=70°							
			64.24	64.72	Intensely sheared diorite, 1% disseminated sulfides (pyrite, pyrrhotite)							
70.13	70.34	QFP	QUARTZ	FELDSPA	R PORPHYRY DYKE							
70.34	71.30	DIO	MEDIUM	TO COAR	SE GRAINED DIORITE							
			70.34	71.30	coarse grained diorite							
71.30	71.32	QFP	QUARTZ	FELDSPA	R PORPHYRY DYKE							
71.32	71.47	DIO	MEDIUM -	TO COAR	SE GRAINED DIORITE							
			71.32	71.47	Coarse grained diorite							
71.47	71.51	QFP	QUARTZ	FELDSPA	R PORPHYRY DYKE							
71.51	146.39	DIO	MEDIUM -	TO COAR	SE GRAINED DIORITE							
			71.51	73.77	coarse grained diorite	31104	98.79	99.36	0.57	5.0	0.90	2.2
			73.77	85.91	Medium grained diorite							
			85.91	99.60	Coarse grained diorite							
			86.15		moderately sheared diorite, chlorite alteration, carbonate alteration $LCA=60^{\circ}$							
			93.17		QCV, Chlorite alteration, little amount of biotite alteration, no mineralization, 1" LCA=45° $$							
			96.63		QCV, chlorite alteration, 1cm LCA=25°							
			98.05		QCV, chlorite alteration, 2cm LCA=35°							
			98.87	99.32	QV, biotite alteration, chlorite alteration, trace amounts of sulfides (pyrite) no angle							
			99.32	99.60	moderately sheared diorite, major biotite alteration LCA=45°							
			99.60	103.10	Fine grained diorite							
			103.10	120.34	medium grained diorite							
146.39	149.44	QFP	QUARTZ	FELDSPA	R PORPHYRY DYKE							
						31105	146.39	147.00	0.61	170.0	1.54	2110.0
						31106	147.00	147.46	0.46	20.0	1.40	552.0
						31107	147.46	147.97	0.51	10.0	2.28	291.0
						31108	147.97	148.48	0.51	5.0	2.26	31.2
						31110	148.48	148.93	0.45	20.0	1.81	504.0
						31111	148.93	149.44	0.51	10.0	1.78	363.0
149.44	169.72	DIO	MEDIUM -	TO COAR	SE GRAINED DIORITE							
			149.44	169.72	Fine grained diorite							
			149.44	150.87	moderately sheared diorite LCA=70°							
			149.44	169.72	Fine grained diorite							

							Diamon	d Drill Log	- CR-04-27	
FROM	то	CODE	DESCRIPTION	Sample	From	То	Int	Au(ppb)	Fe(%)	As(ppm)
169.72	191.11	QFP	QUARTZ FELDSPAR PORPHYRY DYKE							
			171.00 177.00 moderately sheared diorite LCA=65°	31112	169.79	170.30	0.51	5.0	1.62	109.0
			171.05 QCV, 1cm, no mineralization LCA=70°	31113	170.30	170.83	0.53	5.0	1.62	33.0
			182.45 182.66 QCV, 2 % disseminated sulfides (pyrite, pyrrhotite), biotite + chlorite	31114	170.83	171.05	0.22	5.0	1.58	86.5
			alteration	31115	171.05	171.72	0.67	110.0	1.49	1095.0
				31116	171.72	172.19	0.47	10.0	1.38	543.0
				31117	172.19	172.81	0.62	140.0	1.40	1345.0
				31118	172.81	173.23	0.42	240.0	1.30	1620.0
				31119	173.23	173.71	0.48	30.0	1.38	485.0
				31120	173.71	174.25	0.54	80.0	1.38	1095.0
				31121	174.25	174.66	0.41	30.0	1.46	651.0
				31122	174.66	175.06	0.40	10.0	1.51	463.0
				31123	175.06	175.63	0.57	30.0	1.50	689.0
				31124	175.63	176.18	0.55	120.0	1.18	770.0
				31125	175.63	176.18	0.55	100.0	1.14	743.0
				31126	176.18	176.90	0.72	120.0	1.38	1180.0
				31127	176.90	177.48	0.58	30.0	1.52	373.0
				31128	177.48	178.21	0.73	30.0	1.50	835.0
				31129	178.21	178.96	0.75	60.0	1.40	790.0
				31130	178.96	179.40	0.44	40.0	1.43	155.0
				31131	179.40	179.99	0.59	90.0	1.50	370.0
				31132	179.99	180.24	0.25	5.0	0.90	13.6
				31133	180.24	181.00	0.76	10.0	1.32	146.5
				31135	181.00	181.75	0.75	10.0	1.54	125.5
				31136	181.75	182.34	0.59	5.0	1.48	41.3
				31137	182.34	182.57	0.23	5.0	0.49	6.8
				31138	182.57	183.31	0.74	10.0	1.48	170.0
				31139	183.31	183.83	0.52	20.0	1.46	196.0
				31140	183.83	184.82	0.99	10.0	1.39	46.5
				31141	184.82	185.55	0.73	10.0	1.34	88.4
				31142	185.55	186.21	0.66	5.0	1.38	72.4
				31143	186.21	186.87	0.66	5.0	1.41	58.3
				31144	186.87	187.72	0.85	20.0	1.28	109.5
				31145	187.72	188.39	0.67	10.0	1.36	40.3
				31146	188.39	189.09	0.70	20.0	1.30	158.5
				31147	109.09	109.01	0.72	40.0	1.24	282.0
				31148	109.01	190.56	0.75	40.0	1.74	4/0.0
				31149	109.01	101.00	0.75	30.0	1./5	300.0
				31150	190.56	191.09	0.53	10.0	3.13	476.0
191.11	204.13	DIO	MEDIUM TO COARSE GRAINED DIORITE	<i></i> -	400 - 4	100.05			- <i>·</i> -	
			191.11 204.13 Coarse grained diorite	31160	192.74	192.95	0.21	10.0	6.40	320.0
			192.74 192.95 Coarse grained diorite, 1% disseminated sulfides (pyrite)							

									Diamon	d Drill Log	- CR-04-27
FROM	то	CODE		DESCRIPTION	Sample	From	То	Int	Au(ppb)	Fe(%)	As(ppm)
204.13	208.74	QFP	QUARTZ I	ELDSPAR PORPHYRY DYKE							
			204.13	204.89 Coarse grained diorite, 1% disseminated sulfides (pyrite)	31151	204.13	204.89	0.76	5.0	1.88	70.0
					31152	204.89	205.62	0.73	5.0	1.65	11.8
					31153	205.62	206.39	0.77	5.0	1.51	27.4
					31154	206.39	207.05	0.66	5.0	1.50	10.4
					31155	207.05	207.81	0.76	5.0	1.58	41.3
					31156	207.81	208.74	0.93	5.0	1.52	28.4
208.74	282.00	DIO	MEDIUM 1	O COARSE GRAINED DIORITE							
			208.74	210.00 Fine grained diorite	31157	233.71	234.03	0.32	220.0	0.88	2.1
			210.00	216.15 Coarse grained diorite	31158	234.03	234.57	0.54	5.0	0.20	1.0
			216.15	216.50 Fine grained diorite	31159	234.57	235.11	0.54	5.0	0.72	5.5
			216.50	249.00 Coarse grained diorite							
			233.71	235.11 QV, biotite alteration, chlorite alteration, sericite alteration, 2%							
				disseminated sulfides (pyrite, pyrrhotite, trace amounts of arsenopyrite),							
			242 24	OCV slight chloritic alteration around the rim 1 cm I CA=20°							
			249.00	258 25 Fine grained diorite							
			253 21	253 72 moderately sheared diorite LCA=70°							
			255.00	258.25 moderately sheared diorite LCA=70°							
			258.25	261.00 Coarse grained diorite							
			261.00	272.62 Fine Grained diorite							
			269.20	269.30 QCV, chlorite alteration, biotite alteration, 1% disseminated sulfides							
				(pyrite) LCA=50°							
			272.62	278.70 Coarse grained diorite							

---- END OF HOLE ----

Drill Hole ID	CR-0)4-28	<u>Property</u> <u>Township</u>	Alexander Balmer			<u>NTS</u> District	52 N/04 Red Lake	
Collar Location	Easting: Northing: Elevation:	451142.0r 5655805.0r 381.0 r	nE G nN n	Grid:		Azimuth: Dip: Lenght	28.0° -50.0° 246.00m	Hole Status: Date Started: Date Finished:	Completed November 18, 2004 November 21, 2004
	Projection:	NAD83 Zone	15N						

Purpose of Hole

Proposed depth: 250.00m

	<u>Survey</u>	Data		Dril	ling Information		Logging and Sam	oling Information
Depth(m)	Azimuth	Dip	Method	Contractor:	Maior Drilling		Geology Logged by:	SD
12.00	28°	-44°	Acid	Hole Type:			Geotechnical Logging by	
50.00	28°	-43.5°	Acid	noie Type.			Geolecinical Logging by	
100.00	28°	-43.5°	Acid	Core Size:	BQ		Sampling by:	
150.00	28°	-43°	Acid	Drill Rig:	Major 37			
200.00	28°	-42°	Acid	Casing Loft:	-	m	Horizontal Trace:	m
			1	Casing Lett.		111	Vertical Trace:	m
				Comments				

FROM	то	CODE	DESCRIPTION	Sample	From	То	Int	Au(ppb)	Fe(%)	As(ppm)
0.00	11.00	OB	CASING - OVERBURDEN							
11.00	41.97	DIO	MEDIUM TO COARSE GRAINED DIORITE							
			11.00 25.80 Medium grained diorite							
			12.48 QCV, chlorite alteration around the rim, no mineralization, 0.5" LCA=27°							
			12.63 QCV, trace amounts of sulfides (pyrite), 0.5" LCA=55°							
			12.65 QCV, trace amounts of sulfides (pyrite), 0.5" LCA=45°							
			13.20 QCV, 1% disseminated sulfides (pyrite), 1", chlorite + biotite alteration LCA=35°							
			14.55 QCV, trace amounts of sulfides (pyrrhotite) located mainly around the rin 0.5", chlorite + biotite alteration LCA=45°	n						
			14.71 QCV, trace amounts of sulfides (pyrite, pyrrhotite), chlorite + biotite alteration, 0.5" LCA=70°							
			18.78 18.99 1% increase in arsenopyrite in diorite							
			18.95 QCV, trace amounts of sulfides (pyrite, pyrrhotite), slight chlorite alteration, slight biotite alteration, 1" LCA=70°							
			19.65 19.98 QCV, 1% disseminated sulfides (pyrite, pyrrhotite), 1", chlorite + biotite alteration LCA=15°							
			21.62 21.93 QCV, trace amounts of disseminated sulfides (pyrite), chlorite + biotite alteration, 1" LCA=10°							
			25.80 36.22 Coarse grained diorite							
			26.55 QCV, no mineralization, chlorite alteration, 0.5" LCA=45°							
			34.57 34.70 1% increase in arsenopyrite in diorite							
			36.22 41.97 Medium grained diorite							
			37.34 QCV, no mineralization, 1cm, 0.5" LCA=50°							
			37.65 QCV, no mineralization, chlorite alteration, 1cm LCA=80°							
41.97	45.49	QFP	QUARTZ FELDSPAR PORPHYRY DYKE							
				31162	41.97	42.44	0.47	40.0	1.77	492.0
				31163	42.44	42.92	0.48	10.0	1.76	229.0
				31164	42.92	43.41	0.49	20.0	1.65	10.6
				31165	43.41	43.96	0.55	20.0	1.80	14.5
				31166	43.96	44.44	0.48	710.0	1.71	1535.0
				31167	44.44	45.00	0.56	130.0	1.66	833.0
				31168	45.00	45.49	0.49	160.0	1.59	1045.0
45.49	46.60	DIO	MEDIUM TO COARSE GRAINED DIORITE							
			45.49 46.60 Medium grained diorite	31169	45.49	45.91	0.42	80.0	5.81	11.4
			45.49 46.60 intensely sheared diorite LCA=50°	31170	45.91	46.60	0.69	20.0	2.76	36.7
46.60	46.89	QFP	QUARTZ FELDSPAR PORPHYRY DYKE							
10.05	10 / -	210		31171	46.60	46.89	0.29	5.0	1.64	2.1
46.89	48.15	DIO	MEDIUM TO COARSE GRAINED DIORITE	04470	40.00	47 44	0 = -	10.5		15.0
			46.89 48.15 Intensely sheared diorite LUA=55°	31173	46.89	47.41	0.52	10.0	3.52	45.3
			46.89 48.15 Medium grained diorite	31172	46.89	47.41	0.52	20.0	3.17	43.3
48.15	48.32	QFP	QUARTZ FELDSPAR PORPHYRY DYKE							

										Diamon	d Drill Log	- CR-04-28
FROM	то	CODE			DESCRIPTION	Sample	From	То	Int	Au(ppb)	Fe(%)	As(ppm)
48.32	70.79	DIO	MEDIUM T	FO COAR	SE GRAINED DIORITE							
			48.32	48.48	intensely sheared diorite LCA=50°	31174	61.72	62.11	0.39	120.0	4.44	472.0
			48.32	59.51	Coarse grained diorite	31175	66.80	67.36	0.56	5.0	3.03	16.4
			61.18	61.37	Moderately sheared diorite LCA=55°	31176	67.36	68.23	0.87	5.0	4.16	9.3
			61.72	62.11	1% increase in arsenopyrite in diorite	31177	68.23	68.88	0.65	5.0	4.41	34.5
			61.83		QCV, slight biotite alteration, chlorite alteration, trace amounts of sulfides (pyrrhotite, trace arsenopyrite) LCA= 60°	31178	68.88	69.48	0.60	5.0	3.71	19.2
			62.85	70.79	Moderately sheared diorite LCA=55°							
			64.93		QCV, trace amounts of disseminated sulfides (pyrite), 0.5" LCA=65°							
			65.14		QCV, no mineralization, 2cm, blue quartz, 1% disseminated sulfides (pyrite) close to the vein LCA=50°							
			66.80	69.48	1% disseminated sulfides (pyrite)							
			68.73		QCV, chlorite alteration, biotite alteration, trace amount of sulfides (pyrite) LCA=40 $^{\circ}$							
70.79	72.27	BAS	FINE GRA	INED BA	SALT							
72.27	73.53	PBX	PSEUDO E	BRACCIA	TED BASALT							
						31179	72.27	72.68	0.41	10.0	15.00	8.0
						31180	72.68	73.11	0.43	5.0	14.85	360.0
						31181	73.11	73.53	0.42	40.0	15.00	105.5
73.53	73.99	BAS	FINE TO M	AEDIUM (GRAINED BASALT							
			73.53	73.99	1% increase in arsenopyrite in Basalt	31182	73.53	73.99	0.46	160.0	10.80	212.0
73.99	74.10	QFP	QUARTZ F	FELDSPA	R PORPHYRY DYKE							
74.10	74.19	BAS	FINE TO M	IEDIUM	GRAINED BASALT							
74.19	74.44	QFP	QUARTZ F	FELDSPA	R PORPHYRY DYKE							

						Diamond Drill Log - CR-04-28					
FROM	то	CODE		DESCRIPTION	Sample	From	То	Int	Au(ppb)	Fe(%)	As(ppm)
74.44	93.93	BAS	FINE TO N	/EDIUM GRAINED BASALT							
			74.44	91.90 1% increase in sulfides in Basalt	31183	74.44	75.33	0.89	10.0	7.56	83.8
			74.95	garnet grains (light pink), 1% arsenopyrite	31184	75.33	76.14	0.81	10.0	6.06	24.7
			75.85	QCV, chlorite alteration, biotite alteration, trace amount of sulfides (pyrite)	31186	76.14	76.90	0.76	10.0	3.70	25.2
				2"-3" LCA=70°	31187	76.90	77.64	0.74	10.0	3.04	5.0
			81.18	81.35 2% increase in chlorite alteration	31188	77.64	78.12	0.48	10.0	2.22	1.3
			81.35	81.83 Intensely sheared Basalt LCA=60°	31189	78.12	78.91	0.79	10.0	2.41	2.5
			83.96	84.12 increase in biotite alteration	31190	78.91	79.72	0.81	5.0	2.72	19.4
			83.96	QCV, 1% disseminated sulfides (pyrite), chlorite alteration, biotite	31191	79.72	80.41	0.69	5.0	2.68	1.7
			00.27	alteration (slight) LCA= 45°	31192	80.41	81.06	0.65	5.0	4.34	3.1
			90.37	QCV, biolite alteration, for LCA=70	31193	81.06	81.83	0.77	5.0	4.81	4.8
			90.97 01.27	QCV, Total LCA=70 91.44, QCV, biotite alteration around the rim, no minoralization I CA=60°	31194	81.83	82.46	0.63	5.0	8.58	1.8
			91.37 01.78	91.44 QCV, biolite alteration 0.5° LCA-19°	31195	82.46	83.25	0.79	5.0	5.52	0.8
			31.70		31196	83.25	83.96	0.71	5.0	4.89	0.8
					31198	83.96	84.69	0.73	5.0	4.92	0.6
					31197	83.96	84.69	0.73	10.0	5.95	0.7
					31199	84.69	85.45	0.76	5.0	4.19	0.3
					31200	85.45	86.19	0.74	5.0	3.79	0.6
					31201	86.19	86.93	0.74	5.0	3.95	0.2
					31202	86.93	87.62	0.69	5.0	3.62	0.2
					31203	87.62	88.40	0.78	5.0	3.54	0.1
					31204	88.40	89.12	0.72	5.0	3.43	0.7
					31205	89.12	89.61	0.49	5.0	3.26	0.3
					31206	89.61	90.41	0.80	5.0	4.12	0.1
					31207	90.41	91.18	0.77	5.0	3.49	0.5
					31208	91.18	91.90	0.72	10.0	2.71	0.4
					31210	93.32	93.93	0.61	5.0	4.32	1.1
93.93	127.54	PBAS	PILLOW E	BASALT							
			105.30	105.46 QCV, chlorite alteration, no mineralization	31211	93.93	94.77	0.84	5.0	4.44	0.4
			105.87	106.17 increase in carbonate alteration	31212	94.77	95.29	0.52	5.0	3.93	0.5
			106.87	QCV, no mineralization, 1" LCA=55°	31213	95.29	95.69	0.40	5.0	4.60	4.7
			120.10	QCV, no mineralization, 1", chlorite alteration LCA=70°	31214	95.69	96.14	0.45	10.0	4.27	0.2
			126.12	QCV, no mineralization, chlorite + biotite alteration, 0.5" LCA=60°	31215	96.14	96.88	0.74	5.0	4.78	0.1
					31216	98.45	99.00	0.55	20.0	5.87	1.1
					31217	110.62	111.22	0.60	10.0	5.58	22.5
					31218	114.50	114.95	0.45	10.0	4.55	159.0

									Diamon	d Drill Log	- CR-04-28
FROM	то	CODE		DESCRIPTION	Sample	From	То	Int	Au(ppb)	Fe(%)	As(ppm)
127.54	131.32	QFP	QUARTZ FELDSP	AR PORPHYRY DYKE							
					31219	127.54	128.05	0.51	5.0	1.54	7.7
					31220	128.05	128.57	0.52	10.0	1.44	31.8
					31221	128.57	129.00	0.43	20.0	1.46	40.8
					31223	129.00	129.45	0.45	20.0	1.52	45.7
					31222	129.00	129.45	0.45	20.0	1.54	51.1
					31224	129.45	129.95	0.50	30.0	1.46	58.4
					31225	129.95	130.47	0.52	70.0	1.45	56.0
					31226	130.47	130.91	0.44	40.0	1.52	561.0
					31227	130.91	131.32	0.41	5.0	1.60	20.1
131.32	159.30	PBAS	PILLOW BASALT								
			134.43	QCV, chlorite + biotite alteration, trace amount of disseminated sulfides	31228	131.32	131.85	0.53	5.0	4.18	4.2
				(pyrrhotite) found inpillow rim, 2" LCA=70°	31229	131.85	132.33	0.48	10.0	5.15	0.7
			137.80	CV, chlorite + biotite alteration, trace amounts of disseminated sulfides	31230	141.20	141.67	0.47	5.0	5.65	1.5
				(pyrrhotite), 2cm LCA=60°	31231	158.42	158.81	0.39	10.0	3.65	74.9
			140.54 141.90) slightly sheared pillow basalt LCA=60°	31232	158.81	159.30	0.49	20.0	4.40	46.3
			141.20 141.6	1% increase in disseminated sulfides (pyrite, pyrrhotite), biotite alteration							
			141.31	QCV, chlorite alteration, no mineralization, 1cm LCA=75°							
			142.00	CV, biotite alteration, chlorite alteration, 1" LCA=65°							
			148.44 149.00) slightly sheared pillow basalt LCA=75°							
			153.67	1", zone with increased biotite alteration							
			155.69	CV, no mineralization, chlorite alteration around the rim, 2cm LCA=82°							
			156.62	QCV, 1% disseminated sulfides (pyrite), major chlorite +biotite alteration, 1" LCA=40°							
			157.59	QCV, biotite +chlorite alteration, trace amounts of disseminated sulfides(pyrite) LCA=75°							
159.30	164.04	QFP	QUARTZ FELDSP	AR PORPHYRY DYKE							
			159.62	QCV,biotite alteration, 2", trace amounts of disseminated sulfides (pyrite)	31234	159.30	159.83	0.53	390.0	1.45	4.4
				LCA=50°	31235	159.83	160.34	0.51	10.0	1.60	4.4
			163.49	QCV, 1% disseminated sulfides (pyrite), sericite alteration LCA=47°	31236	160.34	160.79	0.45	10.0	1.47	129.5
					31237	160.79	161.25	0.46	20.0	1.50	286.0
					31238	161.25	161.53	0.28	40.0	1.57	473.0
					31239	161.53	162.44	0.91	20.0	1.38	444.0
					31240	162.44	162.95	0.51	40.0	1.31	878.0
					31241	162.95	163.41	0.46	30.0	1.26	624.0
					31242	163.41	164.04	0.63	30.0	1.34	354.0

										Diamon	d Drill Log	- CR-04-28
FROM	то	CODE			DESCRIPTION	Sample	From	То	Int	Au(ppb)	Fe(%)	As(ppm)
164.04	239.35	PBAS	PILLOW E	BASALT				•		•		
			164.04	164.61	Moderately sheared Pillow basalt, major biotite alteration LCA=80°	31243	164.04	164.61	0.57	5.0	3.41	2.2
			165.79		CV, chlorite alteration, no mineralization, 0.5" LCA=82°	31244	187.17	187.67	0.50	5.0	0.44	2.7
			167.00	168.00	numerous tiny carbonate veins running in no specific direction / possible	31245	187.67	188.22	0.55	5.0	0.31	2.0
					pseudo braccia	31246	188.22	188.38	0.16	5.0	0.80	37.3
			173.14		QCV, chlorite alteration, no mineralization, 1" LCA=80°	31247	201.30	201.80	0.50	5.0	2.36	135.0
			174.39	183.16	Moderately sheared Pillow Basalt LCA=70°	31248	201.30	201.80	0.50	5.0	2.12	77.9
			183.05	187.17	zone with numerous carbonate veins, running in no specific direction / possible pseudo braccia	31249	209.91	210.43	0.52	10.0	3.57	104.5
			184.25		QCV, no mineralization, slight chlorite alteration	31250	210.43	210.95	0.52	30.0	4.22	230.0
			187.17	188.38	QCV, 1-2% disseminated sulfides (pyrite), chlorite alteration	31251	210.95	211.75	0.80	5.0	4.19	79.:
			189.55	189.69	increased carbonate alteration, no mineralization	31252	211.75	212.45	0.70	5.0	4.72	57.3
			190.81		QCV. no mineralization. 1" LCA=55°	31253	213.04	213.51	0.47	5.0	3.56	36.1
			191.00		QCV. 3". chlorite alteration, no mineralization LCA=60°	31254	216.00	216.75	0.75	10.0	2.57	11.3
			194.40		QCV, chlorite alteration, biotite alteration, no mineralization, 2cm I CA=60	31255	218.63	219.28	0.65	5.0	2.90	11.7
			196.07	201 30	moderately sheared pillow basalt I CA-89°	31256	221.10	221.74	0.64	10.0	2.59	22.9
			108.07	201.00	OCV no mineralization 0.5" CA-60°	31257	226.00	226.90	0.90	5.0	2.39	1.1
			201 30	201.80	OCV, chlorite alteration, trace disseminated sulfides (pyrite)	31258	226.90	227.28	0.38	5.0	3.02	4.8
			201.50	201.00	CV no mineralization, chlorite alteration $0.5"$ [CA-85°							
			200.00	212 /6	moderately sheared pillow baselt with a 2% increase in histite alteration							
			209.91	212.40	moderately sheared phow basali, with a 2% increase in biotile alteration							
			210.09		QCV, ho mineralization, chlorite alteration, zom LCA=40							
			210.62	010 51	QUV, biolite + chionie alteration, no mineralization, 1 LCA=64							
			213.04	213.31	1% zone of increased suinces (pyrite)							
			213.15	217.54	pseudo braccia, 1% disseminated sulfides (clino, pyrite, pyrrhotite)							
			216.20		CV, chlorite + biotite alteration, trace amounts of disseminated sulfides (pyrrhotite), 2cm LCA=70°							
			216.63		QCV, 2% disseminated sulfides (pyrite), 1" LCA=70°							
			217.73		CV, biotite alteration, chlorite alteration, no mineralization, 2" LCA=50°							
			218.63	219.28	intensely sheared pillow basalt, increased biotite +chlorite alteration							
			221.10	221.74	zone of increased biotite alteration							
			225.63		CV, no mineralization, 2cm LCA=85°							
			225.84	225.93	QCV, 1-2 % disseminated sulfides (pyrite), chlorite alteration LCA=55°							
			226.04	226.90	1% increase in sulfides (clino, pyrite, pyrrhotite)							
			226.90	227.12	QCV. chlorite alteration. 1% disseminated sulfides (pyrite, pyrrhotite)							
			229.24	229.30	CV. no mineralization, chlorite alteration LCA=60°							
			229.52	229.60	CV, no mineralization, chlorite alteration I CA=60°							
			230.80		QCV chlorite alteration no mineralization 0.5" LCA=80°							
			231 43	231.63	1% carbonate alteration							
			232.20	232 35	QCV no mineralization chlorite alteration I CA-45°							
			234 62	202.00	Ω CV no mineralization chlorite alteration Ω 5" L Ω -55°							
000.05	0.40.00											
239.35	240.39	QFP	QUARIZI	FELDSP/		21050	220.25	220.00	0 47	40.0	4 75	0.0
						31259	239.35	239.82	0.47	10.0	1.75	0.3
						31260	239.82	240.03	0.21	10.0	1.78	0.9
						31261	240.03	240.39	0.36	5.0	1.85	0.4

FROM	то	CODE	DESCRIPTION	Sample	From	То	Int	Au(ppb)	Fe(%)	As(ppm)
240.39	9 246.00 PBAS		PILLOW BASALT							

---- END OF HOLE ---

Drill Hole ID	CR-0)4-29	<u>Property</u> <u>Township</u>	Alexander Balmer			<u>NTS</u> <u>District</u>	52 N/04 Red Lake	
Collar Location	Easting: Northing: Elevation: Projection:	451246.0 5655689.0 384.5 NAD83 Zone	mE o mN m ∋ 15N	Grid:	m m	Azimuth: Dip: Lenght	28.0° -50.0° 263.00m	Hole Status: Date Started: Date Finished	Completed November 21, 2004 November 26, 2004

Purpose of Hole

Proposed depth: 250.00m

	<u>Survey</u>	Data		Drilling Information		Logging and Sampling Information				
Depth(m) A	Azimuth	Dip	Method	Contractor:	Major Drilling		Geology Logged by:	RT		
5.00	28°	-47.5°	Acid				Costochnical Logging by			
50.00	28°	-47°	Acid	поте туре.	00		Geotechnical Logging by			
100.00	28°	-47°	Acid	Core Size:	BQ		Sampling by:			
150.00	28°	-45°	Acid	Drill Rig:	Major 37					
200.00	28°	-50.5°	Acid	Casing Left		m	Horizontal Trace:			
250.00	28°	-46°	Acid	outing Lond			Vertical Trace:			
				Comments						

										•	
FROM	то	CODE	D	ESCRIPTION	Sample	From	То	Int	Au(ppb)	Fe(%)	As(ppm)
0.00	2.75	OB	OVERBURDEN - Overburden								

										Diamon	d Drill Log	- CR-04-29
FROM	то	CODE			DESCRIPTION	Sample	From	То	Int	Au(ppb)	Fe(%)	As(ppm)
2.75	53.96	DIO	DIORITE -	Medium	to Coarse Grained Diorite							
			2.75	4.90	Medium to Coarse grained Diorite	31262	21.77	21.98	0.21	10.0	1.99	1.0
			4.90	15.40	Medium grained Diorite - Gradational contact over 10 cm, very few QCV	31263	21.98	22.19	0.21	10.0	4.03	0.2
			5.76	5.81	Smokey Qtz vein, no mineralization LCA=71°	31264	22.19	22.42	0.22	10.0	1.80	0.4
			6.00	6.01	Quartz Calcite Vein, no mineralization LCA=32°	31265	41.94	42.02	0.08	5.0	5.23	4.7
			10.01		Small fracture infiled by Quartz Calcite vein LCA=20°							
			10.67	10.75	Shear Zone with chloritic alteration, weak biotie alteration, quartz stringers and 2% Disseminated pyrite LCA=48°							
			11.63	11.71	Shear Zone with quartz stringers, chlorite and biotie alteration, LCA=54°							
			12.06	13.00	Moderate foliation LCA=70°							
			12.60		Small zone with serite stringers that cross cut the foliation at 20 degrees $\mbox{LCA=}20^\circ$							
			12.68	12.86	Shear Zone with psudo brecciated quartz phenocrysts and veins $LCA=52^{\circ}$							
			14.54	14.58	Quartz Calcite Vein, no mineralization LCA=69°							
			15.40	15.83	Medium to Coarse grained Diorite							
			15.83	19.82	Medium grained Diorite							
			16.75	16.86	Quartz Callcite vein with chloritic alteration and 1% disseminated pyrite LCA=27° $$							
			17.10	17.14	Psudo Brecciated Quartz Calcite vein LCA=60°							
			17.10	17.11	Quartz calcite vein with chlorite alteration rim cross cutting Psudo Brecciated Quartz Calcite vein LCA=45°							
			19.82	23.05	Course to Mdeium Grained Diorite							
			21.77	21.98	Psudo Brecciated Quartz Calcite vein							
			21.98	22.19	Shear Zone with Biotie alteration and 3% disseminated pyrrhotite and chalcopyrite LCA=51° $$							
			22.19	22.42	Psudo Brecciated Quartz Calcite vein							
			22.67	22.69	Quartz Calcite Alcali Feldspar vein LCA=11°							
			23.05		Medium grained Diorite							
			24.77	24.98	Psudo Brecciated Quartz Calcite vein							
			26.13	26.29	Sericite Alteration Zone with a 4mm QCV at 26 degrees with another cross cutting it at 21 degrees							
			26.55	26.70	Sericite alteration zone							
			26.70	26.75	Quartz calcite vein with sericite rim LCA=45°							
			27.15	28.01	Sericite alteration zone with small quartz calcite stringers							
			29.50	29.74	Sericite alteration zone							
			30.10	30.11	Quartz calcite vein LCA=73°							
			30.59	30.61	Quartz calcite vein with sericite rim LCA=72°							
			33.77	34.65	Sericite alteration zone with some thin quartz calcite veins							
			36.38	36.40	Cquartz calcite vein LCA=45°							
			37.30	37.71	Psudo Brecciated Quartz Calcite vein with sericite alteration							
			38.64	39.75	Psudo Brecciated quartz calcite vein with high degree of sericite alteration							
			41.58	41.60	Quartz calcite vein with 1% disseminated pyrite in chlorite alteration rim LCA=36° $$							
			41.99	42.00	Quartz calcite vein with sericite alteration, 5% disseminated pyrite and chalcopyrite and a 2cm chlorite alteration rim LCA=38°							

FROM	то	CODE	DESCRIPTION	Sample	From	То	Int	Au(ppb)	Fe(%)	As(ppm)
			44.85 45.16 Sericite alteration zone							
			46.55 47.02 Sericite alteration zone with an irregular quartz calcite vein containing 2 ⁴ disseminated pyrite and arsenopyrite with a chlorite alteration halo arour the vein	% ic						
			47.48 47.62 Irregular quartz calcite vein with 3% pyrite and pyrrhotite, with areas of psudo brecciation and a biotie alteration rim							
			51.29 51.30 Quartz calcite vein with a 4cm chlorite alteration halo, with a small ammount of sericite alteration LCA=24°							
53.96	56.99	SHR	BASALT - Sheared Basalt - with 2% disseminated pyrite, shearing at 760, altered by chloritic and biotite alteration with few QCV, Top contact sharp at 760 and bottom contact sharp at 76	с 0						
			53.96 56.99 Sheared Basalt with 2% disseminated pyrite and chlorite, biotite alteratio and a few thin quartz calcite veins LCA=76°	n						
			55.30 55.31 Quartz calcite vein with a biotite alteration rim LCA=76°							
56.99	72.19	DIO	DIORITE - Coarse Grained Diorite							
			60.34 61.14 Shear zone with 3% disseminated pyrite and pyrrhotite and some small quartz calcite veins LCA=74°							
			70.10 70.12 Shear zone with 3% disseminated pyrite and pyrrhotite LCA=84°							
			71.35 71.52 Shear zone with 3% disseminated pyrite, chlorite alteration LCA=84°							
			71.49 Irregular quartz calcite vein with 3% chalcopyrite and pyrite							
72.19	72.36	BAS	BASALT - Basalt - Top contact 52 degrees with weak shearing parallel to contact							
			72.19 72.36 3 thin QCV with no mineralization							
72.36	72.69	DIO	DIORITE - Coarse Grained Diorite - Top contact at 74 degrees and bottom contactgradationa from 72.6 to 72.69	al						
72.69	72.86	BAS	BASALT - Basalt							
72.86	73.59	DIO	DIORITE - Coarse grained Diorite - Top contact at 74 degreeswith a thin (2mm) QCV with 49 disseminated pyrite	6						
73.59	74.01	BAS	BASALT - Basalt - Top contact at 58 degrees							
74.01	76.16	BAS	BASALT - Basalt							
_			74.01 76.16 Shear Zone with many thin QCV with chlorite alteration halos some with mineralization, also many thin mineralized veins with disseminated pyrite pyrrhotite, calcopyrite and magnitite (about 4% over the shear zone). The entire zone has veriying degrees of chlorite alteration. LCA=70°	31272 , 	74.56	75.00	0.44	40.0	6.84	928.0
76.16	76.80	DIO	DIORITE - Meddium Grained Diorite with little alteration, contact at 800							
76.80	79.02	SHR	BASALT - Weakly foliated Basalt - Contact sharp at 85 degrees, foliation at 60 degrees							
79.02	84.66	BAS	BASALT - Fine grained Basalt							

						-			Diamon	d Drill Log	- CR-04-29
FROM	TO CODE			DESCRIPTION	Sample	From	То	Int	Au(ppb)	Fe(%)	As(ppm)
84.66	101.80 BAS	BASALT - E spaceing) - degrees of	Basalt gr areas o alteratio	aiding into pillow basalt (pillow rims are very random and have larg f shearing, multiple QCV with massive sulfide mineralization, varying n throughout unit							
		86.60	87.00	Carbonate alteratio zone	31273	87.93	88.21	0.28	5.0	6.52	1.8
		86.78	86.80	Irregular Quartz carbonate vein with a 5cm alteration halo with increased	31274	88.54	88.97	0.43	5.0	5.91	1.1
				carbonate alteration, chlorite, biotite alteration and 3% disseminated	31275	88.54	88.97	0.43	5.0	5.48	2.3
				pyrite, pyrrhotite and chalcopyrite	31276	88.97	89.73	0.76	5.0	6.05	2.3
		87.95	87.97	Quartz calcite vein with 2% disseminated pyrite and pyrrhotite LCA=45°	31277	89.87	90.27	0.40	10.0	5.63	2.9
		88.00	88.02	Biotite alteration vein with 10% disseminated pyrrhotite, pyrite and	31278	90.41	90.98	0.57	5.0	4.97	1.3
				chalcopyrite, with a thin sericite alteration rim LCA=32°	31279	91.24	91.70	0.46	5.0	5.37	1.5
		88.09	88.12	Psudo brecciated quartz calcite vein with biotie, chlorite alteration and	31280	91.70	92.09	0.39	5.0	4.42	3.9
				LCA=71°	31281	92.09	92.35	0.26	10.0	6.09	4.4
		88.33	88.36	Quartz calcite vein with biotite alteration and 2mm sericite, chlorite	31282	92.35	92.64	0.29	5.0	5.18	0.3
				alteration halo. LCA=61°	31283	92.64	93.16	0.52	5.0	6.07	2.3
		88.43	88.56	Sericite Alteration zone	31284	93.16	93.46	0.30	5.0	4.69	2.1
		88.56	88.67	Irregular Quartz calcite vein with sericite, chlorite alteration and 10%	31285	93.60	94.30	0.70	5.0	5.11	2.3
				massive sulphides (pyrrhotite, magnitite, pyrite and chalcopyrite)	31286	94.30	94.76	0.46	20.0	7.62	11.2
		88.99	89.22	Mineralized zone with biotite, chlorite alteration and 10% massive	31287	94.82	95.34	0.52	5.0	4.95	4.8
		00.50	00 50	sulphides (pyrite, pyrrhotite, magnitite)	31288	95.64	95.98	0.34	30.0	8.83	14.5
		89.52	89.53	Irregular quartz calcite vein with 5% disseminated sulphides (pyrrhotite,	31289	96.32	96.62	0.30	10.0	8.57	9.0
		89.61	89.62	Mineralized vein with 80% massive sulphides (pyrite, pyrrhotite, magnitite)	31290	96.97	97.55	0.58	5.0	6.13	3.0
		00.01	00.02	LCA=71°	31291	97.55	98.13	0.58	5.0	6.67	8.3
		89.95	90.01	Irregular guartz calcite vein with chlorite, sericite alteration halo with small	31292	98.27	99.03	0.76	5.0	3.86	0.8
				mineralized QCV stringers extending to 90.15. Approximately 20%	31295	99.03	99.67	0.64	5.0	2.65	1.3
				massive sulphides (pyrite, pyrrhotite, chalcopyrite)	31293	101.00	101.80	0.80	5.0	2.90	2.3
		90.59	91.65	Mineralized zone with biotite, chlorite, quartz calcite and sericite alteration. Approximately 20% massive sulphides (pyrite, pyrrhotite, chalcopyrite, magnitite)							
		91.43	91.47	Sericite Alteration with thin quartz calcite veins and 10% disseminated sulphides (pyrrhotite, pyrite, chalcopyrite) LCA=60°							
		91.53	91.53	Quartz calcite vein with 10% disseminated sulphides along chlorite alteration rim (pyrrhotite, pyrite, chalcopyrite) LCA=31°							
		91.53	91.53	Quartz calcite vein cutting the previous vein, with 10% disseminated sulphides along chlorite alteration rim (pyrrhotite, pyrite, chalcopyrite) LCA=51°							
		92.15	92.30	Mineralized zone with quartz calcite, sericite and chlorite alteration. Approximately 20% massive sulphides (pyrite, pyrrhotite, chalcopyrite, magnitite) LCA=69°							
		92.79	92.80	Mineralized zone with biotite, chlorite and a little quartz calcite alteration. Approximately 30% massive and disseminated sulphides (pyrite, pyrrhotite, chalcopyrite, magnitite)							
		92.82	92.87	Mineralized zone with biotite, chlorite and a little quartz calcite alteration. Approximately 30% massive and disseminated sulphides (pyrite, pyrrhotite, chalcopyrite, magnitite)							
		93.00	93.07	Mineralized zone with biotite, chlorite and a little quartz calcite alteration. Approximately 30% massive and disseminated sulphides (pyrite, pyrrhotite, chalcopyrite, magnitite)							

Diamond	Drill	Log -	CR-04-29
---------	-------	-------	----------

FROM	то	CODE		DESCRIPTION	Sample	From	То	Int	Au(ppb)	Fe(%)	As(ppm)
			93.12	93.20 Mineralized zone with biotite, chlorite and a little quartz calcite alteration. Approximately 30% massive and disseminated sulphides (pyrite, pyrrhotite, chalcopyrite, magnitite)							
			93.29	93.35 Mineralized zone with biotite, chlorite, quartz calcite and sericite alteration. Approximately 10% disseminated sulphides (pyrite, pyrrhotite, chalcopyrite, magnitite)							
			93.40	93.42 Mineralized zone with biotite, chlorite and quartz calcite sericite alteration. Approximately 35% disseminated sulphides (pyrite, pyrrhotite, chalcopyrite, magnitite)							
			93.83	93.85 Mineralized zone with biotite, chlorite and quartz calcite sericite alteration. Approximately 35% disseminated sulphides (pyrite, pyrrhotite, chalcopyrite, magnitite) LCA=54°							
			94.27	94.37 Mineralized zone with chlorite and quartz calcite alteration. Approximately 20% massive sulphides (pyrite, pyrrhotite, chalcopyrite, magnitite) LCA=68°							
			94.83	94.85 Quartz calcite vein with chlorite and biotite alteration and 8% disseminated sulphides LCA=76°							
			94.91	94.94 Mineralized zone with chlorite, biotite and quartz calcite alteration. Approximately 25% massive sulphides (pyrite, pyrrhotite, chalcopyrite, magnitite)							
			95.06	95.08 Quartz calcite vein with chlorite alteration and 8% disseminated sulphides (pyrrhotite, pyrite, chlcopyrite) LCA=40°							
			95.27	95.33 Mineralized zone with quartz calcite and chlorite alteration. Approximately 20% massive sulphides (pyrite, pyrrhotite, chalcopyrite, magnitite)							
			95.66	95.90 Mineralized zone with quartz calcite and chlorite alteration. Approximately 20% massive sulphides (pyrite, pyrrhotite, chalcopyrite, magnitite)							
			96.50	96.54 Quartz calcite vein with 4cm chlorite, quartz calcite, biotie alteration halo and 15% massive and disseminated sulphides (pyrite, chalcopyrite, pyrrhotite) LCA=61°							
			97.00	97.03 Quartz calcite vein with 2cm chlorite, quartz calcite, biotie alteration halo with 10% massive and disseminated sulphides (chalcopyrite, pyrite, pyrrhotite) LCA=61°							
			97.11	97.58 Mineralized zone with quartz calcite, chlorite, biotite and sericite alteration. Approximately 10% massive sulphides (pyrite, pyrrhotite, chalcopyrite, magnitite) LCA=78°							
			97.45	97.46 Quartz calcite vein with 8% massive chalcopyrite, pyrite and pyrrhotite LCA=5°							
			97.69	97.74 Mineralized zone with chlorite, quartz calcite, and sericite alteration. Approximately 10% massive sulphides (pyrite, pyrrhotite, chalcopyrite, magnitite)							
			97.96	98.07 Mineralized zone with chlorite, quartz calcite, and biotite alteration. Approximately 10% massive sulphides (pyrite, chalcopyrite) LCA=67°							
			101.24	101.25 Quartz calcite vein with 3cm chlorite halo and a 15cm biotite alteration halo LCA=32°							
			101.40	101.80 Sheared Halo befor contact with Quartz Feldspar Prophyry Dyke							

								Diamon	d Drill Log	- CR-04-29
FROM	то	CODE	DESCRIPTION	Sample	From	То	Int	Au(ppb)	Fe(%)	As(ppm)
101.80	106.69	QFP	QUARTZ FELDSPAR PROPHYRY DYKE - Quartz Feldspar Porphyry Dyke							
				31294	101.80	102.16	0.36	5.0	1.34	12.4
				31296	102.16	102.76	0.60	30.0	1.04	7.3
				31297	102.76	103.29	0.53	610.0	1.22	13.9
				31298	103.29	104.00	0.71	270.0	1.28	26.7
				31300	104.00	104.82	0.82	50.0	1.18	26.6
				31301	104.82	105.53	0.71	10.0	1.16	22.6
				31302	105.53	106.21	0.68	20.0	1.14	15.6
				31303	106.21	106.69	0.48	5.0	0.88	5.8

										Diamon	d Drill Log	- CR-04-29
FROM	то	CODE			DESCRIPTION	Sample	From	То	Int	Au(ppb)	Fe(%)	As(ppm)
106.69	134.33	PBAS	BASALT -	Pillow Ba	asalt with areas of massive sulphide mineralization							<u> </u>
			106.69	107.89	Sheared halo after contact with Quartz Feldspar Prophyry Dyke. Containing 4% disseminated cubic pyrite	31304 31305	106.69 107.33	107.33 107.87	0.64 0.54	10.0 5.0	5.77 3.66	2.9 4 9
			107.12	107.23	Mineralized zone with quartz calcite, chlorite and biotite alteration.	31306	107.33	107.87	0.54	5.0	3.67	4.5
					Approximately 15% massive and disseminated sulphides (pyrite,	31307	108.84	109.47	0.63	5.0	6.00	5.2
					chalcopyrite, pyrrhotite and magnitite) LCA=57°	31308	109.57	109.70	0.13	5.0	10.05	1.3
			108.86	108.90	Mineralized zone with quartz calcite, and chlorite alteration.	31309	110.51	110.88	0.37	5.0	6.73	1.8
			109 16	109 20	Mineralized zone with quartz calcite, and chlorite alteration	31310	111.06	111.37	0.31	5.0	7.84	2.6
			100.10	100.20	Approximately 10% disseminated sulphides (pyrite, chalcopyrite,	31311	111.37	111.67	0.30	5.0	1.87	1.4
					pyrrhotite)	31312	112.80	112.89	0.09	5.0	8.47	1.9
			109.38	109.49	Mineralized zone with quartz calcite, chlorite and biotite alteration.	31313	114.48	114.62	0.14	5.0	6.17	0.4
			400.00	400.05	Approximately 5% disseminated sulphides (pyrite, chalcopyrite,)	31314	114.87	115.05	0.18	5.0	8.82	1.4
			109.60	109.65	Mineralized zone with chlorite, quartz calcite, and blotite alteration.	31315	115.15	115.26	0.11	5.0	7.00	0.6
					LCA=39°	31316	115.78	115.89	0.11	5.0	9.18	1.1
			110.03	110.12	Sericite Alteration zone	31317	116.03	116.22	0.19	20.0	10.35	4.0
			110.57	110.60	Mineralized zone with chlorite, biotite and quartz calcite alteration.	31318	117.04	117.30	0.26	5.0	5.29	0.1
					Approximately 8% disseminated sulphides (pyrite, chalcopyrite, pyrrhotite	31319	122.62	122.92	0.30	5.0	1.98	1.0
			110.62	110.73	Quartz carbonate sericite alteration zone	31321	123.47	124.00	0.53	5.0	2.00	3.0
			111.10	111.20	Quartz carbonate sericite alteration zone with 3% disseminated pyrite	31322	124.56	124.81	0.25	5.0	5.31	2.0
			111.32	111.34	Mineralized zone with chlorite, quartz calcite, biotite and sericite	31323	125.98	126.50	0.52	5.0	4.44	0.8
					alteration. Approximately 40% massive sulphides (pyrite, chalcopyrite,	31324	127.39	127.54	0.15	5.0	2.12	0.9
			111 38	111 63	Ouartz carbonate sericite alteration zone	31325	128.16	128.31	0.15	5.0	6.44	0.3
			112.86	112 91	Mineralized zone with chlorite, quartz calcite and biotite alteration	31326	129.68	129.94	0.26	5.0	1.43	2.3
			112.00	112.01	Approximately 10% disseminated sulphides (pyrite, chalcopyrite, pyrthetite)	31327 31328	130.47 130.47	130.59 130.59	0.12 0.12	5.0 5.0	3.83 6.66	3.0 1.0
			114 49	114 56	Mineralized zone with biotite, quartz calcite and chlorite alteration	31329	133.18	133.26	0.08	5.0	4.87	1.0
					Approximately 8% disseminated sulphides (pyrite, chalcopyrite, pyrrhotite	31330	134.18	134.33	0.15	5.0	4.91	2.1
			114.90	114.93	Mineralized zone with chlorite, quartz calcite and biotite alteration. Approximately 4% disseminated sulphides (pyrite, chalcopyrite, pyrrhotite							
			115.03	115.04	Mineralized zone with chlorite alteration and a biotite rim. Approximately 10% disseminated sulphides (pyrite, chalcopyrite, pyrrhotite)							
			115.80	115.87	Mineralized Pillow Rim with chlorite, biotite and quartz calcite alteration. Approximately 20% pyrite, chalcopyrite and pyrrhotite							
			116.09	116.20	Mineralized zone with quartz calcite, chlorite and biotite alteration. Approximately 15% disseminated pyrite and magnitite							
			119.12		Mineralized Pillow Rim with chlorite, biotite and quartz calcite alteration.							
			122.67	122.77	Quartz calcite vein LCA=41°							
			122.81	122.91	Quartz calcite vein with a 2mm biotite rim LCA=68°							
			123.12	123.14	Quartz calcite Alcali feldspar vein with a 3mm chlorite rim LCA=60°							
			123.46	123.86	Quartz calcite vein with chlorite alteration and a 6mm chlorite alteration rin							
			123.95	123.99	Quartz calcite vein with 5mm chlorite rim							
			124.54	124.60	Quartz calcite vein with chlorite and biotite alteration and 10% disseminated pyrite,pyrrhotite and magnetite LCA=78°							
			124.66		Quartz carbonate chlorite biotite alteration zone with 5% disseminated pyrite and magnitite							

									Diamo	nd Drill Log	g - CR-04-29
FROM	то	CODE		DESCRIPTION	Sample	From	То	Int	Au(ppb)	Fe(%)	As(ppm)
			127.40	127.44 Quartz calcite vein with chlorite rim LCA=74°							<u> </u>
			128.20	128.24 Quartz calcite vein with chlorite biotite alteration rim							
			129.76	129.78 Quartz calcite vein							
			129.83	129.86 Quartz calcite vein with biotite alteration rim LCA=62°							
			129.90	129.93 Quartz calcite vein with biotite alteration rim LCA=68°							
			130.50	130.53 Quartz calcite vein with 1.5cm chlorite, biotite, quartz calcite alteration hal							
			133.19	133.24 Psudo brecciated quartz calcite vein with chlorite, biotie alteration and 8% disseminated suphides (pyrite, magnetite)							
			133.83	133.88 Psudo brecciated quartz calcite vein with chlorite, biotie alteration and 5% disseminated suphides (pyrite, magnetite)							
134.33	138.03	QFP	QUARTZ F and dissen	ELDSPAR PROPHYRY DYKE - Quartz Feldspar Porphyry Dyke with 7% coarse ninated lensicular pyrite, weakly foliated at 680, contact at 790							
					31331	134.33	134.62	0.29	5.0	1.68	10.8
					31350	135.94	136.14	0.20	5.0	4.12	11.0
					31332	136.31	136.42	0.11	5.0	1.35	36.0
					31333	137.76	138.03	0.27	5.0	1.70	41.0

										Diamon	d Drill Log	- CR-04-29
FROM	то	CODE			DESCRIPTION	Sample	From	То	Int	Au(ppb)	Fe(%)	As(ppm)
138.03	205.04	PBAS	PILLOW B	ASALT -	Pillow Basalt contact at 710							
			138.19	138.25	Quartz calcite vein with chlorite alteration rim LCA=88°	31334	138.03	138.35	0.32	60.0	4.02	1565.0
			139.68	139.71	Quartz calcite vein with biotite alteration rim and a 4mm chlorite halo	31335	139.03	139.25	0.22	10.0	4.04	1315.0
			4 4 4 0 0	444.04	LCA=74°	31336	143.14	143.28	0.14	10.0	1.06	120.0
			141.20	141.24	Quartz calcite vein with chlorite alteration rim LCA=52°	31337	143.91	144.12	0.21	5.0	4.47	17.3
			142.27	142.33	Sericite Alteration Zone	31338	144.61	144.78	0.17	5.0	5.00	4.8
			143.15	143.25	Quartz calcite vein with service and chlorite alteration	31339	150.52	150.90	0.38	5.0	1.04	18.0
			144.64		disseminated supplides (pyrrhotite, pyrite, magnetite)	31340	151.62	151.80	0.18	5.0	4.17	2.0
			150.51	150.58	Quartz calcite vein with sericite alteration I CA=88°	31342	153.32	153.41	0.09	5.0	2.37	10.0
			150.58	150.89	Carbonate Sericite alteration zone with few thin QCV's	31343	154.39	154.55	0.16	5.0	8.30	3.0
			151.63	151.69	Quartz calcite vein with sericite alteration and 5% disseminated pyrrhotite	31344	155.64	155.83	0.19	5.0	2.88	14.0
					and magnitite	31345	158.05	158.25	0.20	5.0	1.10	21.0
			152.18	152.21	Quartz calcite vein with chlorite alteration rim LCA=48°	31340	168.07	168.17	0.10	5.0	2.59	5.0
			153.35	153.40	Psudo brecciated quartz calcite vein with chlorite and sericite alteration	31347	169.30	169.47	0.17	5.0	2.55	11.4
					and 2% disseminated suphides (pyrrhotite, pyrite)	31348	169.30	169.47	0.17	5.0	2.92	10.0
			154.40	154.51	Psudo brecciated quartz calcite vein with chlorite and biotite alteration and	31349	178.93	179.35	0.42	420.0	3.37	1280.0
			155.05	155 00	7% disseminated suprides (pyrite, pyrinotite)	31351	100.09	100.04	0.25	5.0	2.27	24.0
			155.05	155.06	disseminated pyrite and pyritotite in alteration halo	31352	109.20	109.07	0.39	5.0	2.39	7.0
			158.09	158.23	Irregular guartz calcite vein with chlorite, sericite alteration halo	31353	200.20	200.20	0.10	5.U 5.0	2.32	1.3
			158.70	158.73	Irregular guartz calcite vein with a 1cm chlorite, biotite and sericite	21255	200.20	200.39	0.19	5.0	2 10	20.6
					alteration halo	21256	201.07	201.07	0.00	5.0	2 11	20.0
			162.12	162.13	Quartz calcite vein with biotite rim LCA=15°	21257	201.45	201.07	0.42	5.0	3.11	22.0
			163.84	163.85	Quartz calcite vein with 4% disseminated arsenopyrite LCA=74°	31357	204.41	205.04	0.05	5.0	5.04	22.0
			164.50	165.63	Sericite Carbonate alteration zone							
			168.10	168.14	Quartz calcite vein with a 1cm chlorite, biotite alteration halo LCA=67°							
			169.31	169.44	Psudo brecciated quartz calcite vein with chlorite and biotite alteration							
			170.48	170.52	Psudo brecciated quartz calcite vein with chlorite and biotite alteration							
			170.60	170.65	Psudo brecciated quartz calcite sericite zone with chlorite alteration							
			180.75	181.10	Psudo brecciated quartz calcite sericite zone with chlorite alteration and biotite rim. Also with a thin irregular quartz calcite vein containning 1% pyrite							
			181.33	181.36	Quartz calcite vein with a 5mm chlorite alteration halo LCA=56°							
			182.65	182.67	Irregular Quartz calcite vein with trace ammounts of arsenopyrite							
			182.90	183.34	Irregular Quartz calcite vein with chlorite alteration rim and 2% disseminated pyrite							
			183.91	194.09	Sericite Alteration Zone							
			184.00	184.01	Quartz calcite vein LCA=30°							
			185.22	185.32	Psudo brecciated quartz calcite vein with chlorite and sericite alteration							
			185.93	186.08	Psudo brecciated quartz calcite vein with chlorite and sericite alteration							
			187.59	187.73	Multiple thin Irregular Quartz calcite veins with chlorite alteration rim and 2% disseminated pyrite							
			188.28	188.66	Multiple thin Irregular Quartz calcite veins with chlorite alteration rim and 3% disseminated pyrite							
			189.34	189.39	Quartz calcite vein with chlorite biotite alteration halo with 4% disseminated pyrite and magnitite							

191.06 191.09 Quartz calitate win with a 10cm quartz calitale, chlorita, blorita alferation halo LCA-32° 193.10 193.30 Quartz calitate win with a 10cm quartz calitale, chlorita, blorita alferation im LCA-72° 198.88 198.30 Practured Zone with 1% deseminated pyrite 200.27 201.83 I98.30 Practured Zone with 1% deseminated pyrite 200.27 201.83 Isea Zone with 1% deseminated pyrite and magnite LCA-75° 201.20 218.86 Reaz Zone with 1% deseminated pyrite and magnite LCA-75° 200.41 206.47 201.65 Network 204.75 200.57 201.60 PollLOW BASALT - Pillow Bisself with life alferation contact at 750 31358 205.64 205.7 225.66 PBAS PILLOW BASALT - Pillow Bisself with 11CA+75° 31360 206.87 206.87 206.50 6.0 4.42 22.4 212.60 Store Zone with chlorite, biotite and quartz calite alteration, and 4% 31361 206.97 206.57 2.24 6.0 4.42 2.2.4 206.97 225.66 PBAS PILOW BASALT - Pillow Bisself with lifte alteration run LCA-75° 31360 206.97 2.2.6 6.0 4.42 2.2.8 212.60	FROM	то	CODE		DESCRIPTION	Sample	From	То	Int	Au(ppb)	Fe(%)	As(ppm)
193.10 193.13 Quartz calcite vein with a 10cn quartz calcite, chlorite, biolite alteration in LCA=72" 195.34 195.35 Quartz calcite vein with a 1cm chlorite, biolite alteration, and 3% DDB seminated pyrite and magnitie LCA=75" 200.42 200.35 Shear Zone with chlorite quartz calcite, biolite sericite alteration, and 3% DDB seminated pyrite and magnitie LCA=75" 201.42 201.42 201.46 201.46 201.46 201.46 201.46 201.47 50.00 201.77 201.72 201.85 Shear Zone with chlorite quartz calcite, biolite sericite alteration, and 3% DB seminated pyrite and magnitie and chalce pyrite 31358 205.04 206.47 0.41 5.0 1.74 2.3 200.501 208.97 CPP QUARTZ FELDSPAR PROPHYYD DYKe on the GVK spanner				191.06	191.09 Quartz calcite vein with chlorite biotite alteration LCA=85°							
195.34 195.36 Countz calito vein with a functione, boithe sericine alteration, and 3%, Disseminated pyrite and magnite LCA-75". Series Zene with chloritic quartz calcite, boithe sericine alteration, and 3%, Disseminated pyrite and magnite LCA-75". 201.20 201.80 Shear Zone with chloritic quartz calcite, boithe sericine alteration, and 3%, Disseminated pyrite and magnite alteration, and 3%, Disseminated pyrite and magnite alteration, and 3%, Disseminated pyrite and magnite alteration. Alteration 2005. 204.44 205.04 208.97 CPF OUARTZ FELDSPRAR PROPHYRY DYKE - Quartz Feldspar Porphyry Dyke weakly foliated at 620 with 3% disseminated pyrite and magnite LCA-72". 208.97 205.04 205.67 205.67 204.67 5.0 1.74 2.33 208.97 205.68 PBAS PILLOW BASALT - Pilow Basait with lifte alteration contact at 750 31358 205.70 2.05 5.0 4.42 220.0 212.60 212.69 Service and magnite LCA-75" 31361 208.97 205.05 5.0 4.42 220.0 212.60 212.69 Service and magnite LCA-75" 31361 208.97 205.0 5.0 6.0 4.42 220.0 212.60 212.60 Outry calcite with with chlorite alteration inth LCA-54" 31361 208.97 205.0 <				193.10	193.13 Quartz calcite vein with a 10cm quartz calcite, chlorite, biotite alteration halo LCA=32°	1						
198.08 198.08 Fractured Zone with 1% disseminated pyrite 200.2 200.85 Near Zone with choinic quarts calcible alteration, and 3%, Disseminated pyrite and magnitie LCA=75° 201.20 201.86 Shear Zone With choinic quarts calcible alteration, and 3%, Disseminated pyrite and magnitie LCA=75° 200.44 206.47 206.57 206.57 206.57 206.57 206.57 206.57 206.57 206.57 206.57 206.57 206.57 206.57 206.57 206.50 4.42 226.52 206.57 226.58 226.50 206.77 206.30 5.0 4.42 226.47				195.34	195.36 Quartz calcite vein with a 1cm chlorite, biotite alteration rim LCA=72°							
200.38 Shear Zone with chloritic quartz calcite, biotite sericite alteration, and 3%, Disseminated pyrite and magnite LCA-875" 201.00 201.66 Shear Zone biotite admagnite and some thin GCV's parallel to shearing LCA-875" 201.01 201.02 1.74 23.0 205.04 206.97 OFP QUARTZ FELDSPAR PROPHYRY DYKE - Quartz Feldspar Porphyry Dyke weakly foliated at 620 with 3% disseminated pyrite 31359 206.07 205.05 0.56 5.0 4.42 20.0 205.04 205.05 PILLOW BASALT - Pillow Basalt with little alteration contact at 750 31369 208.97 209.53 0.56 5.0 4.42 20.0 212.00 212.05 Disseminated pyrite and magnite LCA=75' 31369 208.97 209.53 0.56 5.0 4.42 20.0 212.00 213.37 Quartz Catche with thinte relateration into LCA=54' 31361 208.97 209.53				198.88	198.98 Fractured Zone with 1% disseminated pyrite							
201.20 201.85 Shear Zone with chlorite quartz calcite, biolite sericle alteration, and 3% obserinated pytife and magnite LCA=72" 205.04 208.97 OFP QURTZ FELDSPAR PROPHYRY DYKE - Quartz Feldspar Porphyry Dyke weakly foliated at 620 with 3% disseminated pyrite 205.04 208.97 OFP QURTZ FELDSPAR PROPHYRY DYKE - Quartz Feldspar Porphyry Dyke weakly foliated at 620 with 3% disseminated pyrite 31358 205.04 206.45 0.41 5.0 1.74 2.3 208.97 235.68 PBAS PILLOW BASALT - Pillow Basalt with liftle alteration contact at 750 31360 208.97 209.53 0.56 5.0 4.42 22.0 208.97 205.04 201.57 200.50 Shear Zone with chlorite, biotite and quartz calcite alteration, and 4% 31361 208.97 209.53 0.56 5.0 4.42 22.0 208.97 209.50 Shear Zone with chlorite, biotite and quartz calcite alteration intil CA=54* 31361 208.97 209.53 0.56 5.0 4.42 22.4 212.50 212.60 Senitie Alteration intil CA=54* 31364 22.77 2.58 2.81 5.0 0.97 1.80 0.81 5.0 1.90 1.4.3 2.				200.24	200.38 Shear Zone with chloritic quartz calcite, biotite sericite alteration, and Disseminated pyrite and magnitite LCA=75°	3%						
204.4 205.04 Steps range inter CA-27* 205.04 208.97 CPP QUARTZ FELDSPAR PROPHYRY DYKE - Quartz Feldspar Porphyry Dyke weakly foliated at 620 with 3% disseminated pyrite 31358 205.04 205.04 205.04 205.04 205.04 205.04 205.04 0.01 5.0 1.74 2.3 206.97 235.68 PBAS PILLOW BASALT - Pillow Basalt with liftle alteration contact at 750 31361 208.97 209.50 5.66 5.0 4.42 203.07 208.97 205.05 Steps T2 Control to the pyrite and magnetite LCA-26* 31361 208.97 209.53 0.56 5.0 4.42 203.07 212.60 Scitche Alteration Zone 31363 214.02 214.50 0.82 206.51 1.80 0.08 214.50 214.50 214.54 Quartz Calcite vein with chlorite, sercite and biotite alteration and approximately 2% disseminated pyrite and magnetite LCA-85* 31366 227.79 22.89 22.01 1.90 3.4 220.87 22.08 Quartz Calcite vein with chlorite alteration and asproximately 2% disseminated pyrite 31367 <t< td=""><td></td><td></td><td></td><td>201.20</td><td>201.86 Shear Zone with chloritic quartz calcite, biotite sericite alteration, and Disseminated pyrite and magnitite and some thin QCV's parallel to shearing LCA=60°</td><td>3%</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>				201.20	201.86 Shear Zone with chloritic quartz calcite, biotite sericite alteration, and Disseminated pyrite and magnitite and some thin QCV's parallel to shearing LCA=60°	3%						
205.04 208.97 QUARTZ FELDSPAR PROPHYRY DYKE - Quartz Feldspar Porphyry Dyke weakly foliated at 620 with 3% disseminated pyrite 31358 206.04 205.45 6.41 5.0 1.74 2.3 208.97 235.68 PBAS PILLOW BASALT - Pillow Basalt with little alteration contact at 750 31359 208.97 209.53 0.56 5.0 4.42 22.3 208.97 201.50 Shear Zone with chlorite, biotite and quartz calcite alteration, and 4% 31361 208.97 209.53 0.56 5.0 4.42 22.4 213.34 213.37 Quartz calcite vien with chlorite, sericle and biotite alteration and 124.52 31365 221.41 0.10 5.0 1.80 0.08 213.34 213.37 Quartz calcite vien with chlorite, sericle and biotite alteration and 31365 223.07 0.19 5.0 1.80 0.80 213.45 214.50 Quartz calcite vien with chlorite, sericle and biotite alteration and 31365 223.07 0.19 5.0 1.80 0.80 214.50 214.54 Quartz calcite vien with chlorite alteration and 24.6455' 31366 222.92 277.2				204.44	205.04 Shear zone before Quartz Feldspar Porphyry Dyke with 2% dissemina pyrite and magnetite LCA=72°	ted						
31358 205.04 205.45 0.41 5.0 1.74 2.3 208.97 235.68 PBAS PILLOW BASALT - Pillow Basalt with little alteration contact at 750 31369 208.97 209.50 5.6 5.0 4.42 203.97 208.97 209.50 Shear Zone with chlorite, biotite and quatz calcia alteration, and 4% isseeminated pyrite and magnitie LCA=75° 31360 208.97 209.53 0.56 5.0 4.42 203.0 214.50 214.69 Sericite Alteration Zone 31361 208.97 209.53 0.56 5.0 4.42 203.0 214.50 214.54 Quatz calcite vein with chlorite alteration and angrotite LCA=50° 31366 222.77 22.90 0.18 0.097 14.3 214.50 214.54 Quatz calcite vein with chlorite alteration and angrotite LCA=50° 31366 227.79 22.91 0.01 1.6 0.167 2.0 22.98 22.91 Quatz calcite vein with chlorite alteration zone 31368 228.76 229.17 0.41 10.0 32.6 0.1 22.98 22.91 Quatz calcite vein with chlorite alteration zone with sin rendomly orintated QCV's and trace	205.04	208.97	QFP	QUARTZ 620 with 3	FELDSPAR PROPHYRY DYKE - Quartz Feldspar Porphyry Dyke weakly foliated 3% disseminated pyrite	at						
31359 208.73 208.97 0.24 5.0 2.29 1.8 208.97 235.68 PBAS PILLOW BASALT - Pillow Basalt with little alteration contact at 750 31361 208.97 209.53 0.56 5.0 4.42 22.0 208.97 201.90 Scientiated pyrile and magnitile LCA=75° 31360 208.97 209.53 0.56 5.0 4.42 22.4 213.04 213.34 213.37 Quartz calcite vein with chlorite, sericite alteration and approximately 2% disseminated pyrite and magnetite LCA=54° 31366 222.77 225.98 0.21 5.0 1.80 0.97 14.33 216.35 216.47 Quartz calcite vein with chlorite alteration and approximately 2% disseminated pyrite and magnetite LCA=56° 31366 22.77 24.50 1.60 1.67 2.0 220.80 221.91 Quartz calcite vein with chlorite alteration and approximately 2% disseminated pyrite and magnetite LCA=56° 31366 228.76 229.17 0.41 1.00 3.26 0.1 221.98 222.91 Quartz calcite vein with chlorite alteration and 3% disseminated pyrite and magnetite LCA=76°						31358	205.04	205.45	0.41	5.0	1.74	2.3
208.97 235.68 PBAS PILLOW BASALT - Pillow Basalt with life alteration contact at 750 208.97 209.50 Shear Zone with chointe, biotite and quartiz calcite alteration, and 4% 31361 208.97 209.50 Shear Zone with chointe, biotite and quartiz calcite alteration, and 4% 31361 208.97 209.50 Shear Zone with chointe, biotite and quartiz calcite alteration im LCA=75* 31361 208.97 209.50 Shear Zone with chointe, biotite alteration im LCA=54* 31364 222.88 223.07 0.19 5.0 4.42 22.4 214.50 214.54 Quartz calcite vein with chlorite, sericite and biotite alteration and approximately 2% disseminated pyrite and magnetite LCA=56* 31366 227.77 0.43 5.0 1.99 3.4 216.37 Quartz calcite vein with a 5cm chlorite alteration and approximately 2% disseminated pyrite and magnetite LCA=56* 31366 227.72 0.43 5.0 1.67 2.0 221.98 221.99 Quartz calcite vein with chlorite alteration and approximately 2% disseminated pyrite and magnetite LCA=50* 31368 226.78 221.91 0.01 5.0 2.93 5.0 2.93 5.0 2.93 5.0 2.93 5.0						31359	208.73	208.97	0.24	5.0	2.29	1.8
208.97 209.50 Shear Zone with chlorite, biotite and quartz calcide alteration, and 4%, 3161 208.97 209.53 0.56 5.0 4.42 203 Disseminated pyrite and magnitite LCA=75° 31160 208.97 209.53 0.56 5.0 4.42 22.4 212.60 212.69 Sericite Alteration Zone 31363 214.02 214.12 0.10 5.0 1.80 0.8 213.37 Quartz calcite vein with chlorite, alteration inm LCA=54° 31364 222.88 223.07 0.19 5.0 2.82 0.50 214.50 Quartz calcite vein with chlorite, alteration and approximately 2% disseminated pyrite and magnitite LCA=65° 31366 227.29 22.77 2.88 0.21 5.0 1.99 3.4 220.87 220.90 Quartz calcite vein with chlorite alteration nalo LCA=69° 31367 228.76 229.17 0.41 1.00 3.26 0.11 1.01 3.26 0.11 1.01 3.26 0.21 1.01 3.26 0.33 5.0 2.93 5.6 222.91 Quartz calcite vein with chlorite alteration nalo LCA=69° 31369 235.35 235.68 0.33 5.	208.97	235.68	PBAS	PILLOW E	BASALT - Pillow Basalt with little alteration contact at 750							
Disseminated pyrite and magnitite LCA=75° 31360 208,97 209,53 0.56 5.0 4.42 22.42 212.69 Scitcle Alteration Zone 31363 214.02 214.12 0.10 5.0 1.80 0.82 213.37 Quartz calcite vein with chlorite alteration and approximately 2% disseminated pyrite and magnetite LCA=5° 31366 227.72 0.21 5.0 0.97 14.3 216.95 214.50 214.54 Quartz calcite vein with chlorite alteration and approximately 2% disseminated pyrite and magnetite LCA=5° 31366 227.92 227.72 0.43 5.0 1.67 2.00 20.087 220.90 Quartz calcite vein with chlorite alteration rim LCA=55° 31368 228.76 229.17 0.41 10.0 3.26 0.11 221.99 Quartz calcite vein with chlorite alteration rim LCA=55° 31369 235.35 235.68 0.33 5.0 2.93 5.6 225.78 225.93 Sericite Alteration zone with thin rendomly orintated QCV's and trace armounts of pyrite 31369 235.35 235.68 0.33 5.0 2.93 5.6 225.78 225.78 226.89 Sericite Chlorite Alte				208.97	209.50 Shear Zone with chlorite, biotite and quartz calcite alteration, and 4%	31361	208.97	209.53	0.56	5.0	4.42	20.3
212.60 212.60 Sericite Alteration Zone 31363 214.02 214.12 0.10 5.0 1.80 0.82 213.37 Quartz calcite vein with chlorite alteration rim LCA=54* 31364 222.88 223.07 0.19 5.0 0.97 14.3 214.50 214.54 Quartz calcite vein with chlorite alteration and magnetite LCA=58* 31366 227.72 22.88 0.21 5.0 0.97 14.3 210.67 220.80 Quartz Calcite vein with a 5cm chlorite alteration nand 31366 228.77 228.58 228.69 0.11 5.0 1.67 2.0 220.87 220.90 Quartz calcite vein with chlorite alteration halo LCA=69* 31366 228.72 229.17 0.43 5.0 2.36 0.11 5.0 2.36 0.1 220.87 222.91 Quartz calcite vein with chlorite alteration nand and 3% disseminated pyritt 31369 235.35 235.68 0.33 5.0 2.33 5.0 2.33 5.0 2.33 5.0 2.33 5.0 2.33 5.0 2.33 5.0 2.33 5.0 2.33 5.0 2.33 5.0					Disseminated pyrite and magnitite LCA=75°	31360	208.97	209.53	0.56	5.0	4.42	22.4
213.34 213.37 Quartz calcite vein with chlorite alteration min LCA=54° 31366 222.88 223.07 0.19 5.0 2.82 0.5 214.50 214.54 Quartz calcite vein with chlorite alteration and approximately 2% disseminated pyrite and magnetite LCA=85° 31366 227.72 227.73 0.43 5.0 1.99 3.4 210.87 220.97 Quartz calcite vein with chlorite alteration cone 31367 228.68 228.69 0.11 5.0 1.67 2.0 220.97 Quartz calcite vein with chlorite alteration halo LCA=69° 31366 227.70 0.41 1.00 3.26 0.11 221.98 222.91 Quartz calcite vein with chlorite alteration halo and 3% disseminated pyrite and magnetite LCA=70° 31366 228.76 229.17 0.41 1.00 3.26 0.11 225.78 225.78 225.93 Sericite Chlorite Alteration zone with thin rendomly orintated QCV's and trace ammounts of pyrite alteration zone with thin rendomly orintated QCV's and trace ammounts of pyrite 227.63 Sericite Chlorite Alteration zone with 3% disseminated pyrite LCA=71° 228.40 228.42 Quartz calcite vein with chlorite alteration im LCA=74° 228.64 Quartz calcite vein with chlorite alteration im and 4% d				212.60	212.69 Sericite Alteration Zone	31363	214.02	214.12	0.10	5.0	1.80	0.8
214.50 214.54 Quartz calcite vein with chlorite, sericite and biotite alteration and asymptime LCA=85° 31366 225.77 225.98 0.21 5.0 0.97 14.3 216.36 216.47 Quartz calcite vein with a Scm chlorite alteration zone 31366 227.29 227.72 0.43 5.0 1.99 3.4 220.87 228.09 Quartz calcite vein with a Scm chlorite alteration halo LCA=69° 31366 227.29 227.72 0.43 5.0 1.67 2.0 3.166 228.72 229.17 0.41 10.0 3.26 0.11 221.98 228.09 Quartz calcite vein with chlorite alteration halo LCA=59° 31366 228.72 229.17 0.41 10.0 3.26 0.1 225.78				213.34	213.37 Quartz calcite vein with chlorite alteration rim LCA=54°	31364	222.88	223.07	0.19	5.0	2.82	0.5
216.36 216.47 Quartz calcite vein with a 5cm chlorite alteration zone 31366 227.29 227.29 0.43 5.0 1.99 3.4 20.87 220.90 Quartz calcite vein with a 5cm chlorite alteration zone 31367 228.88 228.69 0.11 5.0 1.67 2.0 211.88 221.99 Quartz calcite vein with chlorite alteration zone with chlorite alteration min LCA=35° 31369 235.35 235.68 0.33 5.0 2.93 5.6 222.88 222.91 Quartz calcite vein with chlorite alteration zone with thin rendomly orintated QCV's and trace ammounts of pyrite 31369 235.35 235.68 0.33 5.0 2.93 5.6 225.78 225.78 225.78 Sericite Chlorite Alteration zone with thin rendomly orintated QCV's and trace ammounts of pyrite 31369 235.58 28.40 0.33 5.0 2.93 5.6 227.73 227.73 227.73 227.763 Sericite Chlorite Alteration zone with 3% disseminated pyrite 228.42 Quartz calcite vein with chlorite alteration rim LCA=74° 228.58 228.64 Quartz calcite vein with chlorite alteration rim and 4% disseminated pyrite 235.68 244.96 QFP QUARTZ FELDSPAR PROPH				214.50	214.54 Quartz calcite vein with chlorite, sericite and biotite alteration and	31365	225.77	225.98	0.21	5.0	0.97	14.3
216.36 216.37 Quartz calcite vein with a 5cm chlorite alteration value 31367 228.58 228.69 0.11 5.0 1.67 2.0 221.98 221.99 Quartz calcite vein with chlorite alteration halo and 3% disseminated pyrite 31367 228.58 228.69 0.11 5.0 1.67 2.0 221.98 221.99 Quartz calcite vein with chlorite alteration halo and 3% disseminated pyrite 31367 228.58 228.69 0.11 10.0 3.26 0.1 225.93 Sericite Alteration zone with thin rendomly orintated QCV's and thrace ammounts of pyrite 226.50 Sericite Chlorite Alteration zone with thin rendomly orintated QCV's and trace ammounts of pyrite 227.63 Sericite Chlorite Alteration zone with 3% disseminated pyrite 228.42 228.42 Quartz calcite vein with chlorite alteration rim and 4% disseminated pyrite 228.42 Quartz calcite vein with chlorite alteration rim and 4% disseminated pyrite 228.58 228.68 Quartz calcite vein with chlorite alteration rim and 4% disseminated pyrite 228.68 224.49 QFP QUARTZ FELDSPAR PROPHYRY DYKE - Quartz Feldspar Porphyny Dyke contact at 710 235.68 236.00 0.32 10.0 1.44 0.1 235.68 244.96 QFP QUARTZ FELDSPAR PROPHYRY DYKE -				046.06	approximately 2% disseminated pyrite and magnetite LCA=85°	31366	227.29	227.72	0.43	5.0	1.99	3.4
220.37 220.39 Cubic Calcle Vein With a SUM follome alteration main LCA-35° 31368 228.76 229.17 0.41 10.0 3.26 0.1 221.88 222.91 Quartz calcite vein with chlorite alteration main LCA-35° 31368 228.76 229.17 0.41 10.0 3.26 0.1 221.88 222.91 Quartz calcite vein with chlorite alteration also and 3% disseminated pyrite 235.35 235.68 0.33 5.0 2.93 5.6 225.78 226.93 Sericite Alteration zone with thin rendomly orintated QCV's and trace ammounts of pyrite 226.93 Sericite Chlorite Alteration zone with 3% disseminated QCV's and trace ammounts of pyrite 227.33 227.63 Sericite Chlorite Alteration zone with 3% disseminated pyrite 228.40 Quartz calcite vein with chlorite alteration rim LCA=74° 228.40 228.42 Quartz calcite vein with chlorite alteration rim and 4% disseminated pyrite 235.68 236.00 0.32 10.0 1.44 0.1 235.68 244.96 QFP QUARTZ FELDSPAR PROPHYRY DYKE - Quartz Feldspar Porphyry Dyke contact at 710 235.68 237.13 0.55 10.0 0.91 0.6 243.30 Dissolution feature infilled with biotite, chalcopyrite and pyrite <td></td> <td></td> <td></td> <td>210.30</td> <td>210.47 Quartz calbinate Sencite Chlorite alteration Zone</td> <td>31367</td> <td>228.58</td> <td>228.69</td> <td>0.11</td> <td>5.0</td> <td>1.67</td> <td>2.0</td>				210.30	210.47 Quartz calbinate Sencite Chlorite alteration Zone	31367	228.58	228.69	0.11	5.0	1.67	2.0
221.99 221.99 Quarz calcite vein with chlorite alteration halo and 3% disseminated pyrite and magnetite LCA=70° 31369 235.35 235.68 0.33 5.0 2.93 5.6 222.81 222.91 Quarz calcite vein with chlorite alteration and 3% disseminated pyrite alteration. Approximately 2% disseminated QCV's and trace ammounts of pyrite 31369 235.35 235.68 0.33 5.0 2.93 5.6 226.80 226.95 Sericite Alteration zone with thin rendomly orintated QCV's and trace ammounts of pyrite 227.63 Sericite Chlorite Alteration zone with thin rendomly orintated QCV's and trace ammounts of pyrite 228.40 Quarz calcite vein with chlorite alteration rim LCA=74° 228.40 228.42 Quarz calcite vein with chlorite alteration rim and 4% disseminated pyrite LCA=71° 228.78 229.05 Psudo brecciated quarz calcite vein with chlorite, biotite and sericite alteration. Approximately 3% disseminated pyrite and magnetite 31370 235.68 236.00 0.32 10.0 1.44 0.1 235.68 244.96 QFP QUARTZ FELDSPAR PROPHYRY DYKE - Quarz Feldspar Porphyry Dyke contact at 710 236.69 237.03 Quarz calcite vein with biotite, chalcopyrite and pyrite 31371 235.68 237.47 0.11 20.0 1.40 0.3				220.07	220.90 Qualtz calcite vein with a schi chlorite alteration rim LCA 25%	31368	228.76	229.17	0.41	10.0	3.26	0.1
222.30 222.31 Guard calculate Value value and magnetite LCA=70° 225.78 225.73 Sericite Alteration zone with thin rendomly orintated QCV's and chlorite alteration. Approximately 2% disseminated pyrite 226.80 226.95 Sericite Chlorite Alteration zone with thin rendomly orintated QCV's and trace ammounts of pyrite 227.33 227.63 Sericite Chlorite Alteration zone with 3% disseminated pyrite 228.40 228.42 Quartz calcite vein with chlorite alteration rim LCA=74° 228.78 228.64 Quartz calcite vein with chlorite alteration rim and 4% disseminated pyrite LCA=71° 228.78 229.05 Psudo brecciated quartz calcite vein with chlorite, biotite and sericite alteration. Approximately 3% disseminated pyrite and magnetite 235.68 244.96 QFP QUARTZ FELDSPAR PROPHYRY DYKE - Quartz Feldspar Porphyry Dyke contact at 710 236.99 237.03 Quartz calcite vein with biotite alteration rim and 4% disseminated pyrite, alteration diacopyrite LCA=22° 31371 235.68 236.00 0.32 10.0 1.44 0.1 9 237.03 Quartz calcite vein with biotite, chalcopyrite and pyrite 31370 235.68 237.13 0.55 10.0 0.91 0.6 235.68 244.96 QFP QUARTZ FELDSPAR PRO				221.90	222.1.99 Quartz calcite vein with chlorite alteration halo and 2% discominated p	,rit/ 31369	235.35	235.68	0.33	5.0	2.93	5.6
225.78 225.93 Sericite Alteration zone with thin rendomly orintated QCV's and chlorite alteration. Approximately 2% disseminated pyrite 226.80 226.95 Sericite Chlorite Alteration zone with thin rendomly orintated QCV's and trace ammounts of pyrite 227.33 227.63 Sericite Chlorite Quartz Carbonate Alteration zone with 3% disseminated pyrite 228.40 228.42 Quartz calcite vein with chlorite alteration rim and 4% disseminated pyrite LCA=71° 228.78 229.05 Psudo brecciated quartz calcite vein with chlorite, biotite and sericite alteration. Approximately 3% disseminated pyrite and magnetite 235.68 244.96 QFP QUARTZ FELDSPAR PROPHYRY DYKE - Quartz Feldspar Porphyry Dyke contact at 710 236.99 237.03 Quartz calcite vein with biotite alteration rim and 4% disseminated pyrite, pyrrhotite and chalcopyrite LCA=22° 31371 235.68 236.00 0.32 10.0 1.44 0.1 243.30 Dissolution feature infilled with biotite, chalcopyrite and pyrite 31372 237.36 237.47 0.11 20.0 1.40 0.3 31374 244.70 244.96 0.26 10.0 1.64 0.9				222.00	and magnetite LCA=70°	/nte						
226.80 226.95 Sericite Chlorite Alteration zone with thin rendomly orintated QCV's and trace ammounts of pyrite 227.33 227.63 Sericite Chlorite Quartz Carbonate Alteration zone with 3% disseminated pyrite. magnetite and pyrrhotite 228.40 228.42 Quartz calcite vein with chlorite alteration rim LCA=74° 228.78 229.05 Psudo brecciated quartz calcite vein with chlorite alteration rim and 4% disseminated pyrite alteration. Approximately 3% disseminated pyrite and magnetite 235.68 244.96 QFP QUARTZ FELDSPAR PROPHYRY DYKE - Quartz Feldspar Porphyry Dyke contact at 710 235.68 244.96 QFP QUARTZ calcite vein with biotite alteration rim and 4% disseminated pyrite, alteration rim and 4% disseminated pyrite, alteration 31370 235.68 236.00 0.32 10.0 1.44 0.1 235.68 244.96 QFP QUARTZ release the biotite alteration rim and 4% disseminated pyrite, alteration rim and 4% disseminated pyrite, alteration rim and 4% disseminated pyrite, alteration 31370 235.68 236.00 0.32 10.0 1.44 0.1 235.68 244.96 QFP QLARTZ release the chalcopyrite and pyrite and pyrite 31371 236.58 237.13 0.55 10.0 0.91 0.6 243.30 Dissolution feature infilled with biotite, chalcopyrite				225.78	225.93 Sericite Alteration zone with thin rendomly orintated QCV's and chlorite alteration. Approximately 2% disseminated pyrite							
227.33 227.63 Sericite Chlorite Quartz Carbonate Alteration zone with 3% disseminated pyrite, magnetite and pyrrhotite 228.40 228.42 Quartz calcite vein with chlorite alteration rim LCA=74° 228.58 228.64 Quartz calcite vein with chlorite alteration rim and 4% disseminated pyrite LCA=71° 228.78 229.05 Psudo brecciated quartz calcite vein with chlorite, biotite and sericite alteration. Approximately 3% disseminated pyrite and magnetite 235.68 244.96 QFP QUARTZ FELDSPAR PROPHYRY DYKE - Quartz Feldspar Porphyry Dyke contact at 710 235.68 244.96 QFP QUARTZ relicite vein with biotite alteration rim and 4% disseminated pyrite, pyrrhotite and chalcopyrite LCA=22° 31370 235.68 236.00 0.32 10.0 1.44 0.1 243.30 Dissolution feature infilled with biotite, chalcopyrite and pyrite 31371 236.58 237.47 0.11 20.0 1.40 0.3 31373 243.26 243.38 0.12 5.0 1.40 0.3 31374 244.70 244.96 0.26 10.0 1.64 0.9				226.80	226.95 Sericite Chlorite Alteration zone with thin rendomly orintated QCV's an trace ammounts of pyrite	ł						
228.40 228.42 Quartz calcite vein with chlorite alteration rim LCA=74° 228.58 228.64 Quartz calcite vein with chlorite alteration rim and 4% disseminated pyrite LCA=71° 228.78 229.05 Psudo brecciated quartz calcite vein with chlorite, biotite and sericite alteration. Approximately 3% disseminated pyrite and magnetite 235.68 244.96 QFP QUARTZ FELDSPAR PROPHYRY DYKE - Quartz Feldspar Porphyry Dyke contact at 710 235.68 244.96 QFP QUARTZ calcite vein with biotite alteration rim and 4% disseminated pyrite, pyrrhotite and chalcopyrite LCA=22° 31370 235.68 236.00 0.32 10.0 1.44 0.1 243.30 Dissolution feature infilled with biotite, chalcopyrite and pyrite 31371 235.68 237.47 0.11 20.0 1.40 0.3 31373 243.26 243.38 0.12 5.0 1.40 2.8 31374 244.70 244.96 0.26 10.0 1.64 0.9				227.33	227.63 Sericite Chlorite Quartz Carbonate Alteration zone with 3% disseminat pyrite, magnetite and pyrrhotite	ed						
228.58 228.64 Quartz calcite vein with chlorite alteration rim and 4% disseminated pyrite LCA=71° 228.78 229.05 Psudo brecciated quartz calcite vein with chlorite, biotite and sericite alteration. Approximately 3% disseminated pyrite and magnetite 235.68 244.96 QFP QUARTZ FELDSPAR PROPHYRY DYKE - Quartz Feldspar Porphyry Dyke contact at 710 235.68 244.96 QFP QUARTZ calcite vein with biotite alteration rim and 4% disseminated pyrite, pyrrhotite and chalcopyrite LCA=22° 31370 235.68 236.00 0.32 10.0 1.44 0.1 243.30 Dissolution feature infilled with biotite, chalcopyrite and pyrite 31371 236.58 237.47 0.11 20.0 1.40 0.3 31373 243.26 243.38 0.12 5.0 1.40 2.8 31374 244.70 244.96 0.26 10.0 1.64 0.9				228.40	228.42 Quartz calcite vein with chlorite alteration rim LCA=74°							
228.78 229.05 Psudo brecciated quartz calcite vein with chlorite, biotite and sericite alteration. Approximately 3% disseminated pyrite and magnetite 235.68 244.96 QFP QUARTZ FELDSPAR PROPHYRY DYKE - Quartz Feldspar Porphyry Dyke contact at 710 235.68 244.96 QFP QUARTZ FELDSPAR PROPHYRY DYKE - Quartz Feldspar Porphyry Dyke contact at 710 236.99 237.03 Quartz calcite vein with biotite alteration rim and 4% disseminated pyrite, pyrrhotite and chalcopyrite LCA=22° 31370 235.68 236.00 0.32 10.0 1.44 0.1 243.30 Dissolution feature infilled with biotite, chalcopyrite and pyrite 31372 237.36 237.47 0.11 20.0 1.40 0.3 31374 244.70 244.96 0.26 10.0 1.64 0.9				228.58	228.64 Quartz calcite vein with chlorite alteration rim and 4% disseminated py LCA=71°	ite						
235.68 244.96 QFP QUARTZ FELDSPAR PROPHYRY DYKE - Quartz Feldspar Porphyry Dyke contact at 710 236.99 237.03 Quartz calcite vein with biotite alteration rim and 4% disseminated pyrite, pyrrhotite and chalcopyrite LCA=22° 31370 235.68 236.00 0.32 10.0 1.44 0.1 243.30 Dissolution feature infilled with biotite, chalcopyrite and pyrite 31371 236.58 237.47 0.11 20.0 1.40 0.3 31371 243.26 243.38 0.12 5.0 1.40 2.8 31374 244.70 244.96 0.26 10.0 1.64 0.9				228.78	229.05 Psudo brecciated quartz calcite vein with chlorite, biotite and sericite alteration. Approximately 3% disseminated pyrite and magnetite							
236.99 237.03 Quartz calcite vein with biotite alteration rim and 4% disseminated pyrite, pyrrhotite and chalcopyrite LCA=22° 31370 235.68 236.00 0.32 10.0 1.44 0.1 pyrrhotite and chalcopyrite LCA=22° 31371 236.58 237.13 0.55 10.0 0.91 0.6 243.30 Dissolution feature infilled with biotite, chalcopyrite and pyrite 31372 237.36 237.47 0.11 20.0 1.40 0.3 31373 243.26 243.38 0.12 5.0 1.40 2.8 31374 244.70 244.96 0.26 10.0 1.64 0.9	235.68	244,96	QFP	QUARTZ	FELDSPAR PROPHYRY DYKE - Quartz Feldspar Porphyry Dyke contact at 710							
pyrrhotite and chalcopyrite LCA=22° 31371 236.58 237.13 0.55 10.0 0.91 0.6 243.30 Dissolution feature infilled with biotite, chalcopyrite and pyrite 31371 236.58 237.47 0.11 20.0 1.40 0.3 31373 243.26 243.38 0.12 5.0 1.40 2.8 31374 244.70 244.96 0.26 10.0 1.64 0.9				236.99	237.03 Quartz calcite vein with biotite alteration rim and 4% disseminated pyri	e, 31370	235.68	236.00	0.32	10.0	1.44	0.1
243.30 Dissolution feature infilled with biotite, chalcopyrite and pyrite 31372 237.36 237.47 0.11 20.0 1.40 0.3 31373 243.26 243.38 0.12 5.0 1.40 2.8 31374 244.70 244.96 0.26 10.0 1.64 0.9					pyrrhotite and chalcopyrite LCA=22°	31371	236.58	237.13	0.55	10.0	0.91	0.6
31373 243.26 243.38 0.12 5.0 1.40 2.8 31374 244.70 244.96 0.26 10.0 1.64 0.9				243.30	Dissolution feature infilled with biotite, chalcopyrite and pyrite	31372	237.36	237.47	0.11	20.0	1.40	0.3
31374 244.70 244.96 0.26 10.0 1.64 0.9						31373	243.26	243.38	0.12	5.0	1.40	2.8
						31374	244.70	244.96	0.26	10.0	1.64	0.9

										Diamon	d Drill Log	- CR-04-29
FROM	то	CODE			DESCRIPTION	Sample	From	То	Int	Au(ppb)	Fe(%)	As(ppm)
244.96	263.00	PBAS	PILLOW E	BASALT -	Pillow Basalt contact at 680							
			246.20	246.54	Psudo brecciated quartz calcite vein with chlorite, and biotite alteration.	31375	244.96	245.24	0.28	5.0	3.13	4.6
					Approximately 3% disseminated pyrite and magnetite	31376	246.18	246.58	0.40	10.0	3.24	12.0
			247.33	247.54	Sericite Alteration Zone	31377	249.98	250.10	0.12	20.0	2.51	0.5
			247.81	247.84	Sericite Alteration Zone	31378	250.10	250.20	0.10	10.0	4.45	3.0
			248.66	248.70	Sericite Alteration Zone	31379	250.20	250.38	0.18	10.0	2.11	18.4
			248.99	249.02	Sericite Alteration Zone with QCV with chlorite rim cross cutting zone							
			250.11	250.20	Psudo brecciated quartz calcite vein with chlorite alteration.							

---- END OF HOLE ---

Drill Hole ID	CR-0	04-30	<u>Property</u> <u>Township</u>	Alexander Balmer			<u>NTS</u> District	52 N/04 Red Lake	
Collar Location	Easting: Northing:	451730.0r 5655874.0r	nE G nN	rid:	m m	Azimuth: Dip:	26.0° -50.0°	Hole Status: Date Started:	Completed November 26, 2004
	Elevation: Projection:	377.5 r NAD83 Zone	n 15N			Lenght	252.00m	Date Finished	: November 29, 2004

Purpose of Hole

Proposed depth: 250.00m

	Survey	Data		Dril	ling Information		Logging and Sam	pling Information
Depth(m)	Azimuth	Dip	Method	Contractor:	Major Drilling		Geology Logged by:	RT
7.50	28°	-48°	Acid					
50.00	28°	-46.5°	Acid	Hole Type:	טט		Geotechnical Logging by	,
100.00	28°	-46.5°	Acid	Core Size:	BQ		Sampling by:	SD, EC
150.00	28°	-51°	Acid	Drill Rig:	Major 37			
200.00	28°	-49°	Acid	Casing Loft:	,	m	Horizontal Trace:	
				Casing Lent.			Vertical Trace:	

- CR-04-30	d Drill Log	Diamon								
As(ppm)	Fe(%)	Au(ppb)	Int	То	From	Sample	DESCRIPTION	TO CODE	1 ТО	FROM
					·		/ERBURDEN - Overburden	7.50 OB	00 7.5	0.00
							LOW BASALT - Pillow Basalt	14.52 PBAS	50 14.5	7.50
0.1	1.44	20.0	0.24	10.97	10.73	31381	7.50 7.60 Sericite Alteration zone with silicification, bleaching and small amounts of			
0.1	1.32	10.0	0.24	10.97	10.73	31380	7 89 7 90 Quartz calcite vein with sericite alteration rim I CA=75°			
0.1	2.73	10.0	0.12	11.29	11.17	31382	8 17 8 45 Fractured zone with small amounts of sericite alteration I CA=80°			
35.9	2.06	30.0	0.19	14.52	14.33	31303	9.31 9.33 Irregular guartz calcite vein with 5mm chlorite biotitie alteration balo			
							9.49 9.61 Fractured zone			
							10.13 10.17 Quartz carbonate alteration zone with a 2cm chlorite, biotite alteration hak			
							10.76 10.84 Psudo Brecciated Quartz Calcite vein with chlorite, biotite alteration and silicification. Containing 2% disseminated pyrite and pyrrhotite			
							11.20 11.28 Psudo Brecciated Quartz Calcite vein with chlorite, biotite alteration and silicification. Containing 3% disseminated pyrite and pyrrhotite LCA=73°			
							12.42 12.44 Psudo Brecciated Quartz Calcite vein with chlorite, biotite alteration and silicification. Containing 2% disseminated pyrite and pyrrhotite			
							12.78 12.92 Sericite Alteration zone with a 2cm chlorite alteration rim, containing 2% disseminated pyrite			
							13.40 13.64 Psudo Brecciated Quartz Calcite vein with chlorite, biotite alteration			
							14.33 14.52 Sheared halo before contact with Porphyry Dyke. Intensity increases towards contact. LCA=74°			
							JARTZ FELDSPAR PORPHYRY DYKE - Quartz Feldspar Porphyry Dyke with 3% seminated arsenopyrite	15.64 QFP	52 15.6	14.52
2260.0	1.73	170.0	0.18	14.70	14.52	31384				
116.0	1.68	30.0	0.50	15.20	14.70	31386				
102.0	1.70	10.0	0.44	15.64	15.20	31387				

										Diamon	d Drill Log	- CR-04-30
FROM	то	CODE			DESCRIPTION	Sample	From	То	Int	Au(ppb)	Fe(%)	As(ppm)
15.64	47.38	PBAS	PILLOW BAS	SALT -	Pillow Basalt							
			15.64	16.01	Sheared halo after contact with Porphyry Dyke. Halo contains biotite and chlorite alteration. LCA=74°	31388 31389	15.64 16.72	16.01 17 15	0.37 0.43	5.0 5.0	2.52 2.66	27.9
			16.51	16.62	Fractured Zone	31390	18.00	18.23	0.40	10.0	2.00	1.0
			16.72	16.93	Psudo Brecciated Quartz Calcite vein with sericite alteration zone from	31301	19.81	19.23	0.20	5.0	2.07	2.0
					16.81 to 16.89 with silicification and bleaching	31392	20.65	20.86	0.17	10.0	2.00	1.0
			18.03	18.08	Irregular quartz calcite vein with 5mm chlorite, biotite alteration halo and 3% disseminated pyrite and pyrrhotite	31393	31.13	31.20	0.07	5.0	3.23	0.1
			18.17	18.17	Quartz calcite vein with a 1 cm chlorite, biotite alteration rim LCA=55°	31394	32.48	32.69	0.21	10.0	1.30	0.2
			19.82	19.90	Psudo Brecciated Quartz Calcite vein with chlorite, biotie rim and small	31395	33.44	33.58	0.14	10.0	1.28	1.2
			10102		amount of silicification	31396	36.67	36.91	0.24	10.0	1.24	1.0
			19.91	19.93	Quartz calcite vein with chlorite, biotite alteration rim with 3% disseminated pyrite and pyrrhotite LCA=51°	31397 31398	43.15 47.14	43.36 47.38	0.21 0.24	5.0 5.0	3.97 3.36	0.9 10.6
			20.29	20.30	Quartz calcite vein with silicification, bleaching and chlorite, biotite alteration rim $I_{cA} = 68^{\circ}$							
			20.65	20.86	Psudo Brecciated Quartz Calcite vein with chlorite, biotie rim							
			23.90	23.96	Psudo Brecciated Quartz Calcite vein with chlorite, biotie rim							
			24.99	25.03	Quartz calcite vein with a 5mm biotite, chlorite alteration rim with 3%							
					disseminated pyrite and pyrrhotite							
			27.56	27.57	Silicification and bleaching with 3% pyrrhotite and pyrite LCA=37°							
			29.36	29.44	Irregular quartz calcite vein biotite alteration rim							
			30.57	30.57	Silicification vein and a 5mm bleaching halo LCA=46°							
			31.13	31.15	Quartz vein with bleaching halo LCA=85°							
			31.15	31.17	Biotite alteration vein with 20% disseminated pyrite and pyrrhotite LCA=85°							
			32.14	32.17	Quartz calcite vein with a 5mm chlorite alteration rim LCA=70°							
			32.56	32.67	Quartz calcite vein with silicification and chlorite rim LCA=54°							
			33.44	33.58	Quartz calcite vein with chlorite rim and 2% pyrrhotite and pyrite LCA=43							
			36.69	36.72	Irregular Quartz calcite vein							
			36.83	36.90	Quartz calcite vein with a 1cm chlorite alteration halo							
			39.44	39.46	Quartz calcite vein with a 0.5cm chlorite, biotite alteration rim LCA=46°							
			40.79	40.88	Quartz calcite vein with a 1cm chlorite alteration rim LCA=46°							
			41.28	41.35	Quartz calcite vein with a 2cm chlorite alteration rim with stringers throughout vein containing 2% pyrchotite							
			42.72	42.77	Quartz calcite vein with a 1cm chlorite alteration rim I CA=65°							
			43.15	43.36	Shear Zone with quartz carbonate, chlorite and biotite alteation and 3% discompared pyrite, pyritotite and magnetic $1.04-73^{\circ}$							
			43 77	43 81	Ouartz calcite vein with chlorite alteration rim $I CA=73^{\circ}$							
			44.24	44.32	Psudo Brecciated Quartz Calcite vein with a 1cm chlorite, biotie halo,							
			44.43	44.63	Moderate Foliation with quartz cabonate , chlorite bioitite alteration							
			45.83	45.97	LCA=82° Psudo Brecciated Quartz Calcite vein with a chlorite biotite alteration halo							
					and trace ammounts of disseminated sulphides							
			47.15	47.19	Psudo Brecciated Quartz Calcite vein with 3% pyrrhotite, pyrite and magnetite LCA=73°							

										Diamon	d Drill Log	- CR-04-30								
FROM	то	CODE			DESCRIPTION	Sample	From	То	Int	Au(ppb)	Fe(%)	As(ppm)								
47.38	56.47	QFP	QUARTZ F	ELDSP	AR PORPHYRY DYKE - Quartz Feldspar Porphyry Dyke															
			47.53	47.70	Psudo Brecciated Quartz Calcite vein with sericite alteration and 4%	31399	47.52	47.73	0.21	5.0	3.56	20.1								
					disseminated pyrrhotite, pyrite and magnetite LCA=80°	31400	48.38	48.69	0.31	5.0	2.45	97.1								
			47.87	48.03	Psudo Brecciated Quartz Calcite vein with sericite alteration and 4%	31401	48.69	49.19	0.50	40.0	1.54	215.0								
					disseminated pyrrhotite, pyrite and magnetite	31402	56.14	56.47	0.33	20.0	1.57	90.0								
											48.34	48.58	Shear Halo before contact with Quartz Feldspar Porphyry Dyke. Shear intensity increases towards contact. LCA=85°							
			54.19	54.34	Fractured Zone															
			56.14	56.47	' Shear Zone before contact with basalt. Sher intensity increases towards contact.															

										Diamon	d Drill Log	- CR-04-30
FROM	то	CODE			DESCRIPTION	Sample	From	То	Int	Au(ppb)	Fe(%)	As(ppm)
56.47	127.26	BAS	BASALT	- Basalt		ł	•					
			57.70	57.83	Psudo Brecciated Quartz Calcite vein with chlorite, biotite and quartz	31403	56.47	57.00	0.53	10.0	3.39	68.1
					carbonate alteration. Approximately 2% disseminated pyrrhotite, magnitic	31404	62.81	63.33	0.52	10.0	1.20	14.0
					and pyrite	31405	71.31	71.57	0.26	5.0	1.23	1.0
			59.37	59.52	Psudo Brecciated Quartz Calcite vein with chlorite, biotite and quartz	31407	77.51	78.10	0.59	5.0	3.44	0.9
			50.00	60.00	Quartz calcite vein with a 2cm chlorite alteration halo containing 3%	31409	81.39	81.39	0.00	110.0	3.03	64.8
			55.55	00.00	disseminated pyrite and pyrrhotite LCA=80°	31408	81.39	81.39	0.00	280.0	2.85	130.5
			60.38	60.45	Psudo Brecciated Quartz Calcite vein with chlorite, biotite and quartz	31410	87.19	87.81	0.62	5.0	1.22	10.0
					carbonate alteration.	31411	88.49	88.65	0.16	5.0	0.80	2.0
			61.39	61.43	Psudo Brecciated Quartz Calcite vein with chlorite, biotite and quartz	31412	98.22	98.56	0.34	40.0	2.29	29.9
			04.54	04 57	carbonate alteration. LCA=65°	31413	110.72	110.84	0.12	5.0	4.00	3.6
			61.51	61.57	Psudo Brecclated Quartz Calcite vein with chlorite, biotite and quartz	31414	113.98	114.59	0.61	5.0	3.84	56.3
			61 63	61 71	Psudo Brecciated Quartz Calcite vein with chlorite biotite sericite and	31415	114.59	115.32	0.73	5.0	3.43	60.2
			01.00	01.71	quartz carbonate alteration.							
			62.14	62.26	Psudo Brecciated Quartz Calcite vein with chlorite, biotite, sericite							
					alteration and silicification with bleaching.							
			62.70	63.11	Sericite alteration zone							
			63.14	63.27	Quartz calcite vein LCA=64°							
			64.14	64.21	Psudo Brecciated Quartz Calcite vein with chlorite, biotite and quartz							
			64.04	64.00	Carbonate alteration. LCA=88°							
			04.24	04.32	chloritite alteration							
			64.58	64.67	Psudo Brecciated Quartz Calcite vein with chlorite, biotite and quartz							
			0.000	0	carbonate alteration.							
			65.31	65.49	Psudo Brecciated Quartz Calcite vein with chlorite, biotite and quartz							
					carbonate alteration.							
			66.66	66.72	Psudo Brecciated Quartz Calcite vein with chlorite, biotite and quartz							
			71 21	71 50	Caldonale alleration.							
			71.51	71.50	silicification in vein LCA=51°							
			71.86	72.60	Psudo Brecciated Quartz Calcite vein with chlorite, biotite, sericite and							
					quartz carbonate alteration.							
			73.97	74.04	Psudo Brecciated Quartz Calcite vein with chlorite, biotite and quartz							
					carbonate alteration. LCA=59°							
			74.10	74.27	Psudo Brecciated Quartz Calcite vein with chlorite, biotite, sericite							
			74 28	74 34	$\Omega_{\rm L}$							
			76.80	76.96	Psudo Brecciated Quartz Calcite vein with chlorite, biotite and quartz							
			10.00	70.00	carbonate alteration. LCA=57°							
			77.51	78.10	Shear Zone with chlorite, alteation and 3% disseminated pyrite, pyrrhotite							
					and magnetite LCA=69°							
			79.26	79.32	Psudo Brecciated Quartz Calcite vein with chlorite, biotite and quartz							
			00.00	00.00	carbonate alteration.							
			80.00	80.02	Black line fault with some thin quartz calcite veins and 10% pyrite and							
			81.39	81 70	Biotite, Chlorite, Quartz Carbonate Alteration Zone I CA=71°							
			87.03	87.05	Quartz Calcite vein with a chlorite biotite alteration rim. LCA=76°							

FROM	то	CODE			DESCRIPTION	Sample	From	То	Int	Au(ppb)	Fe(%)	As(ppm)
			87.20	87.23	Quartz Calcite vein with a chlorite biotite alteration rim. LCA=60°							
			87.33	87.39	Quartz Calcite vein with biotite alteration and a chlorite biotite alteration rim.							
			87.43	87.47	Quartz Calcite vein with a chlorite biotite alteration rim.							
			87.60	87.68	Quartz Calcite vein with biotite alteration and a chlorite biotite alteration rim.							
			88.32	88.48	Shear Zonw with quartz calcite ancorite veins, biotite chlorite alteration and bleaching LCA=38° $$							
			88.49	88.64	Quartz Calcite vein with ancorite, silicification, bleaching and a 5mm biotite alteration halo LCA=46° $$							
			89.56	89.59	Sericite Alteration Zone LCA=76°							
			98.22	98.56	Shear Zone with chlorite biotite and quartz calcite alteration LCA=74°							
			100.10	100.27	Quartz Calcite vein (9cm) with ancorite, silicification, and bleaching LCA=28° $$							
			101.86	101.96	Sericite Alteation Zone							
			102.29	102.31	Quartz Calcite vein with a chlorite alteration rim. LCA=55°							
			104.00	104.01	Quartz Calcite vein with a chlorite biotite alteration rim and a 2cm sericite alteration halo. LCA=72° $$							
			104.41	104.42	Quartz Calcite vein with a chlorite biotite alteration rim and a 3cm sericite alteration halo. LCA=73 $^\circ$							
			106.76	106.86	Quartz Calcite vein (0.5cm) with a chlorite biotite alteration rim LCA=32°							
			108.54	108.60	Sericite Alteration Zone LCA=61°							
			109.77	109.79	Sericite Alteration Zone LCA=82°							
			110.74	110.84	Psudo Brecciated Quartz Calcite vein with chlorite, biotite, quartz carbonate alteration and 4% disseminated pyrrhotite and pyrite.							
			111.98	112.02	Multiple quartz calcite veins with bleaching							
			112.87	112.89	Bleaching zone with biotite rim LCA=63°							
			113.98	115.32	Shear Zone with chlorite biotite and quartz calcite alteration LCA=84°							
			123.42	123.83	Sericite Alteration Zone with quartz carbonate alteration							
127.26	128.66	WACKE	GREYWA	CKE - Ver rhotite an	ry Fine Grained Wacke with 8% massive and disseminated sulphides d magnitite), with many blue quartz stringer veins							
			127.38	127.55	Shear Zone with massive sulphide veins LCA=65°	31417	127.38	127.55	0.17	20.0	15.00	2.0
						31418	127.55	127.92	0.37	5.0	4.93	0.4
						31419	127.92	128.31	0.39	5.0	6.74	. 0.4
						31420	128.31	128.61	0.30	5.0	2.99	0.3

										Diamon	d Drill Log	- CR-04-30
FROM	то	CODE			DESCRIPTION	Sample	From	То	Int	Au(ppb)	Fe(%)	As(ppm)
128.66	165.93	PBAS	PILLOW B	ASALT -	Pillow Basalt							
			128.66	128.70	Silicification and bleaching zone at contact	31422	129.86	130.10	0.24	20.0	1.70	0.1
			129.35	129.38	Quartz Calcite vein with a chlorite biotite alteration rim	31423	132.00	132.72	0.72	5.0	2.99	0.1
			129.86	130.10	Psudo Brecciated Quartz Calcite vein with chlorite, biotite, quartz	31424	132.72	132.95	0.23	5.0	3.91	0.1
					carbonate, sericite alteration, silicification, bleaching and 2%	31426	132.95	133.24	0.29	5.0	2.90	0.5
			101 05	121.26	disseminated pyrite and pyritotite.	31427	132.95	133.24	0.29	5.0	2.83	0.1
			131.55	131.30	Weakly Altered Sericite Zone	31428	133.24	133.33	0.09	5.0	3.94	1.0
			132.00	132.72	Weakly faliated zone with biotite and blue quartz voins. As well as 3%	31429	133.33	133.51	0.18	5.0	3.97	0.1
			152.00	152.72	disseminated pyrite and pyrrhotite LCA=58°	31430	133.94	134.66	0.72	5.0	3.21	0.1
			132.72	133.24	Moderate foliation with biotite and blue guartz veins. As well as 3%	31431	134.66	134.92	0.26	5.0	3.83	0.1
					disseminated pyrite and pyrrhotite LCA=55°	31432	136.54	136.76	0.22	5.0	3.22	5.3
			133.24	133.33	Intence foliation with blue quartz stringer veins and 10% disseminated	31433	137.19	137.51	0.32	5.0	4.88	0.1
			100 51	400.00	pyrite and pyrrhotite LCA=55°	31434	144.85	145.13	0.28	5.0	1.98	0.1
			133.54	133.66	Weak Foliation with 4% pyrite, pyrhotite and blue quartz stringers	31435	147.94	148.19	0.25	5.0	1.98	0.1
			134.66	134 02	Intence foliation with 7% disseminated pyrite and pyrrhotite I CA-59°	31436	150.00	150.68	0.68	5.0	3.73	0.1
			136.55	136.62	Silicification and bleaching zone with 4% massive pyrrhotite and pyrite	31437	165.00	165.65	0.65	10.0	2.60	36.3
			100.00	100.02	LCA=76°	31438	165.65	165.93	0.28	5.0	3.20	39.7
			136.86	136.90	Sericite Alteration Zone LCA=76°							
			137.23	137.26	Psudo Brecciated Quartz Calcite vein with chlorite, biotite and quartz carbonate alteration. Approximately 7% disseminated pyrrhotite and pyri							
			137.79	137.85	Sericite Alteration Zone							
			138.17	138.20	Quartz Calcite vein with a biotite alteration rim LCA=63°							
			138.27	138.40	Sericite Alteration Zone with blue quartz calcite stringers							
			140.22	140.42	Carbonate Alteration Zone							
			140.39	140.47	Silicification and bleaching zone							
			140.76	140.93	Carbonate Alteration Zone							
			141.94	141.95	Quartz Calcite vein with sericite alteration LCA=72°							
			143.15	143.24	Quartz Calcite vein (1cm) with a biotite alteration rim LCA=27°							
			144.92	145.13	Psudo Brecciated Quartz Calcite vein with chlorite, biotite and quartz carbonate alteration. Approximately 3% disseminated pyrite and pyrrhoti							
			147.94	148.19	Psudo Brecciated Quartz Calcite vein with chlorite, biotite, sericite and quartz carbonate alteration. Approximately 4% disseminated pyrite and pyrrthotite							
			161.42	161.44	Psudo Brecciated Quartz Calcite vein with chlorite, biotite and quartz carbonate alteration. LCA=90°							
			162.13	163.50	Shear Zone with blackline faults, thin quartz calcite veins and little alteration LCA=72°							
			164.99	165.93	Shear Zone before contact with and acidic Dyke with many quartz calcite veins with biotite alteration. LCA=68° $$_$							
165.93	167.67	AND	ANDACITE	DYKE	Andacite Dyke with 3% disseminated arsenopyrite							
						31439	165.93	166.41	0.48	40.0	1.74	22.2
						31440	166.41	166.87	0.46	5.0	1.66	319.0
						31441	166.87	167.54	0.67	30.0	1.72	1510.0
						31442	167.54	167.67	0.13	10.0	1.76	283.0

									Diamon	d Drill Log	- CR-04-30
FROM	το σ	CODE		DESCRIPTION	Sample	From	То	Int	Au(ppb)	Fe(%)	As(ppm)
167.67	183.23 BA	٩S	BASALT -	Very Fine Grained Basalt							
			167.67	178.23 Shear Zone with verying degrees of alteration LCA=74°	31443	167.67	168.00	0.33	20.0	5.44	30.4
			170.70	178.23 Multiple quartz calcite veins with a chlorite biotite alteration rim	31444	167.67	168.00	0.33	10.0	5.67	26.1
			172.05	172.13 Sericite Alteration Zone LCA=76°	31445	170.70	171.19	0.49	10.0	2.54	26.6
			172.18	172.29 Sericite Alteration Zone with 2% disseminated pyrrhotite and pyrite	31446	171.19	171.61	0.42	5.0	2.47	8.5
			170.40	LCA=74°	20301	171.61	172.03	0.42	5.0	2.49	4.5
			172.49	172.56 Quartz Calcite vein with silicification bleaching, a 5mm chlorite biotite	31447	172.03	172.33	0.30	5.0	1.77	22.5
				LCA=67°	20302	172.33	172.46	0.13	5.0	3.93	15.4
			172.66	172.76 Quartz Calcite vein with silicification bleaching, a 5mm chlorite biotite	31448	172.46	172.77	0.31	10.0	1.58	6.0
				alteration rim and 2% disseminated pyrrhotite, pyrite and chalcopyrite	31449	174.74	175.46	0.72	5.0	2.70	22.1
			174.26	174.38 Quartz Feldspar Porphyry Finger LCA=81°	31451	175.46	176.21	0.75	5.0	2.36	8.8
			176.35	176.93 Psudo Brecciated Quartz Calcite vein with silicification, bleaching,	20303	176.21	176.55	0.34	5.0	2.98	7.1
				chlorite, biotite, sericite and quartz carbonate alteration. Approximately	31452	176.55	176.93	0.38	5.0	2.20	18.7
			400.00	4% disseminated pyrite and pyrinotite	31453	176.93	177.38	0.45	5.0	2.34	16.0
			180.36	180.55 Irregular Quartz Calcite vein with chlorite biotite alteration rim and 3% diseminated pyrite and pyrithotite	31454	177.38	178.21	0.83	5.0	2.12	11.7
			181 51	182.65 Weak Foliation with 2% pyrite LCA=70°	31455	180.36	180.58	0.22	5.0	1.86	1.8
			182.56	182.60 Quartz Calcite vein with garnet phenocryst, silicification, bleaching.	20304	180.58	180.86	0.28	5.0	3.25	2.0
				chlorite biotite, sericite alteration and a 2cm biotite halo LCA=70°	31456	181.51	182.41	0.90	5.0	3.55	1.4
			182.65	182.73 Strong shearing before contact with Quartz Feldspar Porphyry Dyke	31457	182.41	182.55	0.14	5.0	6.02	1.2
				LCA=68°	31458	182.55	182.65	0.10	5.0	3.53	2.0
					31459	182.65	183.23	0.58	5.0	6.05	1.3
183.23	185.33 QF	-P	QUARTZ	ELDSPAR PORPHYRY DYKE - Quartz Feldspar Porphyry Dyke							
			183.23	183.51 Biotite alteration halo at contact between Quartz Feldspar Porphyry Dyl	ke 31460	183.23	183.51	0.28	5.0	1.12	1.2
			185.06	185.33 Biotite alteration halo at contact between Quartz Feldenar Pornhyry Dy	31461	185.06	185.33	0.27	5.0	0.69	1.1
			100.00	and basalt							
185.33	188.30 SH	IR	BASALT -	Sheared Basalt							
			185.48	185.54 Quartz Feldspar Porphyry Finger with biotite alteration LCA=84°	31462	185.33	185.48	0.15	5.0	4.58	2.3
			186.66	186.70 Irregular Quartz Calcite Vein with silicification, bleaching, a biotite rim a	anc 31463	185.59	185.71	0.12	5.0	3.58	2.3
			100.07	3% disseminated pyrite	31464	185.71	186.00	0.29	5.0	3.97	2.7
			186.67	186.69 Quartz Calcite vein with bleaching, and chlorite alteration. LCA=72°	20305	186.00	186.87	0.87	5.0	3.25	2.0
			186.87	188.30 Shear Zone with 3% disseminated pyrite LCA=74°	31465	186.87	186.90	0.03	5.0	3.23	1.6
			186.90	186.95 Quartz Feidspar Porphyry Finger LCA=76°	31466	186.90	186.95	0.05	5.0	2.85	1.9
					31467	186.95	187.39	0.44	5.0	2.89	3.7
					31468	187.39	188.30	0.91	5.0	3.26	3.0
188.30	189.68 BA	4S	BASALT -	Massive Basalt							
			188.67	188.69 Quartz Calcite vein with chlorite biotite, sericite alteration rim							
189.68	194.71 LA	MP	LAMPRO	'HYRY DYKE - Lamprophyry Dyke							
194.71	195.70 BA	٩S	BASALT -	Basalt							
			194.75	194.80 Psudo Brecciated Quartz Calcite vein with chlorite, biotite, alteration.							
195.70	200.16 LA	MP	LAMPRO	HYRY DYKE - Lamprophyry Dyke							
					31469	196.62	196.73	0.11	5.0	2.84	2.0

									Diamon	nd Drill Log	- CR-04-30
FROM	то	CODE		DESCRIPTION	Sample	From	То	Int	Au(ppb)	Fe(%)	As(ppm)
200.16	205.59	BAS	BASALT - E	Basalt - moderately sheared							
			200.57	200.75 Quartz Calcite vein with 4% disseminated pyrite and chalcopyrite.	31471	200.57	200.80	0.23	5.0	3.13	7.6
				LCA=16°	20306	200.80	202.09	1.29	5.0	2.61	2.4
			201.00	201.08 Psudo Brecciated Quartz Calcite vein with chlorite, biotite and quartz	31472	202.09	202.50	0.41	5.0	4.03	0.6
			204.00	Carbonate alteration.	31474	202.56	203.18	0.62	5.0	3.25	0.8
			204.90	carbonate alteration and 7% disseminated pyrite, pyritotite and	31475	203.28	203.78	0.50	5.0	3.83	0.6
				chalcopyrite.	31477	203.78	204.18	0.40	5.0	4.25	0.7
			205.25	205.37 Sericite, Chlorite, Silicification, Bleaching Zone with 4% disseminated	31476	203.78	204.18	0.40	5.0	4.03	0.6
				pyrite, pyrrhotite and chalcopyrite	31478	204.18	204.83	0.65	5.0	3.58	1.3
					31479	204.83	205.22	0.39	5.0	3.46	1.2
					31480	205.22	205.32	0.10	5.0	2.90	1.5
					31481	205.32	205.59	0.27	5.0	3.83	1.9
205.59	207.26	LAMP	LAMPROP	HYRY DYKE - Lamprophyry Dyke							
207.26	209.75	BAS	BASALT - E	Basalt - moderately sheared							
			208.13	208.32 Irregular Quartz Calcite Vein (1cm) with bleaching halo	31482	207.26	208.13	0.87	5.0	2.45	2.0
			209.13	209.14 Quartz Calcite vein with a 3cm chlorite biotite alteration halo LCA=56°	31484	208.13	208.33	0.20	5.0	2.85	4.6
					31483	208.33	209.12	0.79	5.0	2.44	2.6
					31485	209.12	209.20	0.08	5.0	2.81	2.0
					31486	209.20	209.75	0.55	5.0	3.07	2.8
209.75	210.45	LAMP	LAMPROP	HYRY DYKE - Lamprophyry Dyke							
210.45	213.14	BAS	BASALT - I	Basalt - moderately sheared, containing 3% disseminated pyrite							
			210.45	211.83 Shear Zone LCA=63°	31487	210.45	211.11	0.66	5.0	3.64	2.2
					31488	211.11	211.83	0.72	5.0	3.17	2.4
213.14	223.16	BAS	BASALT - V	Very Fine Grained Basalt							
			220.22	221.91 Shear Zone with quartz calcite veins with chlorite biotite rims. LCA=68°	31489	220.23	220.90	0.67	5.0	3.25	2.1
223.16	234.08	PBAS	PILLOW BA	ASALT - Pillow Basalt							
			223.32	233.37 Shear Zone with biotite, quartz calcite alteration LCA=74°	31490	225.19	225.60	0.41	5.0	4.04	0.1
			225.22	225.26 Psudo Brecciated Quartz Calcite vein with chlorite biotite, alteration rim	31491	227.53	227.91	0.38	5.0	2.36	6.7
				and 2% disseminated pyrite and chalcopyrite. LCA=79°	31492	233.31	233.39	0.08	5.0	6.64	0.3
			225.47	225.61 Psudo Brecciated Quartz Calcite vein with chlorite biotite, alteration rim and 7% disseminated pyrite, pyrrhotite and chalcopyrite. LCA=68°	31493	233.39	234.08	0.69	5.0	3.23	4.8
			226.12	226.18 Psudo Brecciated Quartz Calcite vein with chlorite biotite, alteration rim and sericite alteration.							
			227.54	227.56 Quartz Calcite Vein with 2% disseminated pyrite and pyrrhotite LCA=62°							
			227.60	227.65 Quartz Calcite Vein with 2% disseminated pyrite and pyrrhotite LCA=51°							
			227.75	227.77 Quartz Calcite Vein with 2% disseminated pyrite and pyrrhotite LCA=65°							
			227.84	227.89 Sericite Alteration Zone							
			228.97	229.09 Sericite Alteration Zone							
234.08	237.63	BAS	BASALT - V	Very Fine Grained Basalt							
									Diamon	d Drill Log	- CR-04-30
--------	--------	------	--------------------------	---	--------	--------	--------	------	---------	-------------	------------
FROM	то	CODE		DESCRIPTION	Sample	From	То	Int	Au(ppb)	Fe(%)	As(ppm)
237.63	252.00	PBAS	PILLOW BASAL	- Pillow Basalt							
			237.86 238.0	0 Psudo Brecciated Quartz Calcite vein with chlorite biotite, alteration rim	31494	237.63	237.85	0.22	5.0	3.92	0.7
				and 2% disseminated pyrite	31495	237.85	238.06	0.21	5.0	4.30	1.0
			238.64 238.7	2 Psudo Brecciated Quartz Calcite vein with chlorite biotite, alteration rim	31496	238.06	238.63	0.57	5.0	2.58	4.1
			220.24 220	1 Irregular Ourtz Calaita Vaia with a chlarita histita alteration rim and 2%	31498	238.63	238.90	0.27	10.0	4.10	0.5
			239.34 239.4	disseminated pyrite and pyrrhotite	31497	238.63	238.90	0.27	5.0	3.48	0.8
			240.53 240.6	1 Quartz Calcite Vein with chlorite biotite alteration and 2% disseminated	31499	238.90	239.83	0.93	5.0	3.24	0.5
				pyrite and pyrrhotite	19705	239.83	240.52	0.69	5.0	3.19	1.2
			244.08 244.1	7 Quartz Calcite Vein with a biotite alteration rim LCA=72°	19706	240.52	241.32	0.80	5.0	3.72	5.0
			245.11 245. ⁴	5 Quartz Calcite Vein with a biotite alteration rim	19707	241.32	242.10	0.78	20.0	2.51	1.0
			246.84 252.0	0 Strong Shear Zone with quartz calcite veins, chlorite, biotite alteration and	19708	242.10	242.89	0.79	5.0	2.79	1.7
				approximately 7% disseminated pyrite and pyrrhotite.	19709	242.89	242.96	0.07	5.0	3.06	0.9
					19710	242.96	243.65	0.69	5.0	2.41	0.3
					19711	243.65	244.17	0.52	5.0	2.12	0.1
					19712	244.17	244.80	0.63	5.0	2.60	1.2
					19713	244.80	245.25	0.45	5.0	2.54	2.0
					19714	245.25	245.69	0.44	5.0	2.77	1.1
					19715	245.69	246.29	0.60	5.0	2.81	2.5
					19716	246.29	246.35	0.06	5.0	4.93	3.5
					19717	246.35	246.84	0.49	5.0	3.70	1.6
					19718	246.84	246.99	0.15	5.0	5.37	0.2
					19719	246.99	247.38	0.39	10.0	11.60	0.3
					19720	247.38	247.84	0.46	5.0	5.55	1.5
					19721	247.84	248.38	0.54	5.0	4.90	4.6
					19722	248.38	248.84	0.46	5.0	5.11	4.8
					19723	248.84	249.62	0.78	5.0	3.90	3.7
					19724	249.62	250.31	0.69	5.0	3.50	5.6
					19726	250.31	251.10	0.79	5.0	3.81	11.6
					19727	251.10	252.00	0.90	5.0	4.83	6.8

CONQ	UEST ces Limited							Diam	ond	l Drill	Log
Drill Hole ID	CR-0)4-31	<u>Property</u> Township	Alexander Balmer			<u>NTS</u> District	52 N/04 Red Lal	ke		
Collar Location	Easting: Northing: Elevation: Projection:	450853.5n 5655935.2n 377.5 n NAD83 Zone	nE Gri nN 15N	d:	m m	Azimut Dip: Lenght	h: 28.0° -50.0° : 87.00m	Hole St Date St Date Fi	atus: arted: nished:	Abandoned November	1 30, 2004 4, 2004
Purpose of Hole									Propos	sed depth:	400.00 m
Surv	ey Data		Dri	lling Informa	ation_		Loggin	g and Samp	oling Inf	formation	
Depth(m) Azimut	h Dip	Method	Contractor:	Major Drill	ling		Geology Logg	ed by:	RT		
			Hole Type:	DD			Geotechnical	Logging by			
			Core Size:	BQ			Sampling by:		SD, EO	C	
			Drill Rig:	Major 37			Horizontal Tra	ce:			m
			Casing Left:			0m	Vertical Trace:				m
			<u>Comments</u>								
			Hole was aba	ndoned due	to ground c	onditions	. Drill moved 1m	NE for CR-0)4-31A		

								Diamon	d Drill Log	- CR-04-31
FROM	то	CODE	DESCRIPTION	Sample	From	То	Int	Au(ppb)	Fe(%)	As(ppm)
0.00	24.40	OB	OVERBURDEN - Overburden							
24.40	28.95	BAS	BASALT - Basalt							
			26.13 26.23 Fracture Zone							
			27.81 27.87 Sericite Alteration Zone							
28.95	38.44	BAS	BASALT - Very Fine Grained Basalt							
			30.20 38.44 Moderate foliation developes with areas of increased intensity	19729	31.30	32.23	0.93	30.0	4.11	513.0
			31.04 31.19 Carbonate Alteration Zone with some biotite alteration and a salt and	19728	31.46	31.65	0.19	20.0	2.93	894.0
			pepper texture	19730	32.23	32.44	0.21	420.0	7.00	7320.0
			31.51 31.57 Quartz Calcite Vein with silicification, bleaching, chlorite rim and a 4c	m 19731	32.44	33.13	0.69	50.0	4.99	247.0
			I CA=54°	19732	33.13	33.43	0.30	10.0	4.01	369.0
			31.66 31.87 Carbonate Alteration Zone with some biotite alteration and a salt and	19733	33.43	33.57	0.14	5.0	3.83	2590.0
			pepper texture	19734	33.57	33.84	0.27	10.0	5.66	10.6
			31.79 31.80 Quartz Calcite Vein with silicification, and bleaching, LCA=47°	19735	36.72	37.48	0.76	5.0	4.05	17.3
			32.20 32.21 Quartz Calcite Vein with silicification, bleaching, and 4% disseminated arsenopyrite LCA=54°	d 19736	38.16	38.44	0.28	340.0	5.75	9.1
			32.20 32.44 Carbonate Alteration Zone with some biotite alteration and strong folia with 4% disseminated arsenopyrite and pyrite LCA=54°	tion						
			33.42 33.67 Carbonate Alteration Zone with Biotite alteration, thin quartz calcite ve and 3% disseminated arsenopyrite and pyrite	ins						
			33.54 33.55 Chlorite Vein with biotite rim							
			36.72 37.14 Carbonate Alteration Zone with some biotite alteration and a salt and pepper texture							
			38.16 38.44 Shear zone before contact with Quartz Feldspar Porphyry Dyke. Interincreases towards contact as well as biotite alteration and disseminate pyrite (from 1% to 4% at contact) LCA=85°	ensit ed						
38.44	41.78	QFP	QUARTZ FELDSPAR PORPHYRY DYKE - Quartz Feldspar Porphyry Dyke with moderate							
			foliation and 3% arsenopyrite							
			38.44 41.78 Moderate foliation developes with areas of increased intensity LCA=7	8° 19737	38.44	38.78	0.34	50.0	2.87	529.0
			38.44 38.78 Biotite alteration zone from contact with 4% disseminated pyrite and	19738	38.78	39.50	0.72	50.0	1.30	1180.0
			arsenopyrite	19739	39.50	40.50	1.00	5.0	1.78	31.2
			38.69 Quartz Calcite Vein with silicification, and bleaching, LCA=33°	19740	40.50	41.40	0.90	70.0	1.42	15.2
			41.40 41.76 Shear zone before contact with Fine grained basalt. Intensity increas towards contact LCA=68°	ses 19741	41.40	41.78	0.38	10.0	1.56	6.2

									Diamon	d Drill Log	- CR-04-31
FROM	то	CODE		DESCRIPTION	Sample	From	То	Int	Au(ppb)	Fe(%)	As(ppm)
41.78	71.89	BAS	BASALT -	Very Fine Grained Basalt							
			41.78	71.83 Biotite alteration halo at contact with 4% disseminated pyrite	19742	41.78	42.12	0.34	10.0	4.17	2.8
			44.17	44.54 Sericite Alteration Zone	19743	44.17	44.54	0.37	5.0	3.69	1.9
			44.95	44.96 Quartz Calcite Vein with silicification, and bleaching, LCA=33°	19744	52.38	52.65	0.27	5.0	2.57	1.9
			45.57	45.64 Sericite Alteration Zone with stringer veins of quartz calcite	19745	53.47	54.60	1.13	5.0	8.01	3.3
			47.20	47.70 Shear Zone with quartz calcite and chlorite alteration	19746	71.17	71.89	0.72	5.0	4.51	0.2
			48.18	48.21 Silicification, Bleaching, Sericite, Chlorite Alteration Zone LCA=88°							
			52.47	52.62 Irregular Quartz Calcite Vein with Chlorite alteration, silicification and bleaching							
			53.26	53.27 Quartz Calcite Vein with a chlorite rim LCA=76°							
			53.47	54.50 Shear Zone with many thin quartz calcite veins with chlorite biotite alteration rims							
			58.01	58.09 Quartz Calcite Vein (1.5cm) with bleaching, and a 5mm Chlorite alteration halo							
			60.83	60.86 Irregular Quartz Alcali feldspar vein with bleaching							
			71.17	71.89 Shear zone before contact with Quartz Feldspar Porphyry Dyke, with biotite alteration zones LCA=68°							
			71.89	Contact LCA=74°							
71.89	79.52	QFP	QUARTZ	FELDSPAR PORPHYRY DYKE - Quartz Feldspar Porphyry Dyke							
			71.89	Contact LCA=74°	19747	71.89	72.26	0.37	5.0	1.54	10.6
			75.80	75.88 Irregular Quartz Alcali feldspar vein with bleaching, biotite alteration and	19751	74.24	74.52	0.28	5.0	1.52	47.0
				2% disseminated pyrite	19748	75.79	75.91	0.12	5.0	1.51	16.6
			76.10	76.31 Sericite Alteration zone with 4% disseminated pyrite and pyrrhotite	19749	76.09	76.31	0.22	10.0	1.44	307.0
			79.24	79.52 Shear zone before contact with Fine grained basalt. Intensity increases towards contact LCA=62°							
79.52	85.03	BAS	BASALT -	Very Fine Grained Basalt							
			79.67	79.70 Quartz Vein with carbonate alteration, bleaching and 3% disseminated pyrite and pyrrhotite LCA=61°							

Diamond Drill Log

Drill Hole ID	CR-04	1-31A	<u>Property</u> <u>Township</u>	Alexander Balmer			<u>NTS</u> <u>District</u>	52 N/04 Red Lake	
Collar Location	Easting:	450854.5n	nE G	rid:	m	Azimuth:	28.0°	Hole Status:	Completed
	Northing:	5655937.2n	∩N		m	Dip:	-50.0°	Date Started:	December 5, 2004
	Elevation:	377.5 n	n			Lenght	380.00m	Date Finished:	: December 9, 2004
	Projection:	NAD83 Zone	15N						

Purpose of Hole

Test massive sulphide area and EM conductor. Interpretation using N130/65 intersected by trend N240/65

Proposed depth: 400.00m

	<u>Survey</u>	Data			Drill	ing Information		Logging and Sam	oling Information	
Depth(m)	Azimuth	Dip	Method		ontractor:	Major Drilling		Geology Logged by:	RT	
24.00	28°	-51°	Acid							
74.00	28°	-57°	Acid	н	ole Type:	DD		Geotechnical Logging by		
125.00	28°	-51.5°	Acid	С	ore Size:	BQ		Sampling by:	SD, EC	
175.00	28°	-49.5°	Acid	D	rill Rig:	Major 37				
224.00	28°	-50°	Acid		asing Loft.	-	Οm	Horizontal Trace:		m
275.00	28°	-47°	Acid		asing Len.		UII	Vertical Trace:		m
325.00	28°	-48°	Acid	C	omments					
380.00	28°	-48.5°	Acid							

								Diamond	Drill Log -	CR-04-31A
FROM	то	CODE	DESCRIPTION	Sample	From	То	Int	Au(ppb)	Fe(%)	As(ppm)
0.00	25.31	OVB	OVERBURDEN							
25.31	36.58	BAS	BASALT WITH VARYING DEGREES OF SHEARING							
			25.84 25.85 Silicification and Bleaching vein with minor ammounts of carbonate	19761	29.00	30.34	1.34	5.0	4.65	27.1
			alteration LCA=36°	19762	30.34	31.08	0.74	20.0	3.50	410.0
			26.69 29.00 Weak foliation LCA=90°	19763	31.08	31.70	0.62	340.0	5.48	10000.0
			29.00 30.65 Shear Zone with moderate foliation, some thin quartz calcite veins, bit	otite 19764	31.70	32.00	0.30	60.0	4.71	2830.0
			20.65 22.52 Sheer Zene with strong folicities, this quests colorise histite strong	19766	32.00	32.58	0.58	5.0	4.05	4.5
			30.65 32.52 Shear Zone with strong rollation, thin quartz calcite veins, biotite alteration 1 CA-78°	19765 1	32.00	32.58	0.58	10.0	4.32	377.0
			31.08 31.47 Shear Zone with strong foliation, many thin quartz calcite veins strong	, 19767	35.43	35.80	0.37	5.0	4.19	3.7
			biotite alteration, moinor ammounts of chloritic alteration and 7% coal	se 19768	35.80	36.36	0.56	5.0	4.95	4.3
			anhedral and needle grains of arsenopyrite that increase in concentration towards silicitication and bleaching vein. LCA=75°	ation 19769	36.36	36.58	0.22	5.0	4.80	7.6
			31.51 31.70 Silicification and Bleaching vein with biotite alteration and minor ammounts of chlorite and sericite alteration LCA=62°							
			31.70 32.52 Shear Zone with strong foliation, many thin quartz calcite veins, biotite alteration, moinor ammounts of chloritic alteration and 2% disseminat arsenopyrite and 2% pyrite LCA=75°	ed						
			32.52 34.20 Shear Zone with moderate foliation, some thin quartz calcite veins, bit alteration and moinor ammounts of chloritic alteration LCA=78°	otite						
			35.52 35.75 Carbonate alteration Zone with moderate foliation, biotite alteration an 3% disseminated arsenopyrite and pyrite	d						
			36.36 36.58 Shear Zone before contact with Quartz Felfspar Porphyry Dyke with disseminated pyrite LCA=85°	4%						
			36.58 Contact LCA=82°							
36.58	40.60	QFP	QUARTZ FELDSPAR PORPHYRY DYKE WITH WEAK FOLIATION, AREAS OF BIOTITE ALTERATION AND THROUGHTOUT THERE ARE FEW QUARTZ CALCITE VEINS AND 3% DISSEMINATED PYRITE + ARSENOPYRITE							
			36.58 Contact LCA=82°	19770	36.58	36.93	0.35	150.0	1.69	1805.0
			38.94 38.95 Quartz calcite vein with bleaching rim and 4% disseminated anhedral	19771	36.93	38.36	1.43	10.0	1.62	301.0
			arsenopyrite LCA=34°	19772	38.36	39.43	1.07	5.0	1.99	158.5
			39.43 40.60 Sericite Alteration zone with thin Quartz calcite veins with bleaching ri	ms 19773	39.43	40.21	0.78	80.0	1.28	1200.0
			40.55 40.58 Quartz calcite vein with 8% disseminated pyrite in biotite chlorite alter halo LCA=63°	atior 19774	40.21	40.60	0.39	10.0	2.10	89.6

									Diamond	Drill Log -	CR-04-31A
FROM	то	CODE		DESCRIPTION	Sample	From	То	Int	Au(ppb)	Fe(%)	As(ppm)
40.60	70.84	BAS	BASALT W	VITH MODERATE FOLIATION AT 78 DEGREES AND AREAS OF BIOTITE ON							
			46.10	46.12 Pseudo Brecciated Quartz Calcite vein with biotite chlorite alteration an	d a 19776	40.60	41.00	0.40	10.0	4.38	6.8
			48 53	48.65 Shear Zone with strong foliation, with minor approunts of sericite	19777	51.22	52.10	0.88	5.0	6.57	3.1
			40.00	carbonate alteration and 3% disseminated pyrite and chalcopyrite	19778	52.10	53.00	0.90	5.0	4.69	2.0
				LCA=62°	19794	66.34	66.52	0.18	5.0	4.62	8.1
			50.87	50.91 Shear Zone with strong foliation, with thin quartz calcite veins and mino ammounts of sericite, chlorite alteration LCA=74°	r 19795	69.86	70.84	0.98	5.0	4.52	0.6
			51.22	52.10 Shear Zone with strong foliation, with biotite, quartz carbionate alteratio thin quartz calcite veins that have biotite rims. Zone contains approximately 2% disseminated pyrite LCA=73°	n,						
			54.72	55.27 Chlorite alteration zone							
			55.28	55.42 Silicification and Bleaching vein with a chlorite alteration halo around bleaching and minor ammounts of sericite alteration							
			57.81	57.88 Chlorite Biotite alteration zone with a salt and peper texture							
			58.57	59.00 Chlorite Biotite alteration zone with some thin silicification and bleaching veins with chlorite alteration halos	g						
			59.30	59.41 Chlorite Biotite alteration zone with a salt and peper texture							
			62.86	62.95 Silicification and Bleaching vein with chlorite alteration and minor ammounts of biotite alteration							
			63.41	63.45 Shear Zone with strong foliation, silicification, bleaching, chlorite anlteration and 2% disseminated pyrite LCA=34°							
			66.42	66.46 Quartz calcite vein (8mm) with anhedral tourmaline crystals, silicificatio bleaching and biotite alteration. LCA=55°	n,						
			66.88	67.04 Sericite Alteration zone							
			67.04	67.05 Quartz Calcite vein with bleaching rim on the down hole side of the vein and a biotite rim on the up hole side of the vein LCA=64°							
70.84	77.42	QFP	QUARTZ F	ELDSPAR PORPHYRY DYKE							
			74.42	74.88 Sericite alteration zone with 2 thin quartz calcite veins	19796	70.84	71.54	0.70	5.0	1.62	79.8
			77.42	Contact LCA=60°	19797	77.00	77.42	0.42	5.0	1.60	34.3
77.42	85.66	BAS	BASALT								
			77.42	79.46 Biotite Alteration Zone	19798	77.42	77.95	0.53	10.0	5.35	20.6
			77.42	Contact LCA=60°	19799	82.10	82.58	0.48	30.0	3.43	27.0
			77.42	77.98 Shear Zone at contact with Quartz Felfspar Porphyry Dyke with very fe	w 19536	82.58	82.96	0.38	5.0	0.36	2.7
				quartz calcite veins and areas of biotite alteration LCA=61°	19537	82.96	83.18	0.22	10.0	3.94	22.1
			82.58	82.96 Quartz Calcite vein with 2% disseminated chalcopyrite LCA=62°	19546	83.18	83.60	0.42	10.0	2.84	21.4
			82.96	83.97 Shear Zone with moderate foliation, with thin quartz calcite, biotite and	19538	83.18	83.60	0.42	10.0	3.00	24.9
			92.07	Chlorite alteration LUA=63 ⁵	19539	83.60	84.11	0.51	10.0	3.02	208.0
			03.97	little ammounts of chlorite alteration many thin quartz calcite veins and	19540	84.11	84.60	0.49	40.0	5.04	2020.0
				3% disseminated fine grained arsenopyrite. LCA=70°	19541	84.60	84.87	0.27	450.0	3.24	4550.0
			84.60	84.87 Sheared Quartz calcite vein with a high degree of biotite alteration and	4% 19542	84.87	85.21	0.34	80.0	6.04	1765.0
				disseminated fine grained arsenopyrite	19543	85.21	85.66	0.45	10.0	3.61	42.3

										Diamond	Drill Log -	CR-04-31A
FROM	то	CODE			DESCRIPTION	Sample	From	То	Int	Au(ppb)	Fe(%)	As(ppm)
85.66	176.59	DIO	MEDIUM (GRAINED ON	DIOTITE WITH SMALL AMMOUNTS OF SHEARING AND AREAS OF							
			88.62	88.74	Silicification and Bleaching zone with little amounts of sericite, chlorite and biotite alteration.	19544 19545	85.66 104 39	86.21 105 12	0.55 0.73	10.0 5.0	3.16 3.14	22.1 38.4
			89.86	90.84	Shear Zone before contact with Quartz Felfspar Porphyry Dyke with very	19547	105.12	105.91	0.79	5.0	3.50	16.8
			02.60	02 77	Silicification and Placehing voin (1 Fam) with a 0 fam ablarite halo	19548	105.91	106.62	0.71	10.0	3.28	22.9
			93.00	93.77	LCA=17°	19549	106.62	106.83	0.21	5.0	4.85	95.1
			98.08	98.10	Quartz Calcite vein (0.5cm) with a chlorite alteration halo and bleaching.	19551	106.83	107.27	0.44	10.0	5.21	428.0
			400.00	400.40		19002	116.39	117.00	0.40	5.0	4.39	23.9
			100.39	100.43	Quartz Calcite vein with chlorite alteration. LCA=79°	19555	117.00	117.20	0.35	10.0	2.00	10.0
			100.61	100.66	Quartz Calcite vein (0.5cm) with chlorite alteration. LCA=49°	19004	117.20	117.40	0.20	10.0	3.47	20.0
			102.37	102.47	Quartz Calcite vein with silicification, bleaching and chlorite alteration.	19555	117.40	110.22	0.41	20.0	3.22	22.5
			102.69	102.97	LUA=24 Carbonate alteration Zone with thin OCV/s with chlorite alteration rims	19550	117.07	110.32	0.45	20.0	3.92	20.0
			103.00	105.07	Carbonate alteration 201e with thin QCV's with chionte alteration mins.	19007	10.02	10.97	0.05	10.0	3.03	20.0
			104.59	100.03	QCV's LCA=70°	19000	121.40	121.09	0.43	150.0	4.17	6120.0
			116.39	118.32	Chlorite Alteration zone with thin QCV's with silicification, bleaching and	19559	121.09	122.21	0.32	20.0	2.54	1205.0
					biotite alteration. Zone contains approximately 2% fine grained	19500	122.21	122.09	0.40	30.0	0.00	1203.0
					disseminated arsenopyrite and 2% pyrite.	10562	122.09	123.20	0.57	10.0	2.00	191.5
			119.76	120.10	Sericite Alteration Zone with silicification, bleaching and chlorite alteration	19502	123.20	123.00	0.62	30.0	3.23	00.0
			120.96	121.09	Quartz Calcite vein (1.0cm) with biotite, sericite alteration and bleaching.	19563	125.97	126.24	0.27	10.0	3.06	49.3
					LCA=23°	19564	126.24	126.85	0.61	10.0	4.63	74.1
			121.46	124.18	Sericite alteration zone with many thin QCV's with silicification, bleaching	19505	120.00	127.27	0.42	10.0	4.34	11.0
					and bleaching halos. Zone contains approximately 3% masive and fine	19566	127.27	128.10	0.83	10.0	4.50	20.3
			12/ 18	124 40	Sericite alteration zone with little bleaching	19567	129.62	129.84	0.22	60.0	2.94	426.0
			124.10	124.40	Send the anter all of the with the bleaching. Shear Zana with strong folicition, this OCV/a silicification, bloaching	19568	133.09	133.30	0.21	110.0	4.18	775.0
			120.97	120.00	biotite and chlorite alteration and 2% disseminated pyrite. LCA=80°	19569	135.78	136.79	1.01	30.0	3.30	638.0
			126.85	127.27	Multiple guartz calcite veins with biotite rims, biotite alteration and	19570	137.45	137.84	0.39	10.0	2.22	282.0
					bleaching	19571	146.79	146.96	0.17	40.0	5.46	332.0
			127.27	128.10	Biotite Chlorite alteration Zone with silicification and bleaching	19572	148.77	148.89	0.12	10.0	2.62	15.0
			129.73		Quartz calcite vein (0.2cm) with biotite rim and bleaching halo with 4%	19573	160.25	160.54	0.29	30.0	2.00	17.1
					pyrrhotite, pyrite and chalcopyrite.	19574	164.39	164.99	0.60	10.0	2.86	122.5
			129.78		Quartz calcite vein (0.2cm) with biotite rim and bleaching halo with 4%	19576	164.99	165.42	0.43	10.0	2.79	/2.1
			400.00		pyrrhotite, pyrite and chalcopyrite.	19577	165.42	165.72	0.30	10.0	2.85	45.4
			129.83		Quartz calcite vein (0.2cm) with biotite rim and bleaching halo with 4%	19578	168.16	168.37	0.21	10.0	4.22	25.6
			133 11	133 24	Ouartz calcite vein (1 0cm) with chlorite halo with 4% arsenonvrite	19579	168.37	168.63	0.26	5.0	5.65	15.6
			100.11	100.24	chalcopyrite, pyrite and pyrrhotite, LCA=10°	19580	168.63	168.90	0.27	5.0	3.67	78.4
			135.84	136.79	Chlorite Bleaching Alteration Zone with multiple thin QCV's with bleaching	19581	168.90	169.12	0.22	5.0	4.89	53.2
					halos with 4% arsenopyrite, chalcopyrite and pyrite.	19582	169.12	169.22	0.10	5.0	4.71	13.3
			137.47	137.61	Quartz calcite vein (0.5cm) with biotite rim and 4% disseminated pyrite,	19583	169.22	169.42	0.20	5.0	2.47	10.8
					pyrrhotite and chalcopyrite LCA=12°	19584	169.42	170.00	0.58	10.0	4.27	20.7
			137.47	137.61	Quartz calcite vein (0.5cm) with biotite rim and 4% disseminated pyrite,	19585	175.44	175.86	0.42	5.0	4.38	2.3
			407 74	407.00	pyrrhotite and chalcopyrite. Cross-cutting the pervious QCV LCA=22°	19586	175.86	176.47	0.61	5.0	3.60	5.3
			137.74	137.82	disseminated pyrite, pyrrhotite and chalcopyrite.							

Diamond	Drill	Log -	CR-04-31A
---------	-------	-------	-----------

FROM	то	CODE		DESCRIPTION	Sample	From	То	Int	Au(ppb)	Fe(%)	As(ppm)
-			146.82	146.93 Quartz calcite vein with chlorite rim, biotite alteration and 7% massive							
			4 40 75	pyrrnotite, chalcopyrite and pyrite.							
			148.75	148.84 Quartz calcite vein with silicification, bleaching, biotite alteration, chlorite rim and 3% disseminated chalcopyrite, pyrite and pyrrhotite. LCA=37°							
			152.29	152.41 Quartz calcite vein (1.5cm) with silicification, bleaching, and chlorite alteration. LCA=29°							
			160.26	160.51 Quartz calcite vein (4.0cm) with silicification, bleaching, biotite, chlorite alteration, little sericite alteration and trace mineralization. LCA=28°							
			161.97	162.10 Quartz calcite vein (0.2cm) with a bleaching halo, chlorite alteration rim and 10% coarse to fine grained disseminated pyrrhotite.							
			163.13	163.15 Quartz calcite vein (1.0cm) with silicification, bleaching, and a chlorite alteration rim. LCA=73°							
			164.39	165.42 Shear Zone with strong foliation, thin QCV's, zone with biotite alteration and little chlorite alteration. LCA=72°							
			168.33	170.00 Shear Zone with strong foliation, with a high degree of chloritic alteration, thin QCV's, biotite alteration, silicification and bleaching, LCA=80°							
			168.48	168.58 Quartz calcite vein with biotite, chlorite, a 2cm chlorite alteration, bleaching and silicification.							
			169.02	169.03 Quartz calcite vein with a 2cm chlorite alteration halo and 8% disseminated pyrrhotite 1 CA=56°							
			169.25	169.38 Quartz calcite vein with a 3cm chlorite biotite alteration halo. LCA=47°							
			175.44	176.47 Biotite Carbonate Chlorite Alteration Zone with a salt and peper texture							
				and trace mineralization of pyrrhotite and pyrite.							
176.59	177.72	BAS?	MARGINAL	L DIORITE (BASALT ?) - FINE GRAINED, MASSIVE							
177.72	182.27	DIO	MEDIUM G	RAINED DIOTITE							
182.27	183.36	BAS?	MARGINAL	L DIORITE (BASALT ?) - FINE GRAINED, MASSIVE							
183.36	183.97	DIO	MEDIUM G	RAINED DIOTITE							
183.97	189.23	BAS	BASALT								
			184.86	186.91 Shear zone with moderate foliation and chlorite alteration. LCA=86°	20001	186.94	187.64	0.70	5.0	2.92	1.9
			186.21	186.26 Pseudo Brecciated Quartz Calcite vein with chlorite alteration and trace	20002	187.64	187.96	0.32	5.0	4.18	2.2
				mineralization of pyrrhotite. LCA=51°	20003	187.96	188.36	0.40	5.0	5.56	1.7
			186.91	189.23 Shear Zone with strong foliation which increases in intensity towards the biotite alteraed sheared basalt. Also chlorite alteration with little biotite alteration, some thin QCV's with silicification and bleaching. LCA=54°							
			187.87	187.94 Pseudo Brecciated Quartz Calcite vein with large quartz phenocryste, silicification, bleaching, chlorite alteration and 3% disseminated pyrite and pyrrhotite.							

										Diamond	Drill Log -	CR-04-31A
FROM	то	CODE			DESCRIPTION	Sample	From	То	Int	Au(ppb)	Fe(%)	As(ppm)
189.23	196.60	MS	BIOTITE A	TERED	SHEARED BASALT WITH MASSIVE SULPHIDE MINERALIZATION							
			189.23	190.37	Mineralized Zone with intence biotite alteration, approximately 15% of interval is comprised of multiple QCV's, and 20% massive pyrite and	20005 20006	189.25 189.80	189.80 190.37	0.55 0.57	30.0 30.0	15.00 15.00	78.8 93.1
					pyrrhotite. LCA=58°	20007	190.37	190.99	0.62	5.0	1.74	3.0
			189.23	196.60	Shear Zone with intense foliation, with intense biotite alteration, many thin OCV/s and 15% massive and disseminated purite, purification, many thin	20008	190.99	191.60	0.61	10.0	15.00	85.9
					chalcopyrite, LCA=58°	20009	191.60	192.06	0.46	10.0	15.00	59.0
			190.37	190.49	Calcite Quartz Vein with silicification and biotite alteration LCA=68°	20010	192.06	192.09	0.03	10.0	15.00	41.7
			190.49	190.90	Sheared Calcite Quartz Vein with a high degree of biotite alteration which	20011	192.63	193.13	0.50	5.0	15.00	53.0
					creates banding at 40 degrees, and silicification. LCA=54°	20012	193.13	193.25	0.12	5.0	7.32	9.3
			190.90	190.99	Calcite Quartz Vein with silicification and biotite alteration LCA=68°	20013	193.25	194.09	0.84	50.0	15.00	130.5
			190.99	191.13	Mineralized Zone with intence biotite alteration, approximately 10% of	20014	194.09	194.79	0.70	30.0	15.00	77.5
					number of multiple QCVS, and 30% massive pyrite and	20015	194.79	195.56	0.77	50.0	15.00	125.5
			191.23	191.42	Mineralized Zone with intence biotite alteration, approximately 10% of interval is comprised of multiple QCV's, and 30% massive pyrite and pyrrhotite.	20016	195.89	195.89	0.33 0.71	60.0	8.66 15.00	100.5
			191.48	191.57	Mineralized Zone with intence biotite alteration, approximately 15% of interval is comprised of multiple QCV's, and 20% massive pyrite and pyrrhotite. LCA=58°							
			191.65	191.77	Pseudo Brecciated Quartz Calcite vein with silicification, bioitite rim, a 4cm mineralized halo containing approximately 15% massine and disseminated pyrite and pyrrhotite. LCA=58°							
			191.82	192.24	Mineralized Zone with intence biotite alteration, approximately 10% of interval is comprised of multiple QCV's, and 20% massive pyrite and pyrrhotite.							
			192.24	192.63	Mineralized Zone with intence biotite alteration, approximately 15% of interval is comprised of multiple QCV's, and 15% massive pyrite and pyrrhoite.							
			192.63	192.73	Calcite Quartz Vein with biotite alteration, silicification and a 2cm mineralized halo with 20% disseminated sulphides.							
			192.82	193.10	Calcite Quartz Vein with biotite alteration, silicification and a 4cm mineralized halo with 35% disseminated sulphides.							
			193.25	193.59	Mineralized Zone with intence biotite alteration, approximately 10% of interval is comprised of multiple QCV's, and 40% massive pyrite and pyrrhotite.							
			193.72	194.05	Mineralized Zone with intence biotite alteration, approximately 15% of interval is comprised of multiple QCV's, and 25% massive pyrite and pyrrhotite.							
			194.29	194.47	Mineralized Zone with intence biotite alteration, approximately 10% of interval is comprised of multiple QCV's, carbonate alteration and 30% massive pyrite and pyrrhotite. LCA=53°							
			194.80	195.26	Mineralized Zone with intence biotite alteration, approximately 20% of interval is comprised of multiple QCV's, carbonate alteration and 20% massive pyrite and pyrrhotite.							
			195.37	195.56	Mineralized Zone with intence biotite alteration, approximately 15% of interval is comprised of multiple QCV's, carbonate alteration and 35% massive pyrite and pyrrhotite.							

									Diamond	Drill Log -	CR-04-31A
FROM	то	CODE		DESCRIPTION	Sample	From	То	Int	Au(ppb)	Fe(%)	As(ppm)
			195.87	195.94 Mineralized Zone with intence biotite alteration, approximately 5% of interval is comprised of multiple QCV's, carbonate alteration and 65% massive pyrite and pyrrhotite. LCA=70°							
			196.00	196.52 Mineralized Zone with intence biotite alteration, approximately 20% of interval is comprised of multiple QCV's, carbonate alteration and 25% massive pyrite and pyrrhotite.							
			196.60	196.60 Contact LCA=71°							
196.60	203.30	BAS	BASALT								
			196.60	198.14 Shear zone with decreasing intensity away from highly biotite altered	20018	196.60	197.00	0.40	5.0	4.17	6.6
				shaered basalt with biotite, carbonate alteration with multiple thin quartz	20019	197.00	197.67	0.67	5.0	4.85	6.0
			400.00	Calcite Veins	20020	197.67	198.14	0.47	5.0	4.54	2.0
			196.60	196.60 Contact LCA= $/1^{\circ}$	20021	198.14	199.01	0.87	5.0	4.57	2.5
			198.09	198.12 Quartz calcite vein silicification, bleaching and biotite alteration.	20022	199.01	199.54	0.53	5.0	6.29	2.2
	198.14	203.30 Blottle Alteration Zone with shearing, veriging degrees of alteration, multiple this OCV/s and approximately 2% discominated pyrthetite and	20023	199.54	199.80	0.26	30.0	14.95	3.8		
			multiple thin QCV's and approximately 3% disseminated pyrrhotite and pyrite.	20024	199.80	200.05	0.25	5.0	5.48	2.2	
			198.53	198.55 Quartz calcite vein silicification, bleaching, and a biotite chlorite alteration	20027	200.05	200.82	0.77	5.0	3.67	1.4
				rim. LCA=85°	20026	200.05	200.82	0.77	5.0	3.89	1.6
			198.92	198.94 Quartz calcite vein silicification, bleaching, and a biotite chlorite alteration	20028	200.82	201.56	0.74	5.0	7.14	0.8
				rim. LCA=83°	20029	201.56	202.16	0.60	5.0	3.70	0.4
			199.55	199.78 Mineralized Zone with biotite alteration, approximately 15% of interval is comprised of multiple QCV's, carbonate alteration and 8% disseminated pyrite and pyrrhotite.	20030	202.16	203.10	0.94	10.0	7.24	0.3
			200.00	200.10 Mineralized Calcite Quartz vein with biotite chlorite rim and approximatly 20% disseminated pyrite and pyrrhotite. LCA=60°							
			200.83	200.86 Mineralized Calcite Quartz vein with biotite chlorite rim and approximatly 15% disseminated pyrite and pyrrhotite. LCA=60°							
			200.90	200.94 Mineralized Calcite Quartz vein with biotite chlorite rim and approximatly 10% disseminated pyrite and pyrrhotite. LCA=53°							
			201.27	201.30 Mineralized Calcite Quartz vein with biotite chlorite rim and approximatly 8% disseminated pyrite and pyrrhotite. LCA=50°							
			201.45	201.46 Mineralized Calcite Quartz vein with biotite chlorite rim and approximatly 12% disseminated pyrite and pyrrhotite.							

									Diamond	Drill Log -	CR-04-31A
FROM	TO CODE			DESCRIPTION	Sample	From	То	Int	Au(ppb)	Fe(%)	As(ppm)
203.30	230.99 PBAS	PILLOW B	ASALT V	WITH GRADATIONAL CONTACT							
		204.13	204.19	Multiple quartz calcite veins (0.5cm) with chlorite biotite rims, and 8% disseminated pyrrhotite and pyrite. LCA=66°	20031 20032	204.07 204.82	204.82 205.41	0.75 0.59	5.0 5.0	6.88 3.17	0.7 2.6
		205.42	206.37	Quartz calcite vein chlorite sericite alteration near edges and a biotite alteration rim LCA=52°	20033	205.41	206.00	0.59	5.0	0.98	0.4
		207.02	207.07	Sericite Bleaching vein (1cm) with chlorite alteration and silicification.	20034 20035	206.00 206.35	206.35	0.35	5.0 5.0	1.22 3.43	2.0 3.7
		207.19	207.37	Quartz calcite stringer veins cross-cutting each other with biotite alteration	20036	208.32	209.00	0.68	5.0	6.41	0.3
		207.37	207.43	rims. Quartz calcite vein with a 1.5cm sericite, chlorite alteration halo and 8%	20037	211.65	212.10	0.27	5.0 5.0	4.26	1.3
		007.05	000.04	disseminated chalcopyrite and pyrite. LCA=35°	20039	212.37	212.66	0.29	5.0	8.24	0.2
		207.95	208.01	Pillow rim with sericite bleaching vein with chlorite alteration, silicification and 4% disseminated pyrrhotite and pyrite. LCA=44°	20040 20041	216.29 216.67	216.67 217.49	0.38 0.82	5.0 5.0	4.89 4.89	0.3 0.2
		207.95	208.01	Pillow rim with quartz calcite vein with a biotite rim and 2% disseminated	20042	217.49	217.96	0.47	5.0	4.28	0.1
			000 54	pyrite and pyrrhotite. LCA=56°	20043	218.88	219.05	0.17	5.0	6.15	0.1
		208.32	208.51	Pillow rim with thin calcite quartz vein with bleaching, sericite, chlorite,	20044	221.19	221.55	0.36	5.0	2.35	1.8
		208 70	208 84	Pseudo Brecciated Quartz Calcite vein with silicification bleaching	20045	221.55	221.80	0.25	5.0	0.64	2.5
		200.70	200.04	chlorite, bioitite alteration and 3% disseminated pyrrhotite, pyrite and	20046	221.80	222.03	0.23	5.0	3.22	2.1
				magnetite.	20047	222.03	222.15	0.12	5.0	3.09	2.3
		209.41	209.53	Sheared Pillow rim with calcite quartz veins, chlorite biotite alteration and	20048	222.15	222.29	0.14	5.0	7.41	0.9
				4% disseminated pyrrhotite, pyrite and magnitite. LCA=60°	20049	222.29	222.49	0.20	5.0	2.54	1.4
		209.60	209.68	Sheared Pillow rim with calcite quartz veins, chlorite biotite, sericite	20050	222.49	222.86	0.37	5.0	3.05	1.1
		040.00		alteration and 5% disseminated pyrrhotite, pyrite and magnitite. LCA=65°	20052	222.86	223.19	0.33	5.0	3.67	0.3
		210.86	210.98	Quartz calcite vein with a silicification, bleaching and a chlorite blotite	20053	222.86	223.19	0.33	5.0	3.87	0.6
		211 85	211 88	Pillow rim with thin calcite quartz veins with 1 cm chlorite biotite alteration	20054	223.19	223.54	0.35	5.0	3.21	0.6
		211.00	211.00	halos and 10% disseminated pyrrhotite, chalcopyrite and pyrite, LCA=66	20055	223.54	224.05	0.51	5.0	5.73	1.3
		212.41	212.56	Pseudo Brecciated Calcite Quartz vein with bleaching, chlorite, bioitite	20056	224.05	225.00	0.95	5.0	2.63	1.2
				alteration and 3% disseminated pyrrhotite, pyrite and chalcopyrite. LCA=60°	20057	230.45	230.99	0.54	5.0	3.52	114.0
		213.92	213.99	Quartz calcite vein with a chlorite alteration rim, bleaching, silicification and 4% disseminated pyrrhotite and pyrite. LCA=51°							
		216.49	216.65	Multiple thin Calcite Quartz Vein with chlorite biotite alteration rims, silicification, bleaching and 4% disseminated pyrite and pyrrhotite. LCA=78°							
		217.49	217.57	Quartz calcite vein silicification, bleaching, a biotite chlorite alteration rim and 3% disseminated pyrrhotite and pyrite. LCA=57°							
		217.61	217.69	Quartz calcite vein silicification, bleaching, a biotite chlorite alteration rim and 3% disseminated pyrthotite and pyrite. I CA=69°							
		218.90	219.03	Shear Zone with strong foliation, with biotite alteration, thin QCV's, bleaching, chlorite alteration and 3% disseminated pyrrhotite and pyrite. LCA=67°							
		221.26	221.35	Carbonate Alteration Zone							
		221.34	221.35	Bleaching Silicification Chlorite Alteration Zone LCA=77°							
		221.53	221.80	Quartz calcite vein silicification, a 1cm bleaching halo and biotite alteration. LCA=43°							
		222.03	222.15	Quartz calcite vein silicification, bleaching, chlorite and sericite alteration.							

									Diamono	Drill Log	- CR-04-31A
FROM	то	CODE		DESCRIPTION	Sample	From	То	Int	Au(ppb)	Fe(%)	As(ppm)
			222.24	222.49 Quartz calcite vein silicification, bleaching, chlorite sericite alteration and 2% disseminated pyrite.							
			224.23	224.26 Calcite Quartz Vein with bleaching and chlorite alteration LCA=62°							
			224.36	224.38 Calcite Quartz Vein with bleaching and chlorite alteration LCA=67°							
			225.00	225.04 Calcite Quartz Vein with silicification, bleaching and a 1cm chlorite biotite alteration halo LCA=78°							
			226.92	227.02 Irregular Calcite Quartz Vein with silicification, bleaching and a 1cm chlorite biotite alteration							
			229.84	229.93 Irregular Quartz Calcite Vein with silicification, bleaching and a 1cm chlorite biotite alteration							
			230.15	230.21 Irregular Quartz Calcite Vein with silicification, bleaching and a 1cm chlorite biotite alteration							
			230.46	230.99 Shear zone before contac with quartz feldspar porphyry dyke with strong foliation, biotite alteration and thin CQV's							
230.99	233.44	QFP	QUARTZ I	FELDSPAR PORPHYRY DYKE							
			231.54	232.77 Fractured Zone	20058	230.99	231.51	0.52	5.0	1.80	2.4
			231.79	232.05 Fractured Zone	20059	233.00	233.44	0.44	10.0	1.55	6.6
			233.44	233.44 Contact LCA=46°							
233.44	233.72	WACKE	WACKE W	VITH STRONG FOLIATION AND 6% PYRITE AND PYRRHOTITE							
			233.44	233.44 Contact LCA=46°	20060	233.44	233.72	0.28	30.0	6.37	1.8
233.72	235.88	PBAS	PILLOW B	3ASALT WITH STRONG FOLIATION AND A GRADATIONAL CONTACT							
			235.68	235.79 Calcite Quartz Vein with silicification, bleaching and biotite alteration	20061	233.72	234.59	0.87	10.0	3.41	2.8
				LCA=49°	20062	235.40	235.68	0.28	10.0	4.02	5.0
					20063	235.68	235.81	0.13	5.0	1.62	5.0
					20064	235.81	235.88	0.07	5.0	4.34	2.2
235.88	236.69	QFP	QUARTZ I	FELDSPAR PORPHYRY DYKE WITH STRONG FOLIATION							
			236.37	236.69 Quartz Feldspar Porphyry Finger LCA=75°	20065	235.88	236.30	0.42	10.0	3.79	2.5
			236.54	236.69 Sheared Quartz Feldspar Porphyry Dyke LCA=75°	20066	236.30	236.54	0.24	5.0	5.31	5.3
					20067	236.54	236.69	0.15	5.0	2.20	3.8

								Diamond	Drill Log -	CR-04-31A
FROM	то	CODE	DESCRIPTION	Sample	From	То	Int	Au(ppb)	Fe(%)	As(ppm)
236.69	239.15	QFP	PERVASILY ALTERED QUARTZ FELDSPAR PORPHYRY DYKE WITH SUPER STRONG SHEARING							
			236.69 237.56 Intensily Sheared Quartz Feldspar Porphyry Dyke with high degree of	20068	236.69	237.06	0.37	5.0	1.58	27.2
			silicification, bleaching, sericite, biotite alteration and 3% disseminated	20069	237.06	237.26	0.20	5.0	0.92	12.4
			pyrite, chalcopyrite and arsenopyrite. LCA=75°	20070	237.26	237.56	0.30	5.0	1.40	11.0
			237.56 237.82 Sheared Quartz Feldspar Porphyry Dyke with silicification, bleaching,	20071	237.56	237.82	0.26	5.0	1.16	18.3
			237.82 238.14 Intensiv sheared quartz vein LCA-75°	20072	237.82	238.14	0.31	5.0	1.62	15.4
			238.14 238.33 Sheared Quartz Feldspar Pornhyry Dyke with cilicification bleaching	20073	238.14	238.33	0.20	5.0	1.72	10.4
			biotite, sericite and chlorite alteration. LCA=75°	20074	238.33	238.55	0.22	5.0	7.22	19.9
			238.33 238.55 Sheared Basalt with high degree of chlorite, biotite guartz carbonate	20075	238.55	238.69	0.14	5.0	1.69	9.9
			alteration and 3% disseminated pyrite and pyrrhotite LCA=75°	20076	238.69	238.96	0.27	5.0	3.26	17.2
			238.55 238.69 Sheared Quartz Feldspar Porphyry Dyke with silicification, bleaching,	20079	238.96	239.15	0.19			
			biotite, sericite and chlorite alteration. LCA=75°	20078	238.96	239.15	0.19	5.0	3.35	910.0
			238.69 238.96 Sheared Basalt with high degree of chlorite, biotite quartz carbonate alteration and 3% disseminated pyrite and pyrrhotite LCA=75°							
			238.96 239.15 Sheared Quartz Feldspar Porphyry Dyke with silicification, high degree chlorite, biotite, carbonate alteration and 3% disseminated pyrite and pyrrhotite LCA=75°	0						
239.15	239.88	QFP	QUARTZ FELDSPAR PORPHYRY DYKE WITH STRONG FOLIATION							
			239.15 239.88 Sheared Quartz Feldspar Porphyry Dyke with silicification, high degree chlorite, biotite, carbonate alteration and 3% disseminated pyrite and pyrrhotite LCA=75°	o 20080	239.15	239.88	0.73	10.0	1.68	40.5
239.88	247.15	PBAS	SHERED PILLOW BASALT							
			240.27 240.29 Quartz calcite vein silicification, bleaching, and a chlorite rim.	20081	239.88	240.49	0.61	5.0	2.08	4.6
			245.12 246.91 Shear Zone with strong foliation, with biotite alteration, thin QCV's, and	20082	240.49	241.35	0.86	10.0	3.99	1.2
			3% disseminated pyrrhotite and pyrite. LCA=64°	20083	245.10	245.92	0.82	5.0	3.54	42.5
			246.91 247.15 Quartz calcite vein silicification, bleaching, biotite, sericite and chlorite	20084	245.92	246.73	0.81	10.0	2.80	72.8
			alteration.	20085	246.73	246.91	0.18	20.0	11.60	27.3
				20086	246.91	247.15	0.24	5.0	1.60	1.7
247.15	252.57	QFP	QUARTZ FELDSPAR PORPHYRY DYKE							
				20087	247.15	247.35	0.20	5.0	2.71	1.1
				20088	252.10	252.57	0.47	10.0	1.52	308.0

										Diamond	Drill Log -	CR-04-31A
FROM	то	CODE			DESCRIPTION	Sample	From	То	Int	Au(ppb)	Fe(%)	As(ppm)
252.57	264.81	1 PBAS	SHERED	PILLOW	BASALT							
			252.57	257.00	Shear Zone with moderate foliation, with biotite, chlorite alteration,	20089	252.57	253.01	0.44	50.0	5.67	61.4
					bleaching, many thin QCV's, and 3% disseminated pyrite and pyrrhotite.	20090	254.00	254.55	0.55	10.0	3.98	27.0
			257.00	257 08	LCA=00 ⁻ Calcite Quartz Vein with chlorite sericite alteration silicification	20091	254.55	254.68	0.13	10.0	12.05	5.0
			257.00	257.00	bleaching and biotite alteration.	20092	254.68	255.11	0.43	10.0	3.86	22.7
			259.71	259.76	Calcite Quartz Vein with a chlorite alteration rim, silicification, bleaching and biotite alteration. LCA=80°	20093	264.60	264.81	0.21	5.0	4.48	0.9
			259.85	259.93	Quartz Calcite Vein with a chlorite rim, silicification, bleaching and biotite alteration. LCA=50° $$							
			260.48	260.56	Quartz Calcite Vein with a chlorite rim, silicification, bleaching and little sericite alteration. LCA=88 $^{\circ}$							
			263.82	263.85	Quartz Calcite Vein with a chlorite rim. LCA=84°							
			264.08	264.11	Irregular Quartz Calcite Vein with a chlorite rim.							
			264.60	264.81	Shear Zone at contact with Quartz Felfspar Porphyry Dyke with biotite altertation and thin quartz calcite veins LCA=46°							
264.81	265.24	4 QFP	SERICITE	ALTERE	D QUARTZ FELDSPAR PORPHYRY DYKE							
						20094	264.81	265.24	0.43	5.0	2.13	0.5
265.24	301.57	7 PBAS	PILLOW E	BASALT								
			265.24	265.82	Shear Zone at contact with Quartz Felfspar Porphyry Dyke with biotite	20095	265.24	265.82	0.58	5.0	3.13	1.7
			000 54		altertation and thin quartz calcite veins LCA=68°	20096	273.20	273.71	0.51	5.0	3.70	0.7
			269.54	269.66	Sericite Alteration Zone with silicification, bleaching and chlorite alteration	20097	280.06	280.71	0.65	5.0	3.79	16.1
			270.28	270.34	Sericite Carbonate Alteration Zone with chlorite alteration silicification, and	20098	280.71	281.30	0.59	5.0	3.61	15.5
			270.34	270.41	Pseudo Brecciated Calcite Quartz vein with chlorite, silicification,	20099 20101	300.69 301 36	301.46 301.57	0.77	5.0 5.0	3.72 4.58	36.9 9.0
					bleaching, bioitite alteration and a 0.5cm chlorite halo. LCA=53°	20101	001.00	001.07	0.21	0.0	4.00	0.0
			273.22	273.37	Pseudo Brecciated Calcite Quartz vein with chlorite alteration and 3% disseminated pyrite and pyrrhotite.							
			273.44	273.46	Sericite Alteration Zone LCA=74°							
			273.47	273.50	Sericite Alteration Zone with silicification, and bleaching. LCA=87°							
			274.22	274.25	Sericite Alteration Zone with silicification, bleaching and chlorite alteration LCA=64°							
			278.31	278.61	Carbonate Alteration zone with little silicification, bleaching and thin QCV's							
			278.83	279.34	Carbonate Alteration zone with little silicification, bleaching, thin QCV's and biotite alteration.							
			279.34	279.67	Quartz Calcite Vein with biotite alteration, silicification, and bleaching. LCA=72°							
			280.06	281.29	Shear zone with biotite alteration, silicification, bleaching, chlorite, sericite alteration and 2% disseminated pyrite. LCA=73°							
			287.18	287.23	Quartz Calcite Vein with silicification, bleaching, chlorite and biotite alteration.							
			297.17	297.36	Sericite Bleaching Zone with silicification and chlorite alteration.							
			300.37	301.57	Shear Zone with moderate foliation, at contact with Quartz Feldspar porphyry dyke with biotite, chlorite alteration, and many thin QCV's.							
			301.50	301.57	Quartz Calcite Vein with biotite alteration, silicification, and little bleaching at contact with Quartz Feldspar porphyry dyke LCA=73°							

									Diamond	Drill Log -	CR-04-31A
FROM	то	CODE		DESCRIPTION	Sample	From	То	Int	Au(ppb)	Fe(%)	As(ppm)
301.57	309.96	QFP	QUARTZ F	ELDSPAR PORPHYRY DYKE WITH MODERATE FOLIATION AT 73							
			307.20	307.57 Sericite Alteration Halo around pseudo basalt finger	20102	301.57	301.74	0.17	260.0	1.33	479.0
			307.57	307.69 Pseudo Basalt finger with silicification, bleaching, chlorite alteration and	20103	307.20	307.57	0.37	170.0	1.12	804.0
				4% disseminated pyrite. LCA=37°	20104	307.57	307.67	0.10	5.0	5.64	41.0
			307.69	307.91 Sericite Alteration Halo around pseudo basalt finger	20105	307.67	307.91	0.24	60.0	1.08	451.0
			308.18	309.22 Sericite alteration zone with trace arsenopyrite and pyrrhotite	20106	308.18	309.22	1.04	150.0	1.17	1125.0
			309.96	309.96 Contact LCA=84°	20107	309.22	309.82	0.60	250.0	1.42	712.0
					20108	309.82	309.96	0.14	450.0	2.31	290.0
309.96	312.28	PBAS	SHERED ALTERATI	PILLOW BASALT WITH MANY QCV'S AND BIOTITE AND CHLORITE ON							
			309.96	309.96 Contact LCA=84°	20109	309.96	310.28	0.32	10.0	4.50	40.3
			309.96	312.28 Shear Zone with moderate foliation, biotite, and chlorite alteration. LCA=82°							
			312.28	312.28 Contact LCA=80°							
312.28	314.69	QFP	QUARTZ I	ELDSPAR PORPHYRY DYKE							
			312.28	312.28 Contact LCA=80°	20110	312.48	312.87	0.39	10.0	3.72	31.4
					20111	312.87	313.12	0.25	20.0	2.09	2.6
					20112	314.31	314.69	0.38	5.0	1.72	1.4

										Diamond	Drill Log -	CR-04-31A
FROM	то	CODE			DESCRIPTION	Sample	From	То	Int	Au(ppb)	Fe(%)	As(ppm)
314.69	380.06	PBAS	PILLOW B	ASALT								
			314.69	320.94	Shear Zone with moderate to strong foliation, biotite, chlorite alteration and many thin QCV/s	20113	314.69	314.95	0.26	5.0	5.42	53.6
			316.34	316.43	Irregular Quartz Calcite Vein with silicification, bleaching and chlorite	20113	318.95	319.36	0.41	5.0	2.67	7.3
			210 24	210 20	alteration.	20116	324.27	324.38	0.11	5.0	6.80	0.8
			310.34	310.39	Sendle Breaching Zone with sinchication and inter biotite alteration.	20117	341.85	342.32	0.47	5.0	2.32	1.8
			319.90	320.16	and silicification.	20118	342.32	343.44	1.12	5.0	3.47	4.7
			324.29	324.36	Quartz Calcite Vein with shearing, biotite alteration which has an augen	20119	342.44	342.75	0.31	10.0	3.46	13.0
					texture around QC phenocrysts, chlorite alteration and 3% disseminated	20120	344.80	345.30	0.50	20.0	1.88	9.1
					pyrite. LCA=68°	20121	369.69	370.40	0.71	5.0	1.30	0.6
			325.71	325.92	Sericite Alteration Zone with silicification, bleaching carbonate and chlorit	20122	372.48	372.86	0.38	5.0	3.60	20.0
			326 11	326 /6	alleration. Sericite Alteration Zone with silicification, bleaching carbonate and chlorit.	20123	372.86	373.46	0.60	20.0	3.20	20.9
			520.11	520.40	alteration.	20124	379.30	379.59	0.29	20.0	2.62	20.4
			330.01	330.11	Sericite Carbonate Alteration Zone with silicification, bleaching and chlorite alteration	20125	379.59	380.06	0.47	5.0	3.03	17.9
			330.92	331.02	Sericite Carbonate Alteration Zone with silicification, bleaching and chlorite alteration.							
			331.17	331.31	Sericite Carbonate Alteration Zone with silicification, bleaching and chlorite alteration							
			331.58	331.80	Sericite Carbonate Alteration Zone with silicification, bleaching and							
			333.61	336.34	Shear Zone with few QCV's and biotite alteration							
			338.35	338.38	Sericite Alteration Zone with silicification, bleaching carbonate and chlorit alteration. I $CA=52^{\circ}$							
			341.87	342.31	Pseudo Brecciated Quartz Calcite vein with biotite alteration, silicification, chlorite alteration, bleaching and 2% pyrite.							
			342.45	342.63	Pseudo Brecciated Quartz Calcite vein with biotite alteration, silicification, chlorite alteration, bleaching and 2%pyrite.							
			343.21	343.26	Quartz Calcite Vein with silicification, bleaching, sericite, biotite and chlorite alteration. LCA= 10°							
			343.33	343.38	Quartz Calcite Vein with silicification, bleaching, sericite, biotite and chlorite alteration.							
			344.82	345.30	Pseudo Brecciated Quartz Calcite vein with biotite alteration, silicification, chlorite alteration, bleaching and 2%pyrite.							
			347.91	348.02	Bleaching Silicification Chlorite Alteration Zone							
			348.97	349.02	Quartz Calcite Vein with a 2cm chlorite alteration halo LCA=67°							
			353.29	353.62	Chlorite Sericite Alteration Zone with QCV's silicification and bleaching							
			354.05	354.15	Pseudo Brecciated Quartz Calcite vein with chlorite alteration,							
					silicification, bleaching and 2%pyrite.							
			354.92	355.05	Pseudo Brecciated Quartz Calcite vein with chlorite alteration, silicification, bleaching and 2%pyrite.							
			356.08	356.33	Chlorite Carbonate Alteration Zone							
			359.44	359.47	Silicification Sercite Chlorite Vein with a 1cm chlorite halo							
			360.61	360.61	Pseudo Brecciated Quartz Calcite vein with chlorite alteration, silicification, bleaching and 2%pyrite.							
			368.60	368.74	Chlorite Sericite Alteration Zone							

Diamond Drill Log - CR-04-31A

FROM	то	CODE		DESCRIPTION	Sample	From	То	Int	Au(ppb)	Fe(%)	As(ppm)
			369.67	369.93 Quartz Calcite Vein with silicification, bleaching, little biotite and chlorite alteration. LCA=72°							
			370.07	370.31 Quartz Calcite Vein with a 1.5cm chlorite alteration halo							
			372.51	372.90 Alteration Zone with silicification, bleaching, biotite, sericite, chlorite alteration, few thin QCV's and 3% pyrite							
			372.90	373.50 Shear Zone with thin QCV's, biotite, chlorite alteration.							
			377.28	377.43 Sericite Chlorite Alteration Zone with silicification and bleaching.							
			377.71	377.77 Calcite Quartz vein with biotite, chlorite alteration and bleaching. LCA=80 $^{\circ}$							
			378.00	380.00 Shear Zone with moderate to strong foliation, biotite, chlorite alteration some silicification and bleaching. LCA=85°							

Diamond Drill Log

Drill Hole ID	CR-0)4-32	<u>Property</u> <u>Township</u>	Alexander Balmer			<u>NTS</u> <u>District</u>	52 N/04 Red Lake			
Collar Location	Easting: Northing: Elevation:	450917.71 5655864.41 378.51	450917.7mE Grid: 5655864.4mN 378.5 m		m m	Azimuth: Dip: Lenght	28.0° -50.0° 387.00m	Hole Status: Completed Date Started: December 9, 200 Date Finished: December 16, 20			

Purpose of Hole

Proposed depth: 400.00m

	<u>Survey</u>	Drilling Information					Logging and Sampling Information						
Depth(m)	Azimuth	Dip	Method	Contractor:	Maior Drilling		Geology Logged by:	SD					
37.00) 28°	-43°	Acid					-					
87.00) 28°	-49.5°	Acid	поте туре:	עט		Geotecnnical Logging by						
138.00) 28°	-50°	Acid	Core Size:	BQ		Sampling by:	RT					
186.00) 28°	-44°	Acid	Drill Rig:	Major 37								
250.00) 28°	0	Acid	Casing Loft:	·	0m	Horizontal Trace:	m					
300.00) 28°	-46°	Acid	Casing Len.		UII	Vertical Trace:	m					
350.00) 28°	-49°	Acid	Commonts									
387.00) 28°	0	Acid	<u>comments</u>									
			<u> </u>										

Diamond Drill Log - CR-04-32

FROM	то	CODE		DESCRIPTION	Sample	From	То	Int	Au(ppb)	Fe(%)	As(ppm)
0.00	37.00	OVB	OVERBURDEN								
37.00	39.42	QFP	QUARTZ FELDSP	AR PORPHYRY DYKE							
			37.24	Quartz Carbonate Vein, 1" wide, sericite alteration LCA=60°							

										Diamon	d Drill Log	- CR-04-32
FROM	то	CODE			DESCRIPTION	Sample	From	То	Int	Au(ppb)	Fe(%)	As(ppm)
39.42	82.99	DIO	MEDIUM TO	O COAF	RSE GRAINED DIORITE							
			39.42	40.47	Medium Grained Diorite, moderately sheared,	20127	46.68	46.83	0.15	10.0	5.08	6.6
			40.36	40.47	gradational contact b/w medium to coarse grained diorite from	20128	59.42	59.54	0.12	5.0	8.51	33.6
			40.47	42.23	Coarse Grained Diorite, crystalline	20129	60.33	60.53	0.20	5.0	3.33	14.9
			42.23	43.30	Medium Grained Diorite	20130	62.94	63.46	0.52	5.0	3.74	20.4
			42.23		sharp contact b/w coarse gained diorite to medium grained diorite	20131	66.09	66.16	0.07	5.0	4.00	22.4
					LCA=70°	20132	67.22	67.73	0.51	10.0	3.81	13.4
			43.30	44.40	Coarse Grained Diorite, crystalline	20133	69.00	69.26	0.26	5.0	3.46	9.0
			43.30		sharp contact b/w medium gained diorite to coarse grained diorite	20134	69.72	69.79	0.07	10.0	5.26	7.4
					LCA=90°	20135	69.79	69.92	0.13	10.0	4.14	6.9
			44.35	44.40	Gradational contact b/w coarse to medium grained diorite from	20136	69.92	70.10	0.18	5.0	4.31	6.4
			44.40	44.86	Medium Grained Diorite	20137	71.24	71.40	0.16	5.0	4.78	1.7
			44.62	45.00	Quartz Carbonate Vein, 1/2" wide, chlorite alteration LCA=70°	20138	78.34	78.63	0.29	5.0	3.71	9.1
			44.86	45.00	Fractured zone	20139	80.69	81.04	0.35	5.0	3.64	12.7
			45.00	45.08	Medium Grained Diorite	20140	81.04	81.49	0.45	5.0	4.74	15.9
			46.68	46.83	Sheared Diorite, with small quartz carbonate vein, biotite + chlorite	20141	81.49	82.15	0.66	5.0	4.62	14.5
			F1 01		alteration, trace mineralization LCA=80°	20142	82.15	82.64	0.49	10.0	4.19	14.1
			51.21	F2 00		20143	82.64	82.95	0.31	10.0	4.34	8.0
			51.95	52.09	Flactured 2011e							
			52.09									
			53.91		Carbonate Vein, chlorite + biotite (some) alteration, no mineralization, 1/	>						
			00101		LCA=50°	-						
			54.00	54.16	Quartz Carbonate Vein, chlorite + biotite alteration, sericite alteration, no mineralization LCA=15° $$							
			56.81	56.86	Fractured zone							
			59.34	59.61	Increase in sericite alteration zone (lighter colour)							
			59.42	59.54	Quartz Carbonate Vein, mineralization (pyrrhotite), chlorite + biotite + sericite alteration LCA= 10°							
			60.21	60.24	Sheared Diorite, biotite alteration LCA=50°							
			60.33	60.53	Sheared Diorite, chlorite alteration LCA=75°							
			60.40	60.49	Quartz Carbonate Vein, chlorite + biotite alteration LCA=75°							
			62.67	62.73	Fractured zone							
			62.94	63.46	Sheared Diorite, biotite alteration LCA=62°							
			64.25	64.34	Quartz Carbonate Vein, sericite alteration, chlorite + biotite alteration $LCA=17^{\circ}$							
			66.09	66.16	Increased biotite alteration, slight shearing							
			67.22	67.73	Increased biotite alteration, slight shearing							
			68.36		Quartz Carbonate Vein, chlorite + biotite alteration, no mineralization LCA=58°							
			69.00	69.26	Increased biotite alteration, slight shearing							
			69.38	69.43	Sheared Diorite, biotite alteration (some) LCA=62°							
			69.72	69.79	Sheared Diorite, mineralization (pyrite), biotite + chlorite alteration							
				-	LCA=70°							
			69.92	69.98	Sheared Diorite (slight) LCA=65°							
			70.26	70.31	Fractured zone							
			70.43	70.50	Fractured zone							

Diamond	Drill	Log -	CR-04-32
---------	-------	-------	----------

FROM	то	CODE		DESCRIPTION	Sample	From	То	Int	Au(ppb)	Fe(%)	As(ppm)
			71.24	71.40 Sheared Diorite, chlorite + biotite + sericite alteration, trace amounts of disseminated sulfides (pyrite) LCA=72°							
			72.57	72.88 Fractured zone, biotite alteration, slightly sheared							
			74.47	Quartz Carbonated Vein, sericite + chlorite + biotite alteration, trace mineralization (pyrite) LCA=30°							
			76.43	76.47 Sheared Diorite, chlorite + biotite alteration (couldn't get angle)							
			78.34	78.63 Increased biotite alteration, slight shearing							
			78.96	79.14 Fractured Zone							
			79.97	80.14 Increase in sericite alteration zone (lighter colour)							
			80.69	81.04 Increased biotite alteration, slight shearing							
			81.04	81.49 Increased biotite alteration, slight shearing							
			81.49	82.15 Intensely sheared diorite, biotite alteration LCA=75°							
			82.15	82.64 Intensely sheared diorite, biotite alteration LCA=73°							
			82.64	82.95 Intensely sheared diorite, biotite alteration LCA=78°							
82.99	88.24	MD	MAFIC DY	<e< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></e<>							
			83.77	83.81 Fracture zone	20144	82.99	83.91	0.92	160.0	1.44	1705.0
			84.24	sericite altered vein	20145	83.91	84.35	0.44	70.0	1.48	782.0
			85.42	85.48 Fractured Zone	20146	84.35	85.21	0.86	180.0	1.38	1580.0
			85.60	86.37 Fractured Zone	20147	85.21	85.41	0.20	60.0	1.28	920.0
			87.91	87.95 Increase in both biotite + sericite alteration	20148	85.41	86.66	1.25	60.0	1.27	486.0
					20149	86.66	87.25	0.59	200.0	1.26	2300.0
					20216	87.25	88.24	0.99	140.0	1.92	2130.0

										Diamon	d Drill Log	- CR-04-32
FROM	то	CODE			DESCRIPTION	Sample	From	То	Int	Au(ppb)	Fe(%)	As(ppm)
88.24	119.66	DIO	MEDIUM 1	O COAR	SE GRAINED DIORITE							
			88.24	88.76	Moderately sheared diorite LCA=80°	20217	88.24	88.76	0.52	5.0	6.54	28.9
			88.99		Carbonate vein, chlorite alteration, no mineralization LCA=65°	20218	98.40	98.57	0.17	10.0	4.07	132.0
			89.46	97.32	Medium grained diorite	20219	98.57	98.81	0.24	20.0	2.85	454.0
			90.50		Carbonate Vein, chlorite alteration, no mineralization LCA=60°	20220	98.81	98.91	0.10	17600.0	3.57	8910.0
			94.67	94.74	Increased chlorite alteration	20221	98.91	99.41	0.50	20.0	4.32	77.6
			96.19	96.21	Increased biotite alteration, slight shearing	20222	116.67	117.54	0.87	10.0	2.94	26.6
			96.56	96.59	Increased biotite alteration, slight shearing	20223	117.54	118.03	0.49	10.0	2.71	14.4
			97.32	99.41	Sheared diorite, biotite + chlorite alteration LCA=75°	20224	118.03	118.48	0.45	10.0	3.29	29.8
			97.90		Carbonate vein, no mineralization LCA=80°	20225	118.48	119.05	0.57	5.0	3.65	29.3
			98.24		Carbonate vein, biotite + chlorite alteration, no mineralization LCA=80°	20226	119.05	119.66	0.61	5.0	4.43	82.0
			98.40	98.57	Sheared diorite (slight) LCA=76°							
			98.57	98.91	Quartz Carbonate Vein, biotite + chlorite alteration, sericite alteration, 1% disseminated sulfides (pyrrhotite, arseonpyrite(trace)) LCA=70°							
			98.91	99.41	Intensely sheared diorite, biotite + chlorite + sericite alteration LCA=60°							
			100.24	101.52	Sheared diorite, biotite + chlorite + sericite alteration LCA=67°							
			100.40	100.44	Carbonate vein, biotite + chlorite alteration, no mineralization, 1" LCA=50"							
			100.61		Carbonate Vein, chlorite alteration, no mineralization LCA=80°							
	100.66 100.7		100.72	Carbonate altered zone								
			101.52	108.17	Medium grained diorite							
			102.34	102.45	Quartz Carbonate vein, chlorite + sericite + biotite (some) alteration, no mineralization LCA=54°							
			102.78	103.25	Quartz Carbonate vein, chlorite + biotite + sericite alteration, 1% disseminated sulfides (pyrrhotite) LCA=64°							
			103.25	103.71	Increased zone of biotite alteration							
			106.56	106.72	Fracture zone							
			108.17	119.66	Strongly sheared diorite LCA=72°							
			109.22		Carbonate vein, no mineralization LCA=50°							
			110.95		Carbonate Vein, chlorite + biotite alteration, no mineralization LCA=90°							
			111.00	111.78	Increase in biotite alteration							
			111.39		Carbonate vein, chlorite + biotite alteration, 1" LCA=80°							
			112.03	112.12	Fractured zone							
			113.19	113.26	Quartz Carbonate vein, biotite + chlorite alteration, trace sulfides (pyrite)							
			114.00	114.27	Quartz Carbonate vein, chlorite + biotite +sericite alteration, trace sulfides (pyrrhotite) LCA=70°							
			115.30	115.50	Increase in biotite alteration (sheared diorite)							
			115.50	115.61	Quartz Carbonate vein, chlorite + biotite + sericite alteration LCA=60°							
			115.61	115.73	Increase in biotite alteration							
			115.73	115.78	Quartz Carbonate vein, chlorite + biotite + sericite alteration LCA=62°							
			115.78	116.13	Increase in biotite alteration (sheared diorite)							
			116.67	117.00	Increase in biotite alteration							
			116.70	447 5 -	Quartz Carbonate vein, biotite + chlorite alteration LCA=65°							
			117.00	117.54	Increase in biotite alteration							
			117.22	117.25	Carbonate vein, sericite + chiorite + biotite alteration							
			117.54	119.66	intensely sheared diorite, blotite alteration LUA=80°							

FROM	то	CODE			DESCRIPTION	Sample	From	То	Int	Au(ppb)	Fe(%)	As(ppm)
			119.66		sharp contact between diorite and Quartz Feldspar Porphyry Dyke LCA=85°							
119.66	121.72	MD	MAFIC DY	/KE								
			119.66		sharp contact between diorite and Quartz Feldspar Porphyry Dyke $\rm LCA{=}85^{\circ}$							
			119.81		Quartz Carbonate vein, biotite alteration, trace sulfides (pyrite, pyrrhotite) LCA=35° $$							
			120.12	121.72	Moderately sheared QFP LCA=62°							
			120.49	120.50	Quartz Carbonate vein, sericite + biotite alteration, no mineralization							
			121.72		sharp contact between Quartz Feldspar Porphyry Dyke and diorite ${\sf LCA}{=}80^\circ$							
121.72	157.20	DIO	MEDIUM 1	FO COAR	SE GRAINED DIORITE							
			121.72	124.90	Moderately sheared diorite LCA=80°							
			121.72		sharp contact between Quartz Feldspar Porphyry Dyke and diorite $\rm LCA{=}80^\circ$							
			124.68	124.85	Major chlorite + biotite +sericite alteration							
			126.20		Quartz Carbonate vein, chlorite + biotite + sericite alteration LCA=30°							
			127.24		Quartz Carbonate vein, chlorite + sericite alteration LCA=20°							
			133.67	133.77	Sheared diorite							
			133.73		Quartz Carbonate vein, biotite + chlorite + sericite alteration, 1% disseminated sulfides (pyrite) LCA=70°							
			133.87		Carbonate altered zone, chlorite + sericite alteration, no mineralization							
			134.56		Quartz Carbonate vein, no mineralization LCA=20°							
			134.70		Quartz Carbonate vein, chlorite + sericite alteration LCA=60°							
			135.58	135.85	Increase chlorite alteration							
			138.00	138.13	Increase sericite alteration							
			138.91		Quartz Carbonate vein, biotite + chlorite alteration LCA=90°							
			138.98		Quartz Carbonate vein, chlorite + biotite alteration LCA=55°							
			139.05		Increase in carbonate alteration							
			139.13		Carbonate vein, chlorite alteration LCA=70°							
			139.24	139.27	Quartz Carbonate vein, sericite alteration LCA=70°							
			139.65		Quartz Carbonate vein LCA=60°							
			139.77	139.78	Increase in sericite alteration							
			145.78	146.00	Fracture zone							
			148.87	149.48	Intensely sheared diorite LCA=78°							
157.20	158.48	MD	MAFIC DY	/KE								
			158.40		Fracture LCA=50°							
			158.48		sharp contact LCA=40°							

			Diamond D							d Drill Log	- CR-04-32	
FROM	то	CODE			DESCRIPTION	Sample	From	То	Int	Au(ppb)	Fe(%)	As(ppm)
158.48	186.09	DIO	MEDIUM	TO COAR	SE GRAINED DIORITE							
			158.48	186.09	Medium grained diorite	20227	171.17	171.68	0.51	20.0	3.45	41.4
			158.48		sharp contact LCA=40°	20228	171.68	172.24	0.56	100.0	4.92	399.0
			164.01	164.05	Quartz Carbonate vein, chlorite + biotite + sericite alteration, no mineralization LCA=55°	20229 20230	172.24 172.54	172.54 172.83	0.30 0.29	30.0 10.0	5.72 4.07	223.0 187.5
			165.45	165.51	Carbonate vein, sericite + chlorite (some) + biotite(some) alteration LCA=45°		-				-	
			165.99	166.05	Quartz Carbonate vein, sericite + biotite + chlorite alteration, trace sulfide (pyrite)							
			171.17	172.83	Intensely sheared diorite, numerous carbonate veins, major biotite+ chlorite alteration							
			171.38		Quartz Carbonate vein, biotite + chlorite + sericite alteration, no mineralization, 2" LCA=60°							
			172.69	172.76	Quartz Carbonate vein, biotite + chlorite + sericite alteration, trace disseminated sulfides (pyrite) LCA=90°							
			172.83	173.51	Moderately sheared diorite							
			173.51	186.09	Medium Grained Diorite							
			175.97	176.02	Increase in sericite alteration							
			180.50		Quartz Carbonate vein, sericite + chlorite + biotite alteration, 1/2", no mineralization LCA=70°							
			180.57		Quartz Carbonate vein, sericite + chlorite + biotite alteration, $1/2$ ", no mineralization LCA=60°							
			181.25	181.35	Quartz Carbonate vein, sericite alteration, trace slufides (pyrite) LCA=75°							
			181.99		Increase in sericite alteration							
			183.95	184.06	Increase in sericite alteration							
			185.24	185.33	Fractured zone							
			186.09		sharp contact LCA=40°							
186.09	186.84	MD	MAFIC D	YKE								
			186.09		sharp contact LCA=40°							
			186.84		Sharp contact LCA=50°							
186.84	187.81	DIO	MEDIUM	TO COAR	SE GRAINED DIORITE							
			186.84		Sharp contact LCA=50°							
			187.52		Sharp contact LCA=60°							
			187.81		Sharp contact LCA=20°							
187.81	187.92	MD	MAFIC D	YKE								
			187.81		Sharp contact LCA=20°							
187.92	188.40	DIO	MEDIUM	TO COAR	SE GRAINED DIORITE							
			188.40		Sharp contact LCA=20°							
188.40	190.40	MD	MAFIC D	YKE								
			188.40		Sharp contact LCA=20°							
			189.00		Fracture LCA=60°							
			189.53	189.59	Increase in biotite alteration							
			190.20	190.23	Increase in biotite alteration							
			190.40		Irregular but sharp contact LCA=20°							

			Diamond Drill Log - Cl							- CR-04-32		
FROM	то	CODE			DESCRIPTION	Sample	From	То	Int	Au(ppb)	Fe(%)	As(ppm)
190.40	238.70	DIO	MEDIUM T	O COAR	SE GRAINED DIORITE							
			190.40	192.72	Medium grained diorite	20231	215.50	216.00	0.50	10.0	3.94	110.0
			190.40		Irregular but sharp contact LCA=20°	20244	236.10	236.26	0.16	5.0	1.74	3.0
			191.71	198.79	Fracture zone							
			194.62	194.71	Fracture zone							
			195.00	195.14	Increase in biotite alteration, numerous carbonate veins							
			197.72	198.00	Fine grained diorite							
			202.59	202.77	Increase in sericite alteration, irregular carbonate vein (no angle), chlorite alteration, no mineralization							
			203.81	203.85	Increase in both sericite + carbonate alteration, no mineralization							
			209.15	209.33	Increase in biotite + chlorite alteration, numerous carbonate veins							
			209.62	210.00	Major carbonate alteration, some biotite + chlorite alteration, trace sulfides (pyrite), moderately sheared diorite							
			210.30		Carbonate vein, sericite + chlorite alteration, no mineralization LCA=40°							
			210.74	210.78	slightly sheared diorite, increase in biotite + chlorite alteration LCA=70°							
			215.18	217.07	Moderately sheared diorite LCA=70°							
			215.50	216.00	Quartz Carbonate vein, chlorite + biotite alteration, trace sulfides (pyrite, pyrrhotite)							
			216.15		Quartz Carbonate vein, chlorite + biotite alteration, 1/2", no mineralization LCA=80°							
			216.25		Quartz Carbonate vein, 1" LCA=78°							
			217.07	222.05	Coarse grained diorite (gradational contact into medium grained diorite)							
			222.05	224.81	Medium grained diorite							
			224.06	224.08	Moderately sheared diorite, chlorite alteration, some carbonate alteration LCA=73 $^{\circ}$							
			224.81	235.52	Coarse grained diorite							
			228.45	228.48	Slightly sheared diorite LCA=40°							
			230.45	230.56	Shear zone, biotite + chlorite + sericite alteration LCA=30°							
			231.21	231.34	Increase in carbonate + chlorite + biotite alteration, hornblende, trace sulfides (pyrite, pyrrhotite)							
			233.32	233.56	Quartz Carbonate vein, biotite + chlorite + sericite alteration, trace to 1% disseminated sulfides (pyrite, pyrrhotite) LCA=30°							
			234.73	234.81	Increase in sericite alteration							
			235.52	235.71	Medium grained diorite							
			235.71	235.99	Coarse grained diorite							
			235.99	238.70	Medium grained diorite							
			236.10	236.26	Quartz Carbonate vein, chlorite + sericite alteration, hornblende, no mineralization LCA=20°							
			236.64		Quartz Carbonate vein, biotite + chlorite alteration, trace sulfides (pyrite)							
238.70	239.23	MD	MAFIC DY	ΚE								
			238.70	238.80	Gradational contact							

										Diamon	d Drill Log	- CR-04-32
FROM	то	CODE			DESCRIPTION	Sample	From	То	Int	Au(ppb)	Fe(%)	As(ppm)
239.23	290.14	DIO	MEDIUM 1	TO COAF	SE GRAINED DIORITE							
			239.56	239.60	Shear zone, biotite + chlorite alteration, trace sulfides	20232	250.20	250.32	0.12	10.0	2.58	7.0
			242.13	242.17	Increase in biotite alteration	20234	256.02	256.17	0.15	10.0	1.78	32.7
			243.60	243.69	Increase in sericite alteration	20235	256.17	256.45	0.28	5.0	1.94	39.5
			243.84	243.87	Quartz Carbonate vein, chlorite alteration LCA=90°	20236	256.45	257.08	0.63	5.0	2.29	10.3
			244.13		Quartz Carbonate vein, biotite alteration, 1% sulfides (pyrite)	20237	257.08	257.68	0.60	20.0	2.10	19.6
			244.79	244.92	Carbonate vein (numerous), chlorite + biotite alteration LCA=60°	20238	257.68	258.00	0.32	110.0	2.50	1255.0
			245.14		Carbonate vein, no mineralization LCA=20°	20239	258.00	258.42	0.42	5.0	2.18	26.0
			247.59		Quartz Carbonate vein, chlorite + biotite alteration, 1/2", no mineralization	20240	258.42	259.03	0.61	10.0	2.20	4.3
			247.73	248.30	Moderately sheared diorite LCA=60°	20241	259.03	259.82	0.79	10.0	2.40	0.9
			248.51	248.66	Moderately sheared diorite LCA=65°	20242	260.34	261.12	0.78	5.0	2.88	0.4
			248.86	250.32	Moderately sheared diorite	20243	261.12	261.69	0.57	10.0	14.10	1.9
			250.20	250.32	Quartz Carbonate vein, chlorite + biotite alteration, 2% disseminated	20245	266.10	266.23	0.13	5.0	9.55	1.5
			054 40	054.46	suilides (pyrite, pyrinotite)	20246	266.45	267.00	0.55	5.0	6.21	1.2
			201.12	201.10	2% increase in disseminated sundes (pyrmotile, pyrite)	20247	267.00	267.71	0.71	5.0	9.00	0.1
			202.40	252.50	sulfides (pyrrhotite, pyrite) I CA-89°	20248	267.71	268.47	0.76	5.0	6.78	0.2
			253.09	253.13	Carbonate vein, chlorite alteration, trace disseminated sulfides (pyrite	20249	267.71	268.47	0.76	5.0	6.53	0.1
			200100	2000	pyrrhotite) LCA=90°	20250	268.47	269.20	0.73	5.0	4.80	1.2
			253.59	253.67	Quartz Carbonate vein, chlorite + biotite + sericite alteration LCA=30°	20251	269.20	269.82	0.62	10.0	7.22	1.1
			254.11	254.50	Shared Pillow Basalt ? (within 3m gradational contact) LCA=68°	20252	269.82	270.41	0.59	5.0	4.44	0.2
			254.42	254.45	Carbonate vein, chlorite alteration, trace disseminated sulfides (pyrite) $LCA=70^{\circ}$	20253	271.45	271.55	0.10	5.0	0.72	12.0
			254.85	256.02	Numerous carbonate veins							
			254.87	255.03	Increase in sericite alteration							
			255.10		Quartz Carbonate vein, sericite + chlorite alteration, no mineralization $LCA=60^{\circ}$							
			255.17		Quartz Carbonate vein, sericite + chlorite alteration, no mineralization $LCA=60^{\circ}$							
			255.64		Quartz Carbonate vein, sericite + chlorite alteration, no mineralization $LCA=80^{\circ}$							
			256.02	256.17	Brecciate Pillow Basalt							
			256.17	256.45	Pseudo Brecciate Pillow Basalt							
			256.17	259.82	Both Pseudo brecciate & brecciate Pillow basalt							
			256.45	256.53	Brecciate Pillow Basalt							
			256.53	256.56	Pseudo Brecciate Pillow Basalt							
			256.56	256.74	Brecciate Pillow Basalt							
			256.74	259.82	Pseudo Brecciate Pillow Basalt							
			257.25	259.83	Moderately sheared Pseudo Brecciate Pillow Basalt (numerous calcite veins, chlorite + biotite alteration) LCA=70°							
			260.34	261.12	Moderately sheared Pseudo Brecciate Pillow Basalt LCA=80°							
			261.12	261.69	Slightly sheared Pseudo Brecciate Pillow Basalt, increase in biotite alteration, 5-8% disseminated sulfides (pyrrhotite) LCA=85°							
			261.69	265.61	Moderately sheared Pillow Basalt, 1-2% disseminated sulfides (pyrite, pyrrhotite), numerous carbonate veinlet LCA=70°							
			263.12	263.19	Increase in carbonate + sericite + chlorite alteration, numerous carbonate vein (65 degree), trace sulfides (pyrite)							

Diamond Drill Log - CR-04-32

FROM	то	CODE		DESCRIPTION	Sample From To Int Au(ppb) Fe(%) As(ppm)
			264.57	Quartz Carbonate vein, chlorite + biotite alteration, 1% dis sulfides (ovrite) LCA=55°	lisseminated
			264.94	264.97 Increase in biotite alteration	
			265.02	Increase in biotite alteration	
			265.20	Quartz Carbonate vein, biotite (rim) + chlorite alteration, n	no mineralization
			265.43	265.47 Increase in biotite alteration, 3% disseminated sulfides (p some small carbonate veins	(pyrite, pyrrhotite)
			265.55	Quartz Carbonate vein, 3-4% disseminated sulfides (pyrit LCA=70°	rite, pyrrhotite)
			265.61	265.82 Intensely sheared Pillow Basalt, increase in biotite alterati disseminated sulfides (pyrite, pyrrhotite) LCA=60°	ation, 2-3%
			265.82	266.10 Slightly sheared Pillow Basalt LCA=50°	
			266.10	266.23 Moderately Sheared Pillow basalt	
			266.10	266.16 Intensely sheared Pillow Basalt, 4-5% disseminated sulfid pyrite), chlorite + biotite alteration	ïdes (pyrrhotite,
			266.23	Increase in disseminated sulfides 2-3% (pyrrhotite, pyrite	te)
			266.23	266.45 Moderately sheared Pillow Basalt	
			266.45	270.41 Intensely sheared Pillow Basalt, biotite + chlorite alteration disseminated sulfides (pyrrhotite, pyrite), numerous carbo LCA=65°	on, 5-8% ponate veins
			270.41	271.45 Slightly sheared Pillow Basalt, (obvious pillow rims), visibly veins. trace to 1% disseminated sulfides (pvrite)	oly less carbonate
			271.45	271.55 Quartz Carbonate vein, chlorite + biotite + sericite alteratio (pyrite) LCA=55°	tion, trace sulfide
			271.77	272.20 increase in sericite alteration	
			272.91	Carbonate vein, biotite + chlorite alteration LCA=55°	
			273.27	Carbonate vein, biotite + chlorite alteration LCA=65°	
			274.74	Quartz Carbonate vein, chlorite alteration, no mineralizatio	tion, 1" LCA=60°
			274.88	274.98 Pseudo Brecciate Pillow Basalt	
			275.52	275.56 Increase in Carbonate veins	
			275.89	Quartz Carbonate vein, biotite + sericite + chlorite alteration mineralization LCA=80°	tion, no
			276.18	276.22 Increase in biotite alteration and 3-5% disseminated sulfic	fides (pyrrhotite)
			276.59	276.80 Increase in biotite alteration, 2-3% disseminated sulfides some carbonate veins	s (pyrrhotite),
			277.60	277.63 Increase in biotite alteration, 2"	
			280.02	280.11 Moderately sheared, carbonate alteration (in pillow rim)	
			280.05	280.06 Quartz Carbonate vein, biotite + chlorite alteration, 1" LCA	CA=70°
			282.00	282.15 Moderately sheared Pillow Basalt LCA=62°	
			282.56	283.12 Increase in biotite alteration	
			283.29	283.80 Moderately sheared Pillow Basalt LCA=67°	
			283.80	284.00 Increase in biotite alteration	
			285.00	285.60 Moderately sheared Pillow Basalt LCA=60°	
			285.24	285.31 Increase in biotite + chlorite alteration	
			285.40	Carbonate vein, biotite + chlorite alteration, 1cm LCA=55°	5°

									Diamon	d Drill Log	- CR-04-32
FROM	то	CODE		DESCRIPTION	Sample	From	То	Int	Au(ppb)	Fe(%)	As(ppm)
			285.90	285.94 Quartz Carbonate vein, biotite + chlorite + sericite alteration, 1/2" LCA=75°							
			287.40	287.56 Numerous carbonate veins, chlorite + biotite alteration, 2-3 % disseminated sulfides (pyrrhotite)							
			289.37	290.14 Moderately sheared Pillow Basalt							
290.14	296.1	5 QFP	QUARTZ	FELDSPAR PORPHYRY DYKE							
			290.68	290.84 Slightly sheared QFP LCA=63°	20254	295.14	295.26	0.12	5.0	1.28	4.8
			292.75	294.82 Moderately sheared QFP LCA=70°	20256	295.34	295.56	0.22	5.0	1.18	11.2
			293.25	293.38 Carbonate alteration, 1-2% disseminated sulfides (pyrite, pyrrhotite), biotite alteration							
			294.82	295.14 Slightly sheared QFP							
			295.14	295.26 Quartz Carbonate vein, chlorite + biotite alteration LCA=30°							
			295.34	295.56 Quartz Carbonate vein, chlorite + biotite alteration, 3-4% disseminated							
				sulfides (pyrite, pyrrhotite) LCA=54°							
			295.56	296.15 Moderately sheared QFP							
			296.15	sharp contact LCA=70°							
296.15	297.0	9 PBAS	PILLOW E	BASALT							
			296.15	sharp contact LCA=70°	20255	296.15	296.84	0.69	10.0	3.42	1.5
			297.09	Sharp conatct LCA=75°	20257	296.84	297.09	0.25	5.0	3.87	1.4
297.09	298.1	3 QFP	QUARTZ	FELDSPAR PORPHYRY DYKE							
			297.09	Sharp conatct LCA=75°							
			297.47	297.51 Quartz Carbonate vein, sericite alteration, 2"							
			298.13	Sharp contact LCA=98°							
298.13	299.1	8 PBAS	PILLOW E	BASALT							
			298.13	Sharp contact LCA=98°							
			298.76	298.84 Increase in carbonate alteration							
			299.00	Quartz Carbonate vein, biotite + chlorite alteration, 1" LCA=70°							
			299.18	Sharp contact LCA=60°							
299.18	299.6	2 QFP	QUARTZ	FELDSPAR PORPHYRY DYKE							
			299.18	Sharp contact LCA=60°							
			299.62	Sharp contact LCA=70°							

Diamond Drill Log - CR-04-32

FROM	то	CODE			DESCRIPTION	Sample	From	То	Int	Au(ppb)	Fe(%)	As(ppm)
299.62	345.92	PBAS	PILLOW B	ASALT								
			299.62	299.91 Intensely sh	eared Pillow Basalt LCA=62°							
			299.62	Sharp conta	act LCA=70°							
			299.91	301.54 Moderately	sheared Pillow Basalt LCA=68°							
			303.28	303.34 Increase in	carbonate alteration							
			303.85	Quartz Cart LCA=40°	ponate vein, biotite + sericite alteration, no mineralization, 1/2"							
			309.21	309.26 Quartz Cart sulfides (py	ponate vein, biotite + chlorite alteration, 2-5% disseminated rrhotite, pyrite), 2" LCA=60°							
			309.42	Quartz Cart sulfides (py	ponate vein, chlorite + biotite alteration, 2-4% disseminated rite, pyrrhotite) LCA=89°							
			310.55	310.60 Increase in	carbonate + biotite alteration							
			310.81	Carbonate v	vein, 1/2" LCA=70°							
			310.81	311.20 Moderately	sheared Pillow Basalt LCA=65°							
			311.27	311.30 Increase in	disseminated sulfides 1-2% (pyrrhotite)							
			311.68	311.78 Increase in	sericite alteration LCA=69°							
			312.08	312.38 Increase in	sericite alteration							
			312.48	Quartz Carb LCA=65°	bonate vein, sericite + chlorite alteration, no mineralization, 1"							
			312.51	313.59 Increase in	sericite alteration							
			313.84	313.99 Increase in	carbonate alteration							
			314.23	314.27 Quartz Cart	oonate vein, chlorite + sericite (slight) alteration, 1" LCA=60°							
			315.41	315.45 Quartz Cart	oonate vein, chlorite + sericite alteration, 2" LCA=80°							
			315.64	315.73 Increase in	chlorite + carbonate alteration, trace sulfides (pyrite)							
			315.84	Quartz Cart	ponate vein, chlorite alteration, no mineralization, 1" LCA=65°							
			316.02	Quartz Cart	ponate vein, chlorite alteration, no mineralization, 1" LCA=55°							
			316.49	316.52 Quartz Cark	ponate vein, chlorite + sericite alteration LCA=75°							
			317.64	317.68 Increase in	carbonate alteration							
			318.30	318.36 Sheared Pil	low Basalt, biotite alteration LCA=80°							
			318.93	318.98 Quartz Cark	ponate vein, no mineralization, 2" LCA=80°							
			319.53	319.66 Increase in	sericite alteration							
			319.83	320.02 Increase in	carbonate alteration							
			320.73	321.00 Slightly she	ared Pillow basalt, carbonate alteration LCA=70°							
			322.00	Quartz Cart	ponate vein, no mineralization							
			322.11	323.01 Slightly she	ared Pillow Basalt LCA=80°							
			323.50	Quartz Cart LCA=20°	bonate vein, biotite alteration, trace sulfides (pyrite, pyrrhotite)							
			324.53	324.57 Increase in	biotite alteration							
			325.33	325.54 Increase in	carbonate alteration							
			326.73	326.84 Sheared Pil	low Basalt, 1-2 % disseminated sulfides (pyrrhotite) LCA=65°							
			327.05	327.11 Numerous of	carbonate veins, mosaic braccia							
			327.15	Quartz Carb LCA=75°	bonate vein, biotite + chlorite alteration, no mineralization, 1"							
			327.28	327.31 Increase in	biotite + chlorite alteration							
			327.74	327.79 Quartz Cart	oonate vein, biotite + chlorite + sericite alteration LCA=62°							
			327.95	328.81 Moderately	sheared diorite LCA=72°							

Diamond	Drill	Log -	CR-04-32
---------	-------	-------	----------

FROM	то	CODE		DESCRIPTION	Sample	From	То	Int	Au(ppb)	Fe(%)	As(ppm)
			328.81	328.86 Increase in biotite alteration, 2-3% disseminated sulfides (pyrrhotite)							
			329.04	329.21 Increase in carbonate alteration							
			331.64	331.68 Increase in disseminated sulfides 2-3% (pyrrhotite)							
			331.74	331.83 Increase in sericite alteration							
			332.02	332.10 Intensely sheared Pillow Basalt, chlorite + carbonate alteration LCA=65°							
			333.69	333.89 Increase in sericite alteration							
			334.03	334.07 Quartz Carbonate vein, 2" LCA=80°							
			334.20	Sericite altered vein, 1" LCA=80°							
			335.41	336.00 Numerous carbonate veins (mosaic braccia)							
			336.04	Quartz Carbonate vein, sericite + chlorite alteration, 1" LCA=89°							
			336.30	336.34 Moderately sheared Pillow Basalt LCA=80°							
			336.42	336.70 Moderately sheared Pillow Basalt LCA=78°							
			343.03	345.92 Moderately sheared Pillow Basalt, numerous carbonate vein							
			344.71	344.75 Quartz Carbonate vein, chlorite + biotite alteration, 2" LCA=75°							
			345.33	345.38 Quartz Carbonate vein, chlorite + biotite alteration, 1" LCA=80°							
345.92	351.44	QFP	QUARTZ I	FELDSPAR PORPHYRY DYKE							
			345.92	346.97 Fracture zone	20258	348.23	348.56	0.33	20.0	1.54	744.0
			347.28	347.30 Fracture zone	20259	348.56	348.78	0.22	5.0	0.35	5.6
			348.00	348.50 Fracture zone	20260	348.78	349.14	0.36	10.0	1.30	854.0
			348.23	349.14 Moderately sheared QFP, 3-4% disseminated sulfides (pyrite, pyrrhotite) LCA=70°							
			348.56	348.78 Quartz Carbonate vein, no mineralization LCA=60°							
			348.78	348.81 Increase in carbonate alteration							

											d Drill Log	- CR-04-32
FROM	то	CODE			DESCRIPTION	Sample	From	То	Int	Au(ppb)	Fe(%)	As(ppm)
351.44	4 383.25 PBAS F		PILLOW E	BASALT								
			351.44	353.10	Intensely sheared Pillow Basalt, biotite + chlorite, numerous carbonate	20261	351.44	352.49	1.05	10.0	3.04	68.4
					veins LCA=70°	20262	352.49	353.10	0.61	5.0	2.75	47.7
			352.84		Sharp contact LCA=80°	20263	371.39	371.60	0.21	5.0	2.23	14.5
			352.89		Sharp contact LCA=80°	20264	371.60	372.07	0.47	5.0	1.41	8.5
			353.10	365.33	Moderately sheared Pillow Basalt, biotite + chlorite alteration, numerous	20265	372.07	372.38	0.31	5.0	3.65	5.9
			259.92	259.04	Quartz Carbonate veins (70 degrees)	20266	380.31	380.57	0.26	5.0	1.62	1.6
			358.00	550.94	Quartz Carbonate vein chlorite alteration trace sulfides (pyrrhotite) 1	20267	380.57	381.21	0.64	5.0	1.06	13.2
			550.99		LCA=70°	20268	381.21	381.46	0.25	5.0	1.78	1.7
			360.53	360.73	Increase in sericite alteration							
			360.94	361.02	Quartz Carbonate vein, chlorite + biotite alteration, no mineralization LCA=80°							
			361.21	361.26	Increase in sericite alteration							
			362.05	362.10	Quartz Carbonate vein, chlorite + sericite alteration LCA=70°							
			362.43	362.47	Quartz Carbonate vein, chlorite alteration, no mineralization LCA=70°							
	3		363.54	363.60	Quartz Carbonate vein, biotite + chlorite alteration, no mineralization LCA=70°							
			363.65	363.78	Increase in sericite alteration							
		364.69	364.76	Quartz Carbonate vein, biotite rim, chlorite alteration, trace sulfides (pyrite) LCA=20°								
	364.76 365		365.33	Increase in carbonate veins, biotite + chlorite alteration								
	366.38 366.4		366.42	Quartz Carbonate vein, trace to 1% disseminated sulfides (pyrite), chlorite alteration LCA=65° $$								
	366.49			Quartz Carbonate vein, chlorite alteration, no mineralization, 1" LCA=60° $$								
			367.21	367.30	Increase in sericite alteration, chlorite alteration							
			367.53	367.59	Moderately sheared Pillow basalt, carbonate + chlorite alteration LCA=80'							
			367.77	367.82	Moderately sheared Pillow basalt, carbonate + chlorite alteration LCA=50°							
	369.38		369.62	Quartz Carbonate vein, sericite + chlorite + biotite alteration, 1% disseminated sulfides (pyrrhotite)								
			369.71	369.79	Quartz Carbonate vein, sericite + chlorite alteration, no mineralization $\mbox{LCA=60}^\circ$							
			370.95	371.01	Increase in carbonate alteration							
			371.39	371.60	Moderately sheared Pillow Basalt							
			371.60	372.07	Quartz Carbonate vein, chlorite + biotite + sericite alteration							
			372.07	372.38	Moderately sheard Pillow Basalt LCA=60°							
			372.13		Quartz Carbonate vein, chlorite + biotite alteration, 1" LCA=60°							
			372.31		Quartz Carbonate vein, chlorite + sericite (rim) alteration LCA=70°							
			372.80		Quartz Carbonate vein, chlorite rim LCA=75°							
	372.98				Carbonate vein, trace sulfides (pyrite) LCA=50°							
376.27 376.42			376.27	376.42	Fracture zone							
			378.16		Quartz Carbonate vein, strong sericite alteration, trace sulfides (pyrrhotite), 1" LCA=50°							
			379.80		Quartz Carbonate vein, chlorite alteration, 1" LCA=70°							
			380.20		Quartz Carbonate vein, sericite + biotite alteration, 1-2% disseminated sulfides (pyrrhotite)							
			380.31	380.57	Moderately sheared Pillow Basalt							

										Diamon	d Drill Log	- CR-04-32
FROM	то	CODE			DESCRIPTION	Sample	From	То	Int	Au(ppb)	Fe(%)	As(ppm)
			380.57	381.21	Quartz Carbonate vein, sericite + chlorite + biotite alteration, trace sulfide: (pyrrhotite) LCA=50°							
			381.21	381.46	Moderately sheared Pillow Basalt LCA=62°							
383.25	383.59	SED	SEDIMENT	-								
383.59	387.00	PBAS	PILLOW B/	ASALT								
			384.17		Increase in sericite alteration	20269	384.53	384.69	0.16	5.0	0.91	1.3
			384.53	384.69	Quartz Carbonate vein, sericite + chlorite + biotite alteration, no	20270	384.69	385.14	0.45	20.0	1.75	9.9
					mineralization LCA=64°	20271	385.14	385.39	0.25	5.0	0.99	4.4
			384.69	385.14	Moderately sheared Pillow Basalt LCA=74°	20272	385.39	385.45	0.06	5.0	2.22	6.0
			385.14	385.39	Difficult to see due to oil spill	20273	385.45	385.90	0.45	5.0	1.38	4.0
			385.39	385.45	Moderately sheared Pillow Basalt LCA=73°							
			385.45	385.90	Quartz Carbonate vein, sericite + chlorite alteration LCA=59°							

Conquest Resources Ltd.

Exploration Diamond Drill Log

CR-09-033

DRILL HOLE #	CR-09-033	LOCATION	Balmertown,	Balmer Township,	Red Lake Dis	trict, Ontario		
PROJECT #	Alexander	REFERENCE	Alexander		GEOLOGIST	BATSON	CLAIM	KRL 20485
					-		-	
GRID/ NAD-ZO	NE	NORTHING		EASTING		ELEVATION		GRID TYPE
GRID	Alexander RL	4+27S	_	0+38W		10000		М
UTM	NAD83 / 15U	5656377	_	449908		373	_	
COLLAR DIP	-50	GRID DIRECTION	-	North			AZ DIRECTION	029
NTS REF #	052N04	NTS SHEET NAME		Red Lake, Ontario	I.			
START DATE	31-Aug-09			FINISH DATE	11-Sep-09		_	
DEPTH (EOH)	600.00	TARGET & Zone De	pth	Target 11 (55m), T	arget 12 (120	m), Target 26 (460m)	
PURPOSE	CR-09-H dummy he	ole tests 3 target l	horizons in se	ds and volx	PIEC	E POINT of Target:	E	mELEV
CASING BW	,		CASING NW	7			CASING HW	
PLUG @			PLUG @	n/a			PLUG @	
START DTH	0.00		WEDGE @				-	
REDUCED @			REDUCED @					
HOLE STATUS	complete, capped,	left casing.						
DRILLING CON	TRACTOR	Boart Longyear	Inc.					
RIG NO.	4186						BXS.	138
							-	
	GYRO Survev	: Multishot In and Ou	t of Hole					

DEPTH (m)	AZ	DIP	Elevation (m)	δ Easting (m)	δ Northing (m)	Comments:
0	29.00	-48.60	0.00	0.00	0.00	1st Target anomaly explained at 64m by
50	30.57	-45.87	-36.75	33.89	-36.75	unconformity and contrasting units. APY and
100	31.56	-44.88	-72.33	69.00	-72.33	PO throughout quartz monzodiorite, weakly
150	32.44	-44.05	-107.34	104.64	-107.34	magnetic, then strongly contrasted with fault
200	33.13	-43.44	-141.90	140.69	-141.90	with several highly conductive seams
250	33.78	-43.08	-176.15	177.02	-176.15	(< 100 Ω). <u>2nd</u> <u>Target</u> anomaly at 142m
300	34.46	-42.65	-210.16	213.52	-210.16	explained by laminated minor PO
350	35.51	-42.16	-243.86	250.25	-243.86	disseminations within magnetic argillite above
400	36.10	-41.76	-277.28	287.18	-277.28	Near Solid Sulphide PO strong conductor with
450	36.76	-41.60	-310.53	324.20	-310.53	424m explained by Basalt-Gabbro contact
500	37.27	-41.25	-343.60	361.33	-343.60	false conductor, unmineralized.
550	37.90	-40.86	-376.45	398.61	-376.45	Sulphide iron formation has nice alteration
600	38.55	-40.35	-408.91	436.15	-408.91	associated with it and may be similar to the
						ESC zone. This zone is stratigraphically in the
						footwall of Target 2. There are two types of
						Balmer hosted IFs have contained gold
						mineralization in past drilling.
]
						1
						1

Drilled with 3m stabilized core barrel

Planned hole depth is 600m (1828')

Magnetic Declineation 0° 13', Declination for Grid N29°E

Water source: creek located at 450230 5656050 UTM NAD83 15U and pond above tailings located at 451500 5656695

Left Casing and Capped with Stamped NW cap Planned hole time is 9.5 days (Sept 2 to 11) Core stored at Cochenour Mine Site Drill type: LF-70 Conquest Resources Ltd. Diamond Drill Record

Major Lithologies

CR-09-033

Hole Name	From	То	Length	Code	Description	Rep
CR-09-033	0.00	7.00	7.00	CAS	NW Casing into overburden and bedrock	
CR-09-033	7.00	71.83	64.83	11C	Foliated, sil-(bt-chl-fuch) altered granodiorite to quartz monzodiorite (I2G) bimodal intrusive. Pale grey-green (wet) to pale dusty grey-blue (dry) coloured, variably medium grained to coarse grained, non-magnetic intrusive. 10-30% smokey grey to mauve coloured, variable 60:40 subhedral to anhedral quartz crystals throughout and aglomerated into crude bedding subparallel to 45-52degCA foliation with weak whispy textured chl-bt alteration to fine grained groundmass. Trace fucsite and dumorturite in sections of localized 5-10m scale crude bedding. Trace very fine grained disseminations of pyrrhotite and arsenopyrite (2:1) throughout. Good coring unit, good recovery. Upper contact not cored. Lower contact is sharp at black line fault unconformity.	23.59 to 23.79m
CR-09-033	71.83	72.00	0.17	FLT	black line Fault unconformity	
CR-09-033	72.00	118.61	46.61	\$3	Argillite, poorly sorted lithic wacke, and undifferentiated mixed variably bt-chl-(gt)-(leucoxene) altered sediments of volcanosedimentary origin. Minor layer PO-(trAPY) iron formations present within argillaceous interbeds which are magnetic, and very dark grey (wet) to dusty grey-green (dry) in colour. Argillites lie conformably on undifferentiated (likely lithic wacke) turbiditic structure showing minor chl-(ser) alteration to matrix. Bottom of interbed sequences have <10% volcanosedimentary, chl-(ser) altered, oblate rounded 1cm scale to cobble-sized clasts with weakly bt altered matrix support containing trPO disseminations throughout. Mineralized upper contact is blackline fault and contains PO and minor replacive APY well into upper argillite. Transitional graded lower contact to conglomerates.	See Minor Litho
CR-09-033	118.61	135.34	16.73	S4	Subangular to rounded quartz -(lithic) -(iron formation) cobble polymictic Conglomerate. Locally subangular quartz-cobble lithic wacke. Up to 30% lapilli to cobble sized, milky white to light grey coloured, subangular to rounded, mineralized PO-(trAPY)-(PY) quartz fragments in fine grained lithic sediment matrix with minor chl-ser alteration to groundmass and local bt. <10% barren basalt fragments, generally attenuated 2mm to 20mm in scale seldom with PO replacement. PO slugs not uncommon. Irregular very fine grained PO replacement halos around quartz fragments. Upper contact appears to be an epiclastic silicified Basalt lapilli tuff.	See Minor Litho
CR-09-033	135.34	147.20	11.86	S 3	As above mixed Wacke from 72.00 to 118.61m. Well bedded (1-2m scale) lithic Wacke. Dark grey Argillite grades to dusty grey mottled matrix supported lithic wacke. As above, argillite contains magnetic pyrrhotite. Poorly sorted Wackes at the base of beds are rarely magnetic and contain a few localized replacement pyrrhotite. Upper contact is sharp at 60degCA.	

Conquest Resources Ltd. Diamond Drill Record

Major Lithologies

CR-09-033

Hole Name	From	То	Length	Code	Description	Rep
CR-09-033	147.20	233.50	86.30	V3B	Grey-green coloured, fine to medium grained, qtz-carb-chl-(bt)-(sil)-(act) altered Basalt with frequent irregular quartz-carbonate-(PO-PY) veining and fracture healing. Non magnetic greenshist facies, massive to pillowed basalt. Upper contact is sheared unconformity zone over 147.20 to 149.32m with carbonate alteration pervasive into hanging wall.	
CR-09-033	233.50	238.20	4.70	S9E	Sulphide Iron Fomation. Lamination 15-30cm PO-(PY) beds are crudely defined by sulphide laminae 1-5mm and quartz-carbonate veining in volcanosediments with possible cross bedding of PO and unmineralized laminae. Upper is planar and gradational (given the nature of the definition of Iron Formations) at 50degCA. Lower contact is obscured by contact metamorphism defined by a cherty FW horizon. Only 50% of this unit contains visible sulphides, while the other 50% is composed of massive to pillowed basalt volcanic from above. Structurally defined unit, not likely stratigraphic, though the contacts appear to be conformable to stratigraphy. Carbonate alteration overprints chlorite and original textures.	
CR-09-033	238.20	246.49	8.29	S10	Chert. Grey coloured, highly silicified, Basalt flow (locally pillowed) with very fine grained crystals of PY, PO, and CPY (trBN with amorphous APY) throughout. Volcanic texture is obliterated by silica-actinolite overprinting. Pseudo-spinifex textures overprint (probably contact metamorphism from IF and nearby Gabbro) a coarsened volcanic recrystallized texture containing trace biotites locally. Up to 50% actinolite laths are nearly radial in sections of flow making this unit hard to discern as a volcanic. Crude bedding and pillow rims are visible on dry core surface. Few large quartz-carbonate blebs or assimilated clasts and rare flattened quartz-carbonate amygdules are present locally. Pale purple dumorturite retrograde alteration may be last phase of hydrothermal metamorphism near quartz-carbonate veins. Local, fibrous, 5-15mm scale, tensional quartz carbonate veins are parallel to core axis near lower contact.	
CR-09-033	246.49	249.10	2.61	S9E	as above Sulfide Iron Formation. Narrow 14cm intersection of PO replacement cemented breccia with rounded fragments at 248.06 to 248.20m. Upper contact is dyked out by Gabbro. Lower contact is sharp with Basalt at 66degCA.	
CR-09-033	249.10	358.00	108.90	V3B	as above massive to pillowed Basalt	See Minor Litho
Major Lithologies

Hole Name	From	То	Length	Code	Description	Rep
CR-09-033	358.00	365.00	7.00	S9B	Banded quartz-magnetite Oxide Iron Formation. Heterogenous, grey-purple and grey green coloured quartz veining in dominately high silica replacement altered pillow top fragmental tuff with layer layered preciptous chertstone interbeds. Magnetite beds occur in highest silica cherty sections as very finely laminated oxide and also as crude massive amorphous magnetite bands. Original volcanosedimentary textures have been obliterated by silica flooding. Cherty oxides appear to be deposited during a quiescent period in locally fine laminations, not having the same replacement textures as the iron sulphides found above. Minor PO in fractures and near fragment boundaries are very fine grained. Porphyritic APY bearing quartz-(bt) monzonite dyke cross cuts unit at very shallow 10-15 degree angle.	364.28 to 364.51m
CR-09-033	365.00	374.00	9.00	V3B	as above massive to pillowed Basalt	
CR-09-033	374.00	377.00	3.00	S9B	Oxide Iron Formation as above. Upper contact is masked by quartz-carbonate veing overprinting. Lower contact contains minor subangular pyrrhotite cemented breccia.	
CR-09-033	377.00	424.12	47.12	V3B	Pillowed and massive tholeiitic Basalt pile. Pillow dimensions are larger than the above volcanic with weak to moderate hb-act-chl alteration. Selvages and pillow rims contain less carbonate and chlorite than above and are dominated by very fine siliceous chlorite altered groundmass with occassionally preserved quartz amygdules at selvage boundaries. Trace pyrite pyrrhotite disseminations are common. Fewer qtz-cb veins than above. Alteration in this unit is crudely zoned into areas of mottled green and grey coloured, PY-PO bearing, chl-act schist with poorly developed z-fabric at a steep rake orientation along main schistosity; and, zones of moderately high silica with weak recrystallization of mafics to fine acicular actolite laths and very fine chlorite. Pillow cores are characterized by narrow 1 to 3 metre-scale, medium to coarse grained hornblende-chlorite sections with minimal alteration bound by fine grained volcanics. Upper contact is brecciated with pyrrhotite replacement cement in sulphide bearing Oxide Iron Formation. Lower contact is assimilates into a Gabbro intrusive over 0.50m.	
CR-09-033	424.12	599.99	175.87	I3A	medium to dark grey-green coloured, medium to coarse grained, Gabbroic Intrusive with grey quartz eye porphyritic felsic and intermediate composition dyking. One thick white, pure quartz vein near EOH. Magmatic intrusive texture increases in grain size downhole. Weak magnesium and iron depleation contact metasomatism at intermediate (quartz monzonite-granodiorite and diorite) dyke swarms commonly produces a grey-green coloured silicous gabbroic texture in these sections of medium grained gabbro. Upper contact is fine grained gradational contact with assimilated basalt volcanic and a well developed foliation fabric containing few minor quartz carbonate veins. Lower contact was not intersected in this drill hole.	447.70 to 447.90m, 457.32 to 457.50m, 592.63 to 593.85m

Major Lithologies

Hole Name	From	То	Length	Code	Description	Rep
					EOH at 600m on September 11, 2009 at 15h30. Left casing. Capped with stamped aluminum	
CR-09-033	599.99	600.00	0.01	EOH	casing cap. Gyro surveyed. Core is stored at the Goldcorp Cochenour Mine Site in 138 NQ trays.	
					178 samples sent for Au fire assay (50g pulp) at SGS Labs, Red Lake, ON.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-09-033	8.00	8.45	I1C	bt-gt altered moderately well foliated intrusive	
CR-09-033	11.27	12.83	I1C	<10% plagioclase phyric interflow, <50% quartz crystals	
CR-09-033	12.83	18.32	12G	medium grained Quartz Monzodiorite	
				coarse grained, salt and pepper quartz and plagioclase phyric, variably hetrogeneous	
CR-09-033	31.20	41.60	11C	textured granodiorite, few narrow irregular bt altered sections with proportionally more	
				anhedral quartz crystals than major unit	
CD 00 022	42.25	42 52	121	Fine grained diorite dyke. Very weakly magnetic. Quenched dyke textures at sharp	
CR-09-033	43.25	43.52	IZJ	upper and lower contacts 45degCA	
CR-09-033	61.97	62.31	I2J	as above 43.25 to 43.52m, not sampled, no sulphides	
CR-09-033	72.00	72.83	S6E; IF	massive, very fine grained argillite weakly alerted interbed with minor IF	
CR-09-033	72.83	79.64	S3T	mineralized turbidite resembling slump fragmental Basalt, intercolated (possible load	79.21 to 79.36m
	/ 100			flame structure) upper contact is PO mineralized, PO throughout minor unit	
				Poorly sorted volcanosedimentary derived wacke with very fine grained, weakly chl-(bt)	
				altered, pyrrhotite mineralized, matrix and weakly gt-bt altered clasts. Minor siltstone	
CR-09-033	79.64	98.00	S 3	interbedding is poorly graded. Generally fresh rock. Good coring unit. Quartz and	
				replacement earthy PO with gt overprinting PO mineralization locally. UC 65degCA, IC is	
				gradational over 0.50m	
				Argilliceous mudstone with minor pyrrhotite IF as above 72.00 to 72.83m, visible	
CR-09-033	98.00	106.80	S6E; S9E	bedding, slightly paler coloured grey-blue than above dark coloured version, very good	105.35 to 105.51m
			,	recovery, hard coring, polished rock surface.	
	100.00	406.05		minor narrow fault with hammer textured PY-PO-calcite on healed fracture surfaces,	
CR-09-033	106.80	106.95	FLT	minor white guartz fracture healing in HW over 15cm.	
CR-09-033	106.95	118.61	S6E	as above 98.00 to 106.8, locally magnetic due to PO	
CD 00 033	440.64	121.20	730	heterolithic quartz fragment mafic basalt tuff, upper contact is sharp at 60degCA	120 25 to 120 11
CR-09-033	118.61	121.26	138	(Graves Assemblage)	120.25 to 120.41m
				Wacka to baselt sheared upconformity has obliterated original minoral and rock	
				textures. Irregularly grianted undulating planar fabric varias from 60dagCA to 20dagCA	
CR-09-033	147.20	149.32	SHR	textures. Integriarly oriented undurating planar labit varies from bodegCA to zodegCA.	
				Strongly quartz carbonate replacement overprinting to moderate chi-bt alteration to	
				volcanic groundmass and volcanosedimentary clasts masks contact. NIL mineralization.	
CR-09-033	149.32	154.00	V3B;shr	sheared and blocky quartz carbonate-chlorite altered basalt	
CB-00-033	154.00	160.00	V/2B.cturk	arsenopyrite and bitote bearing quartz carbonate stockwork in fractured qcarb-chl-(bt)	
CI-03-033	104.00	100.00	vju,stwk	altered basalt	
				Pillowed basalt with quartz-carbonate and fine grained basalt selvages (lacking	
CR-09-033	191.00	201.00	V3B;pil	amygdules) and minor qtz-carb fractured massive medium grained weakly chlorite	
				altered pillow cores	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-09-033	202.32	205.48	12J	light grey coloured very fine grained (to nearly aphenetic), non-magnetic Diorite dyke. Several 1 cm scale quartz-carbonate-tourmaline veins are apparent tensional and sub parallel to core axis within this minor unit. Trace ankerite and albite alteration near qtz- cb-tml veins. Pyrite and pyrrhotite occuring in very fine disseminations in groundmass. Dyke emplacement may post-date at least one phase of quartz carbonate veins (no biotite) determined by the lack of veins present.Upper contact is sharp and near planar at 45degCA. Lower contact is sharp and irregular at a high angle to the core axis.	
CR-09-033	208.00	212.54	V3B	Basalt flow sequence. Grades from fine grained chlorite-qtz-cb altered and veined to massive, less qtz-cb veined/fractured and fine lath chlorite replacing amphiboles, flow at base of volcanic bed.	
CR-09-033	212.00	213.50	IF	poor sulphide Iron Formation in volcanics with good alteration	
CR-09-033	218.00	219.00	11C	Grey coloured, medium grained, subhedral white quartz crystal, biotite bearing, Granodiorite porphyry with few minor irregular quartz veins. Trace pyrite. Sharp 50degCA upper and lower contacts.	
CR-09-033	220.64	220.94	I1F	pale grey apple green, highly silicous Apelite dyke. Amorphous grain texture. NIL sulphides. Sharp upper contact at 80degCA. Quartz-carb veined lower contact is irregular along probable pillow boundary/selvage	
CR-09-033	224.89	225.56	11C	as above grey Granodiorite. Upper contact is sharp, undulating, PO mineralized at 30degCA. Lower contact is sharp and planar at 70degCA and is barren.	
CR-09-033	226.25	226.65	I1C	as above grey Granodiorite. Upper and lower contacts are sharp at 70degCA.	
CR-09-033	226.65	233.50	V3B;pil	as above pillowed basalt with very small pillows between 232 and lower contact, alters differently with sil-amphib-(bt)-(chl) MT-qtz-carb. Few altered fragments near lower contact contain stong Mt alteration with associated PO.	
CR-09-033	246.49	247.60	I3A	mottled dark and light green, medium grained, moderately biotite-chlorite altered Gabbro dyke. Sharp upper contact at 85degCA. Lower contact is vague due to cooking of underlying Iron Formation in similar composition basalt derived volcanics, likely at 70degCA.	
CR-09-033	262.00	262.44	I2E	grey coloured, moderately biotite altered, medium grained, quartz monzonite Dyke with 60degCA sharp upper and lower contacts indicating flat or vertical emplacement.	
CR-09-033	262.44	280.05	V3B;mas	massive basalt	
CR-09-033	280.05	282.27	I1C	as above grey Granodiorite. Upper and lower contacts are sharp at 55degCA	
CR-09-033	282.27	295.00	V3B;pil	pillowed basalt as above with quartz carbonate amygdular pillow rims	283.22 to 283.40m and 291.47 to 291.58m
CR-09-033	295.00	297.56	V3B;frg	pillow top fragmental with coarsely recystallized hb and fine chl alteration	295.28 to 295.47

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CB-00-033	207 56	208 80	121	fine grained grey coloured Diorite dyke as above. Non magnetic. Cross cuts core axis in	
CR-05-055	257.50	230.00	123	downhole direction at 80degCA	
CR-09-033	298.80	306.17	V3B;frg	pillow top fragmental with coarsely recystallized hb and fine chl alteration	
				foliated biotite bearing grey porphyritic grey quartz crystal Granodiorite Dyke with	
CR-09-033	306.17	308.73	I1C	minor albite and epidote alteration and PO mineralization, different I1C than non	307.35 to 307.52m
				foliated Granodiorite stock which contains less biotite.	
CR-09-033	315.19	323.06	I1C	foliated I1Cbt as above 306.17 to 308.73m	
CR-09-033	327.55	328.12	I1C	foliated I1Cbt as above 306.17 to 308.73m	
				Very high silica recrystallized overprinted fractured massive basalt flow containing qtz-	
CR-09-033	328.12	342.00	V3B;mas	carbonate veining (no biotite) with minor actinolite halos around some veins, NIL	
				sulphides. Qtz-cb fracture filling.	
				Recrystallized silicified basalt ductile flow top breccia-fragmental. Ghost flow top	
CR-09-033	342.00	344.50	V3B;frg	fragments contain minor actinolite, while selvages have been replaced by minor quartz	
				carbonate veining, silica, and chlorite-(epidote).	
CR-09-033	344.50	354.40	V3B;mas	Massive unmineralized basalt with quartz carbonate veining	
CB-00-033	354 40	358.00	V/3B·nil	Pillowed basalt. Textbook example of quenched pillow rims, chloritized fine grained	
CR-05-055	554.40	550.00	v50,pii	groundmass, and quartz carbonate selvages.	
				Massive grey coloured silicous bt-APY bearing plagioclase phyric quartz mononite dyke.	
CB-09-033	358 79	363 10	12F	Cross cuts at very high angle to Iron Formation. Few quartz veins within dyke contain bt-	360 50 to 360 66m
CR 05 055	550.75	505.10	12L	PO-(APY). Upper contact is PO mineralized in HW and sharp at 71degCA. Lower contact	500.50 10 500.0011
				is sharp at 80degCA.	
CB-09-033	410 70	413 59	121	grey coloured, siliceous, fine grained, biotite bearing, Diorite dyke, as above. Non-	
	410.70	415.55	125	magnetic.	
CB-00-033	111 01	117 16	121	as above 410.70 to 413.59m Diorite dyke. Upper contact is sharp at 80degCA and lower	
	414.91	417.10	123	contact is dyked off by cross cutting plagioclase phyric intrusive.	
CB-09-033	417 16	417 46	12F	grey coloured crystal quartz eye, plagioclase phyric, quartz monzonite. Upper and lower	
	417.10	417.40	IEL	contacts are sharp at 55degCA and 70degCA respectively.	
CB-00-033	117 16	/18 00	121	as above 410.70 to 413.59m fine grained Diorite dyke. Upper contact with grey	
CR-05-055	417.40	410.00	123	plagioclase phyric dyke at 70degCA and lower contact is sharp at 55degCA.	
				As above grev coloured crystal quartz evel plagioclase phyric biotite bearing quartz	
CR-09-033	428 90	431 00	12F	monzonite. One quartz vein 5cm thick at 35deg(A oriented down core axis contains	
	420.50	451.00		trace pyrite and 3% pyrchotite. Upper and lower contacts are sharp at 90degCA	
CR-09-033	431 60	432 08	121	as above 410.70 to 413.59m Diorite dyke. Weakly PO mineralized upper contact is sharp	
	+51.00	-52.00	. 23	at 75degCA. Lower contact is sharp and fractured at 80degCA.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-09-033	448.75	450.00	I2E	As above grey coloured crystal quartz eye, plagioclase phyric, biotite bearing quartz monzonite. One quartz vein 5cm thick at 35degCA oriented down core axis contains pyrite and pyrrhotite associated with coarse biotite books on 3-5mm scale. Upper and lower contacs are sharp at 90degCA.	
CR-09-033	474.80	476.93	12E	As above bt-qtz monzonite. One dismembered bt-(chl)-qtz vein oriented parallel to core axis. Upper and lower contacs are sharp at 90degCA. Lower contact is PO mineralized.	
CR-09-033	564.90	581.22	I2E	As above grey coloured crystal quartz eye, plagioclase phyric, biotite bearing quartz monzonite. Few minor quartz veins at 35degCA. Trace disseminated pyrrhotite throughout. Upper contact is sharp at 60degCA with minor tightly healed blackline block fault offsets on 5cm scale oriented subparallel to core axis. Lower contact is sharp at 65degCA.	
CR-09-033	597.73	597.50	I2J	as above 410.70 to 413.59m, non-magnetic, grey coloured, siliceous, fine grained, biotite bearing, Diorite dyke.	

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CB-09-033	23001	9 74	10.24	1 00	not consecutive	few irregular sugary qvlts, one planar qv trPO, minor kspar-fuch-chl-	12	RI 36843
	23001	5.24	10.24	1.00	not consecutive	(bt) altered, character sampling	12	NE30043
CR-09-033	23002	10.24	11.50	1.26	consecutive	QVs trPO, same as 23001, character sampling	7	RL36843
CR-09-033	23003	42.25	43.25	1.00	not consecutive	I1C wall rock wing sample to no.23004 trPO	11	RL36843
CR-09-033	23004	43.25	43.52	0.27	consecutive	I2J dyke in I1C nil sulphides, Character sample	7	RL36843
CR-09-033	23005	43.52	44.52	1.00	consecutive	I1C wall rock wing sample to no.23004 trPO	<5	RL36843
CR-09-033	23006	70.33	71.33	1.00	not consecutive	trace PO wing to 23007	<5	RL36843
CR-09-033	23007	71.33	71.83	0.50	consecutive	trace PO in HW contact I1C/V3B wing to 23008	7	RL36843
CR-09-033	23008	71.83	72.83	1.00	consecutive	black line fault, 5% PO argillite with PO-leucox and very conductive PO banding	5	RL36843
CR-09-033	23009	72.83	73.33	0.50	consecutive	psuedo banded 4% PO within V3B slump frag flow	<5	RL36843
CR-09-033	23010	0.00	0.00	0.00	not consecutive	SI42 - 1.761ppm	1790	RL36843
CR-09-033	23011	73.33	74.33	1.00	not consecutive	4% PO in turbidite	<5	RL36843
CR-09-033	23012	74.33	75.47	1.14	consecutive	4% PO in turbidite	66	RL36843
CR-09-033	23013	75.47	76.00	0.53	consecutive	2% PO in slump, whispy PO and attenuated minor blebs along foliation	13	RL36843
CR-09-033	23014	85.40	85.94	0.54	not consecutive	40% replacement PO WMIN	6	RL36843
CR-09-033	23015	7.60	8.10	0.50	not consecutive	Blank from top of hole 7.60 to 8.10m	<5	RL36843
CR-09-033	23016	85.94	87.34	1.40	not consecutive	2% PO	<5	RL36843
CR-09-033	23017	87.34	88.21	0.87	consecutive	2% PO	<5	RL36843
CR-09-033	23018	88.21	89.07	0.86	consecutive	15% PO and trace to 1% APY	<5	RL36843
CR-09-033	23019	89.07	90.00	0.93	consecutive	trace to 2% PO with a narrow I2Jbt	<5	RL36843
CR-09-033	23020	119.10	119.60	0.50	not consecutive	mag sus 92.88 due to narrow magnetite bearing bed in basalt tuff, character sample on mag, trace PO	<5	RL36843
CR-09-033	23021	128.07	129.07	1.00	not consecutive	wing to 23022 conglomerate with sulphide (PO) clasts	<5	RL36843
	22022	120.07	120.22	0.25	concourtive.	qtz vein with euhedral APY crystals, chlorite in wallrock and PO	9220	DI 26942
CK-09-055	23022	129.07	129.52	0.25	consecutive	clasts in conglomerate	8520	RL30043
CR-09-033	23023	129.32	130.32	1.00	consecutive	wing to 23022 conglomerate with sulphide (PO) clasts	6	RL36843
CR-09-033	23024	141.58	142.58	1.00	not consecutive	wing in S3	<5	RL36843
CR-09-033	23025	142.58	143.38	0.80	consecutive	replacement WMIN PO with fg gt in S3	<5	RL36843
CR-09-033	23026	143.38	144.77	1.39	consecutive	S3 few trPO between WMIN PO and qtz-cb APY veining	21	RL36843
CR-09-033	23027	144.77	145.37	0.60	consecutive	two qtz-carb-APY veins in S3 near above sheared unconformity	1770	RL36843
CR-09-033	23028	145.37	146.37	1.00	consecutive	wing	142	RL36843
CR-09-033	23029	146.37	147.20	0.83	consecutive	wing immediately above unconformity zone	412	RL36843
CR-09-033	23030	0.00	0.00	0.00	not consecutive	SK43 4.086ppm	4200	RL36843
CR-09-033	23031	147.20	148.00	0.80	not consecutive	shallow 20degCA fabric in moderately sheared contact zone with very few irregular qtz-carbonate veins	427	RL36843
CR-09-033	23032	148.00	149.32	1.32	consecutive	sheared contact zone with few irregular qtz-carbonate veins	192	RL36843

CONQUEST Resources Limited

Conquest Resources Ltd. Diamond Drill Record

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-033	23033	149.32	150.20	0.88	consecutive	sheared contact zone with few irregular qtz-carbonate veins	<5	RL36843
CR-09-033	23034	150.20	151.00	0.80	consecutive	up to 40% qtz carbonate veining	9	RL36843
CR-09-033	23035	322.00	322.50	0.50	not consecutive	massive basalt with quartz carbonate fracture filling NIL sulphides	6	RL36843
CR-09-033	23036	151.00	152.50	1.50	not consecutive	blocky pervasive moderatly carbonate altered V3B	6	RL36843
CR-09-033	23037	152.50	154.00	1.50	consecutive	blocky pervasive moderatly carbonate-chlorite altered V3B	<5	RL36843
CR-09-033	23038	154.00	155.50	1.50	consecutive	wing sample to qtz-cb-bt stockwork in V3B in 23040	<5	RL36843
CR-09-033	23039	155.50	157.00	1.50	consecutive	wing sample to qtz-cb-bt stockwork in V3B in 23040	<5	RL36843
CR-09-033	23040	157.00	158.50	1.50	consecutive	qtz-cb-bt stockwork in V3B, trace sulphides, good alteration	<5	RL36843
CR-09-033	23041	158.50	160.00	1.50	consecutive	qtz-cb-bt stockwork in V3B, trace sulphides, good alteration	<5	RL36843
CR-09-033	23042	184.31	184.81	0.50	not consecutive	wing to 23043	<5	RL36843
CR-09-033	23043	184.81	185.31	0.50	consecutive	shallow 30degCA quartz carbonate biotite vein with trace APY and minor 5% PO in wall rock	<5	RL36843
CR-09-033	23044	185.31	185.81	0.50	consecutive	wing to 23043	<5	RL36843
CR-09-033	23045	201.32	202.32	1.00	not consecutive	wing to Diorite, few PO replacement blebs	<5	RL36843
CR-09-033	23046	202.32	203.32	1.00	consecutive	fine grained Diorite with PY-PO up to 3% in very fine disseminations throughout	<5	RL36843
CR-09-033	23047	203.32	204.32	1.00	consecutive	fine grained Diorite as 23046 containing 10cm section of bt-sil alteration	<5	RL36843
CR-09-033	23048	204.32	205.48	1.16	consecutive	01APY 01PY 03PO in qtz-carb-tml veins in fine grained Diorite	<5	RL36843
CR-09-033	23049	205.48	206.48	1.00	consecutive	wing to 23048 in fine grained Diorite with very fine disseminations of PY PO	<5	RL36843
CR-09-033	23050	0.00	0.00	0.00	not consecutive	SP37 18.14ppm	18866	RL36843
CR-09-033	23201	217.00	218.00	1.00	not consecutive	wing to 23202 in basalt	7	RL36843
CR-09-033	23202	218.00	219.00	1.00	consecutive	medium grey biotite bearing Granodiorite dyke Character sample with trace Pyrite	<5	RL36843
CR-09-033	23203	219.00	220.00	1.00	consecutive	wing to 23202 in basalt	<5	RL36843
CR-09-033	23204	224.75	225.75	1.00	not consecutive	sample of narrow 67cm bt-bearing granodiorite dyke, 20% PO mineralized HW and barren FW	<5	RL36843
CR-09-033	23205	225.75	226.75	1.00	consecutive	HW-I1D dyke-FW sample. Narrow dyke. HW is 15%PO mineralized. FW contains only trPO.	<5	RL36843
CR-09-033	23206	211.00	212.00	1.00	not consecutive	wing for banded PO in sample 23207	<5	RL36843
CR-09-033	23207	212.00	213.50	1.50	consecutive	bandlets of PO in	<5	RL36843
CR-09-033	23208	213.50	214.50	1.00	consecutive	wing for banded PO in sample 23207	<5	RL36843
CR-09-033	23209	226.75	227.75	1.00	not consecutive	V3Bpil	<5	RL36843
CR-09-033	23210	0.00	0.00	0.00	not consecutive	OXK69 3.583ppm	3670	RL36843
CR-09-033	23211	227.75	229.00	1.25	not consecutive	V3Bpil	<5	RL36843
CR-09-033	23212	229.00	230.50	1.50	consecutive	V3Bpil	<5	RL36843

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-033	23213	230.50	231.50	1.00	consecutive	V3Bpil	<5	RL36843
CR-09-033	23214	231.50	232.50	1.00	consecutive	V3Bpil qcb veins	<5	RL36843
CR-09-033	23215	330.00	330.50	0.50	not consecutive	massive basalt with quartz carbonate fracture filling NIL sulphides	<5	RL36843
CR-09-033	23216	232.50	233.50	1.00	not consecutive	4-5% PO in chl-amphib-qtz-cb MT altered Basalt	<5	RL36843
CR-09-033	23217	233.50	235.00	1.50	consecutive	IF	7	RL36843
CR-09-033	23218	235.00	235.80	0.80	consecutive	PO IF with quartz-carbonate veins and vfg chl-bt altered V3B	<5	RL36843
CR-09-033	23219	235.80	236.63	0.83	consecutive	nearly NIL mineralized section of Basalt in IF	<5	RL36843
CR-09-033	23220	236.63	237.47	0.84	consecutive	poorly mineralized trPO IF section in V3B	<5	RL36843
CR-09-033	23221	237.47	238.20	0.73	consecutive	Iron Formation PO mineralized. Possible volcanic cross bedding or dykelets.	<5	RL36843
CR-09-033	23222	238.20	239.00	0.80	consecutive	chl-hb-plag qtz-carb trPO	<5	RL36843
CR-09-033	23223	239.00	240.50	1.50	consecutive	bleached sil-qtz-carbonate altered V3B 01PO trAPY	<5	RL36843
CR-09-033	23224	240.50	242.00	1.50	consecutive	act-sil-bt-(chl)-qtz-carbonate altered V3B 01PY 01PO trCPY	<5	RL36843
CR-09-033	23225	242.00	243.50	1.50	consecutive	sil-act-(carb) altered V3B 01PY 01PO trCPY	<5	RL36843
CR-09-033	23226	243.50	245.00	1.50	consecutive	sil-act-(carb) altered V3B 01PY 01PO trCPY (possible trace Bornite?)	<5	RL36843
CR-09-033	23227	245.00	246.49	1.49	consecutive	sil-act-(carb) altered V3B 01PY 01PO trCPY with 0.5cm fibrous tensional qtz-cb vein subparallel to core axis	<5	RL36843
CR-09-033	23228	246.49	247.60	1.11	consecutive	fine to medium grained qtz-cb-ep-(chl) altered Gabbroic Dyke	7	RL36843
CR-09-033	23229	247.60	249.10	1.50	consecutive	Iron Formation PO and PObx with minor trace MT locally	<5	RL36843
CR-09-033	23230	0.00	0.00	0.00	not consecutive	SK43 4.086ppm	4140	RL36843
CR-09-033	23231	249.10	250.60	1.50	not consecutive	02PO trPY mineralized chl-(bt) poorly altered pillowed Basalt	<5	RL36843
CR-09-033	23232	250.60	251.10	0.50	consecutive	02PO trPY mineralized chl-(bt) poorly altered with increased pillow selvages in Basalt	<5	RL36843
CR-09-033	23233	251.10	253.60	2.50	consecutive	02PO trPY mineralized chl-(bt) poorly altered pillowed Basalt	<5	RL36843
CR-09-033	23234	253.60	254.14	0.54	consecutive	large 10cm qtz-cb-bt NIL suilphide vein in altered basalt, big bt laths.	<5	RL36843
CR-09-033	23235	330.50	331.00	0.50	not consecutive	massive basalt with quartz carbonate fracture filling NIL sulphides	<5	RL36843
CR-09-033	23236	254.14	255.60	1.46	not consecutive	qtz-cb veins in amygdular pillowed chl altered tholeiitic basalt	<5	RL36843
CR-09-033	23237	255.60	256.29	0.69	consecutive	wing to dyke below in basalt	16	RL36843
CR-09-033	23238	256.29	257.14	0.85	consecutive	grey coloured granodiorite with vfg trPO and bt	<5	RL36843
CR-09-033	23239	257.14	258.00	0.86	consecutive	grey coloured granodiorite with vfg trPO and bt	<5	RL36843
CR-09-033	23240	258.00	259.50	1.50	consecutive	wing to dyke below in pillowed basalt	<5	RL36843
CR-09-033	23241	259.50	261.00	1.50	consecutive	qtz-cb veined pillowed basalt	<5	RL36843
CR-09-033	23242	261.00	262.50	1.50	consecutive	qtz-cb veined pillowed basalt with bt altered I1C	<5	RL36843
CR-09-033	23243	262.50	264.00	1.50	consecutive	qtz-cb-chl-(hb) altered basalt	<5	RL36843

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-033	23244	264.00	265.50	1.50	consecutive	trace Sulphides in sil-hb-act-chl recrystallized texture in massive high silica basalt	<5	RL36843
CR-09-033	23245	265.50	267.00	1.50	consecutive	trace Sulphides in sil-hb-act-chl recrystallized texture in massive high silica basalt	<5	RL36843
CR-09-033	23246	267.00	268.08	1.08	consecutive	2% PO, trPY and trAPY in sil-hb Basalt	<5	RL36843
CR-09-033	23247	268.08	269.58	1.50	consecutive	2% PO, trPY and trAPY in sil-hb Basalt	<5	RL36843
CR-09-033	23248	269.58	271.08	1.50	consecutive	2% PO, trPY and trAPY in sil-hb Basalt	<5	RL36843
CR-09-033	23249	271.08	272.58	1.50	consecutive	2% PO, trPY and trAPY in sil-hb Basalt	10	RL36843
CR-09-033	23250	0.00	0.00	0.00	not consecutive	SI42 - 1.761ppm	1740	RL36843
CR-09-033	23051	272.58	274.08	1.50	not consecutive	very fine disseminations of 1%PO and trace CPY/PY in recrystallized sil-hb-act-(bt) Basalt	<5	RL36844
CR-09-033	23052	274.08	275.58	1.50	consecutive	very fine disseminations of 1%PO and trace CPY/PY in recrystallized sil-hb-act-(bt) Basalt	<5	RL36844
CR-09-033	23053	275.58	277.08	1.50	consecutive	very fine disseminations of 1%PO and trace CPY/PY in recrystallized sil gtz-carb altered Basalt	<5	RL36844
CR-09-033	23054	304.67	306.17	1.50	not consecutive	recrystallized sil-hb-bt-(chl)-(ep) basalt pillow top fragmental wing sample to Granodiorite dyke below 23056	<5	RL36844
CR-09-033	23055	298.00	298.50	0.50	not consecutive	grev fg diorite	<5	RL36844
CR-09-033	23056	306.17	307.46	1.29	not consecutive	foliated grey granodiorite with up to 2% very finely disseminated sulphides (PO>PY)	9	RL36844
CR-09-033	23057	307.46	308.25	0.79	consecutive	foliated grey granodiorite with up to 2% very finely disseminated sulphides (PO>PY)	184	RL36844
CR-09-033	23058	308.25	308.73	0.48	consecutive	quartz-carb 10cm vein in minor disseminated sulphide granodiorite	311	RL36844
CR-09-033	23059	308.73	309.73	1.00	consecutive	trace disseminated PO in sil-hb-act-(chl) recrystallized basalt	11	RL36844
CR-09-033	23060	309.73	311.23	1.50	consecutive	trace disseminated PO in sil-hb-act-(chl) recrystallized basalt	<5	RL36844
CR-09-033	23061	311.23	312.73	1.50	consecutive	trace disseminated PO in sil-hb-act-(chl) recrystallized basalt	<5	RL36844
CR-09-033	23062	312.73	314.23	1.50	consecutive	trace disseminated PO in sil-hb-act-(chl) recrystallized basalt	<5	RL36844
CR-09-033	23063	314.23	315.19	0.96	consecutive	trace disseminated PO in sil-hb-act-(chl) recrystallized basalt	6	RL36844
CR-09-033	23064	315.19	316.69	1.50	consecutive	trace APY bearing grey coloured granodiorite with 1-2% PO	116	RL36844
CR-09-033	23065	316.69	318.19	1.50	consecutive	trace APY bearing grey coloured granodiorite with 1-2% PO	70	RL36844
CR-09-033	23066	318.19	319.69	1.50	consecutive	trace APY bearing grey coloured granodiorite with 1-2% PO	48	RL36844
CR-09-033	23067	319.69	321.19	1.50	consecutive	trace APY bearing grey coloured granodiorite with 1-2% PO	30	RL36844
CR-09-033	23068	321.19	322.69	1.50	consecutive	trace APY bearing grey coloured granodiorite with 1-2% PO	<5	RL36844

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-033	23069	322.69	323.06	0.37	consecutive	trace APY bearing grey coloured granodiorite with 1-2% PO	<5	RL36844
CR-09-033	23070	0.00	0.00	0.00	not consecutive	SI42 - 1.761ppm	1748	RL36844
CR-09-033	23071	323.06	324.56	1.50	not consecutive	Basalt wing sample to above grey foliated bt-bearing granodiorite	<5	RL36844
CR-09-033	23072	355.00	356.50	1.50	not consecutive	wing in basalt	<5	RL36844
CR-09-033	23073	356.50	358.00	1.50	consecutive	wing in basalt	<5	RL36844
CR-09-033	23074	358.00	358.79	0.79	consecutive	banded oxide iron formation with quartz-carbonate veins	<5	RL36844
CR-09-033	23075	331.00	331.50	0.50	not consecutive	massive basalt with quartz carbonate fracture filling NIL sulphides	<5	RL36844
CR-09-033	23076	358.79	360.29	1.50	not consecutive	plagioclase phyric I2E	<5	RL36844
CR-09-033	23077	360.29	361.79	1.50	consecutive	plagioclase phyric I2E	<5	RL36844
CR-09-033	23078	361.79	363.10	1.31	consecutive	plagioclase phyric I2E	<5	RL36844
CR-09-033	23079	363.10	363.54	0.44	consecutive	ep-(diop) altered oxide iron formation with laminated chert MT and chl-hb altered volcanic	<5	RL36844
CR-09-033	23080	363.54	365.00	1.46	consecutive	ep-(diop) altered oxide iron formation with laminated chert MT and chl-hb altered volcanic	<5	RL36844
CR-09-033	23081	365.00	366.50	1.50	consecutive	pillowed basalt wing	<5	RL36844
CR-09-033	23082	366.50	368.00	1.50	consecutive	pillowed basalt wing	<5	RL36844
CR-09-033	23083	368.00	369.50	1.50	consecutive	pillowed basalt wing	<5	RL36844
CR-09-033	23084	369.50	371.00	1.50	consecutive	pillowed basalt wing	<5	RL36844
CR-09-033	23085	371.00	372.50	1.50	consecutive	pillowed basalt wing	<5	RL36844
CR-09-033	23086	372.50	374.00	1.50	consecutive	pillowed basalt wing	<5	RL36844
CR-09-033	23087	374.00	375.50	1.50	consecutive	ep-(diop) altered oxide iron formation with laminated chert MT and chl-hb altered volcanic	134	RL36844
CR-09-033	23088	375.50	377.00	1.50	consecutive	ep-(diop) altered oxide iron formation with laminated chert MT and chl-hb altered volcanic	<5	RL36844
CR-09-033	23089	377.00	378.50	1.50	consecutive	ep-(diop) altered oxide iron formation with laminated chert MT and chl-hb altered volcanic	<5	RL36844
CR-09-033	23090	0.00	0.00	0.00	not consecutive	SK43 4.086ppm	4034	RL36844
CR-09-033	23091	380.00	381.50	1.50	not consecutive	basalt wing (end of IF-Oxide sampling)	<5	RL36844
CR-09-033	23092	413.91	414.91	1.00	not consecutive	basalt wing to 23093	<5	RL36844
CR-09-033	23093	414.91	416.03	1.12	consecutive	bt-diorite trPO	<5	RL36844
CR-09-033	23094	416.03	417.16	1.13	consecutive	bt-diorite trPO	<5	RL36844
CR-09-033	23095	331.50	332.00	0.50	not consecutive	massive basalt with quartz carbonate fracture filling NIL sulphides	<5	RL36844
CR-09-033	23096	417.16	417.46	0.30	not consecutive	plagioclase phyric I2E dyke, cross cuts diorite dyke in V3B	<5	RL36844
CR-09-033	23097	417.46	418.00	0.54	consecutive	bt-diorite trPO	<5	RL36844
CR-09-033	23098	418.00	419.50	1.50	consecutive	basalt wing NIL sulphides	35	RL36844

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-033	23099	420.43	421.93	1.50	not consecutive	basalt with anastamosing quartz-chl-(moly?) fracture sub parallel to core axis	<5	RL36844
CR-09-033	23100	419.50	420.43	0.93	not consecutive	basalt wing NIL sulphides	6	RL36844
CR-09-033	23101	421.93	423.43	1.50	not consecutive	basalt wing NIL sulphides	<5	RL36844
CR-09-033	23102	448.00	448.75	0.75	not consecutive	wing to 23103 in mg to cg gabbro NIL sulphides	<5	RL36844
CR-09-033	23103	448.75	450.00	1.25	consecutive	gtz monzonite with guartz vein	<5	RL36844
CR-09-033	23104	450.00	450.35	0.35	consecutive	wing to 23103 in mg to cg gabbro NIL sulphides	<5	RL36844
CR-09-033	23105	473.80	474.80	1.00	not consecutive	wing gabbro nil sulphides	<5	RL36844
CR-09-033	23106	474.80	475.80	1.00	consecutive	I2E with qtz-cb-bt vein subparallel to core axis	<5	RL36844
CR-09-033	23107	475.80	476.93	1.13	consecutive	I2E with PO mineralized lower contact	9	RL36844
CR-09-033	23108	476.93	477.93	1.00	consecutive	wing gabbro nil sulphides	59	RL36844
CR-09-033	23109	423.43	426.12	2.69	not consecutive	silicous basalt immediately above gabbro contact	<5	RL36844
CR-09-033	23110	0.00	0.00	0.00	not consecutive	SI42 - 1.761ppm	1748	RL36844
CR-09-033	23111	426.12	427.62	1.50	not consecutive	basalt-gabbro contact zone with minor diorite dyke, NIL sulphdes	<5	RL36844
CR-09-033	23112	427.62	428.90	1.28	consecutive	upper contact gabbro, NIL sulphides	<5	RL36844
CR-09-033	23113	428.90	428.90	0.00	consecutive	gabbro and upper contact of porphyritic I2E, NIL sulphides	<5	RL36844
CR-09-033	23114	428.90	430.25	1.35	consecutive	porphyritic I2E in Gabrro contact, NIL sulphides	7	RL36844
CR-09-033	23115	587.50	589.00	1.50	not consecutive	barren gabbro at bottom of hole	8	RL36844
CR-09-033	23116	430.25	431.00	0.75	not consecutive	porphyritic I2E in Gabrro contact, NIL sulphides	13	RL36844
CR-09-033	23117	431.00	431.60	0.60	consecutive	gabbro with minor PO at upper contact with narrow diorite dyke below	22	RL36844
CR-09-033	23118	431.60	432.08	0.48	consecutive	trace PO in diorite	27	RL36844
CR-09-033	23119	432.08	432.93	0.85	consecutive	gabbro, end of sampling Basalt-Gabbro contact zone	10	RL36844
CR-09-033	23120	578.00	579.50	1.50	not consecutive	wide grey coloured I2E dyke in gabbroic stock with trace PO	33	RL36844
CR-09-033	23121	579.50	580.00	0.50	consecutive	2cm shallow CA quartz vein in grey qtz-monzonite dyke with trace PO	13	RL36844
CR-09-033	23122	580.00	581.22	1.22	consecutive	I2E as 23120	23	RL36844
CR-09-033	23123	581.22	582.00	0.78	consecutive	biotite and chlorite alteration contact, fg to mg gabbro	<5	RL36844
CR-09-033	23124	582.00	583.50	1.50	consecutive	gabbro wing to dyke contact	6	RL36844
CR-09-033	23125	583.50	585.00	1.50	consecutive	gabbro NIL sulphides	13	RL36844
CR-09-033	23126	585.00	586.34	1.34	consecutive	gabbro wing to massive quartz vein, NIL sulphides	7	RL36844
CR-09-033	23127	586.34	587.50	1.16	consecutive	massive milky white quartz vein, NIL sulphides	<5	RL36844
CR-09-033	23128	587.50	589.00	1.50	consecutive	gabbro wing to 23127	<5	RL36844

Gyro Survey Record

Hole ID	Station (m)	Dip (Degrees)	Azimuth	Easting (m)	Northing (m)	Elevation (m)
CR-09-033	0	-48.60	29.00	0.00	0.00	0.00
CR-09-033	5	-48.25	29.32	0.01	3.32	-3.74
CR-09-033	10	-47.95	29.54	0.03	6.66	-7.46
CR-09-033	15	-47.71	29.66	0.07	10.01	-11.17
CR-09-033	20	-47.60	29.72	0.11	13.38	-14.86
CR-09-033	25	-47.51	29.84	0.16	16.75	-18.55
CR-09-033	30	-47.38	29.98	0.21	20.14	-22.24
CR-09-033	35	-46.87	30.18	0.27	23.54	-25.90
CR-09-033	40	-46.50	30.43	0.35	26.97	-29.54
CR-09-033	45	-46.12	30.45	0.44	30.42	-33.15
CR-09-033	50	-45.87	30.57	0.53	33.89	-36.75
CR-09-033	55	-45.68	30.67	0.63	37.38	-40.33
CR-09-033	60	-45.63	30.81	0.73	40.87	-43.91
CR-09-033	65	-45.59	30.97	0.85	44.37	-47.48
CR-09-033	70	-45.53	31.09	0.97	47.87	-51.05
CR-09-033	75	-45.41	31.20	1.10	51.37	-54.62
CR-09-033	80	-45.26	31.30	1.24	54.88	-58.17
CR-09-033	85	-45.16	31.35	1.39	58.40	-61.72
CR-09-033	90	-45.06	31.44	1.53	61.93	-65.26
CR-09-033	95	-44.96	31.52	1.69	65.46	-68.80
CR-09-033	100	-44.88	31.56	1.84	69.00	-72.33
CR-09-033	105	-44.78	31.68	2.00	72.54	-75.85
CR-09-033	110	-44.71	31.78	2.17	76.09	-79.37
CR-09-033	115	-44.60	31.88	2.35	79.64	-82.89
CR-09-033	120	-44.51	31.93	2.53	83.20	-86.40
CR-09-033	125	-44.44	32.03	2.72	86.76	-89.90
CR-09-033	130	-44.36	32.13	2.91	90.33	-93.40
CR-09-033	135	-44.27	32.17	3.10	93.90	-96.89
CR-09-033	140	-44.17	32.28	3.31	97.48	-100.38
CR-09-033	145	-44.09	32.45	3.52	101.06	-103.86
CR-09-033	150	-44.05	32.44	3.73	104.64	-107.34
CR-09-033	155	-43.98	32.52	3.95	108.23	-110.81
CR-09-033	160	-43.96	32.51	4.17	111.82	-114.28
CR-09-033	165	-43.92	32.64	4.40	115.42	-117.75
CR-09-033	170	-43.85	32.65	4.62	119.01	-121.22
CR-09-033	175	-43.71	32.76	4.86	122.62	-124.68
CR-09-033	180	-43.63	32.89	5.10	126.23	-128.13

Gyro Survey Record

Hole ID	Station (m)	Dip (Degrees)	Azimuth	Easting (m)	Northing (m)	Elevation (m)
CR-09-033	185	-43.57	32.97	5.35	129.84	-131.58
CR-09-033	190	-43.52	33.05	5.60	133.45	-135.02
CR-09-033	195	-43.47	33.08	5.86	137.07	-138.46
CR-09-033	200	-43.44	33.13	6.12	140.69	-141.90
CR-09-033	205	-43.37	33.22	6.38	144.31	-145.34
CR-09-033	210	-43.34	33.27	6.65	147.94	-148.77
CR-09-033	215	-43.29	33.27	6.92	151.57	-152.20
CR-09-033	220	-43.26	33.34	7.19	155.20	-155.63
CR-09-033	225	-43.21	33.43	7.47	158.83	-159.06
CR-09-033	230	-43.17	33.52	7.76	162.46	-162.48
CR-09-033	235	-43.12	33.63	8.05	166.10	-165.90
CR-09-033	240	-43.10	33.74	8.35	169.74	-169.31
CR-09-033	245	-43.10	33.79	8.65	173.38	-172.73
CR-09-033	250	-43.08	33.78	8.96	177.02	-176.15
CR-09-033	255	-43.04	33.82	9.26	180.66	-179.56
CR-09-033	260	-42.98	33.91	9.57	184.30	-182.97
CR-09-033	265	-42.95	33.92	9.88	187.94	-186.38
CR-09-033	270	-42.91	33.99	10.20	191.59	-189.78
CR-09-033	275	-42.85	34.05	10.52	195.24	-193.19
CR-09-033	280	-42.82	34.16	10.85	198.89	-196.59
CR-09-033	285	-42.77	34.26	11.18	202.55	-199.98
CR-09-033	290	-42.74	34.32	11.52	206.20	-203.38
CR-09-033	295	-42.71	34.41	11.86	209.86	-206.77
CR-09-033	300	-42.65	34.46	12.21	213.52	-210.16
CR-09-033	305	-42.57	34.65	12.57	217.18	-213.54
CR-09-033	310	-42.52	34.79	12.94	220.85	-216.92
CR-09-033	315	-42.45	34.87	13.31	224.52	-220.30
CR-09-033	320	-42.42	34.99	13.69	228.19	-223.67
CR-09-033	325	-42.38	35.10	14.08	231.86	-227.05
CR-09-033	330	-42.33	35.08	14.47	235.53	-230.42
CR-09-033	335	-42.29	35.15	14.87	239.21	-233.78
CR-09-033	340	-42.24	35.21	15.26	242.89	-237.14
CR-09-033	345	-42.22	35.36	15.67	246.57	-240.50
CR-09-033	350	-42.16	35.51	16.09	250.25	-243.86
CR-09-033	355	-42.15	35.63	16.51	253.93	-247.22
CR-09-033	360	-42.10	35.66	16.94	257.61	-250.57
CR-09-033	365	-42.05	35.71	17.37	261.30	-253.92

Gyro Survey Record

Hole ID	Station (m)	Dip (Degrees)	Azimuth	Easting (m)	Northing (m)	Elevation (m)
CR-09-033	370	-41.96	35.81	17.81	264.99	-257.27
CR-09-033	375	-41.89	35.83	18.25	268.68	-260.61
CR-09-033	380	-41.88	35.90	18.70	272.38	-263.95
CR-09-033	385	-41.83	35.92	19.14	276.08	-267.28
CR-09-033	390	-41.78	35.99	19.59	279.78	-270.62
CR-09-033	395	-41.75	36.07	20.05	283.48	-273.95
CR-09-033	400	-41.76	36.10	20.51	287.18	-277.28
CR-09-033	405	-41.74	36.17	20.97	290.88	-280.61
CR-09-033	410	-41.72	36.21	21.44	294.58	-283.93
CR-09-033	415	-41.71	36.35	21.91	298.28	-287.26
CR-09-033	420	-41.71	36.43	22.39	301.99	-290.59
CR-09-033	425	-41.72	36.44	22.88	305.69	-293.91
CR-09-033	430	-41.68	36.50	23.36	309.39	-297.24
CR-09-033	435	-41.65	36.56	23.85	313.09	-300.56
CR-09-033	440	-41.62	36.64	24.35	316.80	-303.89
CR-09-033	445	-41.62	36.68	24.84	320.50	-307.21
CR-09-033	450	-41.60	36.76	25.35	324.20	-310.53
CR-09-033	455	-41.55	36.86	25.86	327.91	-313.85
CR-09-033	460	-41.51	36.92	26.37	331.62	-317.16
CR-09-033	465	-41.48	37.01	26.89	335.33	-320.47
CR-09-033	470	-41.44	37.03	27.41	339.04	-323.78
CR-09-033	475	-41.41	37.01	27.93	342.75	-327.09
CR-09-033	480	-41.36	37.01	28.46	346.47	-330.40
CR-09-033	485	-41.35	37.14	28.98	350.18	-333.70
CR-09-033	490	-41.33	37.17	29.52	353.90	-337.00
CR-09-033	495	-41.31	37.21	30.05	357.61	-340.30
CR-09-033	500	-41.25	37.27	30.59	361.33	-343.60
CR-09-033	505	-41.23	37.37	31.13	365.05	-346.90
CR-09-033	510	-41.23	37.46	31.68	368.77	-350.19
CR-09-033	515	-41.20	37.53	32.24	372.49	-353.49
CR-09-033	520	-41.15	37.61	32.80	376.22	-356.78
CR-09-033	525	-41.10	37.66	33.37	379.94	-360.07
CR-09-033	530	-41.02	37.74	33.94	383.67	-363.35
CR-09-033	535	-40.92	37.75	34.51	387.40	-366.63
CR-09-033	540	-40.87	37.75	35.08	391.13	-369.90
CR-09-033	545	-40.87	37.85	35.66	394.87	-373.18
CR-09-033	550	-40.86	37.90	36.25	398.61	-376.45

Gyro Survey Record

Hole ID	Station (m)	Dip (Degrees)	Azimuth	Easting (m)	Northing (m)	Elevation (m)
CR-09-033	555	-40.78	37.88	36.83	402.34	-379.72
CR-09-033	560	-40.71	37.83	37.41	406.09	-382.98
CR-09-033	565	-40.59	37.97	38.00	409.83	-386.24
CR-09-033	570	-40.50	37.97	38.59	413.59	-389.49
CR-09-033	575	-40.41	38.30	39.20	417.34	-392.73
CR-09-033	580	-40.36	38.24	39.81	421.10	-395.97
CR-09-033	585	-40.28	38.25	40.42	424.87	-399.21
CR-09-033	590	-40.22	38.32	41.04	428.63	-402.44
CR-09-033	595	-40.38	38.43	41.66	432.39	-405.67
CR-09-033	600	-40.35	38.55	42.29	436.15	-408.91

Conquest Resources Ltd.

Exploration Diamond Drill Log

DRILL HOLE #	CR-09-034	LOCATION	Balmertown,	, Balmer Tow	nship, Red L	.ake D	istrict, Ontario		
PROJECT #	Alexander	REFERENCE	Alexander		GEOLO	OGIST	BATSON	CLAIM	KRL 20487
GRID/ NAD-Z	DNE	NORTHING		EASTING			ELEVATION		GRID TYPE
GRID	Alexander RL	4+48S		1+55E			10000	_	Μ
UTM	NAD83 / 15U	5656249		450073			382		
COLLAR DIP	-50	GRID DIRECTIO	N	North				AZ DIRECTION	029
NTS REF #	052N04	NTS SHEET NA	ME	Red Lake, O	ntario				
START DATE	12-Sep-09			FINISH DATE	18-Sep	-09			
DEPTH (EOH)	509.00	TARGET & Zon	e Depth	Target at 75	m and Targe	et 5 (3	85m)		
PURPOSE	CR09-E dumm	y hole tests	2 target horiz	ons in seds a	nd volx	PIECE	POINT of Target:	E	mELEV
CASING BW	,		CASING NW	7.00				CASING HW	
PLUG @	,		PLUG @	na				PLUG @	
START DTH	0.00		WEDGE @					-	
REDUCED @			REDUCED @						
HOLE STATUS	complete, cap	oped, left cas	ing.						
DRILLING CON	ITRACTOR	Boart Longy	ear Inc.						
RIG NO.	4186							BXS.	117
								-	

	GYRO S					
DEPTH (m)	AZ	DIP	Elevation (m)	δ Easting (m)	δ Northing (m)	Comments:
0	29.00	-48.88	0.00	0.00	0.00	1st Target intersected at 57.71 to 60.00m as
50	29.65	-47.87	-37.30	33.30	-37.30	NSS Pyrite replacement in conglomerate
100	30.32	-46.98	-74.12	67.12	-74.12	similar to intersection in CR-03-019. <u>2nd</u>
150	30.94	-46.26	-110.45	101.45	-110.45	larget intersected as sheared basait-gabrro
200	31.79	-45.65	-146.39	136.18	-146.39	structures in HW above gabrro contact at 318-
250	32.43	-45.22	-182.00	171.23	-182.00	330m.
300	32.62	-44.43	-217.20	206.68	-217.20	Interesction highlights include strongly
350	33.51	-43.60	-251.94	242.54	-251.94	sulphidized sediments (argillites, siltstone,
400	34.03	-42.51	-286.07	278.96	-286.07	and conglomerates) in upper stratigraphy and
450	34.47	-42.23	-319.76	315.74	-319.76	sheared, quartz carbonate altered basalt
500	35.14	-41.36	-353.13	352.79	-353.13	been thoroughly sampled, including many
						Character Samples throughout. Geophysically
						difficult rock due to abundant graphite.
]
]
]

Drilled with 3m stabilized core barrel

Planned hole depth is 510m (1673')

Magnetic Declineation 0° 13', Declination for Grid N29°E

Water source: pond above tailings located at 451500 5656695 UTM NAD83 15U

Maxibor failed early in hole. Future drilling in argillites requires Stabilized CB as used in this program.

Left Casing and Capped with Stamped NW cap Planned hole time is 8 days (Sept 12 to 19) Core stored at Cochenour Mine Site

Drill type: LF-70

Major Lithologies

Hole Name	From	То	Length	Code	Description	Rep
CR-09-034	0.00	6.00	6.00	CAS	NW Casing into overburden and bedrock	
CR-09-034	6.00	12.80	6.80	S6E	Bedded, conductive, pyrrhotite-pyrite mineralized graphitic Argillite with lithic wacke interbeds. Highly conductive unit cheifly due to graphite content and, to a lesser degree, due to sulphide content. Bedding defined by finely laminated PO bearing beds oriented from 60degCA to subparallel to core axis. Possible dewatering bed disturbance. Sediments are likely overturned as bed contacts with polymictic sulphide clast conglomerates show distinct bed disturbance flame structures and load casts. Downhole coarse grained bed top upper contacts are sharp, which also aids in determining stratigraphic younging direction (eg. [argillite] -(flame structures) -[conglomerate] -(sharp contact) -[argillite]). Unconsolidated clay-silt micro fault structures show minor local offset between beds during lithification.	11.83 to 11.97m
CR-09-034	12.80	14.44	1.64	S4	Polymictic subangular to rounded, quartz cobble, lithic and sulphide clast bearing Conglomerate as in CR-09-033 at 118.61m. Sulphide clasts are well rounded. Intensive PO replacement. Banded lithic fragments are siliceous and angular. *(Possible source of these clasts is may be some sort of 'explosive' volcanic brecciating event as fragments are very angular and unaltered with no sign of typical glassy fragments which were likely transported without precipitation or deposition in this bed).	14.90 to 15.07m
CR-09-034	14.44	34.00	19.56	S6E	as above interbeded graphitic Argillite and silt sediments	
CR-09-034	34.00	36.57	2.57	S 4	as above 12.80 to 14.44m undifferentiated quartz-lithic-sulphide clast angular conglomerate	
CR-09-034	36.57	37.09	0.52	NSS	Near Solid Sulphide: Primary sulphide clasts and replacement pyrite and pyrrhotite mineralized lithic clasts within polymictic graphitic conglomerate breccia. Trace minor oxides present (illmenite-goethite phase) in graphitic crude bed matrix material. Replacement massive sulphide from 36.67 to 36.85m within conglomerate.	
CR-09-034	37.09	42.00	4.91	S 4	as above 12.80 to 14.44m undifferentiated quartz-lithic-sulphide clast angular conglomerate with minor argillite interbedding	
CR-09-034	42.00	48.00	6.00	FLT	fault zone in black highly graphitic, PY-PO mineralized argillite	
CR-09-034	48.00	57.71	9.71	S6E	as above interbeded graphitic Argillite and silt sediments	
CR-09-034	57.71	60.00	2.29	WMIN	Well mineralized conglomerate as above 12.80 to 14.44m. Angular, clast supported, sediments. Replacement NSS blowout at 58.42 to 58.66m, cheifly Pyrite. Unaltered, fresh sediments as above.	

Hole Name	From	То	Length	Code	Description	Rep
CR-09-034	60.00	101.11	41.11	S6E	Grey to dark grey coloured, bedded, variably magnetic, silt laiden and interbedded argillaceous sediments with 2-3 PO > PY mineralization throughout. Increased PO content (to 8%) over 10m at 75.73m. Very similar to above argillites but contains only trace graphite locally.	
CR-09-034	101.11	113.30	12.19	SHR	Moderately strong discordant shearing in siliceous, qtz-carbonate altered argillaceous sediments with abundant irregular (-dismembered) quartz veining and to a lesser degree, minor quartz-calcite veining. Minor pervasive carbonate and trace fine garnet alteration throughout. PO is disseminated and laminated throughout with trace to 2% fine grained, fracture (near breccia) healed calcite and quartz vein associated PY occuring locally. Non conductive. Lower contact is dyked out by fine grained bt-bearing diorite dyke.	
CR-09-034	113.30	120.66	7.36	SHR	Pale light green coloured, sheared, sil-ser-chl-qtz-cal-(qtz-cb)-(bt) altered Basalt with few strongly sheared sedimentary sections which are distinctly darker in colour (as siliceous argillite). Volcanic textures have nearly been obliterated by shearing and associated replacement quartz, calcite, and quartz carbonate veining. Where visible, basalt may have either typically coarsened dark hornblende (amphibole cleavage) or sections of fine bleached quartz-sericite altered texture. Non conductive.	
CR-09-034	120.66	189.42	68.76	V3B	Light to medium green coloured, massive to pillowed, chl-hb-(sil-ser)-(qtz-carb) altered Basalt. Same basalts as in CR-09-033 from 147.2 to 233.5m. Frequent felsic to intermediate dyking throughout unit. Pillow sections contain classic medium grained hb-chl pillow cores with chl- qtz-carb-(sil-ser) selvages and generally occur quartz amygdular in selvage halos. Upper contact is sheared at 60degCA and gradational. Lower contact is gradational and contains diorite dyking.	
CR-09-034	189.42	228.30	38.88	SHR	quartz-carbonate veined, calcite-chlorite-(bt) altered, Shear Zone in basalt with numerous intrusive variably sil-ser-(talc-alb-bt) altered dyke phases composed of quartz monzonite, granodiorite, and diorite.	
CR-09-034	228.30	335.87	107.57	V3B	As above 120.66 to 189.42, pillowed Basalt with abundant quartz carbonate selvage and fracture filling and multiple phases of quartz monzonite and diorite dyking locally. Upper and lower contacts are sheared. Lower contact is sheared at intrusive.	288.00 to 288.17

Major Lithologies

Hole Name	From	То	Length	Code	Description	Rep
CR-09-034	335.87	509.32	173.45	I3A	Gabbro, as in CR-09-033 424.12 to 600.00m. medium to dark grey-green coloured, medium to coarse grained, Gabbroic Intrusive with grey quartz eye porphyritic felsic and intermediate composition dyking. As in CR-09-033, one thick white, massive white quartz and chloritized wall rock fragment vein was intersected at 409m. Textures increase in grain-size downhole. Upper contact is fine grained and sheared. Lower contact was not intersected in this drill hole.	
CR-09-034	509.32	509.33	0.01	EOH	EOH at 509.33m on September 18, 2009 at 13h30. Left casing. Capped with stamped aluminum casing cap. Gyro surveyed. Core is stored at the Goldcorp Cochenour Mine Site in 117 NQ trays. 214 samples sent for Au fire assay (50g pulp) at SGS Labs, Red Lake, ON.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-09-034	21.16	21.60	S3	poorly sulphidized, sorted, moderately well bedded, lithic wacke interbed with subangular lithic clasts 1-30mm in diameter	
CR-09-034	25.87	26.76	S 3	poorly sulphidized, undifferentiated (poorly sorted, poorly bedded) lithic wacke interbed with subangular lithic clasts 1-15mm in diameter	
CR-09-034	32.00	32.50	S 3	as above 25.87 to 26.76m wacke	
CR-09-034	74.16	75.73	S6A	grey coloured, massive, siltstone interbed with conformable bedding at 50degCA and sharp upper and lower contacts	
CR-09-034	94.53	101.11	S6A	grey coloured, massive, siltstone interbed with conformable bedding at 50degCA. Upper contact is sharp. Lower contacts is gradational into argillite over 0.20m	
CR-09-034	111.16	113.30	I2J	grey coloured, fine to medium grained, massive, unfoliated, unsheared, biotite bearing Diorite Dyke with trace sulphides (PO-PY)	
CR-09-034	117.90	118.40	I2E	pale grey, qtz-ser-(albite) altered plagioclase phyric quartz monzonite. Upper contact is ground in core. Lower contact is altered and sharp at 70degCA.	
CR-09-034	128.14	129.44	I1C	grey coloured, quartz crystal abundant, sil-bt altered, foliated 65degCA, Granodiorite. Highly siliceous. Upper contact is sharp at 65degCA. Lower contact is strongly sil-ser bleached (possible albite alteration) and irregular near brecciated.	
CR-09-034	133.53	138.03	12E	Grey coloured, massive, "QFP", plagioclase phyric quartz monzonite to quartz monzodiorite. Non magnetic. Large blue rounded quartz crystal (<5-10%). Several narrow chlorite graphic, cross-cutting flat or vertical quartz veins. Few strongly biotitic bands present but should not be used as a good qualifier in discerning this intermediate intrusive from the above granodiorite. Upper contact is sharp and quartz veined. Lower contact is ground-off in core.	
CR-09-034	138.03	147.45	V3B	pillowed basalt with minor quartz +- calcite amygdules in pillow rims with typical quartz- carbonate and chlorite selvages	
CR-09-034	147.45	153.00	I2E	Bleached grey coloured, foliated, siliceous, plagioclase phyric quartz monzonite with trace PO as above 117.90 to 118.40m. Upper and lower contacts are sharp at 70degCA.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-09-034	163.00	168.12	I2E	APY-PY Mineralized "QFP", highly sil-ser altered (bleached), plagioclase phyric quartz monzonite . APY is very finely disseminated throughout and in localized clusters in acicular brilliant needles. Alteration overprinting has produced a whispy sericitic mesostatis around blue-grey coloured resistant quartz eyes. One cm-scale quartz-biotite vein cross-cuts dyke at high core angle down hole (10degCA). Trace pyrite is also fine grained throughout. Upper and lower contacts are sharp at 60degCA and 55degCA respectively.	
CR-09-034	171.46	171.76	12E	as above 133.53 to 138.03	
CR-09-034	174.29	176.17	12E	as above 133.53 to 138.03	
CR-09-034	178.40	180.25	I2J	as above 111.16 to 113.30 grey massive Diorite with very fine disseminated sulphides. Sharp upper and lower contacts at 55degCA. Lower contact is undulating and planar.	
CR-09-034	183.07	183.41	SHR	siliceous narrow bt-bearing sheared Basalt with PO mineralization. Structure at 75degCA	
CR-09-034	183.41	187.06	V3B	few narrow I2E dykes (15cm width) in chl-qcb altered, weakly sheared basalt	
CR-09-034	187.06	189.42	I2J	as above 111.16 to 113.30 grey coloured, massive intrusive textured, biotite bearing diorite. Non magnetic.	
CR-09-034	189.42	193.44	V3B	chl-qcb altered, weakly sheared basalt	
CR-09-034	193.44	195.88	12G	as above 117.90 to 118.40m, bleached -chl-bt altered, grey coloured, foliated, siliceous, plagioclase phyric quartz monzodiorite with trace PO. Plagioclase crystals are white, subhedral and easier scratched compared to rounded blue-grey to white coloured quartz crystals. Upper and lower contacts are undulating at 65degCA with quartz veining.	
CR-09-034	195.88	203.39	SHR;V3B	Strongly sheared, carbonate-chlorite-(bt)-qcb altered Basalt with quartz-(fuch) veining.	
CR-09-034	203.39	205.41	I2J	fine grained, disseminated Pyrite mineralized, non magnetic bt-bearing Diorite dyke	
CR-09-034	205.66	211.43	I2G	Similar to above 117.90 to 118.40m quartz monzodiorite, but highly altered version. Strongly sil-ser-talc-(alb) altered and bleached in colour. Blue quartz eyes.Arsenopyrite needle cluster at 207.20. Very nice alteration and local APY character	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-09-034	211.43	212.78	SHR	Strongly sheared, finely featured, basalt. Narrow shear structures over cm thickness. Possible sheeted veins (?). Same structure as above shearing 195.88 to 203.39m	
CR-09-034	212.78	215.47	I2J	as above 187.06 to 189.42 Diorite dyke with tml-qtz-feldspar porphyry dyke at 68degCA from 215.03 to 215.23m. Upper and lower contacts are sharp at 70degCA with qcb veining at lower contact.	
CR-09-034	215.47	220.48	V3B	as above 189.42 to 193.44 weakly sheared basalt	
CR-09-034	220.48	221.10	12G	as above grey plagioclase phyric quartz monzodiorite with trace sulphides and minor quartz and quartz-carbonate veining	
CR-09-034	221.10	226.35	V3B	as above 189.42 to 193.44 weakly sheared basalt	
CR-09-034	226.35	227.30	SHR	strongly sheared and sil-ser-carb altered, 5PO mineralized Basalt	
CR-09-034	227.30	228.30	SHR	moderately sheared quartz-carbonate veined basalt	
CR-09-034	228.30	238.50	V3B;pil	pillowed basalt with minor quartz +- calcite amygdules in pillow rims with typical quartz- carbonate and chlorite selvages	
CR-09-034	238.50	241.40	I2G	as above 117.90 to 118.40m, grey coloured, foliated, siliceous, plagioclase phyric quartz monzodiorite with trace PO. Sil-ser alteration has produced bleaching. Upper and lower contacts are sharp at 80degCA and 40deCA respectively with quartz veining.	
CR-09-034	243.50	244.39	I2G	Grey plagioclase phyric crystal, blue quartz eye, bt bearing, quartz monzodiorite with bt- bearing grey diorite cross cutting diorite at 90, 45, and low core angles. Numerous quartz veins generally oriented normal to CA. Minor qtz-bt tensional veins in diorite oriented sub CA. Character sampled with quartz veins in 12E and 12E/J contacts. Upper contact is sharp at 50degCA. Lower contact is sharp at 60degCA.	
CR-09-034	257.87	260.00	I2G	as above 243.50 to 244.39m quartz carbonate (-biotite bearing) veined, grey coloured plagioclase phyric quartz monzodiorite with sharp upper and lower contacts at 70degCA. Lower contact contains minor quartz veining	
CR-09-034	280.57	282.55	I2G	as above 243.50 to 244.39m quartz carbonate (-biotite bearing) veined, grey coloured plagioclase phyric quartz monzodiorite with sharp upper and lower contacts at 80degCA. Upper contact is sheared. Lower contact contains minor quartz veining.	281.65 to 281.77m
CR-09-034	297.75	298.48	SHR; V3B	Narrow Shear Zone in pillowed basalt. 10PO mineralized with moderately strong 30% silica and 5% sericite bleaching	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
				Sheared Upper Contact Zone. Quartz Carbonate veining in stratigraphic hangingwall	
CR-09-034	335.87	346.66	SHR; I3A	does not persist into sheared contact, which suggest that the Gabbro emplacement	
				postdates quartz carbonate overprinting.	
CB-00-034	120 95	122 37	126	grey, non magnetic, typical quartz eye monzodiorite with undulating sharp upper and	
CN-05-054	420.55	422.57	120	lower contacts at 80degCA	
CP 00 024	122 60	177 17	126	as above grey quartz monzodiorite dyke with sharp upper and lower contacts at	
CR-09-054	452.00	427.47	120	80degCA	
CP 00 024	460.42	170 AE	126	as above grey quartz monzodiorite dyke with sharp upper and lower contacts at	
CK-09-054	409.42	470.45	120	80degCA. Upper contact has minor quartz veining, NIL sulphides.	
	180.16	192 OF	126	as above grey quartz monzodiorite dyke with minor irregular quartz veins sharp upper	
CN-09-034	400.40	403.03	120	and lower contacts at 80degCA.	

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description		Batch-Number
CR-09-034	23129	5.15	6.80	1.65	not consecutive	sulphidized argillite laminated 2-5%PY 5-10%PO		RL36903
CR-09-034	23130	0.00	0.00	0.00	not consecutive	SK43 4.086ppm	3930	RL36903
CR-09-034	23131	6.80	8.30	1.50	not consecutive	as above 23129	<5	RL36903
CR-09-034	23132	8.30	9.80	1.50	consecutive	as above 23129	<5	RL36903
CR-09-034	23133	9.80	11.30	1.50	consecutive	as above 23129	<5	RL36903
CR-09-034	23134	11.30	12.80	1.50	consecutive	as above 23129	<5	RL36903
CR-09-034	23135	97.00	97.50	0.50	not consecutive	light grey coloured siltstone massive interbed	<5	RL36903
CR-09-034	23136	12.80	13.65	0.85	not consecutive	up to 40% PO>>PY in polymictic sulphide clast conglomerate	<5	RL36903
CR-09-034	23137	13.65	14.44	0.79	consecutive	up to 10% PO 20% PY in polymictic sulphide clast conglomerate	<5	RL36903
CR-09-034	23138	14.44	15.94	1.50	consecutive	as above 23129	<5	RL36903
CR-09-034	23139	15.94	17.44	1.50	consecutive	as above 23129	<5	RL36903
CR-09-034	23140	17.44	18.94	1.50	consecutive	as above 23129	<5	RL36903
CR-09-034	23141	18.94	20.44	1.50	consecutive	as above 23129	<5	RL36903
CR-09-034	23142	20.44	21.16	0.72	consecutive	as above 23129	<5	RL36903
CR-09-034	23143	21.16	21.60	0.44	consecutive	as above 23129	<5	RL36903
CR-09-034	23144	21.60	23.10	1.50	consecutive	as above 23129	<5	RL36903
CR-09-034	23145	23.10	24.60	1.50	consecutive	as above 23129	<5	RL36903
CR-09-034	23146	24.60	25.87	1.27	consecutive	as above 23129	<5	RL36903
CR-09-034	23147	25.87	26.97	1.10	consecutive	S3 interbed in S6A with few angular clast beds and 5PO 2PY	<5	RL36903
CR-09-034	23148	26.97	28.47	1.50	consecutive	as above 23129	<5	RL36903
CR-09-034	23149	28.47	29.97	1.50	consecutive	as above 23129	<5	RL36903
CR-09-034	23150	0.00	0.00	0.00	not consecutive	SI42 1.761 ppm	1760	RL36903
CR-09-034	23151	29.97	31.47	1.50	not consecutive	as above 23129	<5	RL36903
CR-09-034	23152	31.47	32.97	1.50	consecutive	as above 23129	<5	RL36903
CR-09-034	23153	32.97	34.00	1.03	consecutive	as above 23129	<5	RL36903
CR-09-034	23154	34.00	35.00	1.00	consecutive	15PY 10PO Sulphide clast and PY-PO cement polymictic qtz-lithic conglomerate	<5	RL36903
CR-09-034	23155	96.50	97.00	0.50	not consecutive	light grey coloured siltstone massive interbed	<5	RL36903
CR-09-034	23156	35.00	36.00	1.00	not consecutive	20PY 10PO Sulphide clast and PY-PO cement polymictic qtz-lithic conglomerate	<5	RL36903
CR-09-034	23157	36.00	36.57	0.57	consecutive	poorly mineralized silty interbed with disseminated fine grained PY	<5	RL36903
CR-09-034	23158	36.57	37.09	0.52	consecutive	NSS 40PY 20PO primary PY and replacement PY-PO in slightly smaller clast conglomerate. MS narrow intersection within. Very conductive.	<5	RL36903
CR-09-034	23159	37.09	38.50	1.41	consecutive	poorly mineralized wacke and conglomerate	<5	RL36903
CR-09-034	23160	38.50	39.00	0.50	consecutive	20PY clast wacke with 10PO replacement	11	RL36903
CR-09-034	23161	39.00	40.14	1.14	consecutive	as above 23129 argillite	<5	RL36903

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description		Batch-Number
CR-09-034	23162	40.14	41.54	1.40	consecutive	silty wacke interbed, grey in colour within black argillite 1-2PO	<5	RL36903
CR-09-034	23163	41.54	42.80	1.26	consecutive	wacke and argillite with 5PO>>PY, replacement at contact of interbed	<5	RL36903
CR-09-034	23164	42.80	44.00	1.20	consecutive	graphitic fault with 5 sulphides PY>PO	<5	RL36903
CR-09-034	23165	44.00	45.00	1.00	consecutive	as above graphite fault 5PO 5PY	<5	RL36903
CR-09-034	23166	45.00	46.00	1.00	consecutive	graphitic fault	<5	RL36903
CR-09-034	23167	46.00	47.00	1.00	consecutive	graphite fault in black argillites with quartz-(minor carb) veins	<5	RL36903
CR-09-034	23168	47.00	48.00	1.00	consecutive	strongly graphitic fault and gouge with 10PY and 2PO	<5	RL36903
CR-09-034	23169	48.00	49.50	1.50	consecutive	moderately graphitic S6A silty	16	RL36903
CR-09-034	23170	0.00	0.00	0.00	not consecutive	SK43 4.086ppm	4050	RL36903
CR-09-034	23171	49.50	51.00	1.50	not consecutive	weakly graphitic, minor silt laiden argillite with 2PO	17	RL36903
CR-09-034	23172	51.00	52.50	1.50	consecutive	weakly graphitic, minor silt laiden argillite with 2-3PO	81	RL36903
CR-09-034	23173	52.50	54.00	1.50	consecutive	2-3PO vfg bedding laminae in argillite	64	RL36903
CR-09-034	23174	54.00	55.50	1.50	consecutive	2-3PO as above 23171 with disturbed argillaceous silty sediments	22	RL36903
CR-09-034	23175	95.50	96.00	0.50	not consecutive	light grey coloured siltstone massive interbed	9	RL36903
CR-09-034	23176	55.50	57.00	1.50	not consecutive	as above 23171 2-3PO	25	RL36903
CR-09-034	23177	57.00	57.71	0.71	consecutive	as above 23171 2-3PO	78	RL36903
CR-09-034	23178	57.71	58.66	0.95	consecutive	Replacement NSS bleb 58.42 to 58.66 Pyrite, angular clasts, well graded bed conglomerate with quartz and lithic clasts, and very few sulphide clasts	10	RL36903
CR-09-034	23179	58.66	59.35	0.69	consecutive	2-3PY siltstone interbed within Argillaceous seds. Very fine grained replacement pyrite along bed interface	20	RL36903
CR-09-034	23180	59.35	60.10	0.75	consecutive	5PY clasts on 2-5mm scale and replacement PO within angular qtz- (lithic) clast supported, matrix deficent Conglomerate	93	RL36903
CR-09-034	23181	60.10	60.60	0.50	consecutive	weakly graphitic, silt laiden, strongly magnetic Argillite with up to 5PO 1PY	15	RL36903
CR-09-034	23182	60.60	63.10	2.50	consecutive	graphite deficient siltstone interbed with up to 8-10% very fine grained disseminated pyrrhotite	20	RL36903
CR-09-034	23183	63.10	64.60	1.50	consecutive	graphite deficient siltstone interbed with up to 8-10% very fine grained disseminated pyrrhotite	270	RL36903
CR-09-034	23184	64.60	66.10	1.50	consecutive	graphite deficient siltstone interbed with up to 8-10% very fine grained disseminated pyrrhotite	36	RL36903
CR-09-034	23185	66.10	67.60	1.50	consecutive	approximately 2% pyrrhotite within a silt laiden interbed Argillite	13	RL36903

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description		Batch-Number
CD 00 034	22100	67.60	CO 10	1 50		3-5% pyrite and minor pyrrhotite in weakly graphitic silstone with	<u>، ۲</u>	DI 20002
CR-09-034	23186	67.60	69.10	1.50	consecutive	dismembered quartz-(carbonate) veins.	<5	RL36903
CR-09-034	23187	69.10	70.60	1.50	consecutive	approximately 2% pyrrhotite within magnetic silty argillite	32	RL36903
CR-09-034	23188	75 73	77 23	1 50	not consecutive	magnetic, garnetiferous (tr-1%) sulphidized argillite with 8PO and	<5	RI 36903
	20100	/ 31/ 3	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1.50		trace graphite locally		11200303
CR-09-034	23189	77.23	78.73	1.50	consecutive	magnetic, garnetiferous (tr-1%) sulphidized argillite with 8PO and	33	RL36903
CD 00 034	22100	0.00	0.00	0.00		trace graphite locally	2400	DI 20002
CR-09-034	23190	0.00	0.00	0.00	not consecutive	UXK69 3.583ppm magnetic garnetiferous (tr. 1%) subbidized argillite with 8PO and	3490	RL36903
CR-09-034	23191	78.73	80.23	1.50	not consecutive	trace graphite locally	11	RL36903
						magnetic garnetiferous (tr-1%) subbidized argillite with 8PO and		
CR-09-034	23192	80.23	81.73	1.50	consecutive	trace graphite locally	108	RL36903
						magnetic, garnetiferous (tr-1%) sulphidized argillite with 8PO and		
CR-09-034	23193	81.73	83.23	1.50	consecutive	trace graphite locally	75	RL36903
CD 00 034	22104	02.22	04 72	1 50		magnetic, garnetiferous (tr-1%) sulphidized argillite with 8PO and	22	DI 2002
CR-09-034	23194	83.23	84.73	1.50	consecutive	trace graphite locally	23	RL36903
CR-09-034	23195	96.00	96.50	0.50	not consecutive	light grey coloured siltstone massive interbed	<5	RL36903
CR-09-034	23196	84 73	86.23	1 50	not consecutive	magnetic, garnetiferous (tr-1%) sulphidized argillite with 8PO and	<5	RI 36903
	25150	04.75	00.25	1.50	not consecutive	trace graphite locally	10	NE30303
CR-09-034	23197	86.23	87.73	1.50	consecutive	graphitic, magnetic, garnetiferous (tr-1%) sulphidized argillite with	<5	RL36903
						5-10PO		
CD 00 00 4	22400	07 70	00.00	4 50		graphitic, magnetic, garnetiferous (tr-1%) sulphidized argillite with	47	BL 2 CO 2 2
CR-09-034	23198	87.73	89.23	1.50	consecutive	5PO and dismembered sugary quartz veins and fracture filling,	1/	RL36903
						trace carbonate		
CB-00-034	22100	80.23	00 72	1 50	consecutive	5PO and dismembered sugary quartz voins and fracture filling	~5	BI 36003
CN-09-034	23199	09.25	30.75	1.50	consecutive	trace carbonate	 	NL30303
						graphitic, magnetic, garnetiferous (tr-1%) sulphidized argillite with		
CR-09-034	23200	90.73	92.23	1.50	consecutive	5PO	8	RL36903
CR-09-034	4501	99.61	101.11	1.50	not consecutive	wing in S6A to shear in S6E 2-3% fine grained pyrrhotite	<5	RL36904
CD 00 034	4502	101 11	102 50	1 20		up to 5% sugary quartz-(carb)-(PY) veins in fine grained sheared	۲	DI 20004
CR-09-034	4502	101.11	102.50	1.39	consecutive	silty argillites with up to 5% sulphides, cheifly PO	<5	RL36904
CR-09-034	4503	102.50	103.00	0.50	consecutive	narrow fine grained Diorite dyke devoid of sulphides	<5	RL36904
CR-09-034	4504	103 00	104 50	1 50	consecutive	up to 5% sugary quartz-(carb)-(PY) veins in fine grained sheared	veins in fine grained sheared <5 RI 36	
01 05 054	-30-	103.00	104.50	1.50		silty argillites with up to 5% sulphides, cheifly PO	10	
CR-09-034	4505	104.50	106.00	1.50	consecutive	up to 5% sugary quartz-(carb)-(PY) veins in fine grained sheared	<5	RL36904
		0				silty argillites with up to 5% sulphides, cheifly PO		

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description		Batch-Number
CR-09-034	4506	106.00	107.50	1.50	consecutive	up to 5% sugary quartz-(carb)-(PY) veins in fine grained sheared silty argillites with up to 5% sulphides, cheifly PO	<5	RL36904
CR-09-034	4507	107.50	109.00	1.50	consecutive	up to 5% sugary quartz-(carb)-(PY) veins in fine grained sheared silty argillites with up to 5% sulphides, cheifly PO	<5	RL36904
CR-09-034	4508	109.00	110.50	1.50	consecutive	up to 5% sugary quartz-(carb)-(PY) veins in fine grained sheared silty argillites with up to 5% sulphides, cheifly PO	<5	RL36904
CR-09-034	4509	110.50	111.16	0.66	consecutive	up to 5% sugary quartz-(carb)-(PY) veins in fine grained sheared silty argillites with up to 5% sulphides, cheifly PO. Lower contact with bt-diorite dyke	<5	RL36904
CR-09-034	4510	0.00	0.00	0.00	not consecutive	SI42 1.761 ppm	1760	RL36904
CR-09-034	4511	111.16	112.23	1.07	not consecutive	fine grained poorly mineralized bt-bearing Diorite dyke with trPO trPY	10	RL36904
CR-09-034	4512	112.23	113.30	1.07	consecutive	fine grained poorly mineralized bt-bearing Diorite dyke with trPO trPY	6	RL36904
CR-09-034	4513	113.30	114.80	1.50	consecutive	pale green sheared basalt with argillite incorporated frag/blocks with up to 4PO and 2PY in vfg disseminations	7	RL36904
CR-09-034	4514	114.80	116.30	1.50	consecutive	pale green sheared basalt with argillite incorporated frag/blocks with up to 4PO and 2PY in vfg disseminations	9	RL36904
CR-09-034	4515	97.50	98.00	0.50	not consecutive	light grey coloured siltstone massive interbed	7	RL36904
CR-09-034	4516	116.30	117.80	1.50	not consecutive	4PO and 2PY locally in sheared basalt	12	RL36904
CR-09-034	4517	117.80	118.40	0.60	consecutive	siliceous intermediate plagioclase phyric quartz monzonite, nil sulphides	38	RL36904
CR-09-034	4518	118.40	119.90	1.50	consecutive	sil-ser bleached and sheared basalt	41	RL36904
CR-09-034	4519	119.90	121.40	1.50	consecutive	weakly sil-ser-qcb altered sheared basalt. Sampled over Shear contact.	<5	RL36904
CR-09-034	4520	121.40	122.90	1.50	consecutive	weakly sheared qcb-chl-(bt)-(ser) altered, bleached basalt, nil sulphides	<5	RL36904
CR-09-034	4521	122.90	124.40	1.50	consecutive	weakly sheared qcb-chl-(bt)-(ser) altered, bleached basalt, nil sulphides	<5	RL36904
CR-09-034	4522	124.40	125.90	1.50	consecutive	weakly sheared qcb-chl-(bt)-(ser) altered, bleached basalt, nil		RL36904
CR-09-034	4523	125.90	127.40	1.50	consecutive	chl-(qcb) altered Basalt, nil sulphides	<5	RL36904
CR-09-034	4524	127.40	128.14	0.74	consecutive	chl-(qcb) altered Basalt, nil sulphides	<5	RL36904
CR-09-034	4525	128.14	129.44	1.30	consecutive	chl-(qcb) altered Basalt, nil sulphides	<5	RL36904
CR-09-034	4526	129.44	130.94	1.50	consecutive	chl-(qcb) altered Basalt, nil sulphides	<5	RL36904
CR-09-034	4527	130.94	132.44	1.50	consecutive	chl-(qcb) altered Basalt, nil sulphides	<5	RL36904
CR-09-034	4528	132.44	133.53	1.09	consecutive	chl-(qcb) altered Basalt, nil sulphides	<5	RL36904
CR-09-034	4529	133.53	135.03	1.50	consecutive	I2E with blue rounded quartz eyes, trPO	6	RL36904

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-034	4530	0.00	0.00	0.00	not consecutive	SK43 4.086ppm	3990	RL36904
CR-09-034	4531	135.03	136.53	1.50	not consecutive	I2E with blue rounded quartz eyes, trPO	510	RL36904
CR-09-034	4532	136.53	138.03	1.50	consecutive	I2E with blue rounded quartz eyes, trPO	3100	RL36904
CR-09-034	4533	138.03	139.00	0.97	consecutive	chl-(qcb) altered pillowed Basalt, nil sulphides	119	RL36904
CR-09-034	4551	160.00	161.50	1.50	not consecutive	V3B	<5	RL36904
CR-09-034	4552	161.50	163.00	1.50	consecutive	V3B	5	RL36904
CR-09-034	4553	163.00	164.50	1.50	consecutive	trPY 1PO 1APY, sil-ser-bt altered I2E intrusive	24	RL36904
CR-09-034	4554	164.50	166.00	1.50	consecutive	trPY 1PO 1APY, sil-ser-bt altered I2E intrusive	31	RL36904
CR-09-034	4555	256.00	256.50	0.50	not consecutive	act altered, coarsened basalt with nearby intrusives	<5	RL36904
CR-09-034	4556	166.00	167.50	1.50	not consecutive	trPY 1PO 1APY, sil-ser-bt altered I2E intrusive	81	RL36904
CR-09-034	4557	167.50	168.12	0.62	consecutive	trPY 1PO 1APY, sil-ser-bt altered I2E intrusive	18	RL36904
CR-09-034	4558	168.12	169.62	1.50	consecutive	V3B	8	RL36904
CR-09-034	4559	169.62	170.71	1.09	consecutive	V3B	<5	RL36904
CR-09-034	4560	170.71	171.46	0.75	consecutive	V3B	<5	RL36904
CR-09-034	4561	171.46	171.76	0.30	consecutive	I2E	12	RL36904
CR-09-034	4562	171.76	173.00	1.24	consecutive	V3B	9	RL36904
CR-09-034	4563	173.00	174.29	1.29	consecutive	V3B	10	RL36904
CR-09-034	4564	174.29	175.25	0.96	consecutive	I2E 1PO	19	RL36904
CR-09-034	4565	175.25	176.17	0.92	consecutive	I2E	12	RL36904
CR-09-034	4566	176.17	177.67	1.50	consecutive	V3B	5	RL36904
CR-09-034	4567	177.67	178.40	0.73	consecutive	V3B	19	RL36904
CR-09-034	4568	178.40	179.40	1.00	consecutive	I2J	<5	RL36904
CR-09-034	4569	179.40	180.25	0.85	consecutive	I2J	7	RL36904
CR-09-034	4570	0.00	0.00	0.00	not consecutive	SI42 1.761 ppm	1780	RL36904
CR-09-034	4571	180.25	181.75	1.50	not consecutive	V3B	<5	RL36904
CR-09-034	4572	181.75	183.07	1.32	consecutive	pillowed V3B wing	26	RL36904
CR-09-034	4573	183.07	183.41	0.34	consecutive	5PO trPY sil altered sheared basalt	17	RL36904
CR-09-034	4574	183.41	184.91	1.50	consecutive	pillowed V3B wing	<5	RL36904
CR-09-034	4575	256.50	257.00	0.50	not consecutive	act altered, coarsened basalt with nearby intrusives	17	RL36904
CR-09-034	4576	184.91	186.41	1.50	not consecutive	V3B and narrow I2E	10	RL36904
CR-09-034	4577	186.41	187.06	0.65	consecutive	V3B	9	RL36904
CR-09-034	4578	187.06	188.39	1.33	consecutive	I2J dyke	12	RL36904
CR-09-034	4579	188.39	189.89	1.50	consecutive	quartz carbonate altered Shear Zone Basalt 3PO trPY	9	RL36904
CR-09-034	4580	189.89	191.39	1.50	consecutive	quartz carbonate altered Shear Zone Basalt 3PO trPY	<5	RL36904
CR-09-034	4581	191.39	192.89	1.50	consecutive	quartz carbonate altered Shear Zone Basalt 3PO trPY	8	RL36904
CR-09-034	4582	192.89	193.44	0.55	consecutive	quartz vein at upper contact with I2E in Sheared Basalt	5	RL36904
CR-09-034	4583	193.44	194.94	1.50	consecutive	bt bearing I2E with blue quartz eyes	6	RL36904
CR-09-034	4584	194.94	195.88	0.94	consecutive	bt bearing I2E with blue quartz eyes	21	RL36904

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description		Batch-Number
CR-09-034	4585	195.88	196.38	0.50	consecutive	quartz vein at lower contact of I2E in Sheared Basalt	18	RL36904
CR-09-034	4586	196.38	197.88	1.50	consecutive	sheared basalt		RL36904
CR-09-034	4587	197.88	199.38	1.50	consecutive	sheared basalt		RL36904
CR-09-034	4588	199.38	200.88	1.50	consecutive	sheared basalt		RL36904
CR-09-034	4589	200.88	202.25	1.37	consecutive	plagioclase phyric I2E in Sheared Basalt	<5	RL36904
CR-09-034	4590	0.00	0.00	0.00	not consecutive	SP37 18.14ppm (Standard was returned as insufficent sample size from SGS. Not enough pulp was left to re-assay ADL)	>10000	RL36904
CR-09-034	4591	202.25	203.39	1.14	not consecutive	sheared basalt	<5	RL36904
CR-09-034	4592	203.39	204.89	1.50	consecutive	bt-bearing Diorite with disseminated sulphide mineralization	16	RL36904
CR-09-034	4593	204.89	205.41	0.52	consecutive	bt-bearing Diorite with disseminated sulphide mineralization	33	RL36904
CR-09-034	4594	205.41	206.91	1.50	consecutive	Mineralized APY-PY sil-ser-talc-(albite) altered Quartz Monzonite	1080	RL36904
CR-09-034	4595	257.00	257.50	0.50	not consecutive	act altered, coarsened basalt with nearby intrusives	<5	RL36904
CR-09-034	4596	206.91	207.30	0.39	not consecutive	up to 10% very fine grained needles of APY in Mineralized APY-PY sil-ser-talc-(albite) altered Quartz Monzonite	964 0	RL36904
CR-09-034	4597	207.30	208.88	1.58	consecutive	as above, APY-PY sil-ser-talc-(albite) altered Quartz Monzonite	554	RL36904
CR-09-034	4598	208.88	210.38	1.50	consecutive	as above, APY-PY sil-ser-talc-(albite) altered Quartz Monzonite	65	RL36904
CR-09-034	4599	210.38	211.43	1.05	consecutive	as above, APY-PY sil-ser-talc-(albite) altered Quartz Monzonite	33	RL36904
CR-09-034	4600	211.43	212.78	1.35	consecutive	sheared basalt with possible sheeted quartz carbonate veins	8	RL36904
CR-09-034	4534	212.78	214.28	1.50	consecutive	diorite dyke	207	RL36905
CR-09-034	4535	261.00	261.50	0.50	not consecutive	coarse grained basalt, NIL sulphides	33	RL36905
CR-09-034	4536	214.28	215.42	1.14	not consecutive	diorite dyke	31	RL36905
CR-09-034	4537	215.42	216.97	1.55	consecutive	sheared basalt	6	RL36905
CR-09-034	4538	216.97	218.47	1.50	consecutive	sheared basalt	<5	RL36905
CR-09-034	4539	218.47	219.97	1.50	consecutive	sheared basalt	41	RL36905
CR-09-034	4540	219.97	220.48	0.51	consecutive	sheared basalt with 10% quartz carbonate veins	8	RL36905
CR-09-034	4541	220.48	221.10	0.62	consecutive	dyke with quartz vein	<5	RL36905
CR-09-034	4542	221.10	222.60	1.50	consecutive	V3B less quartz carbonate than above <5%	12	RL36905
CR-09-034	4543	222.60	224.10	1.50	consecutive	V3B with <5% quartz carbonate	7	RL36905
CR-09-034	4544	224.10	225.60	1.50	consecutive	V3B with <5% quartz carbonate	25	RL36905
CR-09-034	4545	225.60	226.35	0.75	consecutive	MT-gt altered (10gt 2MT) Sheared Basalt	<5	RL36905
CR-09-034	4546	226.35	227.30	0.95	consecutive	strongly sil-ser-carb altered and sheared basalt with 5PO	34	RL36905
CR-09-034	4547	227.30	228.30	1.00	consecutive	35% quartz carbonate veined, Sheared Basalt, NIL sulphides, end of shear zone		RL36905
CR-09-034	4548	228.30	229.30	1.00	consecutive	wing to shear zone in basalts, tr-2%PO	<5	RL36905

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description		Batch-Number
CR-09-034	4549	238.00	238.50	0.50	not consecutive	unaltered wing to dyke	<5	RL36905
CR-09-034	4550	0.00	0.00	0.00	not consecutive	OXK69 3.583ppm	3430	RL36905
CR-09-034	4601	238.50	240.00	1.50	not consecutive	I2E dyke with 1-2PO and quartz biotite veins at 40degCA which cross cut dyke	<5	RL36905
CR-09-034	4602	240.00	241.40	1.40	consecutive	I2E as above with one quartz biotite vein sub CA, coarse bt in vein, 1-2PO	6	RL36905
CR-09-034	4603	241.40	242.00	0.60	consecutive	wing to dyke above in Basalt, NIL sulphides.	6	RL36905
CR-09-034	4604	244.39	245.00	0.61	not consecutive	Character Sample: irregular quartz veining in plagioclase crystal ohyric, quartz eye, quartz monzonite with crosscutting diorite dykes and quartz biotite veining. Sample is taken of I2E/J contact.		RL36905
CR-09-034	4605	245.00	246.50	1.50	consecutive	Character Sample: wing to I2Eqv above. Sample taken of Diorite with few quartz-biotite tension veins	8	RL36905
CR-09-034	4606	246.50	247.50	1.00	consecutive	Character Sample: wing to I2Eqv above. Sample taken of Diorite with few quartz-biotite tension veins	43	RL36905
CR-09-034	4607	247.50	249.00	1.50	consecutive	Character Sample: irregular quartz veining in plagioclase crystal phyric, quartz eye, quartz monzonite.	<5	RL36905
CR-09-034	4608	243.50	244.39	0.89	not consecutive	Character Sample: Upper contact of Quartz Monzonite and V3B	<5	RL36905
CR-09-034	4609	249.00	250.40	1.40	not consecutive	Character Sample: irregular quartz veining in plagioclase crystal phyric, quartz eye, quartz monzonite.	<5	RL36905
CR-09-034	4610	0.00	0.00	0.00	not consecutive	SK43 4.086ppm	3870	RL36905
CR-09-034	4611	250.40	251.40	1.00	not consecutive	Character Sample: Basalt wing to character sampling.	<5	RL36905
CR-09-034	4612	257.50	257.87	0.37	not consecutive	Character Sample: Basalt wing to character sampling.	<5	RL36905
CR-09-034	4613	257.87	259.00	1.13	consecutive	Character Sample: grey plagioclase crystal phyric, quartz eye, quartz monzonite.	<5	RL36905
CR-09-034	4614	259.00	260.00	1.00	consecutive	Character Sample: 3 irregular quartz veins at 45deg uphole and 24deg downhole orientations in grey plagioclase crystal phyric, quartz eye, quartz monzonite.	<5	RL36905
CR-09-034	4615	255.00	255.50	0.50	not consecutive	act altered, coarsened basalt with nearby intrusives	<5	RL36905
CR-09-034	4616	260.00	261.00	1.00	not consecutive	Character Sample Wing: lower wing to quartz veined I2E in Basalt	15	RL36905
CR-09-034	4617	280.00	280.57	0.57	not consecutive	Character Sample: sheared quartz carbonate abundant veining in pillowed basalt at upper contact with I2E. (No wing samples).	<5	RL36905
CR-09-034	4618	297.07	297.75	0.68	not consecutive	Character Wing Sample: Sheared pillow basalt with abundant quartz carbonate veins, NIL sulphides 39		RL36905

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description		Batch-Number
CR-09-034	4619	297.75	298.48	0.73	consecutive	Character Sample: Narrow Shear Zone in pillowed basalt. 10PO mineralized with moderately strong 30% silica and 5% sericite bleaching	39	RL36905
CR-09-034	4620	298.48	299.48	1.00	consecutive	Character Wing Sample: Sheared pillow basalt with abundant quartz carbonate veins, NIL sulphides	7	RL36905
CR-09-034	4621	302.00	303.50	1.50	not consecutive	quartz carbonate breccia stockwork in fracture healed basalt with trPO	6	RL36905
CR-09-034	4622	303.50	305.00	1.50	consecutive	quartz-ser-carb altered sheared basalt structure with trPO	386	RL36905
CR-09-034	4623	305.00	306.00	1.00	consecutive	basalt wing NIL sulphides	<5	RL36905
CR-09-034	4624	306.00	307.00	1.00	consecutive	quartz veins and quartz-ser-carb (-fuch) structure in Basalt	5	RL36905
CR-09-034	4625	307.00	306.50	-0.50	consecutive	brassy bit burn on ground core. Wing sample. Very blocky Basalt.	9	RL36905
CR-09-034	4626	311.39	312.26	0.87	not consecutive	Character Sample: Quartz carbonate vein stockwork NIL sulphides	<5	RL36905
CR-09-034	4627	318.00	319.25	1.25	not consecutive	wing in quartz-carbonate altered Basalt NIL sulphides	7	RL36905
CR-09-034	4628	319.25	319.65	0.40	consecutive	Character Sample: Quartz carbonate vein stockwork structure, NIL sulphides		RL36905
CR-09-034	4629	319.65	320.50	0.85	consecutive	wing to above sample in basalt with minor shear having no quartz carbonate, weakly sil-ser bleaching	<5	RL36905
CR-09-034	4630	0.00	0.00	0.00	not consecutive	SI42 1.761 ppm	1760	RL36905
CR-09-034	4631	320.50	321.00	0.50	not consecutive	Character Sample: 5% Quartz carbonate vein stockwork structure in basalt, NIL sulphides	<5	RL36905
CR-09-034	4632	321.00	322.30	1.30	consecutive	wing in weak quartz-carbonate altered Basalt NIL sulphides	<5	RL36905
CR-09-034	4633	322.30	322.75	0.45	consecutive	Character Sample: 5% Quartz carbonate vein stockwork structure in basalt, trace pyrite	<5	RL36905
CR-09-034	4634	322.75	324.25	1.50	consecutive	15% quartz carbonate fractured basalt, gross overprinting.	18	RL36905
CR-09-034	4635	348.00	349.00	1.00	not consecutive	coarse grained Gabbro NIL sulphides	<5	RL36905
CR-09-034	4636	324.25	325.75	1.50	not consecutive	Character Sample: Quartz carbonate vein stockwork NIL sulphides	<5	RL36905
CR-09-034	4637	329.00	329.50	0.50	not consecutive	Character Sample: Quartz-carbonate weak stockwork structure in basalt with NIL sulphides	69	RL36905
CR-09-034	4638	329.50	330.00	0.50	consecutive	Character Sample: Quartz-carbonate weak stockwork structure in basalt with NIL sulphides	<5	RL36905
CR-09-034	4639	408.00	409.20	1.20	not consecutive	gabbro wing to quartz vein	<5	RL36905
CR-09-034	4640	410.26	411.26	1.00	not consecutive	gabbro wing to quartz vein	<5	RL36905
CR-09-034	4641	409.20	410.26	1.06	not consecutive	thick quartz vein with replacement 4PO around 20% chloritized wall rock fragments. No carbonate.		RL36905

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-034	4642	437.90	438.21	0.31	not consecutive	Character Sample: milky quartz vein wqith <5% PO blebbs in gabbro	<5	RL36905

Gyro Survey Record

Hole ID	Station (m)	Dip (Degrees)	Azimuth	Easting (m)	Northing (m)	Elevation (m)
CR-09-034	0	-48.88	29.00	0.00	0.00	0.00
CR-09-034	5	-48.88	28.73	-0.01	3.29	-3.77
CR-09-034	10	-48.39	28.91	-0.02	6.59	-7.52
CR-09-034	15	-48.35	29.07	-0.02	9.91	-11.26
CR-09-034	20	-48.25	29.27	-0.01	13.24	-14.99
CR-09-034	25	-48.21	29.36	0.01	16.57	-18.72
CR-09-034	30	-48.09	29.46	0.03	19.91	-22.44
CR-09-034	35	-48.02	29.57	0.06	23.25	-26.16
CR-09-034	40	-47.92	29.62	0.10	26.60	-29.88
CR-09-034	45	-47.95	29.63	0.13	29.95	-33.59
CR-09-034	50	-47.87	29.65	0.17	33.30	-37.30
CR-09-034	55	-47.79	29.72	0.21	36.65	-41.00
CR-09-034	60	-47.73	29.76	0.25	40.01	-44.71
CR-09-034	65	-47.63	29.81	0.30	43.38	-48.40
CR-09-034	70	-47.52	29.82	0.35	46.75	-52.09
CR-09-034	75	-47.43	29.93	0.40	50.13	-55.78
CR-09-034	80	-47.31	29.99	0.46	53.52	-59.46
CR-09-034	85	-47.20	30.10	0.52	56.91	-63.13
CR-09-034	90	-47.13	30.18	0.58	60.31	-66.80
CR-09-034	95	-47.06	30.28	0.66	63.71	-70.46
CR-09-034	100	-46.98	30.32	0.74	67.12	-74.12
CR-09-034	105	-46.90	30.45	0.82	70.53	-77.77
CR-09-034	110	-46.82	30.51	0.91	73.95	-81.42
CR-09-034	115	-46.79	30.50	1.00	77.37	-85.06
CR-09-034	120	-46.68	30.51	1.09	80.80	-88.70
CR-09-034	125	-46.59	30.57	1.18	84.23	-92.34
CR-09-034	130	-46.54	30.67	1.27	87.67	-95.97
CR-09-034	135	-46.48	30.71	1.38	91.11	-99.60
CR-09-034	140	-46.38	30.76	1.48	94.55	-103.22
CR-09-034	145	-46.34	30.86	1.59	98.00	-106.84
CR-09-034	150	-46.26	30.94	1.70	101.45	-110.45
CR-09-034	155	-46.19	31.02	1.82	104.91	-114.06
CR-09-034	160	-46.12	31.11	1.95	108.37	-117.67
CR-09-034	165	-46.06	31.25	2.08	111.84	-121.27
CR-09-034	170	-45.99	31.38	2.22	115.31	-124.87
CR-09-034	175	-45.96	31.46	2.37	118.78	-128.46
CR-09-034	180	-45.89	31.55	2.52	122.25	-132.06
CR-09-034	185	-45.85	31.57	2.67	125.73	-135.65
CR-09-034	190	-45.80	31.55	2.83	129.21	-139.23
CR-09-034	195	-45.73	31.70	2.99	132.69	-142.81
CR-09-034	200	-45.65	31.79	3.16	136.18	-146.39
CR-09-034	205	-45.61	31.86	3.33	139.68	-149.97
CR-09-034	210	-45.54	31.99	3.51	143.17	-153.54
CR-09-034	215	-45.48	32.05	3.69	146.67	-157.10
CR-09-034	220	-45.43	32.09	3.88	150.17	-160.67

Gyro Survey Record

Hole ID	Station (m)	Dip (Degrees)	Azimuth	Easting (m)	Northing (m)	Elevation (m)
CR-09-034	225	-45.42	32.15	4.07	153.68	-164.23
CR-09-034	230	-45.32	32.24	4.27	157.18	-167.79
CR-09-034	235	-45.30	32.34	4.47	160.69	-171.34
CR-09-034	240	-45.27	32.37	4.67	164.21	-174.89
CR-09-034	245	-45.26	32.42	4.88	167.72	-178.45
CR-09-034	250	-45.22	32.43	5.09	171.23	-182.00
CR-09-034	255	-45.15	32.48	5.31	174.75	-185.54
CR-09-034	260	-45.03	32.50	5.52	178.27	-189.08
CR-09-034	265	-44.91	32.49	5.74	181.81	-192.62
CR-09-034	270	-44.82	32.56	5.95	185.34	-196.15
CR-09-034	275	-44.73	32.56	6.17	188.88	-199.67
CR-09-034	280	-44.61	32.55	6.40	192.43	-203.18
CR-09-034	285	-44.53	32.53	6.62	195.99	-206.69
CR-09-034	290	-44.44	32.53	6.84	199.55	-210.20
CR-09-034	295	-44.44	32.61	7.06	203.11	-213.70
CR-09-034	300	-44.43	32.62	7.28	206.68	-217.20
CR-09-034	305	-44.42	32.67	7.51	210.24	-220.70
CR-09-034	310	-44.40	32.71	7.74	213.80	-224.20
CR-09-034	315	-44.13	32.83	7.97	217.38	-227.69
CR-09-034	320	-44.06	32.91	8.22	220.96	-231.16
CR-09-034	325	-43.97	32.90	8.46	224.55	-234.64
CR-09-034	330	-43.90	32.95	8.71	228.14	-238.11
CR-09-034	335	-43.84	32.99	8.96	231.73	-241.57
CR-09-034	340	-43.80	33.04	9.21	235.33	-245.03
CR-09-034	345	-43.69	33.18	9.47	238.94	-248.49
CR-09-034	350	-43.60	33.51	9.74	242.54	-251.94
CR-09-034	355	-43.51	33.66	10.03	246.16	-255.39
CR-09-034	360	-43.45	33.71	10.33	249.77	-258.83
CR-09-034	365	-43.34	33.69	10.63	253.39	-262.26
CR-09-034	370	-43.12	33.84	10.93	257.02	-265.69
CR-09-034	375	-42.91	33.94	11.24	260.67	-269.10
CR-09-034	380	-42.86	34.01	11.56	264.32	-272.50
CR-09-034	385	-42.81	33.99	11.88	267.97	-275.90
CR-09-034	390	-42.72	34.07	12.20	271.63	-279.30
CR-09-034	395	-42.61	33.95	12.52	275.29	-282.68
CR-09-034	400	-42.51	34.03	12.84	278.96	-286.07
CR-09-034	405	-42.53	34.04	13.16	282.63	-289.45
CR-09-034	410	-42.45	34.05	13.49	286.30	-292.82
CR-09-034	415	-42.41	34.11	13.82	289.98	-296.20
CR-09-034	420	-42.37	34.24	14.15	293.65	-299.57
CR-09-034	425	-42.37	34.28	14.49	297.33	-302.94
CR-09-034	430	-42.35	34.32	14.83	301.01	-306.31
CR-09-034	435	-42.30	34.36	15.17	304.69	-309.67
CR-09-034	440	-42.27	34.37	15.52	308.38	-313.04
CR-09-034	445	-42.28	34.39	15.87	312.06	-316.40

Gyro Survey Record

Hole ID	Station (m)	Dip (Degrees)	Azimuth	Easting (m)	Northing (m)	Elevation (m)
CR-09-034	450	-42.23	34.47	16.22	315.74	-319.76
CR-09-034	455	-42.22	34.56	16.57	319.43	-323.12
CR-09-034	460	-42.17	34.65	16.93	323.11	-326.48
CR-09-034	465	-42.06	34.67	17.30	326.81	-329.83
CR-09-034	470	-41.97	34.77	17.67	330.50	-333.18
CR-09-034	475	-41.88	34.80	18.04	334.20	-336.52
CR-09-034	480	-41.78	34.86	18.42	337.91	-339.86
CR-09-034	485	-41.68	34.86	18.80	341.62	-343.18
CR-09-034	490	-41.58	34.93	19.19	345.34	-346.51
CR-09-034	495	-41.48	35.06	19.58	349.06	-349.82
CR-09-034	500	-41.36	35.14	19.98	352.79	-353.13
CR-09-034	505	-41.28	35.25	20.38	356.52	-356.43

Conquest Resources Ltd.

Exploration Diamond Drill Log

DRILL HOLE #	CR-09-035	LOCATION	Balmertown,	Balmer Townsh	nip, Red Lake D	istrict, Ontario		
PROJECT #	Alexander	REFERENCE	Alexander		GEOLOGIST	BATSON	CLAIM	KRL 20304
GRID/ NAD-ZO	DNE	NORTHING		EASTING		ELEVATION		GRID TYPE
GRID	Alexander RL	3+85 S		6+00 E		10003		Μ
UTM	NAD83 / 15U	5656095		450480		384		
COLLAR DIP	-50	GRID DIRECTIO	N	North			AZ DIRECTION	029
NTS REF #	052N04	NTS SHEET NAM	VIE	Red Lake, Onta	rio			
START DATE	19-Sep-09			FINISH DATE	27-Sep-09		_	
DEPTH (EOH)	687.00	TARGET & Zone	e Depth	Target at 180m,	Farget 33 (295m), Target <mark>30</mark> (465	m), Target 31 (585m)
DEPTH (EOH) PURPOSE	687.00 CR09-K hole t	TARGET & Zone ests 3 (+1) tar	e Depth r get horizons	Target at 180m, Target at 180m	Target 33 (295m), Target 30 (465 E POINT of Target:	m), Target 31 (E	585m) mELEV
DEPTH (EOH) PURPOSE CASING BW	687.00 CR09-K hole t	TARGET & Zone ests 3 (+1) tar	e Depth r <mark>get horizons</mark> CASING NW	Target at 180m, in seds and volv 7.00	Farget 33 (295m (2)), Target 30 (465 E POINT of Target:	m), Target 31 (E CASING HW	585m) mELEV
DEPTH (EOH) PURPOSE CASING BW PLUG @	687.00 CR09-K hole t	TARGET & Zone ests 3 (+1) tar	e Depth r <mark>get horizons</mark> CASING NW PLUG @	Target at 180m, in seds and volx 7.00 na	Target 33 (295m), Target 30 (465 E POINT of Target:	m), Target 31 (E CASING HW PLUG @	585m) mELEV
DEPTH (EOH) PURPOSE CASING BW PLUG @ START DTH	687.00 CR09-K hole t	TARGET & Zone ests 3 (+1) tar	e Depth r <mark>get horizons</mark> CASING NW PLUG @ WEDGE @	Target at 180m, ⁻ in seds and volx 7.00 na	Target 33 (295m A PIEC), Target 30 (465 E POINT of Target:	m), Target 31 (E CASING HW PLUG @	585m) mELEV
DEPTH (EOH) PURPOSE CASING BW PLUG @ START DTH REDUCED @	687.00 CR09-K hole t	TARGET & Zone ests 3 (+1) tar	e Depth rget horizons CASING NW PLUG @ WEDGE @ REDUCED @	Target at 180m, ⁻ in seds and volx 7.00 na	Target 33 (295m C PIEC), Target 30 (465 E POINT of Target:	m), Target 31 (E CASING HW PLUG @	585m) mELEV
DEPTH (EOH) PURPOSE CASING BW PLUG @ START DTH REDUCED @ HOLE STATUS	687.00 CR09-K hole t 0.00 complete, cap	TARGET & Zone ests 3 (+1) tar oped, left casi	e Depth rget horizons CASING NW PLUG @ WEDGE @ REDUCED @ ng.	Target at 180m, ⁻ in seds and volx 7.00 na	Target 33 (295m 2 PIEC), Target 30 (465 E POINT of Target:	m), Target 31 (E CASING HW PLUG @	585m) mELEV
DEPTH (EOH) PURPOSE CASING BW PLUG @ START DTH REDUCED @ HOLE STATUS DRILLING CON	687.00 CR09-K hole t 0.00 complete, cap TRACTOR	TARGET & Zone ests 3 (+1) tar oped, left casi Boart Longy	e Depth rget horizons CASING NW PLUG @ WEDGE @ REDUCED @ ng. ear Inc.	Target at 180m, ⁻ in seds and volx 7.00 na	Farget 33 (295m), Target 30 (465 E POINT of Target:	m), Target 31 (E CASING HW PLUG @	585m) mELEV
DEPTH (EOH) PURPOSE CASING BW PLUG @ START DTH REDUCED @ HOLE STATUS DRILLING CON RIG NO.	687.00 CR09-K hole t 0.00 complete, cap TRACTOR 4186	TARGET & Zone ests 3 (+1) tar oped, left casi Boart Longy	e Depth rget horizons CASING NW PLUG @ WEDGE @ REDUCED @ ng. ear Inc.	Target at 180m, ⁻ in seds and volx 7.00 na	Farget 33 (295m 2 PIEC), Target 30 (465 E POINT of Target:	m), Target 31 (E CASING HW PLUG @ BXS.	585m) mELEV 157

	GYRO	Survey: Multishe	ot In and Out of Ho	le		
DEPTH (m)	AZ	DIP	Elevation (m)	δ Easting (m)	δ Northing (m)	Comments:
0	29.00	-50.26	0.00	0.00	0.00	<u>1st</u> Target is dyked out by msv Gabbro stock.
50	29.28	-49.80	-38.30	0.00	32.14	2nd Target intersected at 309m as sheared
100	29.82	-49.38	-76.37	0.35	64.56	actinolite bearing barren Gabbro. Sheared
150	30.73	-48.99	-114.20	1.10	97.24	gabbro intersected at LC as expected, but was
200	31.41	-48.64	-151.84	2.31	130.13	parren above <u>sru</u> <u>larget</u> , which cut sheared
250	32.32	-48.00	-189.22	3.95	163.29	443.60m. Strong IP contrast characterizing
300	33.32	-47.71	-226.31	6.22	196.74	4th Target is not well explained and does not
350	33.67	-47.50	-263.25	8.86	230.34	likely exist at this depth. Possible chargeble
400	34.07	-47.26	-300.03	11.72	264.09	diorite at 552m. Highlights include 69cm
450	34.32	-46.86	-336.64	14.85	298.00	brittle fault gouge with minor PO within
500	34.62	-46.46	-373.01	18.10	332.15	Balmer Assemblage at 120m hole depth.
550	34.90	-45.76	-409.05	21.61	366.64	There is an unmineralized major fault within
600	35.18	-45.36	-444.79	25.26	401.41	the gabbroic stock expected to be extensive
650	35.66	-44.51	-480.10	29.23	436.59	on property scale and may characterize
685	35.85	-43.90	-504.50	32.19	461.50	lithological contacts elsewhere in stratigraphy.
						Balmer Assemblage basalts exhibit less
						alteration than those volcanics below the
						intrusive stock to the west (closer to RLGM
						neadframes). Several phases of variably
		1				intrusives form dykes/sills in volcanics.
						Several sheared and altered basalts below
						600m hole depth assayed below detection.

Drilled with 3m stabilized core barrel

Planned hole depth is 670m (2199')

Magnetic Declineation 0° 13', Declination for Grid N29°E

Water source: pond above tailings located at 451500 5656695 UTM NAD83 15U

Left Casing and Capped with Stamped NW cap Planned hole time is 10.5 days (Sept 20 to 29) Core stored at Cochenour Mine Site Drill type: LF-70

Hole Name	From	То	Length	Code	Description	Rep
CR-09-035	0.00	7.81	7.81	CAS	NW Casing into overburden and bedrock	
CR-09-035	7.81	120.90	113.09	V3B	fine to medium grained, green coloured, foliated, massive to pillowed Basalt pile as in CR-09- 034. Selvages contain quartz carbonate with minor chlorite. Pillow rims are locally quartz amydgular. Background minor chlorite alteration with pervasive calcite alteration throughout. Few narrow, cross cutting, minor, quartz biotite carbonate-bearing irregular veins have trace pyrite and pyrrhotite. Upper contact is not intersected in this hole.	66.55 to 66.86m Pillowed Basalt
CR-09-035	120.90	121.59	0.69	FLT	Black chlorite fault with 10cm gouge and 2PO. Shearing into wallrock up to 1m below fault plane.	
CR-09-035	121.59	125.8	4.21	V3B	as above basalt	
CR-09-035	125.80	262.00	136.20	I3A	as in CR-09-033 and CR-03-034: medium grained to locally very coarse grained, non magnetic, massive, green coloured Gabbroic Intrusive. Mottled chlorite-biotite altered appearance locally. Unmineralized and poorly locally foliated near cross-cutting intermediate dykes. Few quartz veins oriented from sub CA (generally tensional planar) to near 90degCA (irregular). Rare assimilated fragments of basalt or quartz carbonate. Sheared upper contact with quartz monzodiorite.	258.84 to 259.02m (v. coarse grained)
CR-09-035	262.00	262.50	0.50	FLT	brittle chlorite fault gouge	
CR-09-035	262.50	357.84	95.34	I3A	As above gabbro. Lower contact is characterized by very coarse grained gabbro grading to medium and fine grained quenched textures with minor emplacement shearing perpendicular to core axis.	
CR-09-035	357.84	686.99	329.15	V3B	Greenish grey coloured, massive to pillowed, background altered Basalt, as in CR-09-034. Fractures are commonly quartz carbonate bearing. Locally abundant low angle (to CA) white bull quartz veins with no associated sulphide mineralization. Trace pyrite and pyrrhotite throughout. Background greenschist alteration is weak and chlorite dominated with fine biotite in 1-10mm crude banding locally in massive sections. Volcanics are generally less altered than CR-09-034 and certainly fresher than CR-09-033 -lacking the minor coarsened textures noted in CR-09 -033 and -034. Upper contact with gabbro is weakly sheared.	
CR-09-035	686.99	687.00	0.01	EOH	EOH at 687m on September 27, 2009 at 13h30. Left Casing. Capped with stamped aluminum casing cap. Gyro surveyed. Core is stored at the Goldcorp Cochenour Mine Site in 157 NQ trays. 116 samples sent for Au fire assay (50g pulp) at SGS Labs, Red Lake, ON.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-09-035	7.81	8.70	BLDR	orangey pink biotite Granite boulder, overburden.	
CR-09-035	8.70	23.00	V3B	Typical green lava basalt with few quartz amgydules and irregular quartz-carbonate veins.	
CR-09-035	23.00	25.07	I2J	grey medium grained, non magnetic, biotite bearing dyke with sharp undulating contacts at 40degCA and 60degCA	
CR-09-035	25.10	32.15	SHR; V3B	alternating grey and green coloured, moderately sheared, moderately sil-ser altered, sulphide deficient basalt. Shear fabric is as much as 20degCA shallower than poorly defined wall rock foliation at 50degCA. Locally magnetic over narrow 0.30m widths, identified with mag. susceptibility meter.	
CR-09-035	46.92	48.19	I2G	grey coloured, massive, medium grained, subhedral plagioclase phyric, non magnetic, 5% blue quartz eye, biotite bearing, trace pyrite mineralized Quartz Monzodiorite.	
CR-09-035	50.64	50.98	12J	grey diorite dyke as above 23.00 to 25.07m	
CR-09-035	78.28	78.73	V3B; brh	Narrow hyalloclastic basalt horizon	
CR-09-035	78.73	95.97	V3B	weakly foliated, grey coloured, silica-charged basalt flows containing frequent thin quartz carbonate laminated veins. Minor trace local Pyrite disseminations with rare euhedral APY laths and even fewer APY cubes < <py 85m.<br="" areas="" in="" moderate="" near="" of="" silica="">The highest silicified sections do not contain visible sulphides. Not a prospective intersection.</py>	
CR-09-035	95.97	100.63	I2G	grey coloured massive to weakly foliated quartz monzodiorite as above with a few cross cutting quartz carbonate veins at 35degCA. Upper and lower contacts are sharp at 70degCA and 80degCA.	
CR-09-035	100.63	120.9	V3B	weakly foliated siliceous basalt as above	
CR-09-035	122.5	125.8	12G	as above grey quartz monzodiorite. Moderately foliated at 65degCA. Upper contact is sheared and quartz veined at 60degCA. Lower contact is assimilated with fine grained gabbro and likely weakly sheared at 60degCA.	
CR-09-035	168.59	170.8	12G	as above grey quartz monzodiorite. Moderately foliated at 75degCA. Upper and lower contacts are sharp at 80degCA.	
CR-09-035	184.89	186.85	I2J	as above grey coloured, very weakly magnetic, biotite bearing Diorite. Sharp upper and lower contacts at 55degCA.	186.00 to 186.10m
CR-09-035	196.20	196.74	12G	as above grey, blue quartz eye, quartz monzodiorite. Moderately foliated at 75degCA. Upper is sharp at 65degCA. Lower contact is undulating at 35degCA.	
CR-09-035	229.90	232.95	I2G	bleached and foliated (75degCA) altered quartz-eye, quartz monzodiorite similar to above but altered. Strong pervasive and locally whispy sil-ser altered medium grained intrusive. Upper contact is sharp at 50degCA. Lower contact is sharp at 75degCA	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP												
CP-00-035	222.05	22/ 72	CUD: 12A	sheared medium grained Gabbro intrusive with minor calcite alteration and 2% Pyrite													
CI-09-035	232.95	234.72	5HN, 15A	associated folded (-and dismembered) quartz veining													
CP-00-035	22/ 72	225 02	126	as above 229.90 to 232.95 altered foliated quartz monzodiorite intrusive with quartz													
CI-09-035	234.72	233.92	120	veining and minor pyrite													
CB-09-035	225 92	236.23		sheared medium grained Gabbro intrusive with minor calcite alteration and 2% Pyrite													
CR-05-055	233.32	230.23	5HK, 15A	associated folded (-and dismembered) quartz veining													
CR-09-035	236.23	237.67	12G	as above 229.90 to 232.95 foliated quartz monzodiorite intrusive													
CR-09-035	256.00	262.00	I3A	very coarse grained massive gabbro intrusive													
CR-09-035	262 50	50 275 00	134	Very coarse grained massive gabbro intrusive with locally rounded assimilated fragments													
	202.50	275.00	134	of basalt (-or possible gabbroic intrusive). Gradational upper contact.													
				Grey coloured, highly siliceous, massive Basalt block in Gabbro. Minor sheared													
CP-00-035		277 04	288 24	\/2R	fragmental sections with minor MT-(PY-PO) over 50cm. Upper contact is sharp at												
CN-09-035	277.04	200.24	V3D	50degCA with a few minor quartz carbonate veins. Lower contact contains tightly													
				healed fractures over 67cm.													
	200 00 211 22	200.00 211.22	200.00 211.22	CUD. 13 A	Fine grained, sheared, actinolite bearing gabbro, NIL sulphides. Undulating smooth												
CR-09-035	309.00	311.32	SHK; 13A	shear plane. Gradational upper and lower contacts at 75degCA.													
		0 252.66		very coarse grained massive gabbro intrusive as above with occasional minor 25-													
CR-09-035	333.00	353.66	I3A	50degCA quartz (-carbonate veins), NIL sulphides.													
CD 00 025	41 A F	426 75	V2D	minor quartz amygdular and locally pillowed basalt with abundant quartz carbonate													
CR-09-035	414.5	426.75	vзв; рії	selvages and fractures.													
	125.20	125 02	120	grey quartz monzodiorite as above. Sharp upper and lower contacts at 60degCA and													
CK-09-055	425.20	425.95	120	80degCA respectively													
CR-09-035	425.93	426.75	V3B; pil	as above locally amygdular and pillowed fractured basalt													
																Grev siliceous plagioclase phyric quartz monzodiorite with rare quartz eve crystals	
CR-09-035	426.75	429.47	I2G	Unper and lower contacts are sharp at 60 deg (A and 78 deg (A respectively													
				Grey siliceous plagioclase phyric quartz monzodiorite with rare quartz eye crystals.													
CR-09-035	433.22	439.22	I2G	Upper and lower contacts are sharp at 65degCA with minor shearing and quartz													
				carbonate veins in footwall. No noticible sulphides.													
				pure sheared quartz carbonate vein unlike other veins in selvage. This is an overprinting													
CR-09-035	443.6	443.87	SHR	shear structure characterized by ambiguous sugary grey salt and pepper textured quartz													
				carbonate vein. Sheared at 56degCA. Sharp upper contact at 60degCA. Irregular lower													
<u>CD 00 035</u>	442.07	404	V2D	contact in Basalt. NIL sulphides.													
СК-09-035	443.87	481	vsB; pil	pillowed basalt as above													
CR-09-035	505.3 507	505.3 507		505.3 507	505.3 507	505.3 507 I2G	505.3 507	505.3 507		grey quartz monzodiorite as above. Sharp upper and lower contacts at 65degCA and							
				85degla respectively. Une irregular white bull quartz vein at 35degla.													

Minor Lithologies Record

From	То	Code	Description	REP
519.12	521	12J	blue-grey coloured, massive, siliceous, fresh fine grained Diorite dyke with minor disseminated PO>PY. Weakly magnetic with one minor irregular quartz vein sub CA. Sharp undulating upper and lower contacts nearly perpendicular with CA.	
524.4	528.7	V3B	Poorly fractured basalt structure with minor quartz carbonate healing and occasional quartz amygdules.	
528.7	530.51	12J	grey coloured, massive, medium grained, biotite bearing diorite. Weakly magnetic. Few narrow 1-cm scale quartz carb veins. Several low angle clean, unmineralized open fractures. Upper contact is ground and lower contact is sharp at 75degCA	
530.51	539.95	V3B	Fractured basalt structure with minor quartz carbonate veins.	
539.95	541.57	I2G	as above grey coloured, quartz eye quartz monzodiorite. Upper and lower contacts are sharp and undulating at 85degCA.	
552	559.89	12J	Grey coloured biotite bearing, weakly magnetic diorite as above.	
559.89	601.75	V3B; pil	Pillowed basalt with massive interflows. Up to 10% quartz carbonate veins likely as primary volatiles in subaqueous volcanic. Typical qcb-chl selvages as in CR-09 -033 and - 034. Minor actinolite needles in massive interflows and occasionally within chl-selvages.	
601.75	602.62	SHR; V3B	sheared chl-bt-qtz-cb altered basalt at upper contact with intermediate dyke	
602.62	603.96	I2G	Grey coloured, fine grained, quartz eye and biotite bearing, quartz monzodioite. Non magnetic. Bull quartz veins are irregular, cross-cut at approximately 55-65degCA and have associate highly biotite altered assimilated basalt wallrock and minor PO. Upper and lower contacts are sheared planar at 72degCA and 62degCA respectively.	
603.96	607.05	SHR; V3B	as above 601.75 to 602.62m sheared chl-bt-qtz-cb altered basalt. Strongly biotitic at upper contact (lower contact of I2G). Shear fabric is planar at 55-75degCA. Several minor creamy white coloured quartz veins. Trace pyrite and pyrrhotite throughout.	
607.05	641.88	V3B; pil	pillowed basalt as above with massive sections.	
641.88	644.88	SHR; V3B	sheared chl-bt-qtz-cb altered basalt at upper contact with intermediate dyke	
644.88	653.55	I2G	Grey coloured, fine grained, quartz eye and biotite bearing, quartz monzodioite. Non magnetic. Bull quartz vein from 646.38 to 646.85m with irregular contacts, similar to cross cutting quartz veins. Upper and lower contacts are sharp at 70degCA.	
653.55	657.7	V3B; pil	pillowed basalt as above with minor shearing	
657.7	660.64	12G	as above grey bt-bearing quartz monzodiorite with sharp upper and lower contacts at 70degCA	
	From 519.12 524.4 528.7 530.51 539.95 601.75 602.62 603.96 607.05 644.88 653.55 657.7	From To 519.12 521 524.4 528.7 528.7 530.51 528.7 530.51 530.51 539.95 539.95 541.57 559.89 601.75 602.62 603.96 603.96 607.05 607.05 641.88 641.88 644.88 644.88 653.55 657.7 660.64	From To Code 519.12 521 12J 524.4 528.7 V3B 528.7 530.51 12J 530.51 539.95 V3B 530.51 539.95 V3B 539.95 541.57 12G 559.89 601.75 V3B; pil 601.75 602.62 SHR; V3B 602.62 603.96 12G 603.96 607.05 SHR; V3B 607.05 641.88 V3B; pil 644.88 653.55 12G 644.88 653.55 12G 653.55 657.7 V3B; pil	FromToCodeDescription519.12521121blue-grey coloured, massive, siliceous, fresh fine grained Diorite dyke with minor disseminated PO>PY. Weakly magnetic with one minor irregular quartz vein sub CA. Sharp undulating upper and lower contacts nearly perpendicular with CA.524.4528.7V38Poorly fractured basalt structure with minor quartz carbonate healing and occasional quartz amygdules.528.7530.51121Poorly fractured basalt structure with minor quartz carbonate healing and occasional quartz amygdules.530.51530.51124Fractured basalt structure with minor quartz carbonate healing and occasional fractures. Upper contact is ground and lower contact is sharp at 75degCA530.51539.95V38Fractured basalt structure with minor quartz carbonate veins. as above grey coloured, quartz eye quartz monzodiorite. Upper and lower contacts are sharp and undulating at 85degCA.552.5559.89121Grey coloured biotite bearing, weakly magnetic diorite as above.Pillowed basalt with massive interflows. Up to 10% quartz carbonate veins likely as primary volatiles in subaqueous volcanic. Typical qcb-chl selvages as in CR-09-033 and- 034. Minor actinolite needles in massive interflows and occasionally within chl-selvages.601.75602.62SHR; V38sheared chl-bt-qtz-cb altered basalt at upper contact with intermediate dyke602.62603.9612GGrey coloured, fine grained, quartz eye and biotite bearing, quartz monzodioite. Non magnetic. Bull quartz veins are irregular, cross-cut at approximately 55-65degCA. Several minor creamy white coloured quartz veins. Trace prite and pyrrhotite throughout. <td< td=""></td<>

Minor Lithologies Record

HoleID	From	То	Code	Description	REP		
CR-09-035	660.64	662.34	V3B; pil	pillowed basalt as above with minor shearing			
CR-09-035 662.34 665.56		126	as above grey, pale bleached, bt-bearing quartz monzodiorite with sharp upper and				
	120	lower contacts at 75degCA					
CR-09-035	665.56	680.78	V3B; pil	pillowed basalt as above			
	CD 00 035 C00 70	C04 77	684 77 126	126	as above grey, pale bleached, bt-bearing quartz monzodiorite with sharp upper and		
CR-09-055	060.76	064.77	120	lower contacts at 70degCA and 80degCA			
CR-09-035	684.77	686.62	V3B; pil	pillowed basalt as above			
CP 00 025		COC C2 C07	607	c07 13	126	as above grey, pale bleached, bt-bearing quartz monzodiorite with sharp upper contact	
CK-09-035 686.62		2 08/	120	80degCA			

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-035	4643	23.60	25.10	1.50	not consecutive	wing to sheared volcanic in fresh unsheared basalt, NIL sulphides	<5	RL37002
CR-09-035	4644	25.10	26.60	1.50	consecutive	sheared sil-ser altered basalt with minor quartz carbonate veining, NIL sulphides, mag sus high	<5	RL37002
CR-09-035	4645	26.60	28.00	1.40	consecutive	sheared sil-ser altered basalt with minor quartz carbonate veining, NIL sulphides	<5	RL37002
CR-09-035	4646	28.00	29.15	1.15	consecutive	sheared sil-ser altered basalt with minor quartz carbonate veining, NIL sulphides, mag sus high	<5	RL37002
CR-09-035	4647	29.15	30.65	1.50	consecutive	sheared sil-ser altered basalt with minor quartz carbonate veining, NIL sulphides	<5	RL37002
CR-09-035	4648	30.65	32.15	1.50	consecutive	sheared poorly sil-ser altered basalt with minor quartz carbonate veining, NIL sulphides	30	RL37002
CR-09-035	4649	32.15	33.15	1.00	consecutive	wing to sheared volcanic in fresh unsheared basalt, NIL sulphides	29	RL37002
CR-09-035	4650	0.00	0.00	0.00	not consecutive	Si42 1761ppb	1690	RL37002
CR-09-035	4651	87.85	89.35	1.50	not consecutive	wing in sil Basalt with 5% quartz carbonate veins	24	RL37002
CR-09-035	4652	89.35	89.85	0.50	consecutive	narrow sulphide bearing quartz veined shear breccia in Basalt with 15PO 5-10PY trAPY	1460	RL37002
CR-09-035	4653	89.85	91.15	1.30	consecutive	wing in sil Basalt with 5% quartz carbonate veins	25	RL37002
CR-09-035	4654	114	115.04	1.04	not consecutive	wing to Character Sampled Shear	<5	RL37002
CR-09-035	4655	140.35	141	0.65	not consecutive	biotite bearing Gabbro	<5	RL37002
CR-09-035	4656	115.04	115.8	0.76	not consecutive	Character Sampled strongly qcb vein overprinted shear with vfg chl-(bt) up to 2PO sulphide	10	RL37002
CR-09-035	4657	115.8	116.80	1.00	consecutive	wing to Character Sampled Shear with 2PO	<5	RL37002
CR-09-035	4658	120.90	121.59	0.69	not consecutive	Character Sample: Black chlorite fault with minor 2-5% sulphides	<5	RL37002
CR-09-035	4659	121.59	122.50	0.91	consecutive	siliceous basalt wing sample between FLT and quartz veined upper contact I2G-I3A	<5	RL37002
CR-09-035	4660	122.80	124.30	1.50	not consecutive	foliated I2E with very fine grained disseminated trPO trPY	<5	RL37002
CR-09-035	4661	122.50	122.80	0.30	not consecutive	narrow sheared upper contact with irregularly oriented planar quartz veins between V3B-QV-I2G	9	RL37002
CR-09-035	4662	124.30	125.80	1.50	not consecutive	as above foliated I2E with very fine grained disseminated $\ensuremath{\text{trPO}}\xspace$ trPY	<5	RL37002
CR-09-035	4663	125.80	127.00	1.20	consecutive	high mag sus assimilated I2G-I3A contact, dark grey coloured, fine to medium grained chl-sil altered		RL37002
CR-09-035	4664	127.00	128.50	1.50	consecutive	medium grained gabbro wing to 4663	<5	RL37002
CR-09-035	4665	227.90	228.90	1.00	not consecutive	foliated gabbro wing NIL sulphides		RL37002
CR-09-035	4666	228.90	230.40	1.50	consecutive	foliation sil-ser I2G (qtz-eye)	<5	RL37002

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-035	4667	230 40	231 90	1 50	consecutive	as above 4666 but very strong sil-ser bleaching with 1% APY	885	RI 37002
	4007	230.40	231.50	1.50	consecutive	flecks	005	NL37002
CR-09-035	4668	231.90	232.92	1.02	consecutive	as 4667 up to 2% APY needles and flecks in I2G	434	RL37002
CR-09-035	4669	232.92	234.72	1.80	consecutive	sheared I3A with 2% very fine grained disseminated pyrite	<5	RL37002
CR-09-035	4670	0.00	0.00	0.00	not consecutive	OxK69 3.583ppm	3550	RL37002
CR-09-035	4671	234.72	235.92	1.20	not consecutive	I2G trPY with minor SHR;I3A quartz veins in I2G as above 4668	81	RL37002
CR-09-035	4672	235.92	237.00	1.08	consecutive	I2G with minor SHR; I3A NIL sulphides	<5	RL37002
CR-09-035	4673	237.00	237.67	0.67	consecutive	grey I2G as above, less altered	<5	RL37002
CR-09-035	4674	237.67	239.00	1.33	consecutive	foliated gabbro wing NIL sulphides	<5	RL37002
CR-09-035	4675	291.92	292.42	0.50	not consecutive	massive gabbro	<5	RL37002
CR-09-035	4676	276.00	277.48	1.48	not consecutive	massive siliceous Basalt block	<5	RL37002
CR-09-035	4677	277.48	278.00	0.52	consecutive	minor sheared fragmental basalt with up to 3% MT-(PO-PY)	44	RL37002
CR-09-035	4678	278.00	279.00	1.00	consecutive	mixed minor fragmental siliceous basalt block with trace Pyrite	<5	RL37002
CR-09-035	4679	290.54	291.20	0.66	not consecutive	Character Sample: Massive white quartz vein at 10degCA, NIL sulphides	<5	RL37002
CR-09-035	4680	309.00	309.94	0.94	not consecutive	fine grained, sheared, actinolite bearing gabbro, NIL sulphides	<5	RL37002
CR-09-035	4681	309.94	311.32	1.38	consecutive	fine grained, sheared, actinolite-qcbv bearing gabbro, NIL sulphides	<5	RL37002
CR-09-035	4682	352.66	353.66	1.00	not consecutive	Gabbro Lower Contact Zone Sampling: Massive Gabbro wing sample, nil sulphides	<5	RL37002
CR-09-035	4683	353.66	355.16	1.50	consecutive	Gabbro Lower Contact Zone Sampling: Sheared Gabbro sample, nil sulphides	23	RL37002
CR-09-035	4684	355.16	356.66	1.50	consecutive	Gabbro Lower Contact Zone Sampling: Sheared Gabbro sample, nil sulphides	<5	RL37002
CR-09-035	4685	356.66	357.84	1.18	consecutive	Gabbro Lower Contact Zone Sampling: Sheared Gabbro sample, nil sulphides	<5	RL37002
CR-09-035	4686	357.84	359.34	1.50	consecutive	Tightly healed fractures in massive basalt. Fresh.	<5	RL37002
CR-09-035	4687	388.07	388.63	0.56	not consecutive	Vein Sampling: 50degCA locally fibrous qtz-carb and qtz-chl-(bt)- (fuch)-(trPO trPY) veins in basalt	<5	RL37002
CR-09-035	4688	388.63	390.13	1.50	consecutive	no qtz veins, massive basalt, nil sulphides	<5	RL37002
CR-09-035	4689	390.13	391.00	0.87	consecutive	Vein Sampling: 50degCA locally fibrous qtz-carb and qtz-chl-(bt)- (fuch)-(trPO trPY) veins in basalt	<5	RL37002
CR-09-035	4690	0.00	0.00	0.00	not consecutive	SK43 - 4.086ppm	4720	RL37002
CR-09-035	4691	391.00	391.81	0.81	not consecutive	no qtz veins, massive basalt, nil sulphides	<5	RL37002
CR-09-035	4692	391.81	392.50	0.69	consecutive	large milky white, quartz-(bt)-(fuch) veins with QCB in HW/FW	<5	RL37002

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-035	4693	392.50	393.51	1.01	consecutive	no qtz veins, massive basalt, nil sulphides	<5	RL37002
CR-09-035	4694	393.51	394.29	0.78	consecutive	trPO bearing sugary quartz carbonate (sugary carbonate in vein selvage within wall rock) 1cm thick vein, sub CA	<5	RL37002
CR-09-035	4695	464.00	464.50	0.50	not consecutive	pillowed basalt	<5	RL37002
CR-09-035	4696	394.29	394.89	0.60	not consecutive	no qtz veins, massive basalt, nil sulphides	<5	RL37002
CD 00 025	4607	204.00	206 17	1 20		trPO bearing sugary quartz carbonate (sugary carbonate in vein	<u>، ۲</u>	
CR-09-035	4697	394.89	396.17	1.28	consecutive	selvage within wall rock) 1cm thick vein, sub CA	<5	RL37002
	4608	206 17	206.04	0.67	concocutivo	trPO bearing sugary quartz carbonate (sugary carbonate in vein	~F	
CK-09-033	4098	390.17	390.04	0.07	consecutive	selvage within wall rock) 1cm thick vein, sub CA	<2	RL37002
CR-09-035	4699	396.84	398.34	1.50	consecutive	few irregular quartz carbonate veins in basalt	<5	RL37002
CR-09-035	4700	398.34	399.84	1.50	consecutive	basalt wing	<5	RL37002
CR-09-035	4701	423.70	425.20	1.50	not consecutive	quartz-carb veins foliation in chl-(bt)-qcb Basalt Wing	<5	RL37002
CR-09-035	4702	425.20	425.93	0.73	consecutive	quartz monzodiorite dyke with trace BT, up to 2% PO>PY	264	RL37002
CR-09-035	4703	425.93	426.75	0.82	consecutive	pillowed basalt with qcb selvages, chl-(bt)-qcb alt'd	<5	RL37002
CR-09-035	4704	426.75	427.80	1.05	consecutive	grey coloured, siliceous plagioclase phyric I2G, poorly mineralized	129	RL37002
						trPO		
CR-09-035	4705	427.80	428.10	0.30	consecutive	Character Sample: 2-QV (internally fractured texure) in grey I2G	<5	RL37002
CR-09-035	4706	428.10	429.47	1.37	consecutive	grey coloured, siliceous plagioclase phyric I2G, poorly mineralized trPO	47	RL37002
CR-09-035	4707	429.47	430.97	1.50	consecutive	1% quartz amygdular Basalt wing	8	RL37002
CR-09-035	4708	437.72	439.22	1.50	not consecutive	Character Wing in I2G with few QcbV trPO	68	RL37002
CR-09-035	4709	439.22	439.80	0.58	consecutive	Bull quartz fragments in sugary quartz carbonate veins within qcb- bt altered selvage zone in locally pillowed basalt	17	RL37002
CR-09-035	4710	0.00	0.00	0.00	not consecutive	Si42 1761ppb	1700	RL37002
CR-09-035	4711	439.80	441.00	1.20	not consecutive	basalt wing, NIL sulphides and 20% quartz carbonate veins	<10	RL37002R
CR-09-035	4712	443.35	444.00	0.65	not consecutive	Character Sample: Sheared Quartz Carbonate Vein (443.60- 443.27m) in Basalt	<10	RL37002R
CR-09-035	4713	448.00	449.50	1.50	not consecutive	basalt wing NIL sulphide	<10	RL37002R
CR-09-035	4714	449.50	449.80	0.30	consecutive	narrow minor sheared pillow selvages 40% qtz-cb, NIL sulphides in Basalt	60	RL37002R
CR-09-035	4715	465.00	465.50	0.50	not consecutive	pillowed basalt	<10	RL37002R
CR-09-035	4716	449.80	451.13	1.33	not consecutive	minor sheared pillow basalt 10% qtz-cb veins	<10	RL37002R
CR-09-035	4717	451.13	452.63	1.50	consecutive	basalt wing with minor shearing fabric, NIL sulphides	<10	RL37002R
CR-09-035	4718	504.00	505.30	1.30	not consecutive	basalt wing to I2G with QV	30	RL37002R
CR-09-035	4719	505.30	505.90	0.60	consecutive	bull quartz vein in I2G at 35degCA	<10	RL37002R
CR-09-035	4720	505.90	507.00	1.10	consecutive	I2G wing	<10	RL37002R
CR-09-035	4721	509.40	509.80	0.40	not consecutive	Character Sample: irregular white quartz and quartz carbonate veining in basalt, trace pyrite in Basalt	<10	RL37002R

Conquest Resources Ltd. Diamond Drill Record

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-035	4722	519.12	519.50	0.38	not consecutive	Character Sample of quartz carb vein in diorite	<10	RL37002R
CR-09-035	4723	555.28	556.78	1.50	not consecutive	massive biotite bearing diorite wing with trace PO	<10	RL37002R
CR-09-035	4724	556.78	557.30	0.52	consecutive	talcy shear in Diorite with qtz-cb-chl-bt-talc, NIL Sulphides	<10	RL37002R
CR-09-035	4725	557.30	558.80	1.50	consecutive	foliated bt-bearing diorite wing, 80degCA (undulating foliation)	<10	RL37002R
CR-09-035	4726	600.25	601.75	1.50	not consecutive	basalt wing in pillowed basalt	<10	RL37002R
CR-09-035	4727	601.75	602.62	0.87	consecutive	sheared chl-bt-qcb altered basalt	<10	RL37002R
CR-09-035	4728	602.62	603.25	0.63	consecutive	quartz monzodiorite with bt-V3B frags in QV	<10	RL37002R
CR-09-035	4729	603.25	603.65	0.40	consecutive	bull quartz vein at 65degCA in I2G	<10	RL37002R
CR-09-035	4730	0.00	0.00	0.00	not consecutive	SK43 - 4.086ppm	4040	RL37002R
CR-09-035	4731	603.65	603.96	0.31	not consecutive	quartz monzodiorite with bt-V3B frags in QV	10	RL37002R
CR-09-035	4732	603.96	605.46	1.50	consecutive	sheared chl-bt-qcb altered basalt	<10	RL37002R
CR-09-035	4733	605.46	607.05	1.59	consecutive	sheared chl-bt-qcb altered basalt	<10	RL37002R
CR-09-035	4734	607.05	608.55	1.50	consecutive	basalt wing	<10	RL37002R
CR-09-035	4735	615.00	615.50	0.50	not consecutive	nil sulphides in typical Balmer Basalt	<10	RL37002R
CR-09-035	4736	641.88	643.38	1.50	not consecutive	basalt wing	<10	RL37002R
CR-09-035	4737	643.38	644.88	1.50	consecutive	sheared basalt	<10	RL37002R
CR-09-035	4738	644.88	646.38	1.50	consecutive	bt-I2G foliated intrusive	<10	RL37002R
CR-09-035	4739	646.38	646.85	0.47	consecutive	QV in I2G foliated intrusive	<10	RL37002R
CR-09-035	4740	646.85	648.35	1.50	consecutive	bt-I2G foliated intrusive	<10	RL37002R
CR-09-035	4741	648.35	649.85	1.50	consecutive	bt-I2G foliated intrusive	20	RL37002R
CR-09-035	4742	649.85	650.35	0.50	consecutive	bt-I2G foliated intrusive	60	RL37002R
CR-09-035	4743	650.35	651.70	1.35	consecutive	bleached bt-I2G with up to 01APY and trPO	180	RL37002R
CR-09-035	4744	651.70	652.70	1.00	consecutive	bleached bt-I2G	180	RL37002R
CR-09-035	4745	652.70	653.55	0.85	consecutive	bt-I2G foliated intrusive	20	RL37002R
CR-09-035	4746	653.55	655.05	1.50	consecutive	sheared basalt	<10	RL37002R
CR-09-035	4747	655.05	656.55	1.50	consecutive	minor sheared pillowed basalt	<10	RL37002R
CR-09-035	4748	656.55	657.70	1.15	consecutive	minor sheared pillowed basalt	20	RL37002R
CR-09-035	4749	657.70	659.20	1.50	consecutive	I2G with one minor thin quartz carbonate vein	<10	RL37002R
CR-09-035	4750	0.00	0.00	0.00	not consecutive	OxK69 3.583ppm	3860	RL37002R
CR-09-035	4751	659.20	660.64	1.44	not consecutive	bt-I2G foliated intrusive	10	RL37002R
CR-09-035	4752	660.64	661.49	0.85	consecutive	minor sheared pillowed basalt	<10	RL37002R
CR-09-035	4753	661.49	662.34	0.85	consecutive	minor sheared pillowed basalt	<5	RL37002
CR-09-035	4754	662.34	663.84	1.50	consecutive	bleached sil-ser-(bt) I2G	<5	RL37002
CR-09-035	4755	673.50	674.00	0.50	not consecutive	blank pillowed basalt	<5	RL37002
CR-09-035	4756	663.84	664.70	0.86	not consecutive	weakly bleached sil-ser-(bt) I2G	<5	RL37002
CR-09-035	4757	664.70	665.56	0.86	consecutive	weakly bleached sil-ser-(bt) I2G	<5	RL37002
CR-09-035	4758	665.56	667.06	1.50	consecutive	pillowed basalt wing	<5	RL37002

Gyro Survey Record

Hole ID	Station (m)	Dip (Degrees)	Azimuth	Easting (m)	Northing (m)	Elevation (m)
CR-09-035	0	-50.26	29.00	0.00	0.00	0.00
CR-09-035	5	-50.26	29.01	0.00	3.20	-3.84
CR-09-035	10	-50.14	28.90	0.00	6.40	-7.69
CR-09-035	15	-50.08	28.89	-0.01	9.60	-11.52
CR-09-035	20	-50.04	28.91	-0.01	12.81	-15.36
CR-09-035	25	-49.97	28.96	-0.02	16.03	-19.19
CR-09-035	30	-49.92	28.99	-0.02	19.25	-23.01
CR-09-035	35	-49.88	29.01	-0.02	22.47	-26.84
CR-09-035	40	-49.85	29.06	-0.02	25.69	-30.66
CR-09-035	45	-49.81	29.20	-0.01	28.91	-34.48
CR-09-035	50	-49.80	29.28	0.00	32.14	-38.30
CR-09-035	55	-49.74	29.34	0.02	35.37	-42.12
CR-09-035	60	-49.69	29.43	0.04	38.60	-45.93
CR-09-035	65	-49.66	29.42	0.07	41.84	-49.74
CR-09-035	70	-49.64	29.55	0.09	45.08	-53.55
CR-09-035	75	-49.57	29.64	0.13	48.32	-57.36
CR-09-035	80	-49.54	29.73	0.17	51.56	-61.17
CR-09-035	85	-49.50	29.80	0.21	54.80	-64.97
CR-09-035	90	-49.45	29.82	0.26	58.05	-68.77
CR-09-035	95	-49.43	29.80	0.30	61.30	-72.57
CR-09-035	100	-49.38	29.82	0.35	64.56	-76.37
CR-09-035	105	-49.33	29.86	0.40	67.81	-80.16
CR-09-035	110	-49.32	29.99	0.45	71.07	-83.95
CR-09-035	115	-49.30	30.19	0.51	74.33	-87.74
CR-09-035	120	-49.24	30.32	0.58	77.59	-91.53
CR-09-035	125	-49.17	30.34	0.66	80.86	-95.32
CR-09-035	130	-49.10	30.44	0.74	84.13	-99.10
CR-09-035	135	-49.08	30.55	0.82	87.40	-102.88
CR-09-035	140	-49.00	30.61	0.91	90.68	-106.65
CR-09-035	145	-48.97	30.67	1.01	93.96	-110.43
CR-09-035	150	-48.99	30.73	1.10	97.24	-114.20
CR-09-035	155	-48.96	30.80	1.21	100.52	-117.97
CR-09-035	160	-48.94	30.90	1.31	103.80	-121.74
CR-09-035	165	-48.91	30.98	1.42	107.09	-125.51
CR-09-035	170	-48.87	31.06	1.54	110.37	-129.28
CR-09-035	175	-48.81	31.08	1.66	113.66	-133.04
CR-09-035	180	-48.80	31.19	1.78	116.95	-136.80
CR-09-035	185	-48.79	31.25	1.91	120.24	-140.57
CR-09-035	190	-48.75	31.28	2.04	123.54	-144.33
CR-09-035	195	-48.69	31.32	2.17	126.83	-148.08
CR-09-035	200	-48.64	31.41	2.31	130.13	-151.84
CR-09-035	205	-48.58	31.45	2.45	133.43	-155.59
CR-09-035	210	-48.56	31.58	2.59	136.74	-159.34
CR-09-035	215	-48.52	31.60	2.74	140.05	-163.08
CR-09-035	220	-48.49	31.75	2.89	143.36	-166.83

Gyro Survey Record

Hole ID	Station (m)	Dip (Degrees)	Azimuth	Easting (m)	Northing (m)	Elevation (m)
CR-09-035	225	-48.44	31.83	3.06	146.67	-170.57
CR-09-035	230	-48.37	31.91	3.22	149.98	-174.31
CR-09-035	235	-48.31	32.03	3.39	153.30	-178.05
CR-09-035	240	-48.23	32.14	3.57	156.63	-181.78
CR-09-035	245	-48.12	32.21	3.76	159.96	-185.50
CR-09-035	250	-48.00	32.32	3.95	163.29	-189.22
CR-09-035	255	-48.09	32.43	4.15	166.63	-192.94
CR-09-035	260	-48.04	32.59	4.35	169.96	-196.66
CR-09-035	265	-48.01	32.70	4.56	173.30	-200.38
CR-09-035	270	-47.94	32.80	4.78	176.64	-204.09
CR-09-035	275	-47.86	32.93	5.01	179.99	-207.80
CR-09-035	280	-47.81	32.99	5.24	183.33	-211.51
CR-09-035	285	-47.82	33.16	5.48	186.68	-215.21
CR-09-035	290	-47.74	33.21	5.72	190.03	-218.92
CR-09-035	295	-47.71	33.28	5.97	193.39	-222.62
CR-09-035	300	-47.71	33.32	6.22	196.74	-226.31
CR-09-035	305	-47.71	33.32	6.48	200.10	-230.01
CR-09-035	310	-47.66	33.39	6.73	203.45	-233.71
CR-09-035	315	-47.67	33.44	6.99	206.81	-237.41
CR-09-035	320	-47.63	33.50	7.25	210.17	-241.10
CR-09-035	325	-47.62	33.55	7.52	213.53	-244.79
CR-09-035	330	-47.61	33.54	7.79	216.89	-248.49
CR-09-035	335	-47.60	33.55	8.05	220.25	-252.18
CR-09-035	340	-47.55	33.55	8.32	223.61	-255.87
CR-09-035	345	-47.54	33.61	8.59	226.98	-259.56
CR-09-035	350	-47.50	33.67	8.86	230.34	-263.25
CR-09-035	355	-47.46	33.70	9.14	233.71	-266.93
CR-09-035	360	-47.46	33.67	9.42	237.08	-270.62
CR-09-035	365	-47.43	33.67	9.69	240.45	-274.30
CR-09-035	370	-47.39	33.76	9.97	243.82	-277.98
CR-09-035	375	-47.37	33.84	10.25	247.20	-281.66
CR-09-035	380	-47.33	33.87	10.54	250.57	-285.34
CR-09-035	385	-47.32	33.94	10.83	253.95	-289.01
CR-09-035	390	-47.29	33.98	11.12	257.33	-292.69
CR-09-035	395	-47.26	34.01	11.42	260.71	-296.36
CR-09-035	400	-47.26	34.07	11.72	264.09	-300.03
CR-09-035	405	-47.23	34.15	12.02	267.47	-303.70
CR-09-035	410	-47.20	34.19	12.33	270.85	-307.37
CR-09-035	415	-47.17	34.29	12.64	274.23	-311.04
CR-09-035	420	-47.14	34.32	12.95	277.62	-314.71
CR-09-035	425	-47.09	34.41	13.27	281.01	-318.37
CR-09-035	430	-47.02	34.33	13.59	284.40	-322.03
CR-09-035	435	-46.95	34.29	13.90	287.80	-325.69
CR-09-035	440	-46.92	34.33	14.22	291.20	-329.34
CR-09-035	445	-46.89	34.32	14.54	294.60	-332.99

Gyro Survey Record

Hole ID	Station (m)	Dip (Degrees)	Azimuth	Easting (m)	Northing (m)	Elevation (m)
CR-09-035	450	-46.86	34.32	14.85	298.00	-336.64
CR-09-035	455	-46.84	34.38	15.17	301.41	-340.29
CR-09-035	460	-46.81	34.39	15.49	304.81	-343.93
CR-09-035	465	-46.77	34.40	15.81	308.22	-347.58
CR-09-035	470	-46.74	34.40	16.14	311.63	-351.22
CR-09-035	475	-46.66	34.37	16.46	315.04	-354.86
CR-09-035	480	-46.63	34.42	16.78	318.46	-358.49
CR-09-035	485	-46.60	34.45	17.11	321.88	-362.13
CR-09-035	490	-46.56	34.54	17.44	325.30	-365.76
CR-09-035	495	-46.51	34.53	17.77	328.73	-369.39
CR-09-035	500	-46.46	34.62	18.10	332.15	-373.01
CR-09-035	505	-46.40	34.68	18.44	335.58	-376.64
CR-09-035	510	-46.37	34.67	18.78	339.01	-380.26
CR-09-035	515	-46.31	34.77	19.13	342.45	-383.87
CR-09-035	520	-46.24	34.87	19.48	345.89	-387.49
CR-09-035	525	-46.15	34.92	19.83	349.33	-391.10
CR-09-035	530	-45.99	34.87	20.19	352.78	-394.70
CR-09-035	535	-45.93	34.82	20.54	356.24	-398.29
CR-09-035	540	-45.85	34.86	20.90	359.70	-401.88
CR-09-035	545	-45.75	34.84	21.25	363.17	-405.47
CR-09-035	550	-45.76	34.90	21.61	366.64	-409.05
CR-09-035	555	-45.76	35.00	21.97	370.11	-412.63
CR-09-035	560	-45.77	34.99	22.33	373.58	-416.21
CR-09-035	565	-45.78	34.97	22.70	377.04	-419.80
CR-09-035	570	-45.75	34.91	23.06	380.51	-423.38
CR-09-035	575	-45.66	34.91	23.42	383.99	-426.96
CR-09-035	580	-45.62	34.98	23.78	387.46	-430.53
CR-09-035	585	-45.51	34.99	24.14	390.94	-434.10
CR-09-035	590	-45.43	35.08	24.51	394.43	-437.67
CR-09-035	595	-45.42	35.14	24.89	397.92	-441.23
CR-09-035	600	-45.36	35.18	25.26	401.41	-444.79
CR-09-035	605	-45.31	35.10	25.64	404.91	-448.34
CR-09-035	610	-45.19	35.18	26.02	408.41	-451.89
CR-09-035	615	-45.09	35.35	26.40	411.91	-455.44
CR-09-035	620	-44.97	35.42	26.79	415.42	-458.98
CR-09-035	625	-44.91	35.44	27.19	418.94	-462.51
CR-09-035	630	-44.82	35.53	27.59	422.46	-466.04
CR-09-035	635	-44.75	35.58	28.00	425.99	-469.56
CR-09-035	640	-44.69	35.59	28.40	429.52	-473.08
CR-09-035	645	-44.59	35.70	28.81	433.05	-476.59
CR-09-035	650	-44.51	35.66	29.23	436.59	-480.10
CR-09-035	655	-44.45	35.66	29.64	440.13	-483.60
CR-09-035	660	-44.37	35.69	30.06	443.68	-487.10
CR-09-035	665	-44.26	35.83	30.48	447.23	-490.59
CR-09-035	670	-44.15	35.85	30.91	450.79	-494.08

CONQUEST Resources Limited

Conquest Resources Ltd. Diamond Drill Record

Gyro Survey Record

Hole ID	Station (m)	Dip (Degrees)	Azimuth	Easting (m)	Northing (m)	Elevation (m)
CR-09-035	675	-44.04	35.84	31.33	454.36	-497.56
CR-09-035	680	-43.95	35.85	31.76	457.93	-501.03
CR-09-035	685	-43.90	35.85	32.19	461.50	-504.50

Conquest Resources Ltd.

Exploration Diamond Drill Log

DRILL HOLE #	CR-09-036	LOCATION	Balmertown, Balmer Township, Red Lake District, Ontario						
PROJECT #	Alexander	REFERENCE	Alexander		GEOLOGIST	BATSON	CLAIM	KRL 20304	
GRID/ NAD-Z	ONE	NORTHING		EASTING		ELEVATION		GRID TYPE	
GRID	Alexander RL	5+00 S	-	7+00 E		10000		М	
UTM	NAD83 / 15U	5655955	_	450538		390	_		
COLLAR DIP	-50	GRID DIRECTIO	N	North			AZ DIRECTION	029	
NTS REF #	052N04	NTS SHEET NA	ME	Red Lake, Onta	rio		_		
START DATE	28-Sep-09			FINISH DATE	1-Oct-09		_		
DEPTH (EOH)	357.00	TARGET & Zon	e Depth	Target 35 (90m), Target 0-35	155-205m), Ta	rget 0 (260m)		
PURPOSE	CR09-F hole t	ests 3 target	horizons in se	eds and volx	PIEC	E POINT of Target:	E	mELEV	
CASING BW	1		CASING NW	3.00			CASING HW		
PLUG @)		PLUG @	na			PLUG @		
START DTH	0.00		WEDGE @				-		
REDUCED @			REDUCED @						
HOLE STATUS	complete, cap	oped, left cas	ing						
DRILLING COM	ITRACTOR	Boart Longy	ear Inc.						
RIG NO.	4186						BXS.	81	
							-		

	GYRO S	urvey: Multisho				
DEPTH (m)	AZ	DIP	Elevation (m)	δ Easting (m)	δ Northing (m)	Comments:
0	29.00	-49.69	0.00	0.00	0.00	1st Target intersected magnetic fuchsite
51	30.06	-49.41	-38.86	0.36	33.03	bearing cherty iron formation at 107m within
102	31.05	-48.66	-77.38	1.25	66.43	Balmer assemblage up to 0.4g/t Au over
150	31.60	-48.34	-113.34	2.53	98.21	48cm. Broad <u>2nd larget</u> comprised mainly of
201	32.20	-47.73	-151.27	4.17	132.26	magnetic sediment interbeds with up to
252	33.09	-47.18	-188.83	6.31	166.69	0.86g/t over 1.29m. Narrow brecciated quartz
300	33.88	-46.80	-223.93	8.95	199.33	and clay undifferentiated sediments at 183m.
351	34.64	-46.55	-261.05	12.18	234.15	3rd Target at gabbro contact and mag trend
						intersection is largely unexplained at planned
						260m hole depth. Broad 8.37m thick shear
						zone intersected in Dacite contains PO-PY-APY
						above <u>3rd Target</u> at 232m with up to 1.08g/t
						Au over 0.30 but is not conductive as
						expected. Highlights include several blotite-
						carbonate bearing Lamprophyric dykes and
						Dacite volcanics with significant silica
						alteration and shearing. Trenching & drilling
						in area shows multiple instances of shearing
						and favorable alteration, though few
						encouraging intersections contain gold
						bearing sulphide mineralization. Follow-up
						drilling should resolve character and extent of
						Dacite.

Drilled with 3m stabilized core barrel

Planned hole depth is 350m (1148')

Magnetic Declineation 0° 13', Declination for Grid N29°E

Water source: pond above tailings located at 451500 5656695 UTM NAD83 15U

Left Casing and Capped with Stamped NW cap Planned hole time is 4 days (Sept 28 to Oct 1) Core stored at Cochenour Mine Site Drill type: LF-70

Major Lithologies

Hole Name	From	То	Length	Code	Description	Rep
CR-09-036	0.00	3.00	3.00	CAS	NW Casing into overburden and bedrock	
CR-09-036	3.00	107.22	104.22	V3B	Green coloured, fine to medium grained, pillowed Basalt pile as in CR-09-034 and -035. Selvages (<5% overall) contain quartz carbonate with minor chlorite. Several sheared sections and foliated pillowed basalts contatin minor folded quartz carbonate veins. Pillow rims are typically quartz amydgular. Background minor chlorite alteration with pervasive calcite alteration throughout. Few narrow, cross cutting, minor, quartz biotite carbonate-bearing irreqular veins have trace pyrite and pyrrhotite. Diorite and altered quartz monzondiorite cross cut this unit. Upper contact is not intersected in this hole.	
CR-09-036	107.22	109.00	1.78	S10; S10D	Waxy grey and apple green coloured, highly silica-sericite-fuchsite altered, banded, MT- bearing, PO-PY mineralized, chemical Chert Iron Formation. Upper and lower contacts are altered and quartz carbonate veined over 30cm (-above and below).	
CR-09-036	109.00	170	61.00	V3B	Variably altered (sil-qtz-cb to qtz-cb-(chl-act-bt)-cal) pillowed basalt with quartz amygdular pillow rims as above with occasional massive silica charged interflows. Magnetic, siliceous diorite dykes cross-cut basalt unit. Abundant quartz carbonate veining locally. Minor trace sulphides locally, cheifly pyrrhotite. Lower contact is gradational over 5m appearing texturally contorted with abundant dismembered quartz carbonate vein overprinting and in part lacking original volcanic textures (except a few preserved amygdular pillow rims) probably due to the lack of volcanic deposition activity and possible slumping prior to argillaceous interflow sediments in contact with volcanics.	
CR-09-036	170	172.05	2.05	S6E	Magnetite bearing, cherty argillaceous sulphidized (cheifly PO with minor PY) black sediments with intercollated quartz fragments and quartz-carbonate veining. Past logging may have interpreted this narrow fine grained dark coloured unit as healed fault gouge. Original bedding features have been preserved with fine grained, undulating, variable thickness, magnetite and sulphide replaced beds. Two interflow sedimentary beds are bound by green basalts (from 170.30 to 171.11m). Upper contact is sharp at 55degCA. Lower contact is entirely quartz carbonate replaced by veining at 60degCA over 171.66 to 172.05m.	
CR-09-036	172.05	182.99	10.94	V3B; hyl	Pale green coloured, fine grained massive Basalt with irregular trace sulphide bearing quartz carbonate veins and fracture filling grading to mottled pale green and dark green coloured variolitc basalt	

ologies

Hole Name	From	То	Length	Code	Description	Rep
CR-09-036	182.99	185.56	2.57	S; bre	Brecciated undifferentiated quartz and clay sediments and basalt volcanics. Up to 80% sub- rounded to -angular siliceous clasts locally are grey in colour, fine grained with minor PO. Cement is generally a fine grained, magnetic dark grey greeen coloured argillaceous sedimentary matrix or medium grained mottled green coloured chl-hb basalt with corroded chlorited altered plagioclase crystal rims. Upper contact is sharp at 74degCA and lower contact is dyked out at 66degCA.	
CR-09-036	185.56	205.15	19.59	V3B	Mottled pale green and dark green coloured, foliated, variolitic basalt. Several fine grained siliceous sections though majority of unit is cheifly chlorite-augite mottled. Lower contact is 2 gradational, interfingered, and contformable with felsic volcanic below.	03.30 to 203.77m
CR-09-036	205.15	232.63	27.48	V1D	Grey coloured, massive, siliceous, chlorite and biotite altered Dacite with ghostly blue coloured quartz crystals and matrix silica. Broad shearing produces flattened planar foliation fabric.	11.54 to 211.80m
CR-09-036	232.63	241.00	8.37	SHR	PO-PY-APY mineralized, quartz-carbonate veined and strongly biotite-(chlorite) altered Shear Zone within Dacite volcanics. Shear fabric is planar to undulating at 20-40degCA. Quartz carbonate veining at upper contact is irregular and dismembered, but elsewhere in sheared Dacite is entact and parallel to shear fabric with associated strongly biotite altered wall rock. Alteration is classified primarily by local strongly shearing-correlated intense biotite overprinting with pervasive biotite-chlorite alteration over entirety of sheared interval while quartz-carbonate veining characterizes alteration to a lesser degree in this unit. APY is present as very finely disseminated needles and in locally blebby replacement textures. Increased fine grained disseminated replacive PO-PY not always correlated with increased APY needles. Lower contact is weakly brecciated with abundant folded and dismembered dark grey coloured narrow dominantly quartz-(carbonate) veins.	
CR-09-036	241.00	291.00	50.00	V1D	Massive, foliated, grey-green coloured, siliceous Dacite, similar to above but contains at least three phases of strongly altered felsic and intermediate dyking. Shearing and associated lamprophyric and felsic dyking in weakly sulphide mineralized structure at 252.87 to 269.17m. Dacite is variably altered from strongly biotite and chlorite alteration to locally intense biotite (- chlorite) contact metamorphism. Foliation is generally 45-65degCA, with 75degCA strong foliation at upper contact of intermediate dyking. Trace minor disseminated PO-PY thoughout. Lower contact is sharp and irregular at Gabbro.	

CONQUEST Resources Limited

Hole Name	From	То	Length	Code	Description	Rep
CR-09-036	291.00	318.75	27.75	I3A	Variably textured (fine to coarsed grained) typical gabbroic locally actinolite bearing intrusive as in CR-09-033, -034, and -035. Irregular quartz carbonate veining and common throughout. Lamprophyric bt-carbonate altered dyke near upper contact. Unmineralized. Trace sulphides locally. Upper contact is sharp with Dacite at 65degCA. Lower contact is ground at 80degCA.	
CR-09-036	318.75	342.29	23.54	V3B	Grey-green coloured, massive to locally pillowed, fresh, basalt pile with narrow (3m) blocky fractured sections following upper contact and occasional quartz carbonate fracture filling. Pillow rims are crystal quartz amygdular. Selvages, when present, are white quartz-carbonate dominated with chilled fine grained strongly chloritized basalt grading on 1-cm scale into fresh fine grained massive and ambiguous basalt pillow cores. Upper contact is ground and likely sharp with intrusive gabbro at 80degCA.	
CR-09-036	342.29	356.99	14.70	I3A	Fine to medium grained Gabbro as above. Several light grey coloured quartz monzodiorite dykes with minor quartz veining and gabbro shearing adjacent intrusives within Gabbro. Upper contact is sharp and conformable at 65degCA.	
CR-09-036	356.99	357.00	0.01	EOH	EOH at 357m on October 1, 2009. Left Casing. Capped with stamped aluminum casing cap. Gyro surveyed. Core is stored at the Goldcorp Cochenour Mine Site in 81 NQ trays. 321 samples sent for Au fire assay (50g pulp) at SGS Labs, Red Lake, ON.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP	
				sheared pillow basalt. Weakly sheared basalt with a strongly sheared horizon at 12.90		
				to 13.22m contatining sulphides. Quartz carbonate pillow selvages and vein shave pinch		
	11 64	14 17	1/20. CUD	and swell textures and are locally dismembered. Pillows are slightly attenuated in		
CK-09-050	11.04	14.17	V3D; 3HK	weakly sheared shoulders to strong shear. Very little change in intensity of background		
				chlorite alteration. Upper and lower contacts are gradational. Shear fabric is at		
				68degCA.		
	17/0	19.04	121	grey coloured, fine grained, massive, weakly magnetic diorite. Upper contact is sharp		
CR-09-030	17.40	10.94	IZJ	and planar at 50degCA while lower contact is undulating at 10degCA.		
				Weakly sheared pillowed basalt and hyalloclastic basalt breccia containing sulphide		
				(cheifly PO) bearing massive quartz carbonate -(fuchsite) vein selvages. Narrow Zone		
CR-09-036	19.62	24.90	V3B; SHR	from 20.26 to 20.74m of disseminated sulphide (cheifly salt and pepper textured PO)		
					bearing quartz carbonate veins and dismembered quartz veins within narrow sheared	
				basalt selvage area.		
CB-09-036	21 81	33.00		as above 10.64 to 14.17m weakly sheared basalt with locally folded quartz carbonate		
CK-09-030	51.81	33.00	v30, 311K	veins.		
				Quartz carbonate veins in sheared basalt structure with trace sulphide mineralization.		
CR-09-036	44.83	45.6	V3B; SHR	Dismembered veins are fine textured and are seldom thicker than a few mm in		
				thickness.		
CB-09-036	62 05	62 53		Brecciated quartz carbonate veins in sheared basalt structure with trace sulphide		
	02.05	02.55	SIII, BIL	mineralization in irregular vein stockwork		
				sheared basalt with strongly pervasive carbonate altereration throughout and minor		
				bleaching. Strongly sil-ser-bt-qtz-cb overprinting alteration at lower contact with on		
				narrow mineralized sil-bt altered diorite. Narrow bleached quartz monzodiorite dyke		
CR-09-036	66.88	75.9	SHR; BRE	within sheared volcanics NIL sulphides from 70.16 to 70.87m. Few cross cutting sugary		
				mauve coloured <1cm scale quartz carbonate veins (45degCA) Upper contact is sharp		
				with unsheared basalts at 60degCA. Lower contact is sharp with strongly sil-ser altered		
				guartz monzodiorite.		
				PO-PY-(APY) mineralized, strongly sil-ser (bleached) altered quartz monzodiorite		
				(probably correlates to I2G - quartz monzodiorites in other holes but lacks plagioclase		
				crystals, probably overprinted due to strong alteration). Magnetic due to PO. Abundant		
CR-09-036	75.9	80.2	12G	dark grev rounded quartz crystals give mottled appearance to the washed out, bleached		
				texture. APY is very fine grained and disseminated. PO replaces PY occuring in		
				attenuated replacement blebs and in fractures. Sharp upper contact at 65degCA Lower		
				contact is weakly sheared at 72degCA and assimilates basalt below		
00.00.000	00.2	00.00	1/20 "			
CR-09-036	80.2	82.93	V3B; pil	pillowed basait		

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-09-036	82.93	83.26	11C	quartz eye quartz monzodiorite as above but with less alteration. Trace APY mineralized. Upper and lower contacts are sharp at 70 and 65degCA respectively.	
CR-09-036	83.26	84.02	V3B; SHR	Sil-ser altered sheared pillowed basalt between dykes.	
CR-09-036	84.02	84.68	11C	Quartz eye quartz monzodiorite as above but with less alteration. Trace APY mineralized. Upper and lower contacts are sharp at 63 and 72degCA respectively.	
CR-09-036	84.68	107.22	V3B; MAS	Grey, siliceous, non magnetic, basalt grades from pillowed to massive over several metres of upper contact. Minor quartz carbonate veining and pervasive calcite alteration throughout. Upper contact is sharp with I2G dyke. Lower contact is sheared and highly altered.	
CR-09-036	117.80	118.20	I2J	Siliceous, fine grained, magnetic, PO-bearing, grey coloured Diorite dyke with sharp upper and lower contacts at 55degCA.	
CR-09-036	121.33	121.7	12J	as above 117.80 to 118.20m Diorite dyke with a sharp upper contact at 75degCA and a low angle irregular lower contact.	
CR-09-036	122.2	123.08	I2J	as above 117.80 to 118.20m Diorite dyke with sharp upper and lower contacts at 80degCA.	
CR-09-036	134.26	135.19	I2J	as above 117.80 to 118.20m Diorite dyke with undulating upper contact at 45degCA. Lower contact is sharp and planar at 80degCA.	
CR-09-036	165	170	V3B; pil	irregular abundant quartz carbonate vein replacement within contorted pillowed basalt slump structure.	
CR-09-036	185.56	188.15	I2G	light grey coloured, foliated (70degCA), bleached, replacement bt-PO bearing, phlagioclase phyric quartz monzodiorite as before. Sharp upper contact with altered sediments at 66degCA. Sheared lower contact with chlorite-talc-sericite fault gouge over 1cm at 188.08cm (sheared over 187.68 to 188.15).	
CR-09-036	252.87	253.97	130	Pervasively biotite and carbonate altered dark grey-green coloured, foliated, occasionally quartz eye (-crystal) bearing mafic Intrusive dyke. Possible lamprophyric dyke strongly biotite altered, but contatins quartz. Several assimilated Dacite wall-rock fragments. Alteration in this area strongly overprints original textures and masks sharp black line upper contact at 82degCA. Lower contact is sheared at 55degCA.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-09-036	253.97	254.84	SHR; V1D	Strongly biotite-silica altered quartz-carbonate overprinting veined and sheared Dacite with PO-PY-(APY). Undulating finely texutred shear fabric at 60degCA with whispy replacement PO and minor PY blebs and disseminations. APY is in strongest fine grained BT altered quartz veined sheared section. Upper and lower contacts are gradational.	
CR-09-036	254.84	257.75	130	Intrusive as above 253.00 to 253.97m with variable degrees of pervasive biotite alteration increasing downhole from moderate to intense (35% biotite). Strongly foliated at 80degCA with shearing from 257.08 to 257.75 containing BT-qtz-cb associated sulphide mineralization in shear structure. Upper contact is sharp at sheared mineralized Dacite with fine grain textures grading to medium strongly foliated intrusive. Lower contact is sheared over 257.08 to 257.75m and is sharply dyked out by bleached porphyry at 82degCA.	
CR-09-036	257.75	260.17	12G	Intensely sil-ser bleached quartz crystal-eye felsic porphyry with trace PO, foliated at 64degCA with sharp upper and lower contacts at 82degCA and 62degCA, respectively. Occasional minor quartz-(carb) veins.	
CR-09-036	267.68	270.27	11	Very dark grey-green coloured, siliceous very fine grained, rounded quartz crystal (2-5%) bearing, biotite-(chl) altered felsic dyke. Trace PY in quartz crystals. Upper and lower contacts are knife sharp at 20degCA.	
CR-09-036	271.97	273.27	11	very dark coloured, siliceous felsic dyke as above 267.68 to 270.27m. Upper contact is irregular at 50degCA. Lower contact is irregular, sharp and subparallel to CA.	
CR-09-036	296.84	299.1	130	brown coloured, strongly bt-carbonate altered Lamprophyric dyke swarm with minor bleached quartz monzodiorite dyking within at 297.09 tro 297.27m (UC 38degCA uphole and LC 15degCA downhole). Upper contact is sharp at 50degCA and assimilates gabbro wall rock. Lower contact is shallow and sharp at 20degCA.	
CR-09-036	345.76	346.82	12G	as above light grey coloured sil-ser bleached, biotite bearing, anhedral quartz crystal-eye bearing placioclase phyric quartz monzodiorite as above. Quartz veined upper contact. Lower contact is undulating and planar at 80degCA.	
CR-09-036	349.53	356.61	I2G	as above light grey coloured sil-ser bleached, biotite bearing, quartz crystal-eye bearing quartz monzodiorite as above. Quartz veined upper contact. Lower contact is undulating and planar at 80degCA.	

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-036	4759	4.14	5.64	1.50	not consecutive	upper wing sample, pillowed basalt with thick quart-carbonate selvages	60	RL37059R
CR-09-036	4760	5.64	7.14	1.50	consecutive	amygdular pillowed basalt with up to 1% Pyrite with quartz carbonate selvage replacement	<10	RL37059R
CR-09-036	4761	7.14	8.64	1.50	consecutive	amygdular pillowed basalt with up to 1% Pyrite with quartz carbonate selvage replacement	<10	RL37059R
CR-09-036	4762	8.64	10.14	1.50	consecutive	amygdular pillowed basalt with up to 1% Pyrite with quartz carbonate selvage replacement	<10	RL37059R
CR-09-036	4763	10.14	11.64	1.50	consecutive	amygdular pillowed basalt with up to 1% Pyrite with quartz carbonate selvage replacement	<10	RL37059R
CR-09-036	4764	11.64	12.27	0.63	consecutive	quartz-carbonate-fuchsite-sericite vein altered pillowed basalt	40	RL37059R
CR-09-036	4765	12.27	12.90	0.63	consecutive	chlorite basalt with 1 quartz carbonate vein	<10	RL37059R
CR-09-036	4766	12.90	13.22	0.32	consecutive	05PO and 02PY in sheared basalt	<10	RL37059R
CR-09-036	4767	13.22	14.17	0.95	consecutive	amygdular pillowed basalt, minor sheared	<10	RL37059R
CR-09-036	4768	14.17	15.67	1.50	consecutive	pinch and swell quartz carbonate veins in pillowed basalt	20	RL37059R
CR-09-036	4769	15.67	16.15	0.48	consecutive	one massivew quartz carbonate vein within pillowed basalt	<10	RL37059R
CR-09-036	4770	0.00	0.00	0.00	not consecutive	SI42 1.761 ppm Au	1700	RL37059R
CR-09-036	4771	16.15	17.48	1.33	not consecutive	basalt with diorite contact	20	RL37059R
CR-09-036	4772	17.48	18.94	1.46	consecutive	cross cutting diorite dyke with shallow lower contact at 10degCA downhole	<10	RL37059R
CR-09-036	4773	18.94	19.62	0.68	consecutive	flattened foliation fabric in pillowed basalt below dyke	20	RL37059R
CR-09-036	4774	19.62	20.26	0.64	consecutive	carbonate altered brown hyalloclatic basalt	<10	RL37059R
CR-09-036	4775	54.00	54.50	0.50	not consecutive	Basalt Blank. NIL to trace sulphides, no veins of interest.	<10	RL37059R
CR-09-036	4776	20.26	20.74	0.48	not consecutive	PO mineralized shear in basalt with quartz carbonate veins	<10	RL37059R
CR-09-036	4777	20.74	22.24	1.50	consecutive	< 02PO within minor sheared basalt with quartz carbonate	10	RL37059R
CR-09-036	4778	22.24	23.74	1.50	consecutive	< 02PO within minor sheared basalt with quartz carbonate. Minor hyalloclastic basalt phase with QV fragments	<10	RL37059R
CR-09-036	4779	23.74	24.90	1.16	consecutive	< 02PO within minor sheared basalt with quartz carbonate	<10	RL37059R
CR-09-036	4780	24.90	26.40	1.50	consecutive	quartz amygdular chlorite basalt with quartz-carbnonate vein replacement selvages, trace sulphides	<5	RL37059
CR-09-036	4781	26.40	27.90	1.50	consecutive	quartz amygdular chlorite basalt with quartz-carbnonate vein replacement selvages, trace sulphides	<5	RL37059
CR-09-036	4782	27.90	29.40	1.50	consecutive	quartz amygdular chlorite basalt with quartz-carbnonate vein replacement selvages, trace sulphides	5	RL37059
CR-09-036	4783	29.40	29.90	0.50	consecutive	quartz amygdular chlorite basalt with quartz-carbnonate vein replacement selvages, trace sulphides	<5	RL37059
CR-09-036	4784	29.90	30.20	0.30	consecutive	albite-sericite altered wall rock at quartz-muscovite fibrous x- cutting vein in basalt	<5	RL37059

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-036	4785	30.20	31.81	1.61	consecutive	quartz amygdular chlorite basalt with quartz-carbnonate vein replacement selvages, trace sulphides	19	RL37059
CR-09-036	4786	31.81	33.00	1.19	consecutive	weakly sheared basalt with abundant quartz-carbonate veins	<5	RL37059
CR-09-036	4787	33.00	34.50	1.50	consecutive	folded fine quartz carbonate in pillowed foliated amygdular basalt	<5	RL37059
CR-09-036	4788	34.50	36.00	1.50	consecutive	folded fine quartz carbonate in pillowed foliated amygdular basalt	16	RL37059
CR-09-036	4789	36.00	37.50	1.50	consecutive	folded fine quartz carbonate in pillowed foliated amygdular basalt, trace very fine grained PO	<5	RL37059
CR-09-036	4790	0.00	0.00	0.00	not consecutive	SK43 4.086ppm Au	3700	RL37059
CR-09-036	4791	37.50	39.00	1.50	not consecutive	folded fine quartz carbonate in pillowed foliated amygdular basalt	<5	RL37059
CR-09-036	4792	39.00	40.50	1.50	consecutive	foliated amygdular pillowed basalt with fine qtz-cb veins	8	RL37059
CR-09-036	4793	40.50	41.00	0.50	consecutive	foliated amygdular pillowed basalt with fine qtz-cb veins with up to 10PO in carbonate replaced selvages	<5	RL37059
CR-09-036	4794	41.00	42.00	1.00	consecutive	foliated amygdular pillowed basalt with fine qtz-cb veins	<5	RL37059
CR-09-036	4795	54.50	55.00	0.50	not consecutive	basalt with one quartz carbonate vein	<5	RL37059
CR-09-036	4796	42.00	43.50	1.50	not consecutive	pillowed basalt wing	<5	RL37059
CR-09-036	4797	43.50	44.83	1.33	consecutive	pillowed basalt wing before minor shear, trace low sulphides	<5	RL37059
CR-09-036	4798	44.83	45.60	0.77	consecutive	trace sulphides in sheared carbonate altered selvage area in basalt	24	RL37059
CR-09-036	4799	45.60	47.10	1.50	consecutive	basalt wing	<5	RL37059
CR-09-036	4800	50.20	51.25	1.05	not consecutive	basalt wing to white quartz vein selvage	<5	RL37059
CR-09-036	4801	51.25	51.55	0.30	consecutive	pillowed basalt, PO-Bearing quartz vein selvage replacement	<5	RL37059
CR-09-036	4802	51.55	52.60	1.05	consecutive	pillowed basalt wing to quartz-vein replaced selvage above	<5	RL37059
CR-09-036	4803	61.00	62.50	1.50	not consecutive	minor quartz carbonate veining within basalt, wing sample	<10	RL37059R
CR-09-036	4804	62.50	62.53	0.03	consecutive	quartz carbonate overprinting stockwork	<10	RL37059R
CR-09-036	4805	62.53	63.53	1.00	consecutive	pillowed basalt wing with minor trace quartz carbnonate vein associated PO	<10	RL37059R
CR-09-036	4806	65.38	66.88	1.50	not consecutive	pillowed basalt wing	<10	RL37059R
CR-09-036	4807	66.88	67.75	0.87	consecutive	moderately sheared structure in chl-(bt) basalt with 01PO>PY	<10	RL37059R
CR-09-036	4808	67.75	68.20	0.45	consecutive	strongly (-intensely) sheared basalt with waxy lustreous coring and very fine grained quartz veinlets, 10PO vfg, 10PY vfg	10	RL37059R
CR-09-036	4809	68.20	68.70	0.50	consecutive	moderately sheared structure in chl-(bt) basalt with 01PO>PY	<10	RL37059R
CR-09-036	4810	0.00	0.00	0.00	not consecutive	OxK69 3.583 ppm Au	3380	RL37059R
CR-09-036	4811	68.70	70.16	1.46	not consecutive	moderately sheared structure in chl-(bt) basalt with 01PO>PY	10	RL37059R

Conquest Resources Ltd. Diamond Drill Record

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-036	4812	70.16	70.87	0.71	consecutive	sil-ser-(gt) altered, f.g. to m.g. quartz monzodiorite dyke with NIL sulphides	20	RL37059R
CR-09-036	4813	70.87	71.65	0.78	consecutive	moderately sheared structure in chl-(bt) basalt with 01PO>PY	20	RL37059R
CR-09-036	4814	71.65	72.95	1.30	consecutive	qtz overprinting alteration in sheared basalt (possible mafic tuff)	60	RL37059R
CR-09-036	4815	55.00	55.50	0.50	not consecutive	basalt	<10	RL37059R
CR-09-036	4816	72.95	73.66	0.71	not consecutive	02PO 01PY mineralized foliated and sil-bt altered diorite dyke	<10	RL37059R
CR-09-036	4817	73.66	74.90	1.24	consecutive	sil-ser-bt-qtz-cb overprinted altered sheared basalt with 01PY 02PO	30	RL37059R
CR-09-036	4818	74.90	75.90	1.00	consecutive	sil-ser-bt-qtz-cb overprinted altered sheared basalt with 01PY 02PO	20	RL37059R
CR-09-036	4819	75.90	76.65	0.75	consecutive	strongly sil-ser altered quartz monzodiorite with 02PO 02PY and trAPY	<10	RL37059R
CR-09-036	4820	76.65	77.40	0.75	consecutive	strongly sil-ser altered quartz monzodiorite with 02PO 02PY and trAPY	80	RL37059R
CR-09-036	4821	77.40	78.15	0.75	consecutive	strongly sil-ser altered quartz monzodiorite with 02PO 02PY and trAPY	40	RL37059R
CR-09-036	4822	78.15	78.90	0.75	consecutive	strongly sil-ser altered quartz monzodiorite with 02PO 02PY and trAPY	80	RL37059R
CR-09-036	4823	78.90	79.65	0.75	consecutive	strongly sil-ser altered quartz monzodiorite with 02PO 02PY and trAPY	460	RL37059R
CR-09-036	4824	79.65	80.20	0.55	consecutive	strongly sil-ser altered quartz monzodiorite with 02PO 02PY and trAPY	30	RL37059R
CR-09-036	4825	80.20	81.00	0.80	consecutive	sheared lower contact of I2G and pillowed basalt trPO	7	RL37059
CR-09-036	4826	81.00	82.50	1.50	consecutive	basalt wing trace sulphides, qtz-cb and calcite	<5	RL37059
CR-09-036	4827	82.50	82.93	0.43	consecutive	basalt wing trace sulphides, qtz-cb and calcite	11	RL37059
CR-09-036	4828	82.93	83.26	0.33	consecutive	as above I2G but less quartz eyes and less alt'd trAPY 01PO (trPY)	11	RL37059
CR-09-036	4829	83.26	84.02	0.76	consecutive	basalt wing between 12G dykes with trace sulphides	6	RL37059
CR-09-036	4830	0.00	0.00	0.00	not consecutive	SK43 4.086ppm Au	<5	RL37059
CR-09-036	4831	84.02	84.68	0.66	not consecutive	quartz monzodiorite dyke as above 01PO/PY NIL APY	<5	RL37059
CR-09-036	4832	84.68	86.18	1.50	consecutive	pyrite and pyrrhotite bearing pillowed basalt with minor quartz carbonate veins 02PO and 01PY	<5	RL37059
CR-09-036	4833	86.18	87.68	1.50	consecutive	siliceous pillowed sil-qtz-cb alt'd basalt, NIL sulphides	<5	RL37059
CR-09-036	4834	87.68	89.18	1.50	consecutive	qtz-cb and narrow quartz sugary mauve veins, sil altered pillowed basalt, NIL sulphides	<5	RL37059
CR-09-036	4835			0.00	not consecutive	blank	9	RL37059
CR-09-036	4836	89.18	90.68	1.50	not consecutive	siliceous pillowed sil-qtz-cb alt'd basalt, NIL sulphides	7	RL37059

CONQUEST Resources Limited

Conquest Resources Ltd. Diamond Drill Record

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-036	4837	90.68	92.18	1.50	consecutive	siliceous pillowed sil-qtz-cb alt'd basalt, NIL sulphides	13	RL37059
CR-09-036	4838	92.18	93.68	1.50	consecutive	siliceous pillowed sil-qtz-cb alt'd basalt, NIL sulphides	8	RL37059
CR-09-036	4839	93.68	95.18	1.50	consecutive	siliceous pillowed sil-qtz-cb alt'd basalt, NIL sulphides	<5	RL37059
CR-09-036	4840	95.18	96.68	1.50	consecutive	siliceous pillowed sil-qtz-cb alt'd basalt, NIL sulphides	<5	RL37059
CR-09-036	4841	96.68	98.18	1.50	consecutive	siliceous pillowed sil-qtz-cb alt'd basalt, NIL sulphides	<5	RL37059
CB-00-036	1817	08 18	00 68	1 50	consocutivo	siliceous fine grained massive basalt with minor fine quartz	16	PI 27050
CR-09-030	4042	90.10	99.08	1.50	consecutive	carbonate (<3%) veins, NIL sulphides	40	NL37033
CB-09-036	1813	99 68	101 18	1 50	consecutive	siliceous fine grained massive basalt with minor fine quartz	~5	RI 37059
CR-05-050	4045	55.00	101.10	1.50	consecutive	carbonate (<3%) veins, NIL sulphides	< <u>-</u>	RE37035
CB-09-036	1811	101 18	102 68	1 50	consecutive	siliceous fine grained massive basalt with minor fine quartz	~5	RI 37059
CR-05-050	4044	101.10	102.00	1.50	consecutive	carbonate (<3%) veins, NIL sulphides	< <u>-</u>	RE37033
CB-09-036	4845	102 68	104 18	1 50	consecutive	siliceous fine grained massive basalt with minor fine quartz	<5	RI 37059
CR-05-050	4045	102.00	104.10	1.50	consecutive	carbonate (<3%) veins, NIL sulphides	< <u>-</u>	RE37035
CB-09-036	1816	10/ 18	105 30	1 1 2	consecutive	siliceous fine grained massive basalt with minor fine quartz	~5	RI 37059
CR-09-030	4840	104.10	105.50	1.12	consecutive	carbonate (<3%) veins, NIL sulphides	~5	NL37033
CB-00-036	1817	105 20	106 20	1 00	consecutive	siliceous fine grained massive basalt with minor fine quartz	Q	PI 27050
CR-09-030	4047	105.50	100.30	1.00	consecutive	carbonate (<3%) veins, NIL sulphides	0	NL37033
CR-09-036	4848	106.30	107.22	0.92	consecutive	sil basalt wing to chert IF	8	RL37059
CB-00-036	1810	107 22	107 52	030	consecutive	banded contact zone sample btween V3B/Chert IF with minor f.g.	26	PI 27050
CI(-05-050	4045	107.22	107.52	0.50	consecutive	quartz veins (<5%) and 2%MT, sil-ser-MT-qtz-cb, trace APY	20	NE37035
CR-09-036	4850	0.00	0.00	0.00	not consecutive	OxK69 3.583 ppm Au	3500	RL37059
CR-09-036	4851	107.52	108.00	0.48	not consecutive	sil-ser-fuch-MT-(qtz-cb)-PO-(PY) Iron Formation Chert, 7%MT, 5%	407	RL37059
						PO, 1-2%PY		
CR-09-036	4852	108.00	108.60	0.60	consecutive	sil-ser-fuch-MT-(qtz-cb)-PO-(PY) Iron Formation Chert, 7%MT, 5%	165	RL37059
						PO, 1-2%PY		
CR-09-036	4853	108.60	109.00	0.40	consecutive	sil-ser-MT-qtz-cb IF wing altered lower contact	49	RL37059
CR-09-036	4854	109.00	110.00	1.00	consecutive	amygdular pillowed basalt, sil-calcite-gtz-cb altered, Lower wing	15	RL37059
CR-09-036	4855	143.00	143.50	0.50	not consecutive	hb-(act) altered massive pillow cored basalt	52	RL37059
						Lower Wing: quartz amygdular pillow rimmed Basalt with pervasive		
CR-09-036	4856	110.00	111.50	1.50	not consecutive	calcite alteration and gtz-cb fractures and veining, NIL sulphides	16	RL37059
						, 0, 1		
CB-09-036	4857	111 50	113 00	1 50	consecutive	quartz amygdular pillow rimmed Basalt with pervasive calcite	8	RI 37059
	4057	111.50	115.00	1.50	consecutive	alteration and qtz-cb fractures and veining, NIL sulphides	0	NE37033
						quartz amygdular pillow rimmed Basalt with pervasive calcite		
CR-09-036	4858	113.00	114.50	1.50	consecutive	alteration and atz-ch fractures and veining NII sulphides	20	RL37059
CR-09-036	4859	114.50	116.00	1.50	consecutive	quartz amygdular pillow rimmed Basalt with pervasive calcite	30	RL37059
		11.00	110.00	1.00		alteration and qtz-cb fractures and veining, NIL sulphides		

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-036	4860	116.00	117.00	1.00	consecutive	quartz amygdular pillow rimmed Basalt with pervasive calcite alteration and qtz-cb fractures and veining, NIL sulphides	7	RL37059
CR-09-036	4861	117.00	117.80	0.80	consecutive	quartz amygdular pillow rimmed Basalt with pervasive calcite alteration and qtz-cb fractures and veining, NIL sulphides	30	RL37059
CR-09-036	4862	117.80	118.20	0.40	consecutive	grey, siliceous, weakly magnetic trace PO bearing Diorite dyke with 3-5% pervasive calcite alteration	19	RL37059
CR-09-036	4863	118.20	118.66	0.46	consecutive	Basalt between diorite: quartz amygdular pillow rimmed Basalt with pervasive calcite alteration and qtz-cb fractures and veining, NIL sulphides	<5	RL37059
CR-09-036	4864	118.66	119.20	0.54	consecutive	Basalt between diorite: abundant quartz-carbonate veined green coloured, siliceous Basalt, NIL sulphides	10	RL37059
CR-09-036	4865	119.20	120.70	1.50	consecutive	Basalt between diorite: quartz amygdular pillow rimmed Basalt with pervasive calcite alteration and qtz-cb fractures and veining, NIL sulphides	11	RL37059
CR-09-036	4866	120.70	121.33	0.63	consecutive	Basalt between diorite: quartz amygdular pillow rimmed Basalt with pervasive calcite alteration and qtz-cb fractures and veining, NIL sulphides	<5	RL37059
CR-09-036	4867	121.33	121.70	0.37	consecutive	grey, siliceous, weakly magnetic trace PO bearing Diorite dyke with 3-5% pervasive calcite alteration	124	RL37059
CR-09-036	4868	121.70	122.20	0.50	consecutive	Basalt between diorite: quartz amygdular pillow rimmed Basalt with pervasive calcite alteration and qtz-cb fractures and veining, NIL sulphides	<5	RL37059
CR-09-036	4869	122.20	123.08	0.88	consecutive	grey, siliceous, magnetic Diorite dyke with 3-5% pervasive calcite alteration, 03MT and 02PO	<5	RL37059
CR-09-036	4870	0.00	0.00	0.00	not consecutive	SI42 1.761 ppm Au	1760	RL37059
CR-09-036	4871	123.08	124.78	1.70	not consecutive	quartz amygdular pillow rimmed Basalt with pervasive calcite alteration and qtz-cb fractures and veining, NIL sulphides	<5	RL37059
CR-09-036	4872	124.78	126.00	1.22	consecutive	quartz amygdular pillow rimmed Basalt with pervasive calcite alteration and qtz-cb fractures and veining, NIL sulphides	<5	RL37059
CR-09-036	4873	126.50	128.00	1.50	not consecutive	massive basalt wing, NIL sulphides	44	RL37059
CR-09-036	4874	128.00	128.50	0.50	consecutive	01PO in abundant quartz carbonate veins within pillowed basalt	<5	RL37059
CR-09-036	4875	126.00	126.50	0.50	not consecutive	massive basalt wing, NIL sulphides	5	RL37059
CR-09-036	4876	128.50	130.00	1.50	not consecutive	01PO in 10% quartz carbonate veins within pillowed basalt	<5	RL37059
CR-09-036	4877	130.00	131.50	1.50	consecutive	siliceous amygdular pillowed basalt with broad selvage replacement, trace to 1% PO	8	RL37059

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-036	4878	131.50	133.00	1.50	consecutive	amygdular pillow rimmed basalt with thin quartz carbonate veins, NIL sulphides	25	RL37059
CR-09-036	4879	133.00	134.26	1.26	consecutive	amygdular pillow rimmed basalt with thin quartz carbonate veins, NIL sulphides	7	RL37059
CR-09-036	4880	134.26	135.19	0.93	consecutive	grey silicified inconspicuous homogeneous diorite dyke, NIL sulphides	<5	RL37060
CR-09-036	4881	135.19	136.69	1.50	consecutive	amygdular pillow rimmed basalt with thin quartz carbonate veins and weak chlorite-actinolite alteration, NIL sulphides	14	RL37060
CR-09-036	4882	136.69	138.19	1.50	consecutive	amygdular pillow rimmed basalt with thin quartz carbonate veins and weak chlorite-actinolite alteration, NIL sulphides	8	RL37060
CR-09-036	4883	138.19	138.70	0.51	consecutive	amygdular pillow rimmed basalt with thin quartz carbonate veins and weak chlorite-actinolite alteration, NIL sulphides	<5	RL37060
CR-09-036	4884	138.70	139.01	0.31	consecutive	complete pillow selvage replacement in sil-ser-qtz-cb altered basalt with 1% PO	36	RL37060
CR-09-036	4885	139.01	140.01	1.00	consecutive	massive basalt wing contatining sil-chl-act-(qtz-cb) alteration	<5	RL37060
CR-09-036	4886	144.00	145.50	1.50	not consecutive	amygdular pillow rimmed basalt with thin quartz carbonate veins, moderate pervasive calcite, and weak chlorite-actinolite alteration, NIL sulphides	<5	RL37060
CR-09-036	4887	145.50	147.00	1.50	consecutive	amygdular pillow rimmed basalt with thin quartz carbonate veins, moderate pervasive calcite, and weak chlorite-actinolite alteration, NIL sulphides	163	RL37060
CR-09-036	4888	147.00	148.50	1.50	consecutive	amygdular pillow rimmed basalt with thin quartz carbonate veins, moderate pervasive calcite, and weak chlorite-actinolite alteration, NIL sulphides	<5	RL37060
CR-09-036	4889	148.50	150.00	1.50	consecutive	amygdular pillow rimmed basalt with thin quartz carbonate veins, moderate pervasive calcite, and weak chlorite-actinolite alteration, NIL sulphides	14	RL37060
CR-09-036	4890	0.00	0.00	0.00	not consecutive	SK43 4.086ppm Au	3720	RL37060
CR-09-036	4891	150.00	150.84	0.84	not consecutive	amygdular pillow rimmed basalt with thin quartz carbonate veins, moderate pervasive calcite, and weak chlorite-actinolite alteration, NIL sulphides	12	RL37060
CR-09-036	4892	150.84	152.34	1.50	consecutive	silica charged basalt interflow, NIL sulphides	<5	RL37060
CR-09-036	4893	152.34	153.84	1.50	consecutive	silica charged basalt interflow, NIL sulphides	<5	RL37060
CR-09-036	4894	153.84	155.34	1.50	consecutive	silica charged basalt interflow, NIL sulphides	<5	RL37060
CR-09-036	4895	294.00	294.50	0.50	not consecutive	massive siliceous dacite with trace PY Blank Sample	28	RL37060
CR-09-036	4896	155.34	156.19	0.85	not consecutive	silica charged basalt interflow, NIL sulphides	<5	RL37060
CR-09-036	4897	156.19	157.69	1.50	consecutive	qtz-carb-(chl-act)-calcite altered, 02PO blebby bearing, pillowed basalt	6	RL37060

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-036	4898	157.69	159.19	1.50	consecutive	qtz-carb-(chl-act)-calcite altered, 01-02PO finely disseminated within pillowed basalt	<5	RL37060
CR-09-036	4899	159.19	160.69	1.50	consecutive	qtz-carb-(chl-act)-calcite altered, trace PO finely disseminated within pillowed basalt	<5	RL37060
CR-09-036	4900	160.69	162.19	1.50	consecutive	qtz-carb-(chl-act)-calcite altered pillowed basalt, NIL sulphides	<5	RL37060
CR-09-036	4901	162.19	163.00	0.81	consecutive	quartz carbonate (chl-act-bt)-calcite altered basalt with trace to NIL sulphides	<5	RL37060
CR-09-036	4902	163.00	164.00	1.00	consecutive	quartz carbonate (chl-act-bt)-calcite altered basalt with trace to NIL sulphides	13	RL37060
CR-09-036	4903	164.00	165.00	1.00	consecutive	quartz carbonate (chl-act-bt)-calcite altered basalt with trace to NIL sulphides	5	RL37060
CR-09-036	4904	165.00	166.00	1.00	consecutive	slump basalt with quartz carbonate and trace sulphides	<5	RL37060
CR-09-036	4905	166.00	166.80	0.80	consecutive	slump basalt with quartz carbonate and trace sulphides	<5	RL37060
CR-09-036	4906	166.80	167.50	0.70	consecutive	slump basalt with quartz carbonate and trace sulphides	<5	RL37060
CR-09-036	4907	167.50	168.00	0.50	consecutive	slump basalt with quartz carbonate and trace sulphides	<5	RL37060
CR-09-036	4908	168.00	168.50	0.50	consecutive	slump basalt with quartz carbonate and trace sulphides	<5	RL37060
CR-09-036	4909	168.50	169.00	0.50	consecutive	slump basalt with quartz carbonate and trace sulphides	9	RL37060
CR-09-036	4910	0.00	0.00	0.00	not consecutive	SI42 1.761 ppm Au	1740	RL37060
CR-09-036	4911	169.00	169.50	0.50	not consecutive	slump basalt with quartz carbonate and trace sulphides	64	RL37060
CR-09-036	4912	169.50	170.00	0.50	consecutive	lower contact of slump basalt with brecciated interflow sediments	38	RL37060
CR-09-036	4913	170.00	170.30	0.30	consecutive	cherty argillite with MT-PO-(PY)	690	RL37060
CR-09-036	4914	170.30	171.11	0.81	consecutive	basalt block/interflow within interflow sediments, NIL sulphides	16	RL37060
CR-09-036	4915	294.50	295.00	0.50	not consecutive	massive siliceous dacite with trace PY Blank Sample	18	RL37060
CR-09-036	4916	171.11	171.36	0.25	not consecutive	cherty argillite sulphidized with 15MT-10PO-05PY	50	RL37060
CR-09-036	4917	171.36	171.66	0.30	consecutive	as above cherty argillite with MT-PO-PY	39	RL37060
CR-09-036	4918	171.66	172.05	0.39	consecutive	complete sil-qtz-cb overprinting replacement vein structure, 5% sulphides (cheifly PO>PY)	<5	RL37060
CR-09-036	4919	172.05	173.00	0.95	consecutive	pale green coloured trPO qtz-cb vein(-lets) massive basalt	<5	RL37060
CR-09-036	4920	173.00	174.00	1.00	consecutive	pale green coloured trPO qtz-cb vein(-lets) massive basalt	<5	RL37060
CR-09-036	4921	174.00	175.00	1.00	consecutive	pale green coloured trPO qtz-cb vein(-lets) massive basalt	<5	RL37060
CR-09-036	4922	175.00	176.00	1.00	consecutive	pale green coloured trPO qtz-cb vein(-lets) massive basalt	<5	RL37060
CR-09-036	4923	176.00	177.00	1.00	consecutive	pale green coloured trPO qtz-cb vein(-lets) massive basalt	8	RL37060
CR-09-036	4924	177.00	178.00	1.00	consecutive	pale green coloured trPO qtz-cb vein(-lets) massive basalt	<5	RL37060
CR-09-036	4925	178.00	179.00	1.00	consecutive	pale green coloured trPO qtz-cb vein(-lets) massive basalt	430	RL37060
CR-09-036	4926	179.00	179.30	0.30	consecutive	PO bleb in irregular minor quartz carbonate vein within basalt as above	<5	RL37060

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-036	4927	179.30	180.30	1.00	consecutive	transitional variolitic basalt with no calcite alteration, NIL sulphides and contatins quartz-carbonate veins	95	RL37060
CR-09-036	4928	180.30	181.30	1.00	consecutive	variolitic tholeiitic basalt with trace very fine grained sulphides	<5	RL37060
CR-09-036	4929	181.30	182.30	1.00	consecutive	variolitic tholeiitic basalt with trace very fine grained sulphides	<5	RL37060
CR-09-036	4930	0.00	0.00	0.00	not consecutive	SP37 18.14ppm Au	>10000	RL37060
CR-09-036	4931	182.30	182.99	0.69	not consecutive	variolitic tholeiitic basalt with trace very fine grained sulphides	17	RL37060
CR-09-036	4932	182.99	183.63	0.64	consecutive	minor 01-02PY and 02PO in brecciated undifferentiated sed and volcanics, containing argillaceous seds and quartz vein fragments	<5	RL37060
CR-09-036	4933	183.63	184.00	0.37	consecutive	mixed chlorite altered basalt volcanic and argillaceous interflow seds with 01PY	38	RL37060
CR-09-036	4934	184.00	184.50	0.50	consecutive	chlorite altered trace PO and 90% mixed volcanic (-and 10% argillaceous sediments)	27	RL37060
CR-09-036	4935	295.00	295.50	0.50	not consecutive	massive siliceous dacite with trace PY Blank Sample	442	RL37060
CR-09-036	4936	184.50	185.00	0.50	not consecutive	chlorite altered trace PO and 90% mixed volcanic (-and 10% argillaceous sediments)	15	RL37060
CR-09-036	4937	185.00	185.56	0.56	consecutive	chlorite altered trace PO and 90% mixed volcanic (-and 10% argillaceous sediments)	59	RL37060
CR-09-036	4938	185.56	186.06	0.50	consecutive	bleached bt-PO bearing quartz monzodiorite dyke	291	RL37060
CR-09-036	4939	186.06	187.06	1.00	consecutive	bleached bt-PO bearing quartz monzodiorite dyke	76	RL37060
CR-09-036	4940	187.06	187.68	0.62	consecutive	bleached bt-PO bearing quartz monzodiorite dyke with one minor quartz carbonate vein	26	RL37060
CR-09-036	4941	187.68	188.15	0.47	consecutive	sheared 01% sulphides in bt-chl altered I2G, sheared fabric at 62degCA	13	RL37060
CR-09-036	4942	188.15	189.15	1.00	consecutive	minor 01PO in minor sheared basalt	65	RL37060
CR-09-036	4943	189.15	189.90	0.75	consecutive	very fine grained disseminated sulphides in massive siliceous basalt with several narrow cm-scale grey intermediate dykes	386	RL37060
CR-09-036	4944	189.90	191.19	1.29	consecutive	mixed textured alternating locally variolitic and fg massive basalt beds with trace sulphides	862	RL37060
CR-09-036	4945	191.19	192.00	0.81	consecutive	massive fine grained basalt with local blebs of PO-PY in bt-act-chl- (sil) altered basalt	37	RL37060
CR-09-036	4946	192.00	193.00	1.00	consecutive	massive fine grained basalt with local blebs of PO-PY in bt-act-chl- (sil) altered basalt	7	RL37060
CR-09-036	4947	193.00	194.00	1.00	consecutive	massive fine grained basalt with local blebs of PO-PY in bt-act-chl- (sil) altered basalt	<5	RL37060

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-036	4948	194.00	195.50	1.50	consecutive	massive fine grained basalt with local blebs of PO-PY in bt-act-chl- (sil) altered basalt	<5	RL37060
CR-09-036	4949	195.50	197.00	1.50	consecutive	massive fine grained basalt with local blebs of PO-PY in bt-act-chl- (sil) altered basalt	<5	RL37060
CR-09-036	4950	0.00	0.00	0.00	not consecutive	SK43 4.086ppm Au	3860	RL37060
CR-09-036	4951	197.00	198.50	1.50	not consecutive	coarsened variolitic massive basalt lacking quartz-carbonate veins, NIL sulphides	7	RL37060
CR-09-036	4952	198.50	200.00	1.50	consecutive	fine grained basalt (homogeneous section of variolitic basalt), NIL sulphides	<5	RL37060
CR-09-036	4953	200.00	201.50	1.50	consecutive	coarsened variolitic massive basalt lacking quartz-carbonate veins, NIL sulphides	<5	RL37060
CR-09-036	4954	201.50	203.00	1.50	consecutive	coarsened variolitic massive basalt lacking quartz-carbonate veins, NIL sulphides	<5	RL37060
CR-09-036	4955	285.50	286.00	0.50	not consecutive	dark grey coloured sil-bt-chl altered massive Dacite with trPY	6	RL37060
CR-09-036	4956	203.00	204.50	1.50	not consecutive	coarsened variolitic massive basalt lacking quartz-carbonate veins, NIL sulphides	7	RL37060
CR-09-036	4957	204.50	205.22	0.72	consecutive	coarsened variolitic massive basalt lacking quartz-carbonate veins, NIL sulphides	<5	RL37060
CR-09-036	4958	205.22	206.00	0.78	consecutive	gradational compositional contact changing from Basalt to Dacite with NIL sulphides	<5	RL37060
CR-09-036	4959	206.00	207.00	1.00	consecutive	Dacite as above with one minor quartz-carbonate vein	6	RL37060
CR-09-036	4960	207.00	208.00	1.00	consecutive	40degCA sheared Dacite	5	RL37060
CR-09-036	4961	208.00	209.00	1.00	consecutive	35degCA sheared Dacite	13	RL37060
CR-09-036	4962	209.00	210.00	1.00	consecutive	33degCA sheared Dacite	<5	RL37060
CR-09-036	4963	210.00	211.00	1.00	consecutive	30degCA sheared Dacite	<5	RL37060
CR-09-036	4964	211.00	212.00	1.00	consecutive	40degCA sheared Dacite	<5	RL37060
CR-09-036	4965	212.00	213.00	1.00	consecutive	35degCA sheared Dacite	<5	RL37060
CR-09-036	4966	213.00	213.45	0.45	consecutive	sheared dacite with one quartz carbonate(+chlorite) anastamosing fracture (pressure solution vein)	<5	RL37060
CR-09-036	4967	213.45	214.00	0.55	consecutive	38degCA sheared Dacite, NIL sulphides	279	RL37060
	1069	214.00	21/ 20	0.20	concocutivo	sheared Dacite with up to 10% sulphides associated with quartz-	251	DI 27060
CK-09-030	4908	214.00	214.30	0.56	consecutive	carbonate veining in shear	331	KL37000
CR-09-036	4969	214.38	215.38	1.00	consecutive	green coloured Dacite, strongly sil-bt-chl altered with very few quartz-carbonate veins contatining trace sulphides in veins and in dacite	84	RL37060
CR-09-036	4970	0.00	0.00	0.00	not consecutive	SK43 4.086ppm Au	3990	RL37060
CR-09-036	4971	215.38	216.88	1.50	not consecutive	green coloured Dacite, strongly sil-bt-chl altered with very few quartz-carbonate veins contatining trace sulphides in veins and in dacite	<5	RL37060

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-036	4972	216.88	217.35	0.47	consecutive	green coloured Dacite, strongly sil-bt-chl altered with several irregular quartz-carbonate veins, trace sulphides.	14	RL37060
CR-09-036	4973	217.35	217.70	0.35	consecutive	as above sil-bt-chl altered 7cm thick quartz vein with 1-2% very fine grained disseminated pyrite	18	RL37060
CR-09-036	4974	217.70	219.00	1.30	consecutive	as above sil-bt-chl altered with 1-2% very fine grained disseminated pyrite	<5	RL37060
CR-09-036	4975	286.00	286.50	0.50	not consecutive	sil-chl-bt massive dacite	9	RL37060
CR-09-036	4976	219.00	220.00	1.00	not consecutive	as above sil-bt-chl altered with 1-2% very fine grained disseminated pyrite	<5	RL37060
CR-09-036	4977	220.00	221.00	1.00	consecutive	as above sil-bt-chl altered with trace sulphides	<5	RL37060
CR-09-036	4978	221.00	222.50	1.50	consecutive	as above sil-bt-chl altered with trace sulphides	32	RL37060
CR-09-036	4979	222.50	224.00	1.50	consecutive	as above sil-bt-chl altered with trace sulphides	18	RL37060
CR-09-036	4980	224.00	225.50	1.50	consecutive	as above sil-bt-chl altered with trace sulphides	5	RL37060
CR-09-036	4981	225.50	227.00	1.50	consecutive	as above sil-bt-chl altered with trace sulphides	8	RL37060
CR-09-036	4982	227.00	228.33	1.33	consecutive	as above sil-bt-chl altered with trace sulphides	9	RL37060
CR-09-036	4983	228.33	229.33	1.00	consecutive	as above sil-bt-chl altered with trace sulphides	10	RL37060
CR-09-036	4984	229.33	230.33	1.00	consecutive	as above sil-bt-chl altered with trace sulphides	10	RL37060
CR-09-036	4985	230.33	231.33	1.00	consecutive	as above sil-bt-chl altered with trace sulphides	187	RL37060
CR-09-036	4986	231.33	232.33	1.00	consecutive	as above sil-bt-chl altered with trace sulphides	36	RL37060
CR-09-036	4987	232.33	232.63	0.30	consecutive	as above sil-bt-chl altered with trace APY	13	RL37060
CR-09-036	4988	232.63	233.00	0 37	consecutive	shallow quartz carbonate vein with trace sulphides and 01APY 03-	422	RI 37060
	4900	232.05	233.00	0.57	consecutive	05PO trPY in sil-bt-chl-qcb altered Dacite	722	1237000
CR-09-036	4989	233.00	233.30	0.30	consecutive	intensely quartz-carb veined blebby and disseminated 05PO and very fine grained disseminations of 02APY trPY	1080	RL37060
CR-09-036	4990	0.00	0.00	0.00	not consecutive	SP37 18.14ppm Au	>10000	RL37060
CR-09-036	4991	233.30	233.60	0.30	not consecutive	intensely quartz-carb veined blebby and disseminated 05PO and very fine grained disseminations of 02APY trPY	279	RL37060
CR-09-036	4992	233.60	234.00	0.40	consecutive	siliceous fine grained, massive Dacite block with trace sulphides	109	RL37060
CR-09-036	4993	234.00	234.50	0.50	consecutive	fine grained needles of 01APY and 02PO in sheared Dacite 30degCA	391	RL37060
CR-09-036	4994	234.50	235.00	0.50	consecutive	strongly bt-chl altered Dacite with trAPY and trPO 35degCA	31	RL37060
CR-09-036	4995	290.50	291.00	0.50	not consecutive	Dacite blank	24	RL37060
CR-09-036	4996	235.00	235.50	0.50	not consecutive	very strong speckled bt-chl-sil alteration in sheared Dacite trace sulphides	26	RL37060
CR-09-036	4997	235.50	236.00	0.50	consecutive	strongly bt-chl altered Dacite with trAPY and trPO 40degCA	28	RL37060
CR-09-036	4998	236.00	236.50	0.50	consecutive	strongly bt-chl altered Dacite with trAPY and trPO 35degCA	20	RL37060
CR-09-036	4999	236.50	237.00	0.50	consecutive	one irregular sugary grey coloured quartz carbonate vein sub CA with trace sulphides in sheared Dacite	96	RL37060

CONQUEST Resources Limited

Conquest Resources Ltd. Diamond Drill Record

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-036	5000	237.00	237.50	0.50	consecutive	very strongly chl-bt-sil altered Dacite with trace sulphides	319	RL37060
CR-09-036	18001	237.50	238.00	0.50	consecutive	very strongly chl-bt-sil altered Dacite with trace sulphides	60	RL37061R
CR-09-036	18002	238.00	238.60	0.60	consecutive	very strongly chl-bt-sil altered Dacite with trace sulphides	50	RL37061R
CR-09-036	18003	238.60	238.85	0.25	consecutive	intensely BT-chl altered Sheared Dacite with quartz-carbnonate vein overprinting and not a lot of sulphides, 01PY 01PO	30	RL37061R
CR-09-036	18004	238.85	239.15	0.30	consecutive	01APY 02PY 01PO bearing, strongly sheared Dacite with intense BT- chl-qcb alteration as in 18003	30	RL37061R
CR-09-036	18005	239.15	239.45	0.30	consecutive	very strongly chl-bt-sil altered Dacite with 01PY trAPY	30	RL37061R
CR-09-036	18006	239.70	240.00	0.30	not consecutive	dark grey coloured sheared sil-bt-chl altered Dacite with 01APY disseminations and 03PO	50	RL37061R
CR-09-036	18007	240.00	240.30	0.30	consecutive	02APY disseminations and 05PO blebby replacement in sil-bt-chl altered sheared Dacite	70	RL37061R
CR-09-036	18008	240.30	240.70	0.40	consecutive	10PO (replacement blebby) and fine grained disseminations of 01PY and trAPY in sil-bt-chl altered sheared Dacite	250	RL37061R
CR-09-036	18009	240.70	241.00	0.30	consecutive	1-2%APY flecks and 8-10% replacement PO with 10% quartz- carbonate veins in sheared lower contact	360	RL37061R
CR-09-036	18010	0.00	0.00	0.00	not consecutive	SK43 4.086ppm Au	3790	RL37061R
CR-09-036	18011	241.00	241.30	0.30	not consecutive	foliated dark grey green coloured sil-bt-chl altered Dacite with trace sulphides	270	RL37061R
CR-09-036	18012	241.30	241.60	0.30	consecutive	one dismembered quartz-(carbonate) vein, trace sulphides within sil-bt-chl Dacite	50	RL37061R
CR-09-036	18013	241.60	242.00	0.40	consecutive	foliated dark grey green coloured sil-bt-chl altered Dacite with trace sulphides	20	RL37061R
CR-09-036	18014	242.00	242.50	0.50	consecutive	strongly sil-chl-bt altered Dacite, trace sulphides	<10	RL37061R
CR-09-036	18015	302.30	302.80	0.50	not consecutive	medium grained gabbroic intrusive Blank	<10	RL37061R
CR-09-036	18016	242.50	243.00	0.50	not consecutive	strongly sil-chl-bt altered Dacite, trace sulphides	<10	RL37061R
CR-09-036	18017	243.00	243.50	0.50	consecutive	strongly sil-chl-bt altered Dacite, trace sulphides	10	RL37061R
CR-09-036	18018	243.50	244.00	0.50	consecutive	moderate-strong sil-chl-bt Dacite, foliated at 40degCA with trace sulphides	10	RL37061R
CR-09-036	18019	244.00	245.00	1.00	consecutive	moderate-strong sil-chl-bt Dacite, foliated at 40degCA with trace sulphides	<10	RL37061R
CR-09-036	18020	245.00	246.00	1.00	consecutive	trPY trAPY in sil-chl-bt altered Dacite	<10	RL37061R
CR-09-036	18021	246.00	247.00	1.00	consecutive	very siliceous, sil-chl-bt altered, trace sulphide bearing Dacite	<10	RL37061R
CR-09-036	18022	247.00	248.00	1.00	consecutive	very siliceous, sil-chl-bt altered, trace sulphide bearing Dacite	<10	RL37061R
CR-09-036	18023	239.45	239.70	0.25	not consecutive	very strongly chl-bt-sil altered Dacite with 01PY trAPY	70	RL37061R

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-036	18024	248.00	249.00	1.00	not consecutive	few irregularly oriented planar quartz-carbonate veins (dark grey, sugary textured) with trace sulphides in strongly sil-chl-bt altered Dacite	10	RL37061R
CR-09-036	18025	249.00	250.00	1.00	consecutive	very siliceous, sil-chl-bt altered, trace sulphide bearing Dacite	390	RL37061R
CR-09-036	18026	250.00	251.50	1.50	consecutive	very siliceous, sil-chl-bt altered, trace sulphide bearing Dacite	90	RL37061R
CR-09-036	18027	251.50	252.87	1.37	consecutive	very siliceous, sil-chl-bt altered, trace sulphide bearing Dacite	30	RL37061R
CR-09-036	18028	252.87	253.51	0.64	consecutive	bt-cb lamprophyric dyke, trace sulphides	20	RL37061R
CR-09-036	18029	253.51	253.97	0.46	consecutive	bt-cb lamprophyric dyke, trace sulphides	<10	RL37061R
CR-09-036	18030	0.00	0.00	0.00	not consecutive	SI42 1.761 ppm Au	1490	RL37061R
CR-09-036	18031	253.97	254.34	0.37	not consecutive	sheared dacite with 04PO and 01PY	310	RL37061R
CR-09-036	18032	254.34	254.59	0.25	consecutive	sheared dacite with 08PO and 02PY	120	RL37061R
CR-09-036	18033	254.59	254.84	0.25	consecutive	bt-qv-qcb altered sheared Dacite with very fine grained disseminated 02APY, 08PO, and 02PY	<10	RL37061R
CR-09-036	18034	254.84	255.34	0.50	consecutive	fine grained lamprophyric dyke at upper contact with trace sulphides	10	RL37061R
CR-09-036	18035	300.50	301.00	0.50	not consecutive	medium grained gabbroic intrusive Blank	10	RL37061R
CR-09-036	18036	255.34	255.84	0.50	not consecutive	bt-cb lamprophyric dyke, trace sulphides	10	RL37061R
CR-09-036	18037	255.84	256.34	0.50	consecutive	bt-cb lamprophyric dyke, trace sulphides	20	RL37061R
CR-09-036	18038	256.34	256.83	0.49	consecutive	bt-cb lamprophyric dyke, trace sulphides	<10	RL37061R
CR-09-036	18039	256.83	257.08	0.25	consecutive	intense bt alteration in foliation of lamprophyric dyke, trace sulphides	130	RL37061R
CR-09-036	18040	257.75	258.25	0.50	not consecutive	bleached sil-ser felsic intrusive with trace PO	500	RL37061R
CR-09-036	18041	257.08	257.50	0.42	not consecutive	blebby 04APY replacement, 05PO fine grained blebby in sheared lower contact	530	RL37061R
CR-09-036	18042	257.50	257.75	0.25	consecutive	very fine grained disseminations of 01APY and 03PO in sheared lower contact	20	RL37061R
CR-09-036	18043	258.25	259.00	0.75	not consecutive	bleached sil-ser felsic intrusive with trace PO	20	RL37061R
CR-09-036	18044	259.00	260.17	1.17	consecutive	bleached sil-ser felsic intrusive with trace PO	12	RL37061
CR-09-036	18045	260.17	261.00	0.83	consecutive	sil-bt-chl altered Dacite with trace sulphides	6	RL37061
CR-09-036	18046	261.00	262.00	1.00	consecutive	sil-bt-chl altered Dacite with trace sulphides	<5	RL37061
CR-09-036	18047	262.00	263.00	1.00	consecutive	sil-bt-chl altered Dacite with trace sulphides	<5	RL37061
CR-09-036	18048	263.00	264.00	1.00	consecutive	sil-bt-chl altered Dacite with trace sulphides	30	RL37061
CR-09-036	18049	267.00	267.78	0.78	not consecutive	Dacite wing sample with trace sulphides	8	RL37061
CR-09-036	18050	0.00	0.00	0.00	not consecutive	SK43 4.086ppm Au	4170	RL37061
CR-09-036	18051	267.78	268.68	0.90	not consecutive	very dark siliceous, very fine grained felsic intrusive with trace PY in quartz eyes	37	RL37061

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-036	18052	268.68	269.50	0.82	consecutive	very dark siliceous, very fine grained felsic intrusive with trace PY in quartz eyes	<5	RL37061
CR-09-036	18053	269.50	270.27	0.77	consecutive	very dark siliceous, very fine grained felsic intrusive with trace PY in quartz eyes	<5	RL37061
CR-09-036	18054	270.27	271.27	1.00	consecutive	sil-chl-bt altered Dacite wing, NIL sulphides	<5	RL37061
CR-09-036	18055	300.00	300.50	0.50	not consecutive	Gabbro Blank	<5	RL37061
CR-09-036	18056	296.00	296.84	0.84	not consecutive	gabbro wing, NIL sulphides	9	RL37061
CR-09-036	18057	296.84	297.27	0.43	consecutive	fine grained brown coloured lamprophyric dyke, NIL sulphides with narrow plag phyric, bleached, sil-ser altered I2G dyke	<5	RL37061
CR-09-036	18058	297.27	298.27	1.00	consecutive	brown coloured, bt-carb altered Lamprophyric Dyke, NIL sulphides	<5	RL37061
CR-09-036	18059	298.27	299.10	0.83	consecutive	brown coloured, bt-carb altered Lamprophyric Dyke, NIL sulphides	<5	RL37061
CR-09-036	18060	299.10	300.00	0.90	consecutive	gabbro wing, NIL sulphides	<5	RL37061
CR-09-036	18061	338.60	339.60	1.00	not consecutive	Wing Sample: fresh pillowed basalt with minor quartz carbonate, NIL sulphides	<5	RL37061
CR-09-036	18062	339.60	340.30	0.70	consecutive	Wing Sample: fresh pillowed basalt with minor quartz carbonate, NIL sulphides	<5	RL37061
CR-09-036	18063	340.30	340.63	0.33	consecutive	Character Sample: 100% quartz carbonate vein, NIL sulphides	<5	RL37061
CR-09-036	18064	340.63	341.63	1.00	consecutive	Basalt wing	<5	RL37061
CR-09-036	18065	344.46	345.46	1.00	not consecutive	Gabbro wing, sheared at contact	<5	RL37061
CR-09-036	18066	345.46	345.76	0.30	consecutive	sheared gabbro contact at quartz vein, NIL sulphides	95	RL37061
CR-09-036	18067	345.76	346.06	0.30	consecutive	quartz vein with trace sulphides at upper contact of I2G in I3A 10% chl, 80% qtz, 10% bt	<10	RL37061R
CR-09-036	18068	346.06	346.82	0.76	consecutive	I2G with trace sulphides	10	RL37061R
CR-09-036	18069	346.82	348.03	1.21	consecutive	gabbro wing, NIL sulphides	20	RL37061R
CR-09-036	18070	0.00	0.00	0.00	not consecutive	SI42 1.761 ppm Au	1670	RL37061R
CR-09-036	18071	348.03	349.53	1.50	not consecutive	gabbro wing, NIL sulphides	<10	RL37061R
CR-09-036	18072	349.53	351.00	1.47	consecutive	strongly bleached I2G with trace sulphides	130	RL37061R
CR-09-036	18073	351.00	352.50	1.50	consecutive	I2E trace sulphides, less bleached than above	10	RL37061R
CR-09-036	18074	352.50	354.00	1.50	consecutive	I2E trace sulphides, less bleached than above	20	RL37061R
CR-09-036	18075	337.30	337.80	0.50	not consecutive	fresh Basalt Blank	30	RL37061R
CR-09-036	18076	354.00	354.50	0.50	not consecutive	quartz monzodiorite wing with trace PY	90	RL37061R
CR-09-036	18077	354.50	355.60	1.10	consecutive	very strongly sil-ser bleached trace APY bearing quartz monzodiorite	900	RL37061R
CR-09-036	18078	355.60	356.61	1.01	consecutive	quartz monzodiorite wing with trace PY	20	RL37061R
CR-09-036	18079	356.61	356.99	0.38	consecutive	gabbro wing and EOH, NIL sulphides	30	RL37061R

Gyro Survey Record

Hole ID	Station (m)	Dip (Degrees)	Azimuth	Easting (m)	Northing (m)	Elevation (m)
CR-09-036	0	-49.69	29.00	0.00	0.00	0.00
CR-09-036	3	-49.76	29.13	0.00	1.94	-2.29
CR-09-036	6	-49.82	29.23	0.01	3.88	-4.58
CR-09-036	9	-49.74	29.33	0.02	5.81	-6.87
CR-09-036	12	-49.78	29.44	0.03	7.75	-9.16
CR-09-036	15	-49.77	29.43	0.05	9.69	-11.45
CR-09-036	18	-49.74	29.52	0.06	11.63	-13.74
CR-09-036	21	-49.73	29.61	0.08	13.57	-16.03
CR-09-036	24	-49.68	29.64	0.10	15.51	-18.32
CR-09-036	27	-49.65	29.65	0.12	17.45	-20.61
CR-09-036	30	-49.60	29.74	0.15	19.39	-22.89
CR-09-036	33	-49.56	29.80	0.17	21.34	-25.17
CR-09-036	36	-49.54	29.87	0.20	23.28	-27.46
CR-09-036	39	-49.52	29.87	0.23	25.23	-29.74
CR-09-036	42	-49.48	29.90	0.26	27.18	-32.02
CR-09-036	45	-49.48	29.95	0.29	29.13	-34.30
CR-09-036	48	-49.44	30.01	0.33	31.08	-36.58
CR-09-036	51	-49.41	30.06	0.36	33.03	-38.86
CR-09-036	54	-49.38	30.11	0.40	34.98	-41.14
CR-09-036	57	-49.35	30.15	0.44	36.93	-43.41
CR-09-036	60	-49.33	30.24	0.48	38.89	-45.69
CR-09-036	63	-49.31	30.21	0.52	40.84	-47.97
CR-09-036	66	-49.22	30.24	0.56	42.80	-50.24
CR-09-036	69	-49.23	30.27	0.60	44.76	-52.51
CR-09-036	72	-49.19	30.23	0.65	46.72	-54.78
CR-09-036	75	-49.09	30.27	0.69	48.68	-57.05
CR-09-036	78	-49.03	30.40	0.74	50.64	-59.32
CR-09-036	81	-48.99	30.57	0.79	52.61	-61.58
CR-09-036	84	-48.90	30.68	0.84	54.58	-63.84
CR-09-036	87	-48.85	30.88	0.90	56.55	-66.10
CR-09-036	90	-48.83	30.91	0.97	58.53	-68.36
CR-09-036	93	-48.78	30.98	1.04	60.50	-70.62
CR-09-036	96	-48.75	31.04	1.11	62.48	-72.88
CR-09-036	99	-48.72	31.00	1.18	64.45	-75.13
CR-09-036	102	-48.66	31.05	1.25	66.43	-77.38
CR-09-036	105	-48.64	31.06	1.32	68.41	-79.64
CR-09-036	108	-48.68	31.13	1.39	70.39	-81.89
CR-09-036	111	-48.56	31.20	1.46	72.38	-84.14
CR-09-036	114	-48.57	31.23	1.54	74.36	-86.39
CR-09-036	117	-48.58	31.27	1.62	76.34	-88.64
CR-09-036	120	-48.56	31.22	1.70	78.33	-90.89
CR-09-036	123	-48.56	31.23	1.77	80.31	-93.14
CR-09-036	126	-48.51	31.28	1.85	82.30	-95.38
CR-09-036	129	-48.50	31.30	1.93	84.28	-97.63
CR-09-036	132	-48.49	31.37	2.01	86.27	-99.88

Gyro Survey Record

Hole ID	Station (m)	Dip (Degrees)	Azimuth	Easting (m)	Northing (m)	Elevation (m)
CR-09-036	135	-48.43	31.37	2.09	88.26	-102.12
CR-09-036	138	-48.45	31.47	2.18	90.24	-104.37
CR-09-036	141	-48.40	31.50	2.26	92.23	-106.61
CR-09-036	144	-48.37	31.50	2.35	94.22	-108.86
CR-09-036	147	-48.37	31.52	2.44	96.22	-111.10
CR-09-036	150	-48.34	31.60	2.53	98.21	-113.34
CR-09-036	153	-48.30	31.67	2.62	100.20	-115.58
CR-09-036	156	-48.27	31.63	2.71	102.19	-117.82
CR-09-036	159	-48.26	31.66	2.80	104.19	-120.06
CR-09-036	162	-48.23	31.65	2.90	106.18	-122.30
CR-09-036	165	-48.22	31.60	2.99	108.18	-124.53
CR-09-036	168	-48.15	31.64	3.08	110.18	-126.77
CR-09-036	171	-48.12	31.62	3.17	112.18	-129.00
CR-09-036	174	-48.08	31.61	3.26	114.18	-131.24
CR-09-036	177	-48.03	31.69	3.36	116.18	-133.47
CR-09-036	180	-47.99	31.74	3.45	118.19	-135.70
CR-09-036	183	-47.96	31.74	3.55	120.19	-137.93
CR-09-036	186	-47.92	31.74	3.64	122.20	-140.15
CR-09-036	189	-47.88	31.88	3.74	124.21	-142.38
CR-09-036	192	-47.83	31.94	3.84	126.22	-144.60
CR-09-036	195	-47.81	32.03	3.95	128.23	-146.83
CR-09-036	198	-47.78	32.07	4.06	130.25	-149.05
CR-09-036	201	-47.73	32.20	4.17	132.26	-151.27
CR-09-036	204	-47.71	32.25	4.28	134.27	-153.49
CR-09-036	207	-47.66	32.28	4.39	136.29	-155.71
CR-09-036	210	-47.62	32.25	4.51	138.31	-157.92
CR-09-036	213	-47.59	32.31	4.63	140.33	-160.14
CR-09-036	216	-47.56	32.34	4.74	142.35	-162.35
CR-09-036	219	-47.51	32.36	4.86	144.37	-164.57
CR-09-036	222	-47.49	32.46	4.98	146.39	-166.78
CR-09-036	225	-47.48	32.47	5.10	148.42	-168.99
CR-09-036	228	-47.45	32.52	5.23	150.44	-171.20
CR-09-036	231	-47.36	32.64	5.35	152.47	-173.41
CR-09-036	234	-47.31	32.71	5.48	154.50	-175.62
CR-09-036	237	-47.29	32.72	5.62	156.53	-177.82
CR-09-036	240	-47.27	32.74	5.75	158.56	-180.02
CR-09-036	243	-47.25	32.83	5.88	160.59	-182.23
CR-09-036	246	-47.22	32.92	6.02	162.62	-184.43
CR-09-036	249	-47.20	33.06	6.16	164.65	-186.63
CR-09-036	252	-47.18	33.09	6.31	166.69	-188.83
CR-09-036	255	-47.16	33.17	6.45	168.72	-191.03
CR-09-036	258	-47.11	33.28	6.60	170.76	-193.23
CR-09-036	261	-47.05	33.41	6.76	172.80	-195.43
CR-09-036	264	-47.05	33.49	6.92	174.83	-197.62
CR-09-036	267	-47.00	33.54	7.08	176.87	-199.82

Gyro Survey Record

Hole ID	Station (m)	Dip (Degrees)	Azimuth	Easting (m)	Northing (m)	Elevation (m)
CR-09-036	270	-46.98	33.62	7.24	178.91	-202.01
CR-09-036	273	-46.98	33.65	7.41	180.95	-204.21
CR-09-036	276	-46.99	33.72	7.58	182.99	-206.40
CR-09-036	279	-46.98	33.78	7.74	185.03	-208.59
CR-09-036	282	-46.95	33.81	7.92	187.07	-210.79
CR-09-036	285	-46.94	33.83	8.09	189.11	-212.98
CR-09-036	288	-46.91	33.81	8.26	191.15	-215.17
CR-09-036	291	-46.89	33.82	8.43	193.20	-217.36
CR-09-036	294	-46.86	33.81	8.60	195.24	-219.55
CR-09-036	297	-46.82	33.85	8.78	197.28	-221.74
CR-09-036	300	-46.80	33.88	8.95	199.33	-223.93
CR-09-036	303	-46.78	33.91	9.13	201.38	-226.11
CR-09-036	306	-46.78	34.00	9.30	203.42	-228.30
CR-09-036	309	-46.73	34.06	9.48	205.47	-230.48
CR-09-036	312	-46.76	34.20	9.67	207.52	-232.67
CR-09-036	315	-46.75	34.24	9.85	209.57	-234.85
CR-09-036	318	-46.74	34.26	10.04	211.61	-237.04
CR-09-036	321	-46.76	34.31	10.23	213.66	-239.22
CR-09-036	324	-47.09	34.32	10.42	215.70	-241.42
CR-09-036	327	-46.70	34.30	10.61	217.74	-243.61
CR-09-036	330	-46.69	34.35	10.80	219.79	-245.79
CR-09-036	333	-46.65	34.38	11.00	221.84	-247.97
CR-09-036	336	-46.65	34.37	11.19	223.89	-250.15
CR-09-036	339	-46.60	34.41	11.38	225.94	-252.33
CR-09-036	342	-46.59	34.47	11.58	227.99	-254.51
CR-09-036	345	-46.56	34.54	11.77	230.05	-256.69
CR-09-036	348	-46.59	34.63	11.98	232.10	-258.87
CR-09-036	351	-46.55	34.64	12.18	234.15	-261.05

Conquest Resources Ltd.

Exploration Diamond Drill Log

DRILL HOLE #	CR-09-037	LOCATION	Balmertown,	Balmer Town	nship, Red Lake	District , Ontario		
PROJECT #	Alexander	REFERENCE	Alexander		GEOLOGIST	BATSON	CLAIM	KRL 20488
GRID/ NAD-ZO	ONE	NORTHING		EASTING		ELEVATION		GRID TYPE
GRID	Alexander RL	6+90 S		0+65 W		10000		Μ
UTM	NAD83 / 15U	5656157		449760		381		
COLLAR DIP	-50	GRID DIRECTIO	N	North			AZ DIRECTION	029
NTS REF #	052N04	NTS SHEET NAM	ME	Red Lake, Or	ntario			
START DATE	2-Oct-09			FINISH DATE	17-Oct-09		_	
DEPTH (EOH)	978.68	TARGET & Zone	e Depth	Target 11 (340)m), Target 12 (4:	L5m), Target 26 (7)	70m), Contact 8	815m+
DEPTH (EOH) PURPOSE	978.68 CR-09-A dumi	TARGET & Zone my hole tests	e Depth 3 targets and	Target 11 (340 resolves B. C	0m), Target 12 (4: Channel CT Pil	L5m), Target 26 (7) CE POINT of Target:	70m), Contact 8 E	815m+ mELEV
DEPTH (EOH) PURPOSE CASING BW	978.68 CR-09-A dumi	TARGET & Zone my hole tests	e Depth <u>3 targets and</u> CASING NW	Target 11 (340 resolves B. C 3.00	Om), Target 12 (4: Channel CT PII	L5m), Target 26 (7) CE POINT of Target:	70m), Contact 8 E CASING HW	815m+ mELEV
DEPTH (EOH) PURPOSE CASING BW PLUG @	978.68 CR-09-A dumi	TARGET & Zono my hole tests	e Depth <u>3 targets and</u> CASING NW PLUG @	Target 11 (340 I resolves B. C 3.00 na	0m), Target 12 (4: Channel CT Pil	L5m), Target 26 (7 CE POINT of Target:	70m), Contact 8 E CASING HW PLUG @	815m+ mELEV
DEPTH (EOH) PURPOSE CASING BW PLUG @ START DTH	978.68 CR-09-A dumi	TARGET & Zone my hole tests	e Depth <u>3 targets and</u> CASING NW PLUG @ WEDGE @	Target 11 (340 I resolves B. C 3.00 na	0m), Target 12 (4: <u>Chan</u> nel CT Ри	L5m), Target 26 (7 CE POINT of Target:	70m), Contact 8 E CASING HW PLUG @	815m+ mELEV
DEPTH (EOH) PURPOSE CASING BW PLUG @ START DTH REDUCED @	978.68 CR-09-A dumi	TARGET & Zone my hole tests	e Depth <u>3 targets and</u> CASING NW PLUG @ WEDGE @ REDUCED @	Target 11 (340 resolves B. C 3.00 na)m), Target 12 (4: <u>Chan</u> nel CT ри	L5m), Target 26 (7 CE POINT of Target:	70m), Contact 8 E CASING HW PLUG @	315m+ mELEV
DEPTH (EOH) PURPOSE CASING BW PLUG @ START DTH REDUCED @ HOLE STATUS	978.68 CR-09-A dumi 0.00 complete, cap	TARGET & Zono my hole tests oped, left casi	e Depth <u>3 targets and</u> CASING NW PLUG @ WEDGE @ REDUCED @ ing	Target 11 (340 I resolves B. C 3.00 na	bm), Target 12 (4: <u>han</u> nel CT ри	L5m), Target 26 (7 CE POINT of Target:	70m), Contact 8	315m+ mELEV
DEPTH (EOH) PURPOSE CASING BW PLUG @ START DTH REDUCED @ HOLE STATUS DRILLING CON	978.68 CR-09-A dumi 0.00 complete, cap	TARGET & Zone my hole tests oped, left casi Boart Longy	e Depth <u>3 targets and</u> CASING NW PLUG @ WEDGE @ REDUCED @ ing ear Inc.	Target 11 (340 I resolves B. C 3.00 na	Dm), Target 12 (4 Channel CT Pil	L5m), Target 26 (7 CE POINT of Target:	70m), Contact 8	315m+ mELEV
DEPTH (EOH) PURPOSE CASING BW PLUG @ START DTH REDUCED @ HOLE STATUS DRILLING CON RIG NO.	978.68 CR-09-A dumi 0.00 complete, cap ITRACTOR 4186	TARGET & Zone my hole tests oped, left casi Boart Longy	e Depth <u>3 targets and</u> CASING NW PLUG @ WEDGE @ REDUCED @ ing ear Inc.	Target 11 (340 I resolves B. C 3.00 na	Dm), Target 12 (4: Channel CT Pil	L5m), Target 26 (7 CE POINT of Target:	70m), Contact 8 E CASING HW PLUG @ BXS.	815m+ mELEV 223

	GYRO S	urvey: Multisho	ot In and Out of H	ole		
DEPTH (m)	AZ	DIP	Elevation (m)	δ Easting (m)	δ Northing (m)	Comments:
0	29.00	-50.68	0.00	0.00	0.00	<u>1st</u> <u>Target</u> intesected heavy pyrrhotite
50	29.03	-48.64	-38.15	-0.08	32.31	replacement at 372m hole depth within
100	31.10	-46.48	-75.14	0.55	65.95	conglomerate with poor assay results. 2nd
150	32.14	-45.33	-111.03	2.17	100.72	larget at unconformity as expected between
200	33.28	-44.16	-146.23	4.44	136.15	significant associated mineralization. 3rd
250	34.06	-43.14	-180.74	7.37	172.21	Target did not resolve conductive stratigraphy
300	34.95	-41.62	-214.56	10.85	208.88	as expected by did include several thick
350	35.67	-40.96	-247.52	15.00	246.24	lamprophyric and felsic-intermediate dykes
400	36.39	-40.52	-280.13	19.67	283.86	within Gabbro dyke which may explain IP
450	37.18	-40.19	-312.49	24.85	321.61	contrast near lower contact of Gabbro dyke.
500	38.08	-39.78	-344.64	30.66	359.47	Highlights include significant quartz-carbonate
550	38.75	-39.46	-376.52	36.96	397.47	tholeiitic basalt pile after Huston
600	39.61	-39.30	-408.24	43.81	435.50	unconformity. Best assay in hole within
650	40.43	-38.99	-439.80	51.26	473.56	altered basalt grading 7.7g/t Au over 1.00m.
700	41.06	-38.65	-471.14	59.23	511.69	Gabbro dyke contains sheared lamp dyking
750	41.62	-38.04	-502.17	67.57	550.00	and mineralized quartz-monzonites. The top
800	42.19	-37.38	-532.77	76.43	588.54	of the Bruce Channel Formation (BCF) was
850	42.92	-36.95	-562.99	85.83	627.25	located at 868m nole depth at major fault
900	43.00	-36.59	-592.92	95.58	666.10	strongly sheared and altered though it fails to
950	43.74	-36.58	-622.69	105.50	705.03	return mineralization greater than 0.4g/t over
						1.0m.

Drilled with 3m stabilized core barrel

Planned hole depth is 815m (2673'), deepened to resolve Bruce Channel Formation unconformity Magnetic Declineation 0° 13', Declination for Grid N29°E

Water source: beaver pond located at 449718 5656178 UTM NAD83 15U

Left Casing and Capped with Stamped NW cap Planned hole time is 12.5 days (Oct 2 to 14) Core stored at Cochenour Mine Site Drill type: LF-70

Major Lithologies

Hole Name	From	То	Length	Code	Description	Rep
CR-09-037	0.00	3.73	3.73	CAS	NW Casing into overburden and bedrock	
CR-09-037	3.73	68.12	64.39	S6A; S6E	Huston Assemblage: Mixed siltstone and argillitic sediments with several formational lithic wacke and turbiditic facies interbeded within Huston Assemblage. Bedding is graded over narrow bed thicknesses ranging from 0.5cm to 1.0 metre scale. Bedding varies 35 to 70degCA, generally 60degCA with few minor turbiditic irregular sections with sub CA bedding. Alteration of silty mud and locally clay dominated sediments is minor and is cheifly chloritic with locally present garnets. Poorly coring unit. Very minor disseminated pyrite flecks throughout unit.	
CR-09-037	68.12	80.34	12.22	11C	Grey and pale light-green coloured, weakly foliated, strongly ser-sil-(bt-alb) altered Granodiorite dyke with large subhedral blue coloured quartz crystal eyes. Trace sulphides present as blebby PO>PY disseminations. Rare quartz-carbonate-chlorite veining has minor PO over 1-5 cm thickness. Minor, conformable, assimilated mudstone intersections not uncommon in these intrusive stock/dyke(s). Upper contact is sharp at 65degCA with MT in adjacent argillaceous sediments. Lower contact is sheared with numerous irregular quartz-carb- chl-(PO) veins in mixed sheared intrusive and argillaceous sediments.	
CR-09-037	80.34	121.5	41.16	S6D	Dark grey variably magnetic, disseminated MT-bearing Mudstone, seen as minor constituent of above unit, constitutes primary sedimentary facies over thick intervals below Granodiorite dyke with sheared upper contact. Silty argillaceous sediments. Thick 0.2 to 2m scale graded, locally garnetiferous beds. Minor turbiditic facies are followed (downhole) by higher silt fractions (up to 50%) with clay sediments which are grey in colour. Occasional hammer-textured pyrite coating on fractures. Gradational lower transitional contact. Very blocky coring.	
CR-09-037	121.5	157.08	35.58	S6E	Black Argillite similar to above mudstone, but dominantly argillaceous sediment deposition. Very finely bedded locally with laminations showing classic argillite minor bed offsets from lithification process. Interdepositional transition to silty sediments over 5m at 151m depth, then back to clay dominated sediments. Minor trace PO and PY to a lesser degree in finely laminated beds and as hammer-textured fracture coating. Non-conductive. Unaltered. Few cross cutting quartz vein(-lets), limited in width at shallow angles, containing minor PO-PY. Blocky coring. Good IP chargable unit.	
CR-09-037	157.08	165.12	8.04	I1C	Altered grey coloured Granodiorite as above. Sharp upper and lower contacts at 50degCA and 42degCA, respectively.	
CR-09-037	165.12	173.12	8.00	S6A; S6E	Mixed silt- and mudstone with locally high clay fraction, as above. Size fraction grades finer downhole. Sharp upper and lower contact ar conformable at 42degCA and 50degCA.	

Major Lithologies

Hole Name	From	То	Length	Code	Description	Rep
CR-09-037	173.12	211.49	38.37	I1C	Altered grey-green coloured, weakly foliated, Granodiorite as above. Grain size is variable from fine to coarse grained. Occasional quartz and quartz carbonate veining over very narrow cm-scale widths at 45 to 90degCA. Sharp upper contact at 50degCA. Lower contact with more quartz bearing intrusive is sharp at 35degCA	
CR-09-037	211.49	296.47	84.98	I1A	Mottled blue-grey and pale light green coloured, foliated, sericitic Quartz Monzogranite. Similar to Granodiorite coarse grained textures above but with increased primary quartz crystals. Rare PO blebs and locally trace disseminated PY with PO in occasional planar fractures. Several assimilated non-magnetic biotite-bearing lithic greywacke blocks on <2m scale nearest lower contact. Lower contact transitions at 45degCA to 65degCA from felsic intrusive to sediments with 30% incorporated silvers and blocks of greywacke and silty argillite from 255.89 to 296.47m.	247.83 to 247.77m
CR-09-037	296.47	365.09	68.62	S6E; S3	Dark grey coloured siliceous, silt laden Argillite (similar to from 121.5 to 157.08m) with very fine grained beds locally and trace sulphides throughout. Minor interbedded grey coloured lithic Wacke occurring over narrow, fining-uphole direction, graded bedded intervals. Non-graphitic, non-conductive. Variably magnetic due to disseminated MT and local PO blebs. Upper contact is interfingered at approximately 60degCA over 10cm. Locally blocky fractured ground. Mediocre coring. Rare quartz veins are milky white, sulphide barren, and cross-cut at 35degCA.	
CR-09-037	365.09	380.00	14.91	S4; S3	PO-Replacement Mineralized quartz and lithic cobble clast polymictic Conglomerate (S4) and grey coloured, fresh, quartz-lithic wacke (S3) interbedding. Graded angular unconformity upper contact at graded bed with argillite is 20degCA. Upper contact area is dominated by grey lithic wacke with decreasing lithic fraction matrix downhole. Silica in matrix increases downhole as subangular cobble sized quartz and lithic clasts become more frequent. Whispy and blebby PO replacement textures similar to S4 in CR-09-033. Graded conformable lower contact (60degCA) is primarily fine grained wacke which grades quickly to siltstone containing fine grained PO-replacement in matrix.	
CR-09-037	380.00	388.33	8.33	S6A; S6E	Mixed silt- and mudstone with locally high clay fraction, as above.	
CR-09-037	388.33	403.05	14.72	11	Altered felsic dyke. Mixed pale brown-grey to grey coloured variably ser-carb-albite altered felsic porphyry intrusive. Highly fractured, blocky coring dyke unit. Few massive chlorite-bearing quartz carbonate veins near contact zone.	

Major Lithologies

Hole Name	From	То	Length	Code	Description	Rep
CR-09-037	403.05	658.5	255.45	V3B; pil	Balmer Assemblage: Quartz-carbonate stockwork overprinted siliceous fractured to quartz amygdular pillowed Basalt with several milky quartz-carbonate-chlorite-(tml) cross-cutting veins at 25degCA. Minor disseminated sulphides throughout. Tholeiitic basalt pile is similar to CR-09-033 and -034 with quartz amygdular pillow rims and quartz carbonate dominated selvage replacement with minor chlorite. Pillow cores are massive and generally fresh to siliceous (up to 10% silica) and actinolite-hornblende bearing at depth. Upper contact at expected unconformity at base of sediments is dyked out by altered felsic intrusive. Lower contact is dyked out by intermediate intrusive at minor ser-chl-(sil) interflow volcanosediments over 2.5m width.	
CR-09-037	658.5	746.65	88.15	I3A	Chlorite-actinolite bearing locally bt-qtz-carb sheared, variably fine to locally coarse grained Gabbroic intrusive. Upper contact is dyked out by Quartz Monzonite. Alteration halos intermediate dykes in this unit with increased silica and chloritized hb-act mafic crystals over broad intervals. Lamprophyric Dykes exploit sheared basalt conduits and may be responsible in part for a strongly developed BT-qtz-carb overprinting in sheared contact zones seldom thicker than 0.50m. BT-qtz-carb shearing contaings minor euhedral cubic trAPY and 01PO>PY locally. Lower contact is dyked out by bt-carb Lamprophyric Dyke at sharp 47degCA contact.	
CR-09-037	746.65	763.54	16.89	I3O; SHR	Grey coloured, 8-10% biotite and 2-5% calcite, massive, non-magnetic, Mafic Lamprophyric Dyke with numerous assimilated strongly bt-qtz-cb altered, 01PO-(PY-APY) bearing Shear Zone Gabbro. Altered and sheared blocks are interpreted to have been plucked and deformed to a large degree during the emplacement of the lamprophyric dyke as wall-rock contact shearing. Shear fabric is undulating and planar at 60 to 70degCA. Virtually no replacement silica is present within this unit except the minor fraction of silica found in the overprinted and dismembered quartz-carbarbonate veins found in the sheared gabbro. Thin planar quartz- carbnonate veins have narrow biotite alteration halos in dyke. Alteration in the gabbro wall rock above this dyke is characterized by 5% increase in biotite and marginal gains in chlorite with minor low angle soft quartz-carbonate veins and fracture filling. Upper contact is sharp at 47degCA, and lower contact is interfingered over 1.0m with irregular non-conformable sharp contact quenched Lamp. intrusive in Gabbro.	
CR-09-037	763.54	771.54	8.00	I2E	Massive, pale grey coloured, plagioclase phyric, non magnetic, trace PO-bearing, 10sil-10ser altered Quartz Monzonite. <5% grey quartz eye bearing. Abundant unhealed planar rough fractures at 54degCA throughout. Upper contact is conformable to adjacent shearing and sharp at 72degCA. Lower contact is sharp at 60degCA.	
CR-09-037	771.54	826.49	54.95	I3A	medium to coarse grained Gabbro as above to 746.65m. Minor 1-3m scale weakly sheared horizons within intrusive. Upper contact is dyked out by Qtz-Monzonite dyke. Lower contact is fine grained and quenched at sharp 80degCA contact.	

Hole Name	From	То	Length	Code	Description	Rep
CR-09-037	826.49	851.00	24.51	V3B	pale grey green coloured, variably pillowed Basalt with minor interflow well sorted sediments grading from silty to argillageous sediment over narrow 1-3m intervals. Minor quartz-carbonate±chlorite veining, fracture filling and selvage replacement. Deformation is minimal within these pillows, as primary structure does not appear to be overly attenuated (low strain field). 50% of pillows contain quartz-carbonate amygdular rims. Locallized shearing in interbedded Argillite within volcanics (see minor litho). Upper contact is sharp at gabbro intrusive with interflow sediments at 80degCA.	
CR-09-037	851.00	861.00	10.00	I2E	Bleached, light grey coloured, massive, blebby PO-mineralized, non magnetic, sil-ser altered Qtz- Monzonite. Very fine mm scale quartz crystal eyes are smaller in this I2E than others noted in nearby drilling. PO-replacement texture is characterized by round widely and homogenously disseminated 2-8mm blebs of PO throughout unit. Upper contact is irregular and angular at 70degCA. Abundant closely spaced (1cm spacing) bleached fractures, tightly healed, at 60degCA. Several 1cm thick planar shallow 10degCA oriented grey coloured quartz veins. Lower contact is sharp at 52degCA. One low angle mafic Lamprophyric Dyke at 858.17 to 859.14m (sharp undulating upper and lower contacts at 12degCA and 35degCA).	
CR-09-037	861.00	868.71	7.71	V3B; S6E	Pale dusty green coloured, weakly chl-(qtz-chl)-(ser) altered, brecciated pillow Basalt. Fine hairline qtz-chl-(trPO) tightly healed anastamosing fractures and chloritized selvage textures characterize pillow breccia fabric. Soft deformation. Rare quartz amygdules identified. Several narrow 15cm conformable graphitic Argillite interflow sediments contain replacement PO in quartz carbonate sheared and dismembered veins. One broad silty Argillite interflow sediment bed contain fine grained magnetite and iron-magnesium carbonate replacement in fine grained clay sediment matrix.	
CR-09-037	868.71	869.29	0.58	FLT	Major Fault Unconformity. Graphitic fault and gouge. 80% Structurally obliterated rubble core.	

Major Lithologies

Hole Name	From	То	Length	Code	Description	Rep
CR-09-037	869.29	952.95	83.66	SHR; S6E	Bruce Channel Formation: Sheared, magnetic, PO-PY sulphidized, cherty overprinted, 15-30% sil-(carb) replaced Argillite with narrow 5cm fault gouge (x3) between 888 and 895m. Zones of highly sheared argillite are strongly silicic due to cherty overprinting, while areas containing nearly massive to well bedded silty argillite with less shearing are fresh with minimal imposed silica. Background sulphides consist of 2-3%PO and 1-2%PY fine grained within clay matrix throughout, displaying zones of increased PO>PY in areas with increased carbonate veining. Extensive PO-replacement to fragmented, dismembered, and boudinaged carbonate-(qtz) veins show a distinct rotational component within shear (-strain) fabric. Shearing is planar at 70 to 80degCA. Clay matrix varies from 5 to 40% silt locally. Several narrow unique fine grained Quartz Monzodiorite dykes with minor pervasive silica-carbonate alteration halos over narrow intervals in sheared sediments with transposed contacts occur regularly. Upper contact is Fault unconformity. Not conductive with multimeter. Lower contact is confomably intruded by carbonate bearing Intermediate Lamprophyre Sill.	
CR-09-037	952.95	978.67	25.72	S6A	Bruce Channel Formation: Grey coloured, well bedded at 75 to 80degCA, massive, non magnetic Siltstone. Trace flattened PO blebs oriented parallel to bedding. Few qtz-bt-(PO) tensional veins at 0-30degCA which are offset by minor bedding plane slip-faulting ocassionally containing bedding parallel barren quartz veins. Locally blocky coring. Sharp upper contact at bt-cb Lamprophyre at 80degCA.	963.24 to 963.40
CR-09-037	978.67	978.68	0.01	EOH	EOH in Bruce Channel Formation Siltstone. Typical depth capacity of Boart Longyear LF-70 drill is 750m. Exceeded normal operating capacity of this rig. EOH at 978.68m on October 17, 2009. Left Casing. Capped with stamped aluminum casing cap. Gyro surveyed. Core is stored at the Goldcorp Cochenour Mine Site in 223 NQ trays. 565 samples sent for Au fire assay (50g pulp) at SGS Labs, Red Lake, ON.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP	
CR-09-037	80.34	80.34	SHR	Sheared contact zone		
CR-09-037	105.39	107.21	I2J	Grey coloured, fine grained, non magnetic massive Diorite dyke with sharp upper and lower contacts at 60degCA and 22degCA, respectively.		
				as above grey coloured, fine grained, non magnetic massive Diorite dyke with sharp		
CR-09-037	108.18	109.06	I2J	upper and lower contacts at 45degCA and 80degCA, respectively. One quartz fragment		
				with pyrite.		
CD 00 027	445.00	110.00	101	as above grey coloured, fine grained, non magnetic massive Diorite dyke with sharp		
CR-09-037	115.82	116.86	IZJ	upper and lower contacts at 55degCA.		
CR 00 027	220.20	221 40	101	Grey coloured, fine grained, very weakly magnetic massive Diorite dyke with a sharp		
CR-09-057	229.59	251.49	IZJ	upper contact at 45degCA and a ground lower contact.		
CR-09-037	278.34	286.08	S6A; SHR	Weakly sheared dirty silty clay sediments with dismembered and rounded quartz bed and vein fragments. Up to 2% sulphides (cheifly PO, trace PY). Shearing is parallel to bedding at 75degCA. Frequent irregular quartz-carbonate veins with associated trace sulphides within. Minor Sheared upper and lower conformable contacts at 75degCA.		
				Subangular quartz and lithic fragment (<20%) conglomerate with silicified bt-bearing		
CR-09-037	353.68	354.62	S4	matrix cement and PO replacement in fine disseminations and whispy replacive blebs.		
				Poorly sorted and poorly graded. Bedding parallel foliation at 78degCA. Upper and		
-				lower contacts are sharp and planar at 60degCA.		
CR-09-037	361.58	361.98	S4	quartz and lithic fragment conglomerate interbed as above.		
				Grey coloured plagioclase phyric, large euhedral quartz crystal Granodiorite similar to		
CR-09-037	464 1	465 32	110	Granodiorite as in CR-09-033 at 31.2 to 41.6. Very finely disseminated 1% arsenopyrite		
				and 2% pyrrhotite replacement blebs with trace pyrite-pyrrhotite cores. Upper and		
				lower contacts are sharp at 85degCA and 70degCA, respectively.		
CR-09-037	483.38	485.3	V3B	Quartz carbonate healed fractured siliceous Basalt. No Pillows.		
				Beige-Brown coloured (wet) albite-biotite-sericite altered Quartz Monzonite dyke with		
CR-09-037	485.3	486.15	12E	trace sulphides and quartz-tourmaline veining. Sharp upper and lower contacts at		
				85degCA.		
CR-09-037	486.15	501	V3B	Quartz carbonate healed fractured siliceous, locally actinolite bearing Basalt. No Pillows.		
				Grey coloured bt-PO-PY bearing, non-magnetic, plagioclase phyric Quartz-Monzonite		
CR-09-037	507.24	507.98	12E	narrow dyke with a sharp interfingered upper contact at 90degCA and a sharp 90degCA		
				lower contact.		
CR-09-037	R-09-037 508 62	.62 510.76	510.76	10.76 I2 F	Grey, poorly sulphide mineralized Quartz Monzonite as above. Upper contact is sharp at	
		3200		85degCA and lower contact is undulating and sharp at 53degCA.		

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-09-037	555.19	558.58	I2E	as above, grey coloured, bt-PO bearing Quartz Monzonite with sharp contacts at 80degCA. Footwall alteration is siliceous into Basalt.	
CR-09-037	594.25	598.89	I2E	Bleached grey and locally beige-brown coloured, sil-ser-alb-bt altered Quartz Monzonite dyke with 02PO trAPY disseminated sulphides and irregular narrow quartz-(carb)-(chl) veining. Foliated at 80degCA. Sharp upper and lower contacts at 85degCA.	
CR-09-037	599.78	600.05	I2E	as above foliated biotite bearing alb-ser altered Quartz Monzonite with sharp upper and lower contacts at 70degCA.	
CR-09-037	601.85	604.95	12J	dark grey coloured, fine grained, locally salt and pepper textured bt-bearing Diorite dyke. Very weakly magnetic due to very finely disseminated 01PO 01PY. Minor quartz veins have associated coarse chlorite replaced mafix crystals with trace PO. Upper contact is sharp at 82degCA with 2 assimilated wall rock basalt blocks over narrow widths within 1m of upper contact. Lower contact is weakly quartz carbonate veined and sharp at 63degCA.	
CR-09-037	608.28	612.7	12E	Grey coloured plagioclase phyric Quartz Monzonite with trace disseminated APY and up to 2% replacement PO blebs in medium grained dyke. Largely unaltered intrusive. Numerous shallow cross-cutting grey coloured irregular quartz veins occasionally biotite and/or muscovite bearing. Sharp upper and lower contacts at 78degCA.	
CR-09-037	613.10	613.75	I2J	as above dark grey coloured bt-PO bearing massive Diorite dyke. Contacts are sharp at 80-90degCA	
CR-09-037	621.11	621.72	I2J	as above dark grey coloured bt-PO bearing, foliated78degCA, Diorite dyke. Contacts are sharp at 80-90degCA	
CR-09-037	621.72	631.40	V3B	Massive chl-bt bearing basalt flow. Beds are commonly 1-4m in thickness. Occasionally silica charged with few quartz carbonate veins and fracture filling. Good coring unit.	
CR-09-037	631.40	631.83	13	Dark grey coloured, very fine grained, non-magnetic, Diabase dyke with sharp upper and lower contacts at 25degCA and 42degCA.	
CR-09-037	631.83	634.50	V3B	Basalt flow as above at 621.72 to 631.40 with sheared lower contact at intermediate dyke.	
CR-09-037	634.50	638.12	I2E	Pale grey-blue coloured, foliated (70degCA), weakly sil-ser altered, biotite bearing Quartz-Monzonite Dyke with sharp upper and lower contacts at 58degCA and 62degCA, respectively, and up to 01PO locally in fine to medium grained intrusive textured matrix. Abundant blue quartz crystal-eyes throughout.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-09-037	638.12	642.08	V3B	Variably grey-green coloured, foliated (70degCA), basalt flow as above at 621.72 to 631.40 with sheared upper conact containing minor quartz-cb brecciated volcanic at intermediate dyke contact. Silica enriched/alteration at bedding interfaces between flows and healed interflow fractures. Chlorite and Biotite pervasive throughout massive flows.	
CR-09-037	642.08	642.48	13	very fine grained, non magnetic Diabase dyke as above 631.40 to 631.83m with sharp undulating upper and lower contacts at 80degCA and 35degCA, respectively.	
CR-09-037	642.48	651.89	V3B	basalt flow as above with increased biotite (-chlorite) alteration.	
CR-09-037	651.89	652.38	I2E	grey coloured, nearly completely silicified (-ser), altered, trace sulphide bearing, minor 0.50cm thick quartz veined (at 10degCA) Quartz-Monzonite with sharp upper and lower contacts at 70degCA.	
CR-09-037	652.38	653.08	V3B	basalt flow as above with increased biotite (-chlorite) alteration.	
CR-09-037	653.08	656.07	VS3	Massive, very fine grained, non magnetic, ser-chl-(sil) altered interflow volcanosediments. Trace very fine subhedral disseminated local pyrite. Upper contact is gradational over 0.50m and contains minor ser-sil alteration. Lower contact is dyked out by intermediate intrusive.	
CR-09-037	656.07	658.5	I2E	Grey coloured, sil-ser altered, 01PO bearing, plagioclase phyric, Quartz Monzonite with irregular shallow (to CA) dismembered qtz-cb-ch-(PO) veins. Upper contact is sharp at 72degCA with abundant white bull quartz-carbonate veining. Lower contact also sharp at 85degCA with quenched intrusive fine grained texture.	
CR-09-037	675.28	677.07	12E	Strongly sil-ser-qtz-carb altered, bleached, variably grey to pale beige brown coloured minor 02% biotite bearing, poorly mineralized (01PO), Quartz Monzonite with milky white and grey coloured massive locally dismembered bull quartz-(carb) veins at shallow 10-25degCA. Upper and lower conacts are sharp at80degCA and 64degCA, respectively.	
CR-09-037	682.7	684	I3A	fine grained episode of Gabbroic intrusive. Non magnetic. Sharp upper contact at 66degCA and gradational transitional lower contact. Occasional minor very fine grained subhedral pyrite cubes.	
CR-09-037	715.88	717.89	SHR; I3A	Two adjacent <0.50m wide minor sheared gabbro horizons with chlorite alteration and weak quartz-carbonate overprinting. Trace minor PO in qtz-carb. Shear fabric is undulating and planar at 60-70degCA. Contacts are gradational.	
CR-09-037	737.81	738.81	SHR; I3A	similar to above minor shearing in Gabbro with quartz-carbonate veining and chlorite alteration. This intersection lacks biotite and silica making it otherwise prospective.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-09-037	740.44	740.84	130	10% biotite and 2% calcite bearing, 68degCA moderately well foliated, mafic Lamprophyric Dyke/Sill with knife sharp upper and lower contacts at 47degCA. Upper contact contains minor HW quartz veining oriented parallel to dyke contact with chl- carb alteration into wallrock gabbro. Lower contact has one green coloured 0.5cm qtz- carb-chl veinlet at 90deg to the dyke contact, cross-cutting foliation with no sulphides within.	
CR-09-037	770.63	770.89	I3A	narrow interval of green coloured, medium grained Gabbro (62degCA contacts) within grey Quartz Monzonite	
CR-09-037	799.43	802.31	SHR; I3A	weakly sheared chl-(bt-qcb) weakly altered Gabbro intrusive. Shear fabric is folded and undulating locally from 45 to 70degCA	
CR-09-037	812.2	821.5	I3A	Very coarse grained massive porphyritic Gabbro intrusive. Upper and lower contacts are characterized by gradational changes in grain size textures.	
CR-09-037	826.49	827.85	VS3	Narrow light to dark grey coloured, siltstone and argillite interflow sediments with abundant irregular hairline quartz carbonate and chlorite healed fractures. Bedding varies from 0.5cm to 5cm thickness and is oriented at 70degCA. Unmineralized. Sharp upper and lower contacts are non-conformable at 80degCA.	
CR-09-037	827.85	833.47	130	Green coloured, mottled medium-fine grained intrusive textured, 30chl-30bt-15hb-4carb bearing mafic Lamprophyric Dyke. Upper and lower contacts are sharp and crosscutting at 22 and 10degCA, respectively. Unmineralized and massive.	
CR-09-037	849.68	851	S6E	dark grey to black silty, sheared, PO-(PY) mineralized, silty Argillite interbedded sediments in Balmer volcanics. Up to 20% silty argillaceous sediments define bedding at 71degCA. Narrow 40cm shearing at upper contact contains sugary textured light grey coloured irregular planar and dismembered quartz-carbonate veins containing PO- replacement in most carbonaceous sections of veins and argillite. Moderate silica replacement to argillaceous matrix over 40cm at upper contact, but quickly disipates to NIL silica replacement in less sheared, bulk majority, of Argillite interbed. Lower contact is angular irregular at bleached Qtz-Monzonite Dyke. Upper contact at 85degCA with <1cm thick qtz-cb vein.	
CR-09-037	858.17	859.14	130	Low angle mafic Lamprophyric Dyke similar to at 740.44 to 740.84m with sharp undulating upper and lower contacts at 12degCA and 35degCA within sil-ser altered qtz- monzonite intrusive. Several irregular rough fracture joints in dyke contain minor qtz- carb fracture filling. Lower contact contains one pinch and swell irregular planar quartz- carbonate vein sub to LC.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
				Black to dark grey coloured, strongly sheared, 15% silica altered, magnetite bearing Argillite with minor PO-replacement in dismembered, rounded, and rotated carbonate-	
CR-09-037	869.29	871.45	SHR; S6E	(qtz) vein fragments. Frequent irregular shearing parallel quartz veins are boudinaged	
				PY>PO Abundant bairline obite quartz veinlets throughout oriented parallel to	
				foliation. Lower contact is gradational over 0.25cm with silty interbed.	
				dark and light grey coloured, weakly sheared silty interflow sediment within argillite	
CR-09-037	871.45	880.4	S6E; S6A	with minimal sulphide mineralization. Magnetic. Upper and lower contacts are	
				gradational over 0.25cm.	
CR-09-037	880.4	885.82	SHR; S6E	Mineralized, quartz veined, magnetic, Sheared Argillite as above 869.29 to 871.45m.	
CR-09-037	885.82	887.09	SHR; S6A	PY-PO mineralized, light grey coloured, Sheared Siltstone. Sharp upper and lower	
				contacts at 75degCA.	
CR-09-037	887.09	905.5	SHR; S6E	Mineralized, quartz veined, magnetic, Sheared Argillite as above 869.29 to 871.45m.	
				PY-PO mineralized, grey coloured, hairline to cm scale quartz veined, mixed silty sheared	
CR-09-037	905.5	922.06	SHR; S6D	argillaceous Mudstone. Very weakly magnetic. Frequent boudinaged and fragmented	
				quartz veins with associated sulphides (cheffly PO>PY) as above. Sharp upper and lower contacts at 75degCA	
				Near Massive silty argillaceous Mudstone. Well bedded. No Shearing. Rare fine quartz	
CR-09-037	922.06	928.97	S6D	veinlets. Locally blebby PO up to 3%, but generally unmineralized. Sharp upper and	
				lower contacts at 78 to 85degCA, respectively.	
				Mineralized, quartz veined, magnetic, cherty overprinted Sheareds silt laiden Argillite	
				similar to above 869.29 to 871.45m but with up to 20% silt irregularly dispursed	
				thoughout. Frequent narrow fine grained, poorly sulphide mineralized, Quartz	
CR-09-037	928.97	950.85	SHR; S6E	Monzodiorite dykes with transposed contacts cross cut mineralized cherty Sheared	
				80degCA Unper contact with nearly massive mudstone is sharp at 90degCA with several	
				fragmented quartz vein fragments. Lower contact is sheared dyke contact with bt-cb	
				bearing Lamprophyre at 85degCA.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-09-037	950.85	952.95	L30	bt-carbonate bearing intermediate to mafic Lamprophyric Sill. Nearly massive intrusive textured sill is weakly foliated at 80degCA with several tightly well healed carbonate bearing fractures (trace PY) and one low angle planar (15degCA) quartz vein. Upper contact is sheared at Argillite at 85degCA. Lower contact is planar sharp at 75degCA.	

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-037	18080	77.54	78.54	1.00		ser-sil altered Granodiorite with trace Pyrite	31	RL37111
CR-09-037	18081	78.54	79.54	1.00	consecutive	weakly sheared Granodiorite as above with assimilated seds and trPY	76	RL37111
CR-09-037	18082	79.54	80.34	0.80	consecutive	ser-sil altered Granodiorite with trPY	76	RL37111
CR-09-037	18083	80.34	80.84	0.50	consecutive	sheared contact zone, primarily argillite with numerous dismembered and folded quartz-carb-(chl) veins and up to 03PY	132	RL37111
CR-09-037	18084	80.84	81.34	0.50	consecutive	sheared contact zone, primarily argillite with numerous dismembered and folded quartz-carb-(chl) veins and up to 03PY	29	RL37111
CR-09-037	18085	81.34	81.84	0.50	consecutive	sheared contact zone, primarily argillite with numerous dismembered and folded quartz-carb-(chl) veins and up to 03PY	96	RL37111
CR-09-037	18086	81.84	82.65	0.81	consecutive	sheared contact zone, primarily argillite with numerous dismembered and folded quartz-carb-(chl) veins and up to 03PY	76	RL37111
CR-09-037	18087	82.65	84.00	1.35	consecutive	silty argillaceous mudstone with trace sulphides	10	RL37111
CR-09-037	18088	84.00	85.00	1.00	consecutive	silty argillaceous mudstone with trace sulphides	27	RL37111
CR-09-037	18089	85.00	85.62	0.62	consecutive	argillite with up to 08PO>PY replacement along beds and disseminations	543	RL37111
CR-09-037	18090	0.00	0.00	0.00	not consecutive	SI42 1.761ppm Au	1830	RL37111
CR-09-037	18091	85.62	86.62	1.00	not consecutive	silty argillaceous mudstone with trace sulphides	11	RL37111
CR-09-037	18092	269.91	270.91	1.00	not consecutive	sericite altered quartz monzogranite wing	22	RL37111
CR-09-037	18093	270.91	271.21	0.30	consecutive	PO replacement in a weakly sheared chl-bt altered intrusive	18	RL37111
CR-09-037	18094	271.21	272.21	1.00	consecutive	sericite altered quartz monzogranite wing	32	RL37111
CR-09-037	18095	306.86	307.26	0.40	not consecutive	Blank: Black argillite no sulphides.	58	RL37111
CR-09-037	18096	277.50	278.34	0.84	not consecutive	sericite altered quartz monzogranite wing	22	RL37111
CR-09-037	18097	278.34	279.34	1.00	consecutive	minor shearing in silty argillaceous mudstone with trace sulphides	15	RL37111
CR-09-037	18098	279.34	280.34	1.00	consecutive	highly silt laiden silty beds within minor sheared silty argillite with trace to 2% sulphides (PO>PY)	10	RL37111
CR-09-037	18099	280.34	281.34	1.00	consecutive	moderately silt laiden silty beds within minor sheared silty argillite with trace to 2% sulphides (PO>PY)	23	RL37111
CR-09-037	18100	281.34	282.34	1.00	consecutive	minor shearing in silty argillaceous mudstone with trace sulphides	8	RL37111
CR-09-037	18101	282.34	283.34	1.00	consecutive	minor shearing in silty argillaceous mudstone with trace sulphides	12	RL37111

Sampling Record

CR-09-037 18102 283.34 284.34 1.00 consecutive minor shearing in silty argillaceous mudstone with trace sulphides 6 RL37111 CR-09-037 18103 284.34 285.34 1.00 consecutive minor shearing in silty argillaceous mudstone with trace sulphides 9 RL37111 CR-09-037 18104 285.34 286.08 0.74 consecutive sulphides and several irregular dismembered quartz carbonate 8 RL37111 CR-09-037 18105 286.08 287.08 1.00 consecutive sericite altered quartz monzogranite wing <5 RL37111 CR-09-037 18106 290.95 291.95 1.00 not consecutive sericite altered quartz monzogranite wing <5 RL37111 CR-09-037 18106 290.95 291.95 1.00 not consecutive sericite altered quartz monzogranite wing <5 RL37111 CR-09-037 18107 291.95 292.66 0.71 consecutive grey coloured, sil-(cord-bt-chl) altered iltA, NIL 23 RL37111 CR-09-037 18108 <th>HoleID</th> <th>SampleID</th> <th>From</th> <th>То</th> <th>Length</th> <th>Consecutive</th> <th>Description</th> <th>Au_ppb</th> <th>Batch-Number</th>	HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-037 18103 284.34 285.34 1.00 consecutive minor shearing in silty argillaceous mudstone with trace sulphides 9 RL37111 CR-09-037 18104 285.34 286.08 0.74 consecutive Sheared contact in silty argillaceous mudstone with up to 2% sulphides and several irregular dismembered quartz carbonate 8 RL37111 CR-09-037 18105 286.08 287.08 1.00 consecutive sericite altered quartz monzogranite wing <5	CR-09-037	18102	283.34	284.34	1.00	consecutive	minor shearing in silty argillaceous mudstone with trace sulphides	6	RL37111
CR-09-037 18104 285.34 286.08 0.74 consecutive Sheared contact in silty argillaceous mudstone with up to 2% CR-09-037 18105 286.08 287.08 1.00 consecutive sulphides and several irregular dismembered quartz carbonate 8 RL37111 CR-09-037 18105 286.08 287.08 1.00 consecutive sericite altered quartz monzogranite wing <5	CR-09-037	18103	284.34	285.34	1.00	consecutive	minor shearing in silty argillaceous mudstone with trace sulphides	9	RL37111
CR-09-037 18105 286.08 287.08 1.00 consecutive sericite altered quartz monzogranite wing <5 RL37111 CR-09-037 18106 290.95 291.95 1.00 not consecutive sericite altered quartz monzogranite wing <5	CR-09-037	18104	285.34	286.08	0.74	consecutive	Sheared contact in silty argillaceous mudstone with up to 2% sulphides and several irregular dismembered quartz carbonate veins	8	RL37111
CR-09-03718106290.95291.951.00not consecutivedark grey coloured, sil-(cord-bt-chl) altered silty sediments, NIL sulphides, Wing sample13RL37111CR-09-03718107291.95292.660.71consecutivepale creamy-brown coloured silica flooded, sil-(cord-bt) altered I1A with minor quartz veining, NIL sulphides23RL37111CR-09-03718108292.66293.430.77consecutivegreyish blue coloured quartz veining in ser-bt-gt altered I1A, NIL sulphides87RL37111CR-09-03718109293.43294.100.67consecutivegreyish blue coloured quartz veining in ser-bt-gt altered I1A, NIL sulphides72RL37111CR-09-037181100.000.00not consecutiveSK43 4.086ppm Au4330RL37111	CR-09-037	18105	286.08	287.08	1.00	consecutive	sericite altered quartz monzogranite wing	<5	RL37111
CR-09-03718107291.95292.660.71consecutivepale creamy-brown coloured silica flooded, sil-(cord-bt) altered I1A with minor quartz veining, NIL sulphides23RL37111CR-09-03718108292.66293.430.77consecutivegreyish blue coloured quartz veining in ser-bt-gt altered I1A, NIL sulphides87RL37111CR-09-03718109293.43294.100.67consecutivegreyish blue coloured quartz veining in ser-bt-gt altered I1A, NIL sulphides72RL37111CR-09-037181100.000.00not consecutiveSK43 4.086ppm Au4330RL37111	CR-09-037	18106	290.95	291.95	1.00	not consecutive	dark grey coloured, sil-(cord-bt-chl) altered silty sediments, NIL sulphides, Wing sample	13	RL37111
CR-09-037 18108 292.66 293.43 0.77 consecutive consecutive sulphides greyish blue coloured quartz veining in ser-bt-gt altered I1A, NIL sulphides 87 RL37111 CR-09-037 18109 293.43 294.10 0.67 consecutive consecutive sulphides greyish blue coloured quartz veining in ser-bt-gt altered I1A, NIL sulphides 72 RL37111 CR-09-037 18110 0.00 0.00 not consecutive SK43 4.086ppm Au 4330 RL37111	CR-09-037	18107	291.95	292.66	0.71	consecutive	pale creamy-brown coloured silica flooded, sil-(cord-bt) altered I1A with minor quartz veining, NIL sulphides	23	RL37111
CR-09-037 18109 293.43 294.10 0.67 consecutive consecutive greyish blue coloured quartz veining in ser-bt-gt altered I1A, NIL 72 RL37111 CR-09-037 18110 0.00 0.00 not consecutive SK43 4.086ppm Au 4330 RL37111	CR-09-037	18108	292.66	293.43	0.77	consecutive	greyish blue coloured quartz veining in ser-bt-gt altered I1A, NIL sulphides	87	RL37111
CR-09-037 18110 0.00 0.00 not consecutive SK43 4.086ppm Au 4330 RL37111	CR-09-037	18109	293.43	294.10	0.67	consecutive	greyish blue coloured quartz veining in ser-bt-gt altered I1A, NIL sulphides	72	RL37111
	CR-09-037	18110	0.00	0.00	0.00	not consecutive	SK43 4.086ppm Au	4330	RL37111
CR-09-037 18111 294.10 295.00 0.90 not consecutive sil-(ser-bt) altered quartz monzogranite with assimilated sedimentary fragments and quartz veins, NIL sulphides 15 RL37111	CR-09-037	18111	294.10	295.00	0.90	not consecutive	sil-(ser-bt) altered quartz monzogranite with assimilated sedimentary fragments and quartz veins, NIL sulphides	15	RL37111
CR-09-037 18112 295.00 296.00 1.00 consecutive sil-(ser-bt) altered quartz monzogranite with assimilated 50 RL37111 sedimentary fragments and guartz veins, NIL sulphides	CR-09-037	18112	295.00	296.00	1.00	consecutive	sil-(ser-bt) altered quartz monzogranite with assimilated sedimentary fragments and quartz veins, NIL sulphides	50	RL37111
CR-09-037 18113 296.00 296.47 0.47 consecutive sil-(ser-bt) altered quartz monzogranite with assimilated sedimentary fragments and quartz veins, NIL sulphides 8 RL37111	CR-09-037	18113	296.00	296.47	0.47	consecutive	sil-(ser-bt) altered quartz monzogranite with assimilated sedimentary fragments and quartz veins, NIL sulphides	8	RL37111
CR-09-037 18114 296.47 297.47 1.00 consecutive Lower Wing sample: dark grey coloured silty argillite, trace 46 RL37111 sulphides	CR-09-037	18114	296.47	297.47	1.00	consecutive	Lower Wing sample: dark grey coloured silty argillite, trace sulphides	46	RL37111
CR-09-037 18115 301.23 301.75 0.52 not consecutive Blank Sample: silt laiden argillite 9 RL37111	CR-09-037	18115	301.23	301.75	0.52	not consecutive	Blank Sample: silt laiden argillite	9	RL37111
CR-09-037 18116 364.00 365.09 1.09 not consecutive silty argillite wing, NIL sulphides 6 RL37111	CR-09-037	18116	364.00	365.09	1.09	not consecutive	silty argillite wing, NIL sulphides	6	RL37111
CR-09-037 18117 365.09 366.09 1.00 consecutive fine grained lithic wacke grading finer in uphole direction to 6 RL37111 contact with 03PO	CR-09-037	18117	365.09	366.09	1.00	consecutive	fine grained lithic wacke grading finer in uphole direction to contact with 03PO	6	RL37111
CR-09-037 18118 366.09 366.59 0.50 consecutive light grey coloured clast bearing lithic wacke with fine grained 01- 02PO 7 RL37111	CR-09-037	18118	366.09	366.59	0.50	consecutive	light grey coloured clast bearing lithic wacke with fine grained 01- 02PO	7	RL37111
CR-09-037 18119 366.59 367.43 0.84 consecutive light grey coloured clast bearing lithic wacke with fine grained 01- 02PO <5 RL37111	CR-09-037	18119	366.59	367.43	0.84	consecutive	light grey coloured clast bearing lithic wacke with fine grained 01- 02PO	<5	RL37111
CR-09-03718120367.43368.190.76consecutivelithic wacke with minor clay fraction and very fine grained 01PO<5RL37111	CR-09-037	18120	367.43	368.19	0.76	consecutive	lithic wacke with minor clay fraction and very fine grained 01PO	<5	RL37111
CR-09-037 18121 368.19 369.35 1.16 consecutive light grey lithic wacke with trace sulphides and few trace lithic clasts <5	CR-09-037	18121	368.19	369.35	1.16	consecutive	light grey lithic wacke with trace sulphides and few trace lithic clasts	<5	RL37111
CR-09-037 18122 369.35 369.90 0.55 consecutive 05PO replacement in fine quartz-lithic clast bearing wacke <5 RL37111	CR-09-037	18122	369.35	369.90	0.55	consecutive	05PO replacement in fine quartz-lithic clast bearing wacke	<5	RL37111

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-037	18123	369.90	371.00	1.10	consecutive	02PO replacement in fine quartz-lithic clast bearing wacke	14	RL37111
CR-09-037	18124	371.00	372.00	1.00	consecutive	02PO replacement with few large quartz-lithic clasts in conglomerate	12	RL37111
CR-09-037	18125	372.00	372.56	0.56	consecutive	02PO replacement with few large quartz-lithic clasts in conglomerate with increase silica alteration	18	RL37111
CR-09-037	18126	372.56	373.56	1.00	consecutive	one trPO bearing quartz vein x-cutting at 25degCA uphole in silica alterered strong WMIN 30PO replacement in quartz-lithic clast wacke	12	RL37111
CR-09-037	18127	373.56	374.48	0.92	consecutive	silica alterered strong WMIN 20PO replacement locally in quartz- lithic clast wacke	22	RL37111
CR-09-037	18128	374.48	375.28	0.80	consecutive	less silica alteration (approx 5% sil) in matrix of lithic wacke with 01PO	25	RL37111
CR-09-037	18129	375.28	375.78	0.50	consecutive	lithic wacke with 01PO	58	RL37111
CR-09-037	18130	0.00	0.00	0.00	not consecutive	SI42 1.761ppm Au	1810	RL37111
CR-09-037	18131	375.78	376.28	0.50	not consecutive	Sulphide Mineralized: Quartz-Lithic cobble Polymictic Conglomerate with up to 20% silica alteration, strongly PO- replaced WMIN 35% PO replacement	21	RL37111
CR-09-037	18132	376.28	376.78	0.50	consecutive	Sulphide Mineralized: 05-10PO replacement in quartz-lithic cobble siliceous conglomerate	81	RL37111
CR-09-037	18133	376.78	377.28	0.50	consecutive	02 PO replacement in minor silica altered conglomerate	68	RL37111
CR-09-037	18134	377.28	377.78	0.50	consecutive	10cm lost core in this run, 05sil 05gt bearing altered conglomerate with 02PO	38	RL37111
CR-09-037	18135	385.00	385.50	0.50	not consecutive	Blank Sample: silty argillite with trace sulphides	94	RL37111
CR-09-037	18136	377.78	378.28	0.50	not consecutive	Sulphide Mineralized, 20sil 05gt bearing quartz-lithic clast conglomerate with 10PO replacement	268	RL37111
CR-09-037	18137	378.28	379.08	0.80	consecutive	15sil 03gt altered conglomerate with 04PO	10	RL37111
CR-09-037	18138	379.08	380.00	0.92	consecutive	Silty Argillite transitional contact area, very finely disseminated PO- replacement in Matrix	25	RL37111
CR-09-037	18139	380.00	381.00	1.00	consecutive	lightly silt laden silty argillite with trace sulphides	6	RL37111
CR-09-037	18140	381.00	382.00	1.00	consecutive	black Argillite with trace sulphides	37	RL37111
CR-09-037	18141	387.00	388.33	1.33	not consecutive	argillaceous seds wing with trace sulphides	10	RL37111
CR-09-037	18142	388.33	389.00	0.67	consecutive	ser-sil-carb-alb altered intrusive felsic porphyry with trace sulphides	217	RL37111
CR-09-037	18143	389.00	390.00	1.00	consecutive	ser-sil-carb-alb altered intrusive felsic porphyry with trace sulphides	25	RL37111
CR-09-037	18144	390.00	391.00	1.00	consecutive	ser-sil-carb-alb altered intrusive felsic porphyry with trace sulphides	17	RL37111

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-037	18145	391.00	392.00	1.00	consecutive	ser-sil-carb-alb altered intrusive felsic porphyry with trace sulphides	<5	RL37111
CR-09-037	18146	392.00	393.00	1.00	consecutive	ser-sil-carb-alb altered intrusive felsic porphyry with trace sulphides	<5	RL37111
CR-09-037	18147	393.00	394.00	1.00	consecutive	ser-sil-carb-alb altered intrusive felsic porphyry with trace sulphides	10	RL37111
CR-09-037	18148	394.00	395.00	1.00	consecutive	ser-sil-carb-alb altered intrusive felsic porphyry with trace sulphides	<5	RL37111
CR-09-037	18149	395.00	396.00	1.00	consecutive	ser-sil-carb-alb altered intrusive felsic porphyry with trace sulphides	<5	RL37111
CR-09-037	18150	0.00	0.00	0.00	not consecutive	SK43 4.086ppm Au	3970	RL37111
CR-09-037	18151	396.00	397.00	1.00	not consecutive	dyke at unconformity, ser-sil-carb-alb altered felsic porphyry as above with trace sulphides	<5	RL37111
CR-09-037	18152	397.00	398.00	1.00	consecutive	dyke at unconformity, ser-sil-carb-alb altered felsic porphyry as above with trace sulphides	<5	RL37111
CR-09-037	18153	398.00	399.00	1.00	consecutive	very strongly ser-sil-carb-alb altered fractured blocky porphyry with trace sulphides	<5	RL37111
CR-09-037	18154	399.00	400.00	1.00	consecutive	very strongly ser-sil-carb-alb altered fractured blocky porphyry with trace sulphides	<5	RL37111
CR-09-037	18155	382.00	382.50	0.50	not consecutive	black argillite Blank sample	<5	RL37111
CR-09-037	18156	400.00	401.00	1.00	not consecutive	very strongly ser-sil-carb-alb altered fractured blocky porphyry with trace sulphides	17	RL37111
CR-09-037	18157	401.00	402.00	1.00	consecutive	very strongly ser-sil-carb-alb altered fractured blocky porphyry with trace sulphides	130	RL37111
CR-09-037	18158	402.00	403.05	1.05	consecutive	irregular massive quartz-carb-chl-bt vein in altered felsic above contact with basalt	108	RL37111
CR-09-037	18159	403.05	403.35	0.30	consecutive	angular brecciated carbonate healed basalt with trace sulphides	187	RL37111
CR-09-037	18160	403.65	404.65	1.00	not consecutive	abundant quartz carbonate vein stockwork in fractured and pillowed basalt with trace sulphides	<5	RL37111
CR-09-037	18161	403.35	403.65	0.30	not consecutive	bleached altered footwall dyke in brecciated basalt contact containing very fine grained whispy 05PO	56	RL37111
CR-09-037	18162	404.65	406.00	1.35	not consecutive	abundant quartz carbonate vein stockwork in fractured and pillowed basalt with trace sulphides	9	RL37111
CR-09-037	18163	406.00	406.95	0.95	consecutive	abundant quartz carbonate vein stockwork in fractured and pillowed basalt with trace sulphides	<5	RL37111
CR-09-037	18164	406.95	408.00	1.05	consecutive	fractured and pillowed basalt with a few quartz-carbonate-chlorite vein replacement in selvages with trace sulphides	<5	RL37111

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-037	18165	408.00	408.65	0.65	consecutive	large milky quartz-carbonate-chlorite-biotite vein in fractured basalt trace sulphides	<5	RL37111
CR-09-037	18166	408.65	408.90	0.25	consecutive	Basalt wing with quartz carbonate fracture filling, trace sulphides	6	RL37111
CR-09-037	18167	408.90	409.25	0.35	consecutive	quartz-carbonate fractured basalt with milky qtz-cb-chl-bt veins	37	RL37111
CR-09-037	18168	409.25	410.00	0.75	consecutive	abundant quartz carbonate vein stockwork in fractured and pillowed basalt with trace sulphides	<5	RL37111
CR-09-037	18169	410.00	411.00	1.00	consecutive	abundant quartz carbonate vein stockwork in fractured and pillowed basalt with trace sulphides	<5	RL37111
CR-09-037	18170	0.00	0.00	0.00	not consecutive	SI42 1.761ppm Au	1820	RL37111
CR-09-037	18171	411.00	412.00	1.00	not consecutive	QCB fractures in qtz-(cb) amyg. pillowed Basalt tr. sulphides	18	RL37111
CR-09-037	18172	412.00	413.00	1.00	consecutive	abundant quartz carbonate fractures and ser-qtz-cb-chl-bt vein structure over 45cm in quartz amygdular pillowed Basalt	21	RL37111
CR-09-037	18173	413.00	414.00	1.00	consecutive	QCB fractures in qtz-(cb) amyg. pillowed Basalt tr. sulphides	<5	RL37111
CR-09-037	18174	414.00	415.00	1.00	consecutive	QCB fractures in qtz-(cb) amyg. pillowed Basalt tr. sulphides	<5	RL37111
CR-09-037	18175	444.00	444.50	0.50	not consecutive	basalt with very few fine qcb healed fractures	18	RL37111
CR-09-037	18176	415.00	416.00	1.00	not consecutive	QCB fractures in qtz-(cb) amyg. pillowed Basalt tr. sulphides	<5	RL37111
CR-09-037	18177	416.00	417.00	1.00	consecutive	QCB fractures in qtz-(cb) amyg. pillowed Basalt tr. sulphides	<5	RL37111
CR-09-037	18178	417.00	418.00	1.00	consecutive	QCB fractures in qtz-(cb) amyg. pillowed Basalt tr. sulphides	17	RL37111
CR-09-037	18179	418.00	419.00	1.00	consecutive	QCB fractures in qtz-(cb) amyg. pillowed Basalt tr. sulphides	7	RL37111
CR-09-037	18180	419.00	420.00	1.00	consecutive	QCB fractures in qtz-(cb) amyg. pillowed Basalt tr. sulphides	<5	RL37112
CR-09-037	18181	420.00	421.00	1.00	consecutive	QCB fractures in qtz-(cb) amyg. pillowed Basalt tr. sulphides	8	RL37112
CR-09-037	18182	421.00	422.00	1.00	consecutive	QCB fractures in qtz-(cb) amyg. pillowed Basalt tr. sulphides	6	RL37112
CR-09-037	18183	422.00	423.00	1.00	consecutive	QCB fractures in qtz-(cb) amyg. pillowed Basalt tr. sulphides	<5	RL37112
CR-09-037	18184	423.00	424.00	1.00	consecutive	QCB fractures in qtz-(cb) amyg. pillowed Basalt tr. sulphides	110	RL37112
CR-09-037	18185	424.00	425.00	1.00	consecutive	QCB fractures in qtz-(cb) amyg. pillowed Basalt tr. sulphides	<5	RL37112
CR-09-037	18186	425.00	426.00	1.00	consecutive	QCB fractures in qtz-(cb) amyg. pillowed Basalt tr. sulphides	<5	RL37112
CR-09-037	18187	426.00	427.00	1.00	consecutive	QCB fractures in qtz-(cb) amyg. pillowed Basalt tr. sulphides	<5	RL37112
CR-09-037	18188	427.00	428.00	1.00	consecutive	QCB fractures in qtz-(cb) amyg. pillowed Basalt tr. sulphides	<5	RL37112
CR-09-037	18189	428.00	429.00	1.00	consecutive	QCB fractures in qtz-(cb) amyg. pillowed Basalt tr. sulphides	48	RL37112
CR-09-037	18190	0.00	0.00	0.00	not consecutive	SK43 4.086ppm Au	3630	RL37112
CR-09-037	18191	438.00	439.00	1.00	not consecutive	Character Sample: quartz-carbonate selvage filling replacement with trace sulphides in pillowed basalt	17	RL37112
CR-09-037	18192	439.00	440.00	1.00	consecutive	Character Sample: quartz-carbonate selvage filling replacement with trace sulphides in pillowed basalt	<5	RL37112

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-037	18193	440.00	441.00	1.00	consecutive	Character Sample: quartz-carbonate selvage filling replacement with trace sulphides in pillowed basalt	<5	RL37112
CR-09-037	18194	441.00	442.00	1.00	consecutive	Character Sample: quartz-carbonate selvage filling replacement with trace sulphides in pillowed basalt	<5	RL37112
CR-09-037	18195	445.50	446.00	0.50	not consecutive	Blank Sample: massive basalt pillow core	<5	RL37112
CR-09-037	18196	442.00	443.00	1.00	not consecutive	Character Sample: quartz-carbonate selvage filling replacement with trace sulphides in pillowed basalt	264	RL37112
CR-09-037	18197	443.00	444.00	1.00	consecutive	Character Sample: quartz-carbonate selvage filling replacement with trace sulphides in pillowed basalt	<5	RL37112
CR-09-037	18198	444.50	445.50	1.00	not consecutive	Character Sample taken from between blanks for completeness in sample series interval with QCB veins in pillowed basalt	11	RL37112
CR-09-037	18199	446.00	446.50	0.50	not consecutive	few quartz-carbonate veins in pillow core	<5	RL37112
CR-09-037	18200	446.50	447.50	1.00	consecutive	Character Sample: heavily quartz carbonate replaced selvages in pillowed basalt	<5	RL37112
CR-09-037	18201	456.00	457.00	1.00	not consecutive	Character Sample: trace sulphides (PY is inside PO replacement blebs) in quartz-carbonate amygdular pillow rimmed QCB replaced selvage Basalt pile	<5	RL37112
CR-09-037	18202	457.00	458.00	1.00	consecutive	Character Sample: trace sulphides (PY is inside PO replacement blebs) in quartz-carbonate amygdular pillow rimmed QCB replaced selvage Basalt pile	9	RL37112
CR-09-037	18203	458.00	459.00	1.00	consecutive	Character Sample: trace sulphides (PY is inside PO replacement blebs) in quartz-carbonate amygdular pillow rimmed QCB replaced selvage Basalt pile	<5	RL37112
CR-09-037	18204	459.00	460.00	1.00	consecutive	Character Sample: trace sulphides (PY is inside PO replacement blebs) in quartz-carbonate amygdular pillow rimmed QCB replaced selvage Basalt pile	<5	RL37112
CR-09-037	18205	460.00	461.00	1.00	consecutive	Character Sample: trace sulphides (PY is inside PO replacement blebs) in quartz-carbonate amygdular pillow rimmed QCB replaced selvage Basalt pile	<5	RL37112
CR-09-037	18206	461.00	462.00	1.00	consecutive	Character Sample: trace sulphides (PY is inside PO replacement blebs) in quartz-carbonate amygdular pillow rimmed QCB replaced selvage Basalt pile	<5	RL37112
CR-09-037	18207	462.00	463.00	1.00	consecutive	Character Sample: trace sulphides (PY is inside PO replacement blebs) in quartz-carbonate amygdular pillow rimmed QCB replaced selvage Basalt pile	66	RL37112

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-037	18208	463.00	464.10	1.10	consecutive	Character Sample: trace sulphides (PY is inside PO replacement blebs) in quartz-carbonate amygdular pillow rimmed QCB replaced selvage Basalt pile	67	RL37112
CR-09-037	18209	464.10	464.50	0.40	consecutive	granodiorite dyke with 01APY 02PO trPY	62	RL37112
CR-09-037	18210	0.00	0.00	0.00	not consecutive	SI42 1.761ppm Au	1610	RL37112
CR-09-037	18211	464.50	465.00	0.50	not consecutive	granodiorite as above with trace sulphides	44	RL37112
CR-09-037	18212	465.00	465.32	0.32	consecutive	granodiorite as above with trace sulphides	<5	RL37112
CR-09-037	18213	465.32	466.00	0.68	consecutive	5-10% quartz carbonate fracture filling and veining in pillowed basalt	58	RL37112
CR-09-037	18214	466.00	467.00	1.00	consecutive	5-10% quartz carbonate fracture filling and veining in pillowed basalt	<5	RL37112
CR-09-037	18215	533.00	533.50	0.50	not consecutive	Blank: Massive siliceous Basalt with no QCB and NIL sulphides	59	RL37112
CR-09-037	18216	467.00	468.00	1.00	not consecutive	5-10% quartz carbonate fracture filling and veining in pillowed basalt	<5	RL37112
CR-09-037	18217	468.00	468.75	0.75	consecutive	5% quartz carbonate fracture filling and minor selvage replacement	41	RL37112
CR-09-037	18218	468.75	469.35	0.60	consecutive	abundant quartz-carbonate replacement in selvages and fractures with trace sulphides	12	RL37112
CR-09-037	18219	469.35	470.25	0.90	consecutive	abundant quartz-carbonate replacement in selvages and minor quartz-carbonate breccia selvage 01PO 01PY	62	RL37112
CR-09-037	18220	470.25	471.25	1.00	consecutive	5-10% quartz carbonate fracture filling and veining in pillowed basalt	<5	RL37112
CR-09-037	18221	471.25	472.25	1.00	consecutive	few minor <5% quartz-carbonate fracture filling in Wing Sample NIL sulphides	<5	RL37112
CR-09-037	18222	472.25	473.25	1.00	consecutive	5-10% quartz carbonate fracture filling and veining in pillowed basalt	31	RL37112
CR-09-037	18223	473.25	474.00	0.75	consecutive	5-10% quartz carbonate fracture filling and veining in pillowed basalt	49	RL37112
CR-09-037	18224	474.00	475.00	1.00	consecutive	5-10% quartz carbonate fracture filling and veining in pillowed basalt and 1cm thick qtz-cb-bt veins sub CA	11	RL37112
CR-09-037	18225	475.00	476.00	1.00	consecutive	Wing Sample with 5% quartz-carbonate fracture filling and minor veins with trace sulphides	17	RL37112
CR-09-037	18226	476.00	477.00	1.00	consecutive	Wing Sample with 5% quartz-carbonate fracture filling and minor veins with trace sulphides	27	RL37112
CR-09-037	18227	477.00	478.00	1.00	consecutive	5-10% quartz carbonate fracture filling and veining in pillowed basalt	14	RL37112

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-037	18228	478.00	478.70	0.70	consecutive	5-10% quartz carbonate fracture filling and veining in pillowed basalt	5	RL37112
CR-09-037	18229	478.70	479.10	0.40	consecutive	Completely quartz-carbonate-(bt-chl) replaced broad selvage replacement in basalt	27	RL37112
CR-09-037	18230	0.00	0.00	0.00	not consecutive	OxK69 3.583ppm	3330	RL37112
CR-09-037	18231	479.10	480.10	1.00	not consecutive	5-10% quartz carbonate fracture filling and veining in pillowed basalt	67	RL37112
CR-09-037	18232	480.10	481.15	1.05	consecutive	abundant quartz-carbonate fracture filling and veining in pillowed basalt	76	RL37112
CR-09-037	18233	481.15	482.15	1.00	consecutive	5-10% quartz carbonate fracture filling and veining in pillowed basalt	19	RL37112
CR-09-037	18234	482.15	483.08	0.93	consecutive	5-10% quartz carbonate fracture filling and veining in pillowed basalt	15	RL37112
CR-09-037	18235	533.50	534.00	0.50	not consecutive	Blank Sample: Massive siliceous basalt with few very small quartz- carbonate veins and NIL sulphides	<5	RL37112
CR-09-037	18236	483.08	483.38	0.30	not consecutive	MT bearing chl-ser-sil replaced selvage structure in basalt with 02PY 8-10PO	21	RL37112
CR-09-037	18237	483.38	484.00	0.62	consecutive	abundant quartz-carbonate fracture filling and veining in pillowed basalt containing trace PY in fractures and 01PO replacement in whispy matrix replacement	<5	RL37112
CR-09-037	18238	484.00	485.00	1.00	consecutive	abundant quartz-carbonate fracture filling and veining in pillowed basalt containing trace PY in fractures and 01PO replacement in whispy matrix replacement	12	RL37112
CR-09-037	18239	485.00	485.30	0.30	consecutive	trace sulphides in strongly qcb-bt altered contact in Basalt adjacent I2E dyke	13	RL37112
CR-09-037	18240	485.30	485.80	0.50	consecutive	beige-brown coloured intrusive dyke with trace sulphides	33	RL37112
CR-09-037	18241	485.80	486.15	0.35	consecutive	beige-brown coloured qtz-cb-tml veined intrusive dyke with trace sulphides	<5	RL37112
CR-09-037	18242	486.15	487.00	0.85	consecutive	Contact Wing Sample: quartz-carbonate fracture filling and veins in basalt (no pillows), NIL sulphides	52	RL37112
CR-09-037	18243	487.00	488.00	1.00	consecutive	sil-qcb-(bt) altered basalt with no pillows	7760	RL37112
CR-09-037	18244	488.00	488.55	0.55	consecutive	massive white quartz-carbonate blowout in Basalt, NIL sulphides	32	RL37112
CR-09-037	18245	488.55	490.00	1.45	consecutive	5-10% QCB veining In sil (02-05% silica) Basalt, NIL sulphides	5	RL37112
CR-09-037	18246	490.00	491.00	1.00	consecutive	5-10% QCB veining In sil (02-05% silica) Basalt, NIL sulphides	<5	RL37112
CR-09-037	18247	491.00	492.00	1.00	consecutive	5-10% QCB veining In 05sil-03act-(bt) Basalt, NIL sulphides	130	RL37112

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-037	18248	492.00	493.00	1.00	consecutive	Wing Sample siliceous (10% silica) massive Basalt with few (<5%) quartz-carbonate fracture filling, NIL sulphides	<5	RL37112
CR-09-037	18249	493.00	493.50	0.50	consecutive	Wing Sample siliceous (10% silica) massive Basalt with few (<5%) quartz-carbonate fracture filling, one shallow 35degCA quartz vein, NIL sulphides	<5	RL37112
CR-09-037	18250	0.00	0.00	0.00	not consecutive	SI42 1.761ppm Au	1690	RL37112
CR-09-037	18251	493.50	495.00	1.50	not consecutive	Infill Sample in sil (10%) basalt with 5% quartz-carbonate veins, trace sulphides	<5	RL37112
CR-09-037	18252	495.00	496.00	1.00	consecutive	Infill Sample in sil (10%) basalt with 5% quartz-carbonate veins, trace sulphides	<5	RL37112
CR-09-037	18253	496.00	497.00	1.00	consecutive	Infill Sample in sil (10%) basalt with 5% quartz-carbonate veins, trace sulphides	<5	RL37112
CR-09-037	18254	497.00	498.00	1.00	consecutive	Infill Sample in sil (10%) basalt with 5% quartz-carbonate veins, trace sulphides	11	RL37112
CR-09-037	18255	534.73	535.23	0.50	not consecutive	Blank Sample: 02qcb-01act-10sil Basalt, NIL sulphides	<5	RL37112
CR-09-037	18256	498.00	499.00	1.00	not consecutive	10sil-05act-05qcb-01bt-05chl fracture healed basalt with trace sulphides	58	RL37112
CR-09-037	18257	499.00	500.00	1.00	consecutive	10sil-05act-05qcb-01bt-05chl fracture healed basalt with trace sulphides	<5	RL37112
CR-09-037	18258	500.00	501.00	1.00	consecutive	10sil-05act-05qcb-01bt-05chl fracture healed basalt with trace sulphides	<5	RL37112
CR-09-037	18259	501.00	502.00	1.00	consecutive	hb-chl-qtz-cb pillowed quartz veined (20degCA) Basalt, trace sulphides	<5	RL37112
CR-09-037	18260	502.00	503.00	1.00	consecutive	hb-chl-qtz-cb pillowed Basalt, trace sulphides	<5	RL37112
CR-09-037	18261	503.00	504.00	1.00	consecutive	Infill Sample 10hb-05chl-5-10qcb pillowed basalt, NIL sulphides	<5	RL37112
CR-09-037	18262	504.00	505.50	1.50	consecutive	Infill Sample 10hb-05chl-5-10qcb pillowed basalt, NIL sulphides	<5	RL37112
CR-09-037	18263	505.50	506.75	1.25	consecutive	Wing Sample 05hb-05chl-02bt-01qcb massive Basalt, NIL sulphides	<5	RL37112
CR-09-037	18264	506.75	507.24	0.49	consecutive	Wing Sample 05hb-05chl-02bt-05qcb massive Basalt, NIL sulphides in guartz carbonate within contact zone	<5	RL37112
CR-09-037	18265	507.24	507.98	0.74	consecutive	grey coloured, bt-01PO-01PY bearing plagioclase phyric Quartz- Monzonite dyke	<5	RL37112
CR-09-037	18266	507.98	508.62	0.64	consecutive	Infill wing between dykes, hb-05bt-10chl-qcb Basalt	<5	RL37112
CR-09-037	18267	508.62	509.70	1.08	consecutive	grey coloured, bt-(PO-PY) bearing plagioclase phyric Quartz- Monzonite dyke, trace sulphide mineralization	7	RL37112

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-037	18268	509.70	510.76	1.06	consecutive	grey coloured, bt-(PO-PY) bearing plagioclase phyric Quartz- Monzonite dyke, trace sulphide mineralization	<5	RL37112
CR-09-037	18269	510.76	511.50	0.74	consecutive	Sheared Basalt contact with above dyke, moderate carbonate altered with 05bt-10chl	<5	RL37112
CR-09-037	18270	0.00	0.00	0.00	not consecutive	SK43 4.086ppm Au	4040	RL37112
CR-09-037	18271	511.50	512.54	1.04	not consecutive	05hb-03bt-5-10chl-10qcb Basalt with trace sulphides QCBV	25	RL37112
CR-09-037	18272	512.54	513.54	1.00	consecutive	05hb-03bt-5-10chl-10qcb Basalt with trace sulphides QCBV	6	RL37112
CR-09-037	18273	513.54	514.00	0.46	consecutive	planar sheared 05PO-01PY bearing 10bt-10chl altered Basalt pillow selvage with whispy sulphides	99	RL37112
CR-09-037	18274	514.00	515.00	1.00	consecutive	05hb-03bt-5-10chl-10qcb Basalt with trace sulphides QCBV	22	RL37112
CR-09-037	18275	542.06	542.56	0.50	not consecutive	massive sil Basalt, NIL sulphides	<5	RL37112
CR-09-037	18276	515.00	516.50	1.50	not consecutive	05hb-03bt-5-10chl-10qcb Basalt with trace sulphides QCBV	6	RL37112
CR-09-037	18277	516.50	518.00	1.50	consecutive	05hb-03bt-5-10chl-10qcb Basalt with trace sulphides QCBV	11	RL37112
CR-09-037	18278	518.00	519.50	1.50	consecutive	05hb-03bt-5-10chl-10qcb Basalt with trace sulphides QCBV	26	RL37112
CR-09-037	18279	519.50	521.00	1.50	consecutive	05hb-03bt-5-10chl-10qcb Basalt with trace sulphides QCBV	<5	RL37112
CR-09-037	18280	521.00	521.75	0.75	consecutive	05hb-03bt-5-10chl-10qcb Basalt with trace sulphides QCBV	<5	RL37112
CR-09-037	18281	521.75	522.00	0.25	consecutive	80% quartz carbonate selvage replacement in pillowed basalt trace PO>PY	<5	RL37112
CR-09-037	18282	522.00	522.75	0.75	consecutive	wing to selvages mainly quartz-amygdular pillow core with 5-10% QCB sil-act-chl-(bt)-cb altered	<5	RL37112
CR-09-037	18283	522.75	523.25	0.50	consecutive	quartz-carbonate replacement selvages in pillowed basalt with trace PO>PY	<5	RL37112
CR-09-037	18284	523.25	524.00	0.75	consecutive	quartz-carbonate replacement selvages in pillowed basalt with trace PO>PY	<5	RL37112
CR-09-037	18285	524.00	525.00	1.00	consecutive	quartz-carbonate replacement selvages in pillowed basalt with 01% PO>PY	<5	RL37112
CR-09-037	18286	525.00	525.75	0.75	consecutive	quartz-carbonate replacement selvages in pillowed basalt with trace PO>PY	26	RL37112
CR-09-037	18287	525.75	526.25	0.50	consecutive	quartz-carbonate replacement selvages in pillowed basalt with 01% PO>PY	10	RL37112
CR-09-037	18288	526.25	527.25	1.00	consecutive	massive quartz-carbonate replacement with 01PO	13	RL37112
CR-09-037	18289	527.25	527.75	0.50	consecutive	wing to selvages mainly quartz-amygdular pillow core with 5-10% QCB sil-act-chl-(bt)-cb altered	13	RL37112
CR-09-037	18290	0.00	0.00	0.00	not consecutive	SI42 1.761ppm Au	1570	RL37112
CR-09-037	18291	527.75	528.90	1.15	not consecutive	05qcb-5-10sil-05chl-01bt-05cal pillowed basalt with trace sulphides	19	RL37112
CR-09-037	18292	528.90	529.30	0.40	consecutive	abundant 15%qcb sil-chl-bt altered pillowed core NIL sulphides	24	RL37112

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-037	18293	529.30	530.80	1.50	consecutive	massive basalt with minor <05 quartz-carbonate veins, NIL sulphides	6	RL37112
CR-09-037	18294	537.00	537.80	0.80	not consecutive	Wing Sample: sil-act-(chl) massive basalt with 05qcb sub CA and 90degCA, NIL sulphides	7	RL37112
CR-09-037	18295	543.00	543.50	0.50	not consecutive	Blank: massive sil-chl basalt, NIL sulphides	6	RL37112
CR-09-037	18296	537.80	538.63	0.83	not consecutive	massive irregular sub CA quartz-carbonate veins (+ one 30degCA cross-cutting qtz-cb veins) in pillowed Basalt	42	RL37112
CR-09-037	18297	538.63	539.63	1.00	consecutive	Wing Sample: sil-act-(chl) massive basalt with 05qcb sub CA and 90degCA, NIL sulphides	7	RL37112
CR-09-037	18298	549.00	550.00	1.00	not consecutive	Wing Sample: 05qcb veined basalt adjacent vein swarm	10	RL37112
CR-09-037	18299	550.00	550.68	0.68	consecutive	01PO bearing, 20% quartz-carbonate vein overprinting stockwork in 05bt-10chl bearing Basalt with one I2E dyke 12cm wide at 500m depth with 80degCA contacts	7	RL37112
CR-09-037	18300	550.68	551.36	0.68	consecutive	01PO bearing, 20% quartz-carbonate vein overprinting stockwork in 05bt-10chl bearing Basalt	27	RL37112
CR-09-037	18301	551.36	552.36	1.00	consecutive	05 qtz-cb in Basalt wing to quartz-carbonate stockwork trace sulphides	33	RL37112
CR-09-037	18302	552.36	553.88	1.52	consecutive	Infill Wing Basalt 05 qtz-cb with trace sulphides	51	RL37112
CR-09-037	18303	553.88	555.19	1.31	consecutive	Infill Wing Basalt 10 qtz-cb with one 30degCA QV and trace sulphides	12	RL37112
CR-09-037	18304	555.19	556.19	1.00	consecutive	Bt-bearing Quartz Monzonite dyke with fine grained 01PO	11	RL37112
CR-09-037	18305	556.19	557.19	1.00	consecutive	Bt-bearing Quartz Monzonite dyke with fine grained 01PO	49	RL37112
CR-09-037	18306	557.19	558.58	1.39	consecutive	Bt-bearing Quartz Monzonite dyke with fine grained 01PO with occasional qtz-chl veins at 1cm scale containing trace sulphides	420	RL37112
CR-09-037	18307	558.58	559.50	0.92	consecutive	sheared basalt contact with quartz monzonite at lower contact of dyke	17	RL37112
CR-09-037	18308	559.50	561.00	1.50	consecutive	abundant 10-15% quartz-carbonate vein overprinting in amygdular basalt, NIL sulphides	6	RL37112
CR-09-037	18309	561.00	562.00	1.00	consecutive	abundant 10-15% quartz-carbonate vein overprinting in amygdular basalt, NIL sulphides	7	RL37112
CR-09-037	18310	0.00	0.00	0.00	not consecutive	OxK69 3.583ppm	3180	RL37112
CR-09-037	18311	562.00	563.00	1.00	not consecutive	abundant 10-15% quartz-carbonate vein overprinting in amygdular basalt, NIL sulphides	62	RL37112
CR-09-037	18312	563.00	564.00	1.00	consecutive	abundant 10-15% quartz-carbonate vein overprinting in amygdular basalt, NIL sulphides	9	RL37112
CR-09-037	18313	564.00	565.00	1.00	consecutive	abundant 10-15% quartz-carbonate vein overprinting in amygdular basalt, NIL sulphides	12	RL37112

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-037	18314	565.00	566.00	1.00	consecutive	abundant 10-15% quartz-carbonate vein overprinting in amygdular basalt, NIL sulphides	8	RL37112
CR-09-037	18315	580.45	580.95	0.50	not consecutive	Blank	14	RL37112
CR-09-037	18316	566.00	567.00	1.00	not consecutive	abundant 10-15% quartz-carbonate vein overprinting in amygdular basalt, NIL sulphides	1040	RL37112
CR-09-037	18317	567.00	568.00	1.00	consecutive	abundant 10-15% quartz-carbonate vein overprinting in amygdular basalt, NIL sulphides	281	RL37112
CR-09-037	18318	568.00	569.00	1.00	consecutive	5-10% quartz-carbonate vein overprinting in massive basalt, NIL sulphides	688	RL37112
CR-09-037	18319	569.00	570.00	1.00	consecutive	5-10% quartz-carbonate vein overprinting in massive basalt, NIL sulphides	26	RL37112
CR-09-037	18320	585.00	586.00	1.00	not consecutive	abundant 10-15% quartz-carbonate vein overprinting in amygdular basalt, NIL sulphides	17	RL37112
CR-09-037	18321	586.00	587.00	1.00	consecutive	abundant 10-15% quartz-carbonate vein overprinting in amygdular basalt, NIL sulphides	<5	RL37112
CR-09-037	18322	587.00	588.00	1.00	consecutive	abundant 10-15% quartz-carbonate vein overprinting in amygdular basalt, NIL sulphides	7	RL37112
CR-09-037	18323	588.00	589.00	1.00	consecutive	abundant 10-15% quartz-carbonate vein overprinting in amygdular basalt, NIL sulphides	31	RL37112
CR-09-037	18324	589.00	590.00	1.00	consecutive	abundant 10-15% quartz-carbonate vein overprinting in amygdular basalt, NIL sulphides	28	RL37112
CR-09-037	18325	590.00	591.00	1.00	consecutive	abundant 10-15% quartz-carbonate vein overprinting in amygdular basalt, NIL sulphides	<5	RL37112
CR-09-037	18326	591.00	592.00	1.00	consecutive	abundant 10-15% quartz-carbonate vein overprinting in amygdular basalt, NIL sulphides	<5	RL37112
CR-09-037	18327	592.00	593.00	1.00	consecutive	abundant 10-15% quartz-carbonate vein overprinting in amygdular basalt, NIL sulphides	9	RL37112
CR-09-037	18328	593.00	594.25	1.25	consecutive	abundant 10-15% quartz-carbonate vein overprinting in amygdular basalt, NIL sulphides	301	RL37112
CR-09-037	18329	594.25	595.25	1.00	consecutive	sil-ser-(bt) bleached altered trAPY and 01PO bearing Qtz- Monzonite	<5	RL37112
CR-09-037	18330	0.00	0.00	0.00	not consecutive	SI42 1.761ppm Au	1950	RL37166
CR-09-037	18331	595.25	596.25	1.00	not consecutive	sil-ser-(bt) bleached altered trAPY and 01PO bearing Qtz- Monzonite with one massive white fractured and sulphide barren atz-carb vein	577	RL37166R
CR-09-037	18332	596.25	597.25	1.00	consecutive	sil-ser-(bt) bleached altered trAPY and 01PO bearing Qtz- Monzonite with one massive white fractured and sulphide barren qtz-carb vein	350	RL37166R

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-037	18333	597.25	598.25	1.00	consecutive	sil-ser-(bt) bleached altered trAPY and 01PO bearing Qtz- Monzonite with one massive white fractured and sulphide barren qtz-carb vein	24	RL37166R
CR-09-037	18334	598.25	598.89	0.64	consecutive	sil-ser-(bt) altered quartz-monzonite with one 10cm block of basalt in intrusive	<5	RL37166R
CR-09-037	18335	655.00	655.50	0.50	not consecutive	Blank Sample: minor ser-chl altered fine grained, non-magnetic, NIL sulphide interflow volcanoclastic sediment	6	RL37166R
CR-09-037	18336	598.89	599.78	0.89	not consecutive	Infill Sample: pillowed 08chl-07bt-10qcb basalt NIL sulphides, well foliated at 80degCA	11	RL37166R
CR-09-037	18337	599.78	600.05	0.27	consecutive	grey coloured, 15sil-10ser altered quartz-monzonite with 01PO	7	RL37166R
CR-09-037	18338	600.05	601.13	1.08	consecutive	abundant 10-15% quartz-carbonate veins in chl-bt-qcb amygdular basalt, NIL sulphides	21	RL37166R
CR-09-037	18339	601.13	601.85	0.72	consecutive	abundant 10-15% quartz-carbonate veins in chl-bt-qcb amygdular basalt, NIL sulphides and occasionally broad milky white 5cm QCB	<5	RL37166R
CR-09-037	18340	601.85	603.00	1.15	consecutive	< 1cm width irregular quartz-carb-chl veins in massive Diorite Dyke, weakly magnetic, fine grained bt-bearing Diorite, PY-bearing dyke	174	RL37166R
CR-09-037	18341	603.00	604.00	1.00	consecutive	< 1cm width irregular quartz-carb-chl veins in massive Diorite Dyke, weakly magnetic, fine grained bt-bearing Diorite, PY-bearing dyke	<5	RL37166R
CR-09-037	18342	604.00	604.95	0.95	consecutive	< 1cm width irregular quartz-carb-chl veins in massive Diorite Dyke, weakly magnetic, fine grained bt-bearing Diorite, PY-bearing dyke	<5	RL37166R
CR-09-037	18343	604.95	606.00	1.05	consecutive	08chl-07bt-05sil-10qcb Basalt as above with NIL sulphides	<5	RL37166R
CR-09-037	18344	606.00	607.00	1.00	consecutive	08chl-07bt-05sil-10qcb Basalt as above with NIL sulphides	<5	RL37166R
CR-09-037	18345	607.00	607.75	0.75	consecutive	08chl-07bt-05sil-10qcb Basalt as above with NIL sulphides	<5	RL37166R
CR-09-037	18346	607.75	608.28	0.53	consecutive	08chl-07bt-05sil-10qcb Basalt as above with NIL sulphides and shallow dissmembered quartz veins at contact	<5	RL37166R
CR-09-037	18347	608.28	609.00	0.72	consecutive	grey coloured, 01PO bleby replacement disseminations within largely unaltered Qtz-Monzonite	6	RL37166R
CR-09-037	18348	609.00	610.00	1.00	consecutive	grey coloured, 01PO bleby replacement disseminations within largely unaltered Qtz-Monzonite	124	RL37166R
CR-09-037	18349	610.00	610.70	0.70	consecutive	grey coloured, 01PO bleby replacement disseminations within largely unaltered Qtz-Monzonite	60	RL37166R
CR-09-037	18350	0.00	0.00	0.00	not consecutive	SK43 4.086ppm Au	3650	RL37166R

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-037	18351	610.70	611.70	1.00	not consecutive	grey coloured, 01PO bleby replacement disseminations within largely unaltered Qtz-Monzonite with folded and dismembered 1cm quartz veins	<5	RL37166R
CR-09-037	18352	611.70	612.70	1.00	consecutive	grey coloured, 01PO bleby replacement disseminations within largely unaltered Qtz-Monzonite	<5	RL37166
CR-09-037	18353	612.70	613.00	0.30	consecutive	Infill Wing: green Basalt 10chl-05bt-02qcb between I2E and 12J	39	RL37166
CR-09-037	18354	613.00	613.75	0.75	consecutive	bt-(PO) fine grained Diorite Dyke	<5	RL37166
CR-09-037	18355	649.25	649.75	0.50	not consecutive	Blank: 05ch-05bt bearing fine grained massive, no veins.	<5	RL37166
CR-09-037	18356	613.75	614.25	0.50	not consecutive	Wing Sample to Diorite dyke. 10-15% qcb in amygdular Basalt	7	RL37166
CR-09-037	18357	614.25	615.00	0.75	consecutive	05sil-05chl-03bt-10qcb qtz-amygdular Basalt, NIL sulphides	818	RL37166
CR-09-037	18358	615.00	616.00	1.00	consecutive	shallow qtz-ser vein in sil-chl-bt-qcb amygdular pillowed Basalt, NIL sulphides	21	RL37166
CR-09-037	18359	616.00	617.00	1.00	consecutive	05sil-05chl-03bt-10qcb qtz-amygdular Basalt, NIL sulphides	11	RL37166
CR-09-037	18360	617.00	618.00	1.00	consecutive	abundant 10% qtz-cb fracture filling in 05sil-05chl-03bt-10qcb qtz- amygdular Basalt, NIL sulphides	8	RL37166
CR-09-037	18361	618.00	618.46	0.46	consecutive	abundant 10% qtz-cb fracture filling in 05sil-05chl-03bt-10qcb qtz- amygdular Basalt, NIL sulphides	6	RL37166
CR-09-037	18362	618.46	618.90	0.44	consecutive	<1cm thick irregular 02PO-01CPY-trPY fracture sub CA with qtz- tml-chl-(bt) in pillowed Basalt	16	RL37166
CR-09-037	18363	618.90	619.40	0.50	consecutive	Wing Sample: 05sil-05chl-03bt-10qcb qtz-amygdular Basalt, NIL sulphides	6	RL37166
CR-09-037	18364	619.40	620.11	0.71	consecutive	Abundant (10%) qtz-cb fracture filling and veining in pillowed basalt, NIL sulphides	9	RL37166
CR-09-037	18365	620.11	621.11	1.00	consecutive	Abundant (10%) qtz-cb fracture filling and veining in pillowed basalt, NIL sulphides	<5	RL37166
CR-09-037	18366	621.11	621.72	0.61	consecutive	bt-(PO) bearing fine grained Diorite Dyke	<5	RL37166
CR-09-037	18367	621.72	623.00	1.28	consecutive	abundant qtz-cb fracture filling in 10sil-05chl massive Basalt	<5	RL37166
CR-09-037	18368	623.00	624.00	1.00	consecutive	05qcb-10sil-05chl noBT massive Basalt	8	RL37166
CR-09-037	18369	633.25	634.20	0.95	not consecutive	Wing Sample: few qtz-cb veins in Basalt	50	RL37166
CR-09-037	18370	0.00	0.00	0.00	not consecutive	OxK69 3.583ppm	3560	RL37166
CR-09-037	18371	634.20	634.50	0.30	not consecutive	PO-MT-bt-qcb bearing sheared narrow Basalt wing at upper Quartz Monzonite contact	107	RL37166
CR-09-037	18372	634.50	635.50	1.00	consecutive	foliated 70degCA 01PO-03bt bearing sil-ser altered Quartz Monzonite	163	RL37166

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-037	18373	635.50	636.50	1.00	consecutive	foliated 70degCA 01PO-03bt bearing sil-ser altered Quartz Monzonite	480	RL37166
CR-09-037	18374	636.50	637.50	1.00	consecutive	foliated 70degCA 01PO-03bt bearing sil-ser altered Quartz Monzonite	1250	RL37166
CR-09-037	18375	649.75	650.25	0.50	not consecutive	Blank Sample: massive 05chl-05bt bearing Basalt	130	RL37166
CR-09-037	18376	637.50	638.12	0.62	not consecutive	foliated 70degCA 01PO-03bt bearing sil-ser altered Quartz Monzonite	298	RL37166
CR-09-037	18377	638.12	639.00	0.88	consecutive	Wing Sample: trace quartz-carbonate bearing Basalt, NIL sulphides	86	RL37166
CR-09-037	18378	639.00	640.00	1.00	consecutive	flow basalt 05chl-05bt-02sil, trace quartz-carbonate, trace sulphides	5	RL37166
CR-09-037	18379	640.00	641.00	1.00	consecutive	flow basalt 05chl-05bt-02sil, trace quartz-carbonate, trace sulphides	<5	RL37166
CR-09-037	18380	641.00	642.08	1.08	consecutive	flow basalt 05chl-05bt-02sil, trace quartz-carbonate, trace sulphides	20	RL37166
CR-09-037	18381	642.08	642.48	0.40	consecutive	very fine grained Diabase dyke, non-magnetic, NIL sulphides	<5	RL37166
CR-09-037	18382	642.48	643.48	1.00	consecutive	flow basalt 05chl-05bt-02sil, trace quartz-carbonate, trace sulphides	<5	RL37166
CR-09-037	18383	643.48	644.48	1.00	consecutive	flow basalt 05chl-05bt-02sil, trace quartz-carbonate, trace sulphides	<5	RL37166
CR-09-037	18384	644.48	645.48	1.00	consecutive	dark grey coloured, moderate 10-15bt-05chl-02qcb bearing, well foliated Basalt with few minor trace sulphides	17	RL37166
CR-09-037	18385	645.48	646.48	1.00	consecutive	dark grey coloured, moderate 10-15bt-05chl-02qcb bearing, well foliated Basalt with few minor trace sulphides	25	RL37166
CR-09-037	18386	646.48	647.48	1.00	consecutive	dark grey coloured, moderate 10-15bt-05chl-02qcb bearing, well foliated Basalt with few minor trace sulphides	201	RL37166
CR-09-037	18387	647.48	648.48	1.00	consecutive	dark grey coloured, moderate 10-15bt-05chl-02qcb bearing, well foliated Basalt with few minor trace sulphides	22	RL37166
CR-09-037	18388	648.48	649.25	0.77	consecutive	dark grey coloured, moderate 10-15bt-05chl-02qcb bearing, well foliated Basalt with few minor trace sulphides	11	RL37166
CR-09-037	18389	650.25	651.15	0.90	not consecutive	Infill Sample: 05bt-05chl-05sil altered basalt with trace sulphides	11	RL37166
CR-09-037	18390	0.00	0.00	0.00	not consecutive	SI42 1.761ppm Au	1790	RL37166
CR-09-037	18391	651.89	652.38	0.49	not consecutive	grey siliceous quartz monzonite with minor -0.5cm shallow quartz vein and trace sulphides	15	RL37166
CR-09-037	18392	652.38	653.08	0.70	consecutive	few minor 3:1 attenuated quartz carbonate amydular bt-chl-carb altered Basalt with minor contact shearing zone at Gabbro	29	RL37166

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-037	18393	653.08	654.00	0.92	consecutive	massive, very fine grained 10ser-05chl altered volcanoclastic interflow sediment	11	RL37166
CR-09-037	18394	654.00	655.00	1.00	consecutive	massive, very fine grained 10ser-05chl altered volcanoclastic interflow sediment	6	RL37166
CR-09-037	18395	655.50	656.08	0.58	not consecutive	Blank Sample: 15chl-05sil massive volcanosedimentary interflow sediments, NIL sulphides	26	RL37166
CR-09-037	18396	656.08	657.00	0.92	consecutive	blebby 01PO in medium grained Qtz-Monzonite intrusive groundmass and in dismembered bull quartz-carb veins at upper dyke contact	4220	RL37166
CR-09-037	18397	657.00	658.00	1.00	consecutive	<5% shallow 10-25degCA quartz-carb-chl-(PO) veins in plagioclase phyric Quartz-Monzonite	3890	RL37166
CR-09-037	18398	658.00	658.50	0.50	consecutive	01PO in plagioclase phyric Quartz-Monzonite	19	RL37166
CR-09-037	18399	658.50	659.50	1.00	consecutive	chl-bt bearing, medium grained, sheared upper contact of Gabro intrusive, NIL sulphides	9	RL37166
CR-09-037	18400	659.50	660.50	1.00	consecutive	05sil-15chl-05bt-05carb altered fine to medium grained weakly sheared continuation of contact zone in Gabbro	14	RL37166
CR-09-037	18401	660.50	661.50	1.00	consecutive	05sil-15chl-05bt-05carb altered fine to medium grained weakly sheared continuation of contact zone in Gabbro	<5	RL37166
CR-09-037	18402	661.50	662.50	1.00	consecutive	chl-bt bearing, medium grained, sheared upper contact of Gabro intrusive, NIL sulphides	14	RL37166
CR-09-037	18403	651.15	651.89	0.74	not consecutive	(Out of series sample) 05sil-05chl trace sulphide bearing Basalt Infill sample	11	RL37166
CR-09-037	18404	665.65	666.65	1.00	not consecutive	Wing Sample: NIL sulphide medium grained Gabbro	7	RL37166
CR-09-037	18405	666.65	667.00	0.35	consecutive	Character Sample: 05sil-05chl altered Gabbro with abundant irregular narrow hairline to 1cm thick fracture filling quartz- carbonate containing trace PO>PY	9	RL37166
CR-09-037	18406	667.00	668.00	1.00	consecutive	Wing Sample: NIL sulphide medium grained Gabbro	<5	RL37166
CR-09-037	18407	673.28	674.28	1.00	not consecutive	Wing Sample: chloritized medium to coarse grained mafic minerals (20%HB) and 10carb in Gabbro	12	RL37166
CR-09-037	18408	674.28	675.28	1.00	consecutive	10sil-10chl altered gabbro with contact alteration from adjacent quartz-monzonite, NIL sulphides	<5	RL37166
CR-09-037	18409	675.28	675.68	0.40	consecutive	abundant qtz-cb veins in bleached sil-ser, creamy brown wet coloured quartz monzonite dyke with trace PO	<5	RL37166
CR-09-037	18410	0.00	0.00	0.00	not consecutive	OxK69 3.583ppm	4000	RL37166
CR-09-037	18411	675.68	675.98	0.30	not consecutive	very strongly sil-ser altered quartz-mononite with bull qtz-cb veins as noted similarly above, trace PO	20	RL37166
CR-09-037	18412	675.98	676.58	0.60	consecutive	very strongly sil-ser altered quartz-mononite with bull qtz-cb veins as noted similarly above, trace PO	19	RL37166

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-037	18413	676.58	677.07	0.49	consecutive	grey coloured 05sil-05ser altered quartz-monzonite, NIL sulphides	19	RL37166
CR-09-037	18414	677.07	678.00	0.93	consecutive	20% chlorite contact altered Gabbro wing, moderately foliated 90degCA, with chloritized HB replacement pervasive into wall rock	6	RL37166
CR-09-037	18415	683.00	683.50	0.50	not consecutive	Blank Sample: non-magnetic, green coloured, fine grained, gabbroic intrusive with trace local PY	14	RL37166
CR-09-037	18416	678.00	679.00	1.00	not consecutive	Gabbro with similar 10chl alteration to mafic crystals (HB-act) as above, but less intense, NIL sulphides	<5	RL37166
CR-09-037	18417	692.00	693.00	1.00	not consecutive	Character Sample: 05qcb in Gabbro, NIL sulphides	50	RL37166
CR-09-037	18418	693.00	694.00	1.00	consecutive	Character Sample: 05qcb in Gabbro, NIL sulphides with minor sub CA shearing with QCB defining weak shear fabric	<5	RL37166
CR-09-037	18419	694.00	695.11	1.11	consecutive	Character Sample: 05qcb in Gabbro, NIL sulphides	22	RL37166
CR-09-037	18420	695.11	696.00	0.89	consecutive	Character Sample: grey quartz-monzonite with trace PO	<5	RL37166
CR-09-037	18421	696.00	697.75	1.75	consecutive	Gabbro at 80degCA sheared contact with qtz-monzonite, NIL sulphides	<5	RL37166
CR-09-037	18422	697.75	698.00	0.25	consecutive	Unsheared medium grained actinolite bearing Gabbro, NIL sulphides	7	RL37166
CR-09-037	18423	704.12	705.12	1.00	not consecutive	Wing Sample: medium grained, green Gabbro, NIL sulphides	17	RL37166
CR-09-037	18424	705.12	705.56	0.44	consecutive	Character Sample: Gabbro with qtz-cb-(tml)-CPY 10degCA shallow vein with 1cm x1cm bleb of CPY associated with vein	9	RL37166
CR-09-037	18425	705.56	706.56	1.00	consecutive	Wing Sample: medium grained, green Gabbro, NIL sulphides	<5	RL37166
CR-09-037	18426	709.57	710.57	1.00	not consecutive	Wing Sample: medium grained, green Gabbro, NIL sulphides	<5	RL37166
CR-09-037	18427	710.57	710.82	0.25	consecutive	Character Sample: one irregular, anastamozing, very narrow qtz- carb-albite-PO-PY bearing vein in Gabbro	9	RL37166
CR-09-037	18428	710.82	711.82	1.00	consecutive	Wing Sample: medium grained, green Gabbro, NIL sulphides	<5	RL37166
CR-09-037	18429	714.88	715.88	1.00	not consecutive	Wing Sample: medium grained, green Gabbro, NIL sulphides	8	RL37166
CR-09-037	18430	0.00	0.00	0.00	not consecutive	SK43 4.086ppm Au	4370	RL37166
CR-09-037	18431	715.88	716.25	0.37	not consecutive	narrow minor sheared horizon in Gabbro with 25chl-15qcb and very fine disseminations of 01PO	104	RL37166
CR-09-037	18432	716.25	717.05	0.80	consecutive	Infill Wing Sample: poorly foliated 65degCA NIL sulphide Gabbro	<5	RL37166
CR-09-037	18433	717.05	717.50	0.45	consecutive	narrow minor sheared horizon in Gabbro with 25chl-15qcb and very fine disseminations of 01PO	10	RL37166
CR-09-037	18434	717.50	717.89	0.39	consecutive	Wing Sample: very minor sheared wing in Gabbro, NIL sulphides	70	RL37166
CR-09-037	18435	717.89	718.89	1.00	consecutive	Continuous sampling from above for gabbro blank, NIL sulphides	19	RL37166

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-037	18436	736.81	737.81	1.00	not consecutive	Wing Sample: medium grained, green Gabbro, NIL sulphides with minor irregular 03qcb	19	RL37166
CR-09-037	18437	737.81	738.81	1.00	consecutive	minor Gabbroic sheared intrusive with 10chl-02bt-08qcb, NIL sulphides	22	RL37166
CR-09-037	18438	738.81	739.81	1.00	consecutive	Wing Sample: medium grained, green Gabbro, NIL sulphides with minor irregular 03qcb	26	RL37166
CR-09-037	18439	739.81	741.00	1.19	consecutive	Infill Sample: 10chl-05bt-(2qcb) Gabbro between shearing and Lamprophyric Mafic Dyke	155	RL37166
CR-09-037	18440	741.00	742.00	1.00	consecutive	Infill Sample: 10chl-05bt-5qcb Gabbro between shearing and 40cm Lamprophyric Mafic Dyke with 1cm thick qtz-carb vein	178	RL37166
CR-09-037	18441	742.00	743.00	1.00	consecutive	Infill Sample: 10chl-08bt Gabbro between shearing and Lamprophyric Mafic Dyke containing one very narrow 10cm I2E dyke, NIL sulphides	20	RL37166
CR-09-037	18442	743.00	744.00	1.00	consecutive	Infill Sample: 10chl-05bt-(2qcb) Gabbro between shearing and Lamprophyric Mafic Dyke, trace PY	<5	RL37166
CR-09-037	18443	744.00	745.00	1.00	consecutive	Infill Sample: 10chl-05bt-(2qcb) Gabbro between shearing and Lamprophyric Mafic Dyke, trace PY	15	RL37166
CR-09-037	18444	745.00	746.00	1.00	consecutive	Infill Sample: 10chl-05bt-(2qcb) Gabbro between shearing and Lamprophyric Mafic Dyke, trace PY	18	RL37166
CR-09-037	18445	746.00	746.65	0.65	consecutive	Gabbro at contact with Lamprophyric Dyke	1280	RL37166
CR-09-037	18446	746.65	747.65	1.00	consecutive	5-10-%BT and 2-5% carb bearing, massive grey coloured, Lamprophyric Mafic Dyke with numerous low-angle bleached and healed fractures and trace PY	63	RL37166
CR-09-037	18447	747.65	748.15	0.50	consecutive	Lamp. Dyke as above with trace APY-PO-(PY)	113	RL37166
CR-09-037	18448	748.15	748.78	0.63	consecutive	Lamp. Dyke as above without low angle fractures, trPY	98	RL37166
CR-09-037	18449	748.78	749.02	0.24	consecutive	trace APY-PO-(PY) in Narrow <0.25m sheared Gabbro, 90% replaced by biotite (70%) and qtz-carb (20%)	44	RL37166
CR-09-037	18450	0.00	0.00	0.00	not consecutive	SI42 1.761ppm Au	1790	RL37166
CR-09-037	18451	749.02	749.67	0.65	not consecutive	bt-cb bearing mafic lamprophyre with bt alteration halo and trace sulphides	19	RL37166
CR-09-037	18452	749.67	749.92	0.25	consecutive	Sheared completely 30bt-70qcb replaced Gabbro	<5	RL37166
CR-09-037	18453	749.92	751.00	1.08	consecutive	bt-carb bearing massive lamprophyric dyke	7	RL37166
CR-09-037	18454	751.00	751.94	0.94	consecutive	bt-cb bearing mafic lamprophyre with trace sulphides	18	RL37166
CR-09-037	18455	759.00	759.50	0.50	not consecutive	Blank Sample: Massive Green Gabbro	9	RL37166
CR-09-037	18456	751.94	752.22	0.28	not consecutive	Sheared Gabbro with 25qcb-50bt-10chl-trace sulphide replacement	<5	RL37166
CR-09-037	18457	752.22	753.00	0.78	consecutive	Sheared Gabbro with 25qcb-50bt-10chl-trace sulphide replacement	55	RL37166

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-037	18458	753.00	753.85	0.85	consecutive	massive green block of Gabbro with <05qcb, NIL sulphides	<5	RL37166
CR-09-037	18459	753.85	755.11	1.26	consecutive	bt-cb lamprophyric dyke with trace sulphides	<5	RL37166
CR-09-037	18460	755.11	756.20	1.09	consecutive	Mixed interfingered contact zone lamp. Dyke and gabbro intrusive	<5	RL37166
CR-09-037	18461	756.20	757.50	1.30	consecutive	Infill Wing: Massive green Gabbro, NIL sulphides	20	RL37166
CR-09-037	18462	757.50	759.00	1.50	consecutive	Infill Wing: Massive green Gabbro, NIL sulphides	16	RL37166
CR-09-037	18463	759.00	760.50	1.50	consecutive	Infill Wing: Massive green Gabbro, NIL sulphides	61	RL37166
CR-09-037	18464	760.50	761.37	0.87	consecutive	Infill Wing: Massive green Gabbro, NIL sulphides	18	RL37166
CR-09-037	18465	761.37	761.96	0.59	consecutive	Sheared Gabbro, strongly 50bt-15-(20)qcb-10chl replacement alteration. One Footwall milky white quartz vein (10cm thick) with trace PY	89	RL37166
CR-09-037	18466	761.96	762.50	0.54	consecutive	as above bt-cb lamprophyric dyke with trace PY and dismembered 10% qtz-carb veins	<5	RL37166
CR-09-037	18467	762.50	763.40	0.90	consecutive	as above 10bt-25cb-10qcb lamprophyric dyke with trace PY	26	RL37166
CR-09-037	18468	763.40	763.70	0.30	consecutive	sil-ser altered Quartz Monzonite with very narrow sheared gabbro block containing 60-bt-20chl-15qcb, NIL sulphides	121	RL37166
CR-09-037	18469	763.70	765.00	1.30	consecutive	grey coloured, 10sil-10ser-02-(05)bt altered qtz-monzonite with trace PO	30	RL37166
CR-09-037	18470	0.00	0.00	0.00	not consecutive	OxK69 3.583ppm	3400	RL37166
CR-09-037	18471	765.00	766.00	1.00	not consecutive	grey coloured, 10sil-10ser-02-(05)bt altered qtz-monzonite with trace PO	54	RL37166
CR-09-037	18472	766.00	767.00	1.00	consecutive	grey coloured, 10sil-10ser-02-(05)bt altered qtz-monzonite with trace PO	44	RL37166
CR-09-037	18473	767.00	768.00	1.00	consecutive	grey coloured, 10sil-10ser-02-(05)bt altered qtz-monzonite with trace PO	85	RL37166
CR-09-037	18474	768.00	769.00	1.00	consecutive	grey coloured, 10sil-10ser-02-(05)bt altered qtz-monzonite with trace PO	356	RL37166
CR-09-037	18475	782.00	782.50	0.50	not consecutive	Blank Sample: Massive Gabbro, NIL sulphides	143	RL37166
CR-09-037	18476	769.00	770.00	1.00	not consecutive	grey coloured, 10sil-10ser-02-(05)bt altered qtz-monzonite with trace PO	27	RL37166
CR-09-037	18477	770.00	770.63	0.63	consecutive	grey coloured, 10sil-10ser-02-(05)bt altered qtz-monzonite with trace PO	49	RL37166
CR-09-037	18478	770.63	770.89	0.26	consecutive	narrow Gabbro wallrock, NIL sulphides	31	RL37166
CR-09-037	18479	770.89	771.54	0.65	consecutive	grey coloured, 10sil-10ser-02-(05)bt altered qtz-monzonite with trace PO	38	RL37166
CR-09-037	18480	771.54	772.54	1.00	consecutive	Wing Sample: massive, medium grained, Gabbro, NIL sample	23	RL37185
CR-09-037	18481	798.43	799.43	1.00	not consecutive	Wing Sample: massive, medium grained, Gabbro, NIL sample	49	RL37185

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-037	18482	799.43	800.43	1.00	consecutive	Sheared Gabbro with undulating, whispy, folded fabric at 47degCA (shallow CA) containing 03carb-(qtz) and 20% light green chlorite. NIL sulphides.	32	RL37185
CR-09-037	18483	800.43	801.31	0.88	consecutive	Minor planar shear fabric with 10bt-20chl-10qcb in Gabbro, NIL sulphides	53	RL37185
CR-09-037	18484	801.31	802.31	1.00	consecutive	Minor planar shear fabric (66degCA) with 10bt-20chl-10qcb in Gabbro, NIL sulphides	26	RL37185
CR-09-037	18485	802.31	803.00	0.69	consecutive	Minor planar shear fabric (66degCA) with 10bt-20chl-10qcb in Gabbro, NIL sulphides	85	RL37185
CR-09-037	18486	803.00	803.60	0.60	consecutive	Minor planar shear fabric (66degCA) with 10bt-20chl-10qcb in Gabbro, NIL sulphides	15	RL37185
CR-09-037	18487	803.60	804.60	1.00	consecutive	Wing Sample: massive, medium grained, Gabbro, NIL sample	20	RL37185
CR-09-037	18488	825.00	826.00	1.00	not consecutive	Wing Sample: massive, medium grained, Gabbro, NIL sample	37	RL37185
CR-09-037	18489	826.00	826.49	0.49	consecutive	Wing Sample: fine grained Gabbro above interflow seds, NIL sulphides	13	RL37185
CR-09-037	18490	0.00	0.00	0.00	not consecutive	SK43 4.086ppm Au	3960	RL37185
CR-09-037	18491	826.49	827.08	0.59	not consecutive	mixed fine and quartz amygdular cobble sized interflow sediments within 10chl Basaltic volcanosediments, NIL sulphides	32	RL37185
CR-09-037	18492	827.08	827.55	0.47	consecutive	medium grained, Gabbroic dyke within interflow seds, NIL sulphides	10	RL37185
CR-09-037	18493	827.55	827.85	0.30	consecutive	mixed fine and quartz amygdular cobble sized interflow sediments within 10chl Basaltic volcanosediments, NIL sulphides	11	RL37185
CR-09-037	18494	827.85	829.00	1.15	consecutive	fine grained, pillowed Basalt with 02 quartz-carb containing trPY trPO	14	RL37185
CR-09-037	18495	832.00	833.00	1.00	not consecutive	Blank Sample: Mafic Lamprophyric Dyke	9	RL37185
CR-09-037	18496	829.00	830.00	1.00	not consecutive	fine grained, pillowed Basalt with 02 quartz-carb containing trPY trPO	13	RL37185
CR-09-037	18497	834.00	834.37	0.37	not consecutive	Wing Sample: Mafic Lamprophyric Dyke/Sill, NIL sulphides	19	RL37185
CR-09-037	18498	834.37	834.92	0.55	consecutive	Wing Sample: fine grained, green-grey coloured Basalt with <3% qtz-carbonate fracture filling. NIL sulphides	26	RL37185
CR-09-037	18499	834.92	835.28	0.36	consecutive	Character Sample: 50% quartz-carbonate replacement selvage vein with trace PO	19	RL37185
CR-09-037	18500	835.28	836.38	1.10	consecutive	Several broad quartz-carbonate replaced selvages with 08-10qcb, 2- 5chl, NIL sulphides	19	RL37185
CR-09-037	1501	836.38	837.38	1.00	consecutive	05qcb replacement in pillow selvages in fine grained Basalt	11	RL37185

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-037	1502	847.68	848.68	1.00	not consecutive	minor 02chl-02ser-01bt altered Basalt with <5%qcb irregular veins, trPO	27	RL37185
CR-09-037	1503	848.68	849.68	1.00	consecutive	minor 03chl-03ser-01bt altered Basalt with <5%qcb irregular veins, trPO	308	RL37185
CR-09-037	1504	849.68	850.40	0.72	consecutive	20% Silty Seds, 03% silty argillite sediments with sulphide PO-(PY) replacement of Carbonate-(qtz) veins, which are fractured and dismembered with PO preferentially replacing carbonate. 08PO and 02PY	35	RL37185
CR-09-037	1505	850.40	851.00	0.60	consecutive	20% Silty Seds, 03% silty argillite sediments with sulphide PO-(PY) replacement of Carbonate-(qtz) veins, which are fractured and dismembered with PO preferentially replacing carbonate. 08PO and 02PY	862	RL37185
CR-09-037	1506	851.00	852.00	1.00	consecutive	20sil-05ser Qtz-Monzonite with 02PO as widely disseminated mm- scale blebs	160	RL37185
CR-09-037	1507	852.00	853.00	1.00	consecutive	20sil-05ser Qtz-Monzonite with 02PO as widely disseminated mm- scale blebs	80	RL37185
CR-09-037	1508	853.00	854.00	1.00	consecutive	20sil-05ser Qtz-Monzonite with 02PO as widely disseminated mm- scale blebs	25	RL37185
CR-09-037	1509	854.00	854.80	0.80	consecutive	20sil-05ser Qtz-Monzonite with 01PO as widely disseminated mm- scale blebs	91	RL37185
CR-09-037	1510	0.00	0.00	0.00	not consecutive	OxK69 3.583ppm	3670	RL37185
CR-09-037	1511	854.80	856.00	1.20	not consecutive	20sil-05ser Qtz-Monzonite with 01PO as widely disseminated mm- scale blebs with QV sub CA	47	RL37185
CR-09-037	1512	856.00	857.50	1.50	consecutive	20sil-05ser Qtz-Monzonite with 01PO as widely disseminated mm- scale blebs	69	RL37185
CR-09-037	1513	857.50	858.17	0.67	consecutive	20sil-05ser Qtz-Monzonite with 01PO as widely disseminated mm- scale blebs	43	RL37185
CR-09-037	1514	858.17	859.14	0.97	consecutive	Mafic Lamprophyre with trace PO-PY	26	RL37185
CR-09-037	1515	841.29	841.79	0.50	not consecutive	Blank Sample: Massive chloritic fine grained pillow core, NIL sulphides	17	RL37185
CR-09-037	1516	859.14	860.00	0.86	not consecutive	20sil-05ser Qtz-Monzonite with 01PO as widely disseminated mm- scale blebs	45	RL37185
CR-09-037	1517	860.00	861.00	1.00	consecutive	20sil-05ser Qtz-Monzonite with 01PO as widely disseminated mm- scale blebs	118	RL37185
CR-09-037	1518	861.00	862.00	1.00	consecutive	brecciated pillowed basalt chl-(qtz-chl)-(ser) bleached with trace PO in qtz-chl-(PO) fractures	82	RL37185
CR-09-037	1519	862.00	863.00	1.00	consecutive	brecciated pillowed basalt chl-(qtz-chl)-(ser) bleached with trace PO in qtz-chl-(PO) fractures	813	RL37185

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-037	1520	863.00	863.64	0.64	consecutive	brecciated pillowed basalt chl-(qtz-chl)-(ser) bleached with trace PO in qtz-chl-(PO) fractures	19	RL37185
CR-09-037	1521	863.64	864.58	0.94	consecutive	predominantly graphitic argillaceous interflow sediments in Basalt with 01PO>PY and 02qcb	19	RL37185
CR-09-037	1522	864.58	865.64	1.06	consecutive	10% quartz carbonate irregular knobs and dismembered veins in brecciated pillowed basalt with 01PO and 01% disseminated MT in crudely whispy bands at 65degCA	19	RL37185
CR-09-037	1523	865.64	866.96	1.32	consecutive	graphite bearing, moderately Sheared Silty Argillite with 02MT and 03% very fine grain disseminated and blebby replacement PO	11	RL37185
CR-09-037	1524	866.96	868.00	1.04	consecutive	30chl-10qcb-02MT-01gr-01PO bearing Sheared and Brecciated Basalt	7	RL37185
CR-09-037	1525	868.00	868.71	0.71	consecutive	30chl-10qcb-02MT-01gr-01PO bearing Sheared and Brecciated Basalt	9	RL37185
CR-09-037	1526	868.71	869.29	0.58	consecutive	MAJOR FAULT in gr-(MT-PO) 20% Argillite rubble and 80% gouge	23	RL37185
CR-09-037	1527	869.29	870.29	1.00	consecutive	Bruce Channel Seds: Cherty Argillite (15sil) with 05PO and trPY	38	RL37185
CR-09-037	1528	870.29	871.45	1.16	consecutive	Bruce Channel Seds: Cherty Argillite (15sil) with 05PO and trPY, 4x QV	35	RL37185
CR-09-037	1529	871.45	872.45	1.00	consecutive	Silty seds interbed with low silica (<3%sil), no QV	260	RL37185
CR-09-037	1530	0.00	0.00	0.00	not consecutive	SI42 1.761ppm Au	1950	RL37185
CR-09-037	1531	872.45	873.45	1.00	not consecutive	Silty seds interbed with low silica (<3%sil), no QV	29	RL37185
CR-09-037	1532	873.45	874.45	1.00	consecutive	Silty seds interbed with low silica (<3%sil), no QV	19	RL37185
CR-09-037	1533	874.45	875.45	1.00	consecutive	Silty seds interbed with low silica (<3%sil), no QV	35	RL37185
CR-09-037	1534	875.45	876.45	1.00	consecutive	Silty seds interbed with low silica (<3%sil), no QV	13	RL37185
CR-09-037	1535	951.00	951.50	0.50	not consecutive	bt-cb intermediate to mafic Lamprophyric Dyke/sill, NIL sulphides	42	RL37185
CR-09-037	1536	876.45	877.18	0.73	not consecutive	Silty seds interbed with low silica (<3%sil), no QV	22	RL37185
CR-09-037	1537	877.18	878.00	0.82	consecutive	magnetic silty argillite with several (7) attenuated and dismembered quartz veins 02PY>PO	19	RL37185
CR-09-037	1538	878.00	879.00	1.00	consecutive	Silty Argillite, 02PO weakly sheared, no quartz-(carbonate) veining	28	RL37185
CR-09-037	1539	879.00	879.80	0.80	consecutive	Silty Argillite, 02PO weakly sheared, no quartz-(carbonate) veining	22	RL37185
CR-09-037	1540	879.80	880.40	0.60	consecutive	Silty Argillite, 02PO weakly sheared, no quartz-(carbonate) veining	15	RL37185

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-037	1541	880.40	881.08	0.68	consecutive	Sheared MT-bearing Argillite with PO replacement in carbonate and folded and dismembered quartz veins, 05PO 02PY	28	RL37185
CR-09-037	1542	881.08	881.42	0.34	consecutive	Sheared MT-bearing Argillite with PO replacement in carbonate. Four (4) folded and dismembered quartz veins. 03PO trPY	312	RL37185
CR-09-037	1543	881.42	881.92	0.50	consecutive	Sheared MT-bearing Argillite with PO replacement in carbonate. 05PO. No QV.	37	RL37185
CR-09-037	1544	881.92	882.42	0.50	consecutive	Sheared MT-bearing Argillite with PO replacement in carbonate. One 4cm thick quartz vein and abundant fragmented quartz veins, 05PO 02PY	216	RL37185
CR-09-037	1545	882.42	882.92	0.50	consecutive	Sheared MT-bearing Argillite with PO replacement in carbonate. Two (2) folded and dismembered quartz veins. 03PO 04PY	23	RL37185
CR-09-037	1546	882.92	883.42	0.50	consecutive	Sheared MT-bearing Argillite with PO replacement in carbonate and minor folded and dismembered quartz veins, 02PO 02PY	95	RL37185
CR-09-037	1547	883.42	883.92	0.50	consecutive	Many (10%) PO rounded and rotated replaced carbonate vein fragments, 06PO 02PY in sheared argillite	40	RL37185
CR-09-037	1548	883.92	884.42	0.50	consecutive	Abundant PO rounded and rotated replaced carbonate vein fragments, 03PO 01PY, with cross-bedded very minor silty sediments with minor hairline carbonate veins in sheared argillite	36	RL37185
CR-09-037	1549	884.42	884.92	0.50	consecutive	Blebby replacement and PO-carbonate replacement veins as above in sheared argillite 02PO	93	RL37185
CR-09-037	1550	884.92	885.92	1.00	consecutive	similar to above sulphide replacement in prevously carbonate veins that have been fragmented and dismembered by shearing, but to a lesser degree. <03PO-carb rotated fragments.	33	RL37185
CR-09-037	1551	885.92	886.60	0.68	consecutive	Sheared Siltstone interbed with decreased silica alteration, irregular quartz-carbonate, and PO-PY fine crystal replacement. 02PO 1PY	499	RL37185
CR-09-037	1552	886.60	887.09	0.49	consecutive	Sheared Siltstone interbed with decreased silica alteration, irregular quartz-carbonate, and PO-PY fine crystal replacement. 02PO 1PY	91	RL37185
CR-09-037	1553	887.09	888.09	1.00	consecutive	Sheared PY-PO mineralized, <10% quartz-veined, silica altered Argillite. 03PY 02PO	21	RL37185

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-037	1554	888.09	889.09	1.00	consecutive	Sheared PY-PO mineralized, <10% quartz-veined, silica altered Argillite. 03PY 02PO	<5	RL37185
CR-09-037	1555	962.50	963.00	0.50	not consecutive	Blank Sample: Massive, grey coloured Siltstone. Trace PO.	75	RL37185
CR-09-037	1556	889.09	889.42	0.33	not consecutive	Sheared Argillite with 10% very fine grain disseminated PY within 20% quartz veining. Two (2) sheared quartz veins and one (1) narrow 3cm thick fault gouge.	19	RL37185
CR-09-037	1557	889.42	890.00	0.58	consecutive	Intensely sheared Argillite at 45-55degCA containing quartz- carbonate fine veining and abundant fine grained disseminated and blebby 10% PY	<5	RL37185
CR-09-037	1558	890.00	890.35	0.35	consecutive	Intensely sheared Argillite at 45-55degCA containing quartz- carbonate fine veining and abundant fine grained disseminated and blebby 10% PY. Two (2) large 3cm thick, sheared Quartz Veins.	<5	RL37185
CR-09-037	1559	890.35	890.70	0.35	consecutive	Intensely sheared Argillite at 45-55degCA containing quartz- carbonate fine veining and abundant fine grained disseminated and blebby 10% PY. One (1) large 4cm thick Quartz Vein.	14	RL37185
CR-09-037	1560	890.70	891.20	0.50	consecutive	70degCA Sheared Argillite with 5-8% fine Quartz Veins. 03PY 02PO.	16	RL37185
CR-09-037	1561	891.20	891.50	0.30	consecutive	70degCA Sheared Argillite with 5-8% fine Quartz Veins. 03PY 02PO.	12	RL37185
CR-09-037	1562	891.50	892.00	0.50	consecutive	70degCA Sheared Argillite with 5-8% fine Quartz Veins. 03PY 02PO. One narrow fault (gouge).	9	RL37185
CR-09-037	1563	892.00	893.00	1.00	consecutive	70degCA Sheared Argillite with 5-8% fine Quartz Veins. 03PY 02PO.	18	RL37185
CR-09-037	1564	893.00	893.74	0.74	consecutive	70degCA Sheared Argillite with 5-8% fine Quartz Veins. 03PY 02PO.	6	RL37185
CR-09-037	1565	893.74	894.11	0.37	consecutive	abundant dismembered quartz-PY-(PO) veins in Sheared Argillite	<5	RL37185
CR-09-037	1566	894.11	895.11	1.00	consecutive	70degCA Sheared Argillite with 5-8% fine Quartz Veins. 03PY 02PO. One (1) 3cm thick Quartz-Vein. One (1) narrow 5cm fault (gouge).	<5	RL37185
CR-09-037	1567	895.11	896.17	1.06	consecutive	70degCA Sheared Argillite with 5-8% fine Quartz Veins. 03PY 02PO. One (1) 8cm thick grey coloured Quartz-PY-PO Vein.	<5	RL37185
CR-09-037	1568	896.17	897.00	0.83	consecutive	70degCA Sheared Argillite with 5-8% fine Quartz Veins. 03PY 02PO.	16	RL37185

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-037	1569	897.00	898.00	1.00	consecutive	70degCA Sheared Argillite with 5-8% fine Quartz Veins. 05PO 01PY. Increased PO-replacement of carbonate in beaded veins.	<5	RL37185
CR-09-037	1570	0.00	0.00	0.00	not consecutive	SI42 1.761ppm Au	1850	RL37185
CR-09-037	1571	898.00	899.00	1.00	not consecutive	Strongly Sheared Argillite with 2-5% fine and dismemebered Quartz Veins. 02-03PO 01PY.	6	RL37185
CR-09-037	1572	899.00	900.00	1.00	consecutive	Strongly Sheared Argillite with 2-5% fine and dismemebered Quartz Veins. 02-03PO 01PY.	16	RL37185
CR-09-037	1573	900.00	901.00	1.00	consecutive	Strongly Sheared Argillite with 2-5% fine and dismemebered Quartz Veins. 02-03PO 01PY.	15	RL37185
CR-09-037	1574	901.00	902.00	1.00	consecutive	Strongly Sheared Argillite with 2-5% fine and dismemebered Quartz Veins. 02-03PO 01PY.	22	RL37185
CR-09-037	1575	964.00	964.50	0.50	not consecutive	Blank Sample: Massive, grey coloured Siltstone. Trace Sulphides.	12	RL37185
CR-09-037	1576	902.00	903.00	1.00	not consecutive	Strongly Sheared Argillite with 2-5% fine and dismemebered Quartz Veins. 02-03PO 01PY.	14	RL37185
CR-09-037	1577	903.00	904.00	1.00	consecutive	Strongly Sheared Argillite with 2-5% fine and dismemebered Quartz Veins. Two (2) 1-3cm thick, sheared and PY mineralized Quartz Veins. 03PO 01PY.	48	RL37185
CR-09-037	1578	904.00	905.00	1.00	consecutive	Strongly Sheared Argillite with 2-5% fine and dismemebered Quartz Veins. One (1) 3cm thick, sheared quartz vein. 02-03PO 01PY.	18	RL37185
CR-09-037	1579	905.00	906.00	1.00	consecutive	Transition to silty Sediments wih strong shearing and 2-5% dismembered Quartz Veins. 02PO and 01PY (very fine grained blebs)	<5	RL37185
CR-09-037	1580	906.00	907.00	1.00	consecutive	Sheared Mixed Silty Argillaceous Mudstone as above silty seds with 02PO and 01PY (very fine grained disseminated blebs)	19	RL37185
CR-09-037	1581	907.00	908.00	1.00	consecutive	Sheared Mixed Silty Argillaceous Mudstone as above silty seds with 02PO and 01PY (very fine grained disseminated blebs)	23	RL37185
CR-09-037	1582	908.00	909.00	1.00	consecutive	Sheared Mixed Silty Argillaceous Mudstone as above silty seds with 02PO and 01PY (very fine grained disseminated blebs)	23	RL37185
CR-09-037	1583	909.00	910.00	1.00	consecutive	Sheared Mixed Silty Argillaceous Mudstone as above silty seds with 02PO and 01PY (very fine grained disseminated blebs)	19	RL37185

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-037	1584	910.00	911.00	1.00	consecutive	Sheared Mixed Silty Argillaceous Mudstone as above silty seds with 02PO and 01PY (very fine grained disseminated blebs)	15	RL37185
CR-09-037	1585	911.00	912.00	1.00	consecutive	Sheared Mixed Silty Argillaceous Mudstone as above silty seds with 02PO and 01PY (very fine grained disseminated blebs)	38	RL37185
CR-09-037	1586	912.00	913.00	1.00	consecutive	Sheared Mixed Silty Argillaceous Mudstone as above silty seds with 02PO and 01PY (very fine grained disseminated blebs)	26	RL37185
CR-09-037	1587	913.00	914.00	1.00	consecutive	Sheared Mixed Silty Argillaceous Mudstone as above silty seds with 02PO and 01PY (very fine grained disseminated blebs)	47	RL37185
CR-09-037	1588	914.00	915.00	1.00	consecutive	Sheared Mixed Silty Argillaceous Mudstone as above silty seds with 02PO and 01PY (very fine grained disseminated blebs)	131	RL37185
CR-09-037	1589	915.00	916.00	1.00	consecutive	Sheared Mixed Silty Argillaceous Mudstone as above silty seds with 02PO and 01PY (very fine grained disseminated blebs)	97	RL37185
CR-09-037	1590	0.00	0.00	0.00	not consecutive	OxK69 3.583ppm	3590	RL37185
CR-09-037	1591	916.00	917.00	1.00	not consecutive	Sheared Argillaceous sediments with several dismembered <1cm quartz veins.	19	RL37185
CR-09-037	1592	917.00	918.00	1.00	consecutive	Sheared Argillaceous sediments with several dismembered <1cm quartz veins. 04PO 01PY	173	RL37185
CR-09-037	1593	918.00	919.00	1.00	consecutive	abundant rotated and rounded PO-replaced Quartz-Carbonate vein fragments with three (3) boudinaged 1cm thick, quartz veins in sheared Argillaceous Mudstone. 04PO 01PY	25	RL37185
CR-09-037	1594	919.00	920.00	1.00	consecutive	Sheared Mixed Silty Argillaceous Mudstone as above silty seds with 02-03PO and 01PY (very fine grained disseminated blebs)	<5	RL37185
CR-09-037	1595	964.50	965.00	0.50	not consecutive	Blank Sample: Massive, grey coloured Siltstone. Trace Sulphides.	<5	RL37185
CR-09-037	1596	920.00	921.00	1.00	not consecutive	Infill Wing Sample: Massive grey coloured Siltstone with trPO	53	RL37185
CR-09-037	1597	921.00	922.06	1.06	consecutive	Infill Wing Sample: Massive grey coloured Siltstone with trPO	35	RL37185

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-037	1598	922.06	923.00	0.94	consecutive	Wing Sample: Argillite and Siltstone (no shearing), near massive with bedding and very fine grained disseminated 01PO>PY	19	RL37185
CR-09-037	1599	928.00	928.97	0.97	not consecutive	Wing Sample: Argillite and Siltstone (no shearing), near massive with bedding and very fine grained disseminated 03PO (locally blebby) and trPY	46	RL37185
CR-09-037	1600	928.97	929.52	0.55	consecutive	Sheared, weakly 05% silcified, silty Argillaceous Mudstone with abundant quartz vein fragments. 04PO 01PY.	60	RL37185
CR-09-037	1601	929.52	930.34	0.82	consecutive	Sheared Cherty Argillite with 04PO 01PY and two (2) narrow quartz Monzodiorite dykes and abundant fragmented Quartz Veins with occasional accompanying minor carbonate halos.	21	RL37185
CR-09-037	1602	930.34	931.00	0.66	consecutive	Sheared Cherty Argillite with preferential 05PO replacement in carbonate fragmented veins. Few <0.5mm QV.	31	RL37185
CR-09-037	1603	931.00	932.00	1.00	consecutive	Sheared Cherty Argillite with preferential 02PO replacement in carbonate fragmented veins. Few <0.5mm QV.	41	RL37185
CR-09-037	1604	932.00	933.00	1.00	consecutive	Sheared Cherty Argillite with preferential 02PO replacement in carbonate fragmented veins. Few <0.5mm QV.	13	RL37185
CR-09-037	1605	933.00	934.00	1.00	consecutive	Sheared Cherty Argillite with finely disseminated 02PO blebs and few narrow Qtz-Monzodiorite dykes	28	RL37185
CR-09-037	1606	934.00	935.00	1.00	consecutive	Several 2-cm I2G dykelets as above with dismembered/fragmented QV and rotated PO-carbonate replacement in Sheared Argillite	49	RL37185
CR-09-037	1607	935.00	936.00	1.00	consecutive	Mixed seds and dyke. Sheared Argillite as above with broad, transposed contact, fine grained Qtz-Monzodiorite (from 935.31 to 935.75m). 01-02PO within seds.	64	RL37185
CR-09-037	1608	936.00	936.50	0.50	consecutive	10% folded and fragmented quartz veins with rotational shearing component in fragments. 01-02% very fine blebs in sheared argillite	11	RL37185
CR-09-037	1609	936.50	937.00	0.50	consecutive	Sheared Cherty Argillite with 05% beaded and boudinaged QV. 03PO.	24	RL37185
CR-09-037	1610	0.00	0.00	0.00	not consecutive	SK43 4.086ppm Au	4300	RL37185
CR-09-037	1611	937.00	937.50	0.50	not consecutive	Sheared Cherty Argillite with 05% beaded and boudinaged QV. 03PO trPY.	19	RL37185
CR-09-037	1612	937.50	938.00	0.50	consecutive	several (3x) boudinaged 90degCA oriented quartz veins with associated very fine grained PY and few PO replaced vein fragments within Sheared Argillite	379	RL37185
CR-09-037	1613	938.00	939.00	1.00	consecutive	Sheared Argillite with two (2x) <1cm scale boudinaged trPY QV	256	RL37185

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
<u> </u>	1614	020.00	020 50	0.50		Sheared Argillite as above with decreased sulphide content when	24	DI 27405
CR-09-037	1614	939.00	939.50	0.50	consecutive	compared to sneared argillite above and few rotated and folded	21	RL37185
CR-09-037	1615	965.00	965.50	0.50	not consecutive	Blank Sample: Massive grev Siltstone, NIL sulphides	9	RL37185
						Sheared Argillite with 02-03% quartz vein fragments with several	-	
CR-09-037	1616	939.50	940.00	0.50	not consecutive	Qtz-Monzodiorite (1cm scale) with transposed irregular sheared	61	RL37185
						contacts. Trace PO.		
CR-00-037	1617	940.00	940 97	0 07	consocutivo	Poorly sulphide mineralized (trPO trPY) Sheared Argillite with three	178	RI 27185
CR-09-037	1017	940.00	940.97	0.97	consecutive	(3) narrow cm scale Qtz-Monzodiorite dykes.	120	NE57185
CR-09-037	1618	940 97	942 25	1 28	consecutive	40% irregular transposed contact Qtz-Monzodiorite dykes with	8	RI 37185
	1010	5 10.57	5 12.25	1.20		02PO bearing Sheared Argillite/Mudstone	5	11207 100
CR-09-037	1619	942.25	942.75	0.50	consecutive	100% fine grained Qtz-Monzodiorite intrusive with trace PY	20	RL37185
CR-09-037	1620	942.75	943.33	0.58	consecutive	25% irregular transposed contact Qtz-Monzodiorite dykes with	17	RL37185
						02PO bearing Sheared Argillite/Mudstone		
CR-09-037	1621	943.33	943.90	0.57	consecutive	40% irregular transposed contact Qtz-Monzodiorite dykes with	10	RL37185
						02PO bearing Sheared Argillite/Mudstone		
CR-09-037	1622	943.90	944.33	0.43	consecutive	Sheared sinty arguinte with 05% quartz fractures and veinlets and	<5	RL37185
						100% fine grained Otz-Monzodiorite intrusive with 80degCA		
CR-09-037	1623	944.33	944.62	0.29	consecutive	moderately sharp contacts and trace PY	28	RL37185
						25% irregular transposed contact Qtz-Monzodiorite dykes with		
CR-09-037	1624	944.62	945.17	0.55	consecutive	02PO bearing Sheared Argillite/Mudstone	12	RL37185
CR 00 027	1625	04E 17	046.00	0 02	concosutivo	sheared silty argillite with 05% fragmented and sheared QV and up	22	DI 2710E
CK-09-037	1025	945.17	940.00	0.85	consecutive	to 04PO (Carbonate vein replacement style)	25	RL57105
CB-09-037	1626	946.00	946 50	0.50	consecutive	sheared silty argillite with 05% fragmented and sheared QV and up	23	RI 37185
	1020	540.00	540.50	0.50	consecutive	to 04PO (Carbonate vein replacement style)	23	11237 103
CR-09-037	1627	946.50	947.00	0.50	consecutive	sheared silty argillite with 05% fragmented and sheared QV and up	27	RL37185
		5 .0.00	5 17 100	0.00		to 04PO (Carbonate vein replacement style)		
CR-09-037	1628	947.00	948.00	1.00	consecutive	sheared silty argillite with 05% fragmented and sheared QV and up	10	RL37185
						to 04PO (Carbonate vein replacement style)		
CR-09-037	1629	948.00	948.50	0.50	consecutive	Sheared 5% minor silty Argillite with several (3x) narrow	28	RL37185
CD 00 027	1620	0.00	0.00	0.00	not concocutivo	boudinaged QV with associated 04PO	>10000	DI 2710F
CR-09-037	1030	0.00	0.00	0.00	not consecutive	SP37 18.14ppm Au	>10000	KL37185
CR-09-037	1631	948.50	949.00	0.50	not consecutive	chearing (antact) 02-03% PO and trPV	105	RL37185
						Sheared siliceous (10sil) Argillite with PO-mineralized with one		
CR-09-037	1632	949.00	949.50	0.50	consecutive	boudinaged 1cm wide QV. 02-03%PO and trPY	6	RL37185

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-037	1633	949.50	950.00	0.50	consecutive	Sheared siliceous (10sil) Argillite with with one boudinaged 1cm wide QV at 90degCA. 03%PO and trPY	14	RL37185
CR-09-037	1634	950.00	950.75	0.75	consecutive	Sheared siliceous (10sil) Argillite with one boudinaged and fragmented quartz vein. 02-03%PO and trPY	82	RL37185
CR-09-037	1635	951.50	952.00	0.50	not consecutive	Blank Sample: bt-cb intermediate to mafic Lamprophyric Dyke/sill, NIL sulphides	211	RL37185
CR-09-037	1636	950.75	951.00	0.25	not consecutive	Contact Sample containig sheared argillite and mafic lamp dyke (50/50). 01PO trPY.	47	RL37185
CR-09-037	1637	952.00	952.97	0.97	not consecutive	bt-cb bearing intermediate to mafic lamprophyric dyke/sill with one low angle (15degCA) quartz vein. NIL sulphides.	<5	RL37185
CR-09-037	1638	952.97	954.00	1.03	consecutive	Wing Sample: Siltstone containing one quartz-carbonate vein (<1%). NIL sulphides.	192	RL37185
CR-09-037	1639	970.32	970.62	0.30	not consecutive	Siltstone with one minor bedding plane sinistrally displaced (minor faulted) qtz-bt tension vein, oriented sub CA that is cut at 90deg by other bedding plane parallel quartz vein	117	RL37185
CR-09-037	1640	969.32	970.32	1.00	not consecutive	Wing Sample: barren massive grey siltstone, NIL sulphides	400	RL37185
CR-09-037	1641	970.62	971.50	0.88	not consecutive	Infill Wing: massive grey siltstone, NIL sulphides	13	RL37185
CR-09-037	1642	971.50	972.40	0.90	consecutive	Wing Sample: barren massive grey siltstone, NIL sulphides	60	RL37185
CR-09-037	1643	972.40	972.65	0.25	consecutive	Character Sample: one bt-qtz-(PO) bearing, 1cm wide, minor sinistrally displaced vein oriented at 30degCA. Bedding plane displacement x-cuts at 75degCA	18	RL37185
CR-09-037	1644	972.65	973.65	1.00	consecutive	Wing Sample: barren massive grey siltstone, NIL sulphides	<5	RL37185

Gyro Survey Record

Hole ID	Station (m)	Dip (Degrees)	Azimuth	Easting (m)	Northing (m)	Elevation (m)
CR-09-037	0	-50.68	29.00	0.00	0.00	0.00
CR-09-037	5	-50.66	29.11	0.00	3.17	-3.87
CR-09-037	10	-50.41	28.88	0.00	6.35	-7.73
CR-09-037	15	-50.15	28.80	-0.01	9.54	-11.57
CR-09-037	20	-49.99	28.80	-0.02	12.75	-15.41
CR-09-037	25	-49.74	28.66	-0.03	15.97	-19.23
CR-09-037	30	-49.54	28.66	-0.05	19.21	-23.04
CR-09-037	35	-49.29	28.77	-0.07	22.46	-26.84
CR-09-037	40	-49.10	28.87	-0.08	25.73	-30.62
CR-09-037	45	-48.83	28.99	-0.08	29.01	-34.39
CR-09-037	50	-48.64	29.03	-0.08	32.31	-38.15
CR-09-037	55	-48.49	29.33	-0.07	35.62	-41.90
CR-09-037	60	-48.32	29.59	-0.04	38.94	-45.64
CR-09-037	65	-48.16	29.80	0.00	42.27	-49.37
CR-09-037	70	-48.04	29.94	0.05	45.61	-53.09
CR-09-037	75	-47.87	30.13	0.11	48.96	-56.80
CR-09-037	80	-47.63	30.18	0.17	52.32	-60.50
CR-09-037	85	-47.37	30.31	0.25	55.70	-64.19
CR-09-037	90	-47.00	30.56	0.33	59.09	-67.86
CR-09-037	95	-46.69	30.86	0.44	62.51	-71.51
CR-09-037	100	-46.48	31.10	0.55	65.95	-75.14
CR-09-037	105	-46.38	31.31	0.69	69.39	-78.76
CR-09-037	110	-46.32	31.33	0.83	72.84	-82.38
CR-09-037	115	-46.14	31.50	0.97	76.29	-85.99
CR-09-037	120	-45.97	31.57	1.13	79.76	-89.59
CR-09-037	125	-45.78	31.54	1.28	83.24	-93.18
CR-09-037	130	-45.70	31.69	1.44	86.72	-96.76
CR-09-037	135	-45.58	31.92	1.61	90.21	-100.34
CR-09-037	140	-45.52	32.02	1.79	93.71	-103.90
CR-09-037	145	-45.39	32.04	1.98	97.21	-107.47
CR-09-037	150	-45.33	32.14	2.17	100.72	-111.03
CR-09-037	155	-45.25	32.27	2.36	104.23	-114.58
CR-09-037	160	-45.15	32.40	2.57	107.75	-118.13
CR-09-037	165	-45.03	32.49	2.78	111.27	-121.67
CR-09-037	170	-44.90	32.51	3.00	114.81	-125.20
CR-09-037	175	-44.77	32.56	3.21	118.35	-128.73
CR-09-037	180	-44.62	32.75	3.44	121.89	-132.24
CR-09-037	185	-44.49	32.85	3.68	125.45	-135.75
CR-09-037	190	-44.39	33.02	3.92	129.01	-139.25
CR-09-037	195	-44.25	33.14	4.18	132.58	-142.75
CR-09-037	200	-44.16	33.28	4.44	136.15	-146.23
CR-09-037	205	-44.09	33.29	4.71	139.73	-149.71
CR-09-037	210	-43.99	33.38	4.98	143.31	-153.19
CR-09-037	215	-43.90	33.48	5.26	146.90	-156.66
CR-09-037	220	-43.77	33.55	5.54	150.50	-160.12

Gyro Survey Record

Hole ID	Station (m)	Dip (Degrees)	Azimuth	Easting (m)	Northing (m)	Elevation (m)
CR-09-037	225	-43.62	33.64	5.83	154.10	-163.57
CR-09-037	230	-43.54	33.72	6.13	157.71	-167.02
CR-09-037	235	-43.43	33.84	6.43	161.33	-170.46
CR-09-037	240	-43.29	33.90	6.74	164.95	-173.90
CR-09-037	245	-43.21	33.96	7.05	168.58	-177.32
CR-09-037	250	-43.14	34.06	7.37	172.21	-180.74
CR-09-037	255	-43.05	34.13	7.69	175.85	-184.16
CR-09-037	260	-42.95	34.10	8.02	179.49	-187.57
CR-09-037	265	-42.83	34.20	8.35	183.14	-190.97
CR-09-037	270	-42.74	34.22	8.68	186.79	-194.37
CR-09-037	275	-42.61	34.33	9.02	190.45	-197.76
CR-09-037	280	-42.50	34.49	9.37	194.12	-201.14
CR-09-037	285	-42.37	34.63	9.72	197.79	-204.51
CR-09-037	290	-42.18	34.76	10.09	201.48	-207.87
CR-09-037	295	-41.95	34.93	10.47	205.17	-211.22
CR-09-037	300	-41.62	34.95	10.85	208.88	-214.56
CR-09-037	305	-41.53	34.96	11.24	212.60	-217.87
CR-09-037	310	-41.45	35.01	11.63	216.32	-221.19
CR-09-037	315	-41.36	35.13	12.03	220.05	-224.49
CR-09-037	320	-41.27	35.30	12.44	223.78	-227.79
CR-09-037	325	-41.20	35.42	12.85	227.52	-231.09
CR-09-037	330	-41.17	35.52	13.28	231.26	-234.38
CR-09-037	335	-41.11	35.54	13.71	235.00	-237.67
CR-09-037	340	-41.06	35.53	14.13	238.75	-240.96
CR-09-037	345	-41.03	35.61	14.57	242.49	-244.24
CR-09-037	350	-40.96	35.67	15.00	246.24	-247.52
CR-09-037	355	-40.92	35.82	15.45	249.99	-250.80
CR-09-037	360	-40.81	35.92	15.90	253.75	-254.07
CR-09-037	365	-40.77	35.99	16.36	257.50	-257.33
CR-09-037	370	-40.72	36.00	16.82	261.26	-260.60
CR-09-037	375	-40.70	36.07	17.28	265.02	-263.86
CR-09-037	380	-40.63	36.19	17.75	268.79	-267.12
CR-09-037	385	-40.63	36.18	18.23	272.55	-270.37
CR-09-037	390	-40.60	36.26	18.70	276.32	-273.63
CR-09-037	395	-40.54	36.30	19.19	280.09	-276.88
CR-09-037	400	-40.52	36.39	19.67	283.86	-280.13
CR-09-037	405	-40.49	36.47	20.16	287.62	-283.38
CR-09-037	410	-40.45	36.57	20.66	291.40	-286.62
CR-09-037	415	-40.40	36.71	21.17	295.17	-289.86
CR-09-037	420	-40.37	36.75	21.68	298.94	-293.10
CR-09-037	425	-40.32	36.82	22.20	302.72	-296.34
CR-09-037	430	-40.28	36.90	22.72	306.50	-299.57
CR-09-037	435	-40.24	36.93	23.24	310.27	-302.81
CR-09-037	440	-40.24	37.04	23.77	314.05	-306.04
CR-09-037	445	-40.21	37.12	24.31	317.83	-309.26

Gyro Survey Record

Hole ID	Station (m)	Dip (Degrees)	Azimuth	Easting (m)	Northing (m)	Elevation (m)
CR-09-037	450	-40.19	37.18	24.85	321.61	-312.49
CR-09-037	455	-40.16	37.31	25.40	325.40	-315.72
CR-09-037	460	-40.10	37.42	25.95	329.18	-318.94
CR-09-037	465	-40.08	37.51	26.52	332.96	-322.16
CR-09-037	470	-40.04	37.68	27.09	336.75	-325.38
CR-09-037	475	-40.02	37.77	27.67	340.53	-328.59
CR-09-037	480	-39.99	37.80	28.25	344.31	-331.81
CR-09-037	485	-39.97	37.99	28.85	348.10	-335.02
CR-09-037	490	-39.90	38.05	29.45	351.89	-338.23
CR-09-037	495	-39.83	38.08	30.05	355.68	-341.44
CR-09-037	500	-39.78	38.08	30.66	359.47	-344.64
CR-09-037	505	-39.74	38.12	31.27	363.26	-347.83
CR-09-037	510	-39.73	38.23	31.88	367.06	-351.03
CR-09-037	515	-39.68	38.29	32.50	370.86	-354.22
CR-09-037	520	-39.64	38.33	33.12	374.66	-357.42
CR-09-037	525	-39.62	38.42	33.75	378.46	-360.60
CR-09-037	530	-39.57	38.46	34.38	382.26	-363.79
CR-09-037	535	-39.53	38.52	35.02	386.06	-366.98
CR-09-037	540	-39.51	38.67	35.66	389.86	-370.16
CR-09-037	545	-39.50	38.69	36.31	393.66	-373.34
CR-09-037	550	-39.46	38.75	36.96	397.47	-376.52
CR-09-037	555	-39.47	38.98	37.62	401.27	-379.70
CR-09-037	560	-39.46	39.00	38.29	405.07	-382.87
CR-09-037	565	-39.43	39.05	38.96	408.87	-386.05
CR-09-037	570	-39.40	39.09	39.64	412.68	-389.22
CR-09-037	575	-39.37	39.14	40.32	416.48	-392.40
CR-09-037	580	-39.35	39.32	41.00	420.29	-395.57
CR-09-037	585	-39.33	39.36	41.70	424.09	-398.74
CR-09-037	590	-39.32	39.48	42.40	427.90	-401.91
CR-09-037	595	-39.29	39.57	43.10	431.70	-405.07
CR-09-037	600	-39.30	39.61	43.81	435.50	-408.24
CR-09-037	605	-39.26	39.72	44.53	439.31	-411.41
CR-09-037	610	-39.25	39.90	45.26	443.11	-414.57
CR-09-037	615	-39.22	39.87	45.99	446.91	-417.73
CR-09-037	620	-39.15	39.98	46.72	450.72	-420.89
CR-09-037	625	-39.12	40.00	47.46	454.53	-424.05
CR-09-037	630	-39.13	40.12	48.20	458.33	-427.20
CR-09-037	635	-39.08	40.26	48.96	462.14	-430.35
CR-09-037	640	-39.05	40.40	49.72	465.94	-433.51
CR-09-037	645	-39.02	40.43	50.49	469.75	-436.65
CR-09-037	650	-38.99	40.43	51.26	473.56	-439.80
CR-09-037	655	-38.94	40.45	52.03	477.37	-442.95
CR-09-037	660	-38.90	40.58	52.81	481.18	-446.09
CR-09-037	665	-38.88	40.68	53.59	484.99	-449.23
CR-09-037	670	-38.84	40.83	54.38	488.81	-452.36

Gyro Survey Record

Hole ID	Station (m)	Dip (Degrees)	Azimuth	Easting (m)	Northing (m)	Elevation (m)
CR-09-037	675	-38.83	40.81	55.18	492.62	-455.50
CR-09-037	680	-38.83	40.89	55.98	496.43	-458.63
CR-09-037	685	-38.76	41.02	56.79	500.24	-461.77
CR-09-037	690	-38.70	41.04	57.60	504.06	-464.89
CR-09-037	695	-38.67	41.07	58.42	507.87	-468.02
CR-09-037	700	-38.65	41.06	59.23	511.69	-471.14
CR-09-037	705	-38.60	41.07	60.05	515.51	-474.26
CR-09-037	710	-38.52	41.07	60.87	519.34	-477.38
CR-09-037	715	-38.43	41.16	61.69	523.16	-480.49
CR-09-037	720	-38.33	41.21	62.52	526.99	-483.60
CR-09-037	725	-38.36	41.24	63.35	530.83	-486.70
CR-09-037	730	-38.35	41.36	64.18	534.66	-489.80
CR-09-037	735	-38.35	41.36	65.02	538.49	-492.90
CR-09-037	740	-38.23	41.41	65.86	542.32	-496.00
CR-09-037	745	-38.11	41.56	66.71	546.16	-499.09
CR-09-037	750	-38.04	41.62	67.57	550.00	-502.17
CR-09-037	755	-37.98	41.70	68.43	553.85	-505.25
CR-09-037	760	-37.91	41.84	69.31	557.69	-508.33
CR-09-037	765	-37.89	41.91	70.19	561.54	-511.40
CR-09-037	770	-37.80	41.95	71.07	565.39	-514.47
CR-09-037	775	-37.75	41.90	71.95	569.24	-517.53
CR-09-037	780	-37.68	41.93	72.84	573.09	-520.59
CR-09-037	785	-37.61	42.03	73.73	576.95	-523.64
CR-09-037	790	-37.52	42.07	74.62	580.81	-526.69
CR-09-037	795	-37.43	42.14	75.52	584.68	-529.73
CR-09-037	800	-37.38	42.19	76.43	588.54	-532.77
CR-09-037	805	-37.33	42.37	77.34	592.41	-535.80
CR-09-037	810	-37.32	42.44	78.26	596.28	-538.83
CR-09-037	815	-37.29	42.53	79.19	600.15	-541.86
CR-09-037	820	-37.26	42.66	80.12	604.01	-544.89
CR-09-037	825	-37.19	42.66	81.06	607.88	-547.92
CR-09-037	830	-37.12	42.69	82.01	611.75	-550.94
CR-09-037	835	-37.10	42.82	82.95	615.63	-553.95
CR-09-037	840	-37.05	42.93	83.91	619.50	-556.97
CR-09-037	845	-37.00	42.94	84.87	623.37	-559.98
CR-09-037	850	-36.95	42.92	85.83	627.25	-562.99
CR-09-037	855	-36.90	43.01	86.80	631.13	-565.99
CR-09-037	860	-36.87	43.05	87.77	635.01	-568.99
CR-09-037	865	-36.82	43.06	88.74	638.89	-571.99
CR-09-037	870	-36.81	43.10	89.71	642.78	-574.99
CR-09-037	875	-36.75	43.13	90.69	646.66	-577.98
CR-09-037	880	-36.71	43.17	91.67	650.54	-580.97
CR-09-037	885	-36.70	43.11	92.65	654.43	-583.96
CR-09-037	890	-36.68	43.17	93.63	658.32	-586.95
CR-09-037	895	-36.68	43.10	94.61	662.21	-589.93

Gyro Survey Record

Hole ID	Station (m)	Dip (Degrees)	Azimuth	Easting (m)	Northing (m)	Elevation (m)
CR-09-037	900	-36.59	43.00	95.58	666.10	-592.92
CR-09-037	905	-36.56	43.02	96.55	670.00	-595.89
CR-09-037	910	-36.52	43.14	97.53	673.89	-598.87
CR-09-037	915	-36.52	43.19	98.51	677.79	-601.85
CR-09-037	920	-36.53	43.22	99.50	681.68	-604.82
CR-09-037	925	-36.53	43.27	100.49	685.58	-607.80
CR-09-037	930	-36.51	43.29	101.48	689.47	-610.78
CR-09-037	935	-36.52	43.37	102.47	693.37	-613.75
CR-09-037	940	-36.55	43.42	103.47	697.26	-616.73
CR-09-037	945	-36.58	43.60	104.48	701.15	-619.71
CR-09-037	950	-36.58	43.74	105.50	705.03	-622.69
CR-09-037	975	-36.51	44.19	110.68	724.43	-637.48

Conquest Resources Ltd.

Exploration Diamond Drill Log

CR-09-038

DRILL HOLE #	CR-09-038	LOCATION	Balmertown,	, Balmer Tow	nship, Red La	ake Di	istrict, Ontario		
PROJECT #	Alexander	REFERENCE	Alexander		GEOLO	GIST	BATSON	CLAIM	KRL 20488
GRID/ NAD-ZO	ONE	NORTHING		EASTING			ELEVATION		GRID TYPE
GRID	Alexander RL	7+44 S		1+44 E			10000	_	Μ
UTM	NAD83 / 15U	5656009		449915			373		
COLLAR DIP	-55	GRID DIRECTIO	N	North				AZ DIRECTION	029
NTS REF #	052N04	NTS SHEET NAM	ME	Red Lake, O	ntario				
START DATE	18-Oct-09			FINISH DATE	31-Oct-0	09			
DEPTH (EOH)	996.00	TARGET & Zone	e Depth	Target 14 (21	0m), Target (3	10m),	Target FW (420-	530m+), BCF (9 50 m)
PURPOSE	CR-09-D dum	my hole tests	3 (+1) target	s, resolves B.	Channel CT	PIECE	POINT of Target:	E	mELEV
CASING BW	1		CASING NW	3.00				CASING HW	
PLUG @)		PLUG @	na				PLUG @	
START DTH	0.00		WEDGE @					_	
REDUCED @			REDUCED @						
HOLE STATUS	complete, cap	oped, left casi	ng						
		Boart Longy	ear Inc.						
DIVIDENTIA CON		Bourt Longy	carmer						
RIG NO.	4186	20011 201187						BXS.	226

	GYRO S	urvey: Multisho	ot In and Out of Ho	ole			
DEPTH (m)	AZ	DIP	Elevation (m)	δ Easting (m)	δ Northing (m)	Comments:	
0	29.00	-55.69	0.00	0.00	0.00	1st Target was planned mostly on mag data	
50	29.90	-54.81	-41.10	0.16	28.47	interpretations which lie within geophysically	
100	30.43	-54.07	-81.79	0.85	57.52	complex sediments. Several narrow near solid	
150	31.28	-53.03	-122.03	1.72	87.19	sulphide intersections throughout thick	
200	32.06	-52.02	-161.67	3.07	117.62	encouraging vein and sulphide associated gold	
250	32.57	-51.07	-200.84	4.94	148.64	mineralization, up to 4.97g/t over 1.00m. 2nd	
300	32.80	-50.04	-239.42	6.97	180.38	Target at 330m is well mineralized (to solid	
350	33.33	-49.19	-277.48	9.22	212.73	sulphide) in matrix supported Huston	
400	33.96	-48.49	-315.10	11.92	245.56	conglomerate with heavy replacement pyri but did not return anomalous Au values	
450	34.28	-47.77	-352.33	14.88	278.80		
500	34.60	-47.01	-389.13	18.07	312.50	assays. <u>3rd larget</u> did not locate any	
550	35.25	-46.26	-425.49	21.68	346.63	sulphidized shear zones as targeted with IP in	
600	36.08	-45.35	-461.36	25.71	381.22	Balmer. While several narrow shear zones	
650	36.54	-44.69	-496.69	30.25	416.31	were intersected, it is likely that abundance of	
700	37.35	-44.19	-531.70	35.18	451.67	narrow dykes with disseminated sulphides	
750	37.54	-43.60	-566.37	40.50	487.30	within basalt and gabbro over targeted	
800	37.84	-43.07	-600.67	46.00	523.26	interval are responsible for IP. Highlights	
850	38.08	-42.70	-634.71	51.70	559.44	include several heavily sulphidized sedimination in the second altered baselt interval bel	
900	38.36	-42.28	-668.50	57.57	595.83	Huston contact, and the intersection of the Bruce Channel Formation at 986m hole dept	
950	38.74	-41.66	-701.94	63.70	632.49		
						to resolve location.	

Drilled with 3m stabilized core barrel

Planned hole depth is 650m (2132'), deepened to follow up on BCF intersection from CR-09-037 Magnetic Declineation 0° 13', Declination for Grid N29°E

Water source: beaver pond located at 449718 5656178 UTM NAD83 15U

Left Casing and Capped with Stamped NW cap Planned hole time is 10 days (Oct 18 to 27) Core stored at Cochenour Mine Site Drill type: LF-70

Major Lithologies

Hole Name	From	То	Length	Code	Description	Rep
CR-09-038	0.00	2.75	2.75	CAS	NW Casing into overburden and bedrock	
CR-09-038	2.75	40.49	37.74	S6D	Huston Assemblage: Dark grey coloured, blocky fractured, moderately well 0.1 to 10cm bedded, locally cross-bedded, folded, MT-PO-(PY) bearing, highly variable and strongly magnetic, Argillaceous Mudstone with minor occasional irregular quartz veining. Bedding varies from 0 to 75degCA over narrow intervals as narrow as 2-3m from 30degCA (uphole) to 45degCA (downhole) indicating close interlimb fold tightness with occasional disharmonic (-and possibly ptigmatic) folded dark blue-grey quartz veins in hinge. Magnetic is very fine grained, occuring irregularly disseminated from 1-10% throughout unit. Pyrrhotite, and pyrite to a lesser degree, is very fine grained and disseminated into fine bands in closely spaced beds throughout. PO-PY also occurs less frequently in fractures and narrow mm-scale veinlets at irregular cross-cutting angles to bedding. A few narrow closely spaced quartz veined, poorly developed shear structures, occur in clusters of 2-4 narrow shears at low angles to core axis. Few minor Wacke interbeds with fine lithic and quartz fragments.	
CR-09-038	40.49	66.14	25.65	S	Huston Assemblage: Undifferentiated Sediments. Mixed graphitic Argillaceous Mudstone (20%), angular clast Lithic Wacke (40%), and variable subangular polymictic lithic and quartz (20/80) cobble clast, matrix supported, conglomerate (60%). Bedding (45-50degCA) within mud and wacke sediments is not conformable with crude bed contacts with other wackes, nor with conglomerates and visa versa. Very poorly sorted, episodic flood-plane (and riverbed) sediments. Up to 10% PO>PY-replaced matrix in conglomeratic seds. Poorly distinguished rip-up features in muddy sediments. Good coring unit. Mudstone is conductive with multimeter (1000Ω over 1cm).	
CR-09-038	66.14	71.54	5.40	S6D; S4	PO-mineralized Mudstone as above (2.75 to 40.49m) plus matrix supported angular 2-10mm quartz conglomerate with up to 05% PO clast replacement (up to 5-20mm attenuated clasts).	
CR-09-038	71.54	77.03	5.49	S4C	Huston Assemblage: Dark grey coloured, matrix-supported, sub rounded, polymictic, 25%-quartz 10%-lithic 5%-argillaceous clast, Conglomerate with 5%-pyrrhotite replaced rounded clasts and matrix cement. 60%-Matrix is dark grey in colour with angular lithic and quartz fragments within silicified cement. Compositionally unsorted, poorly graded and poorly bedded sediments. Quartz cobble fragments are grey and creamy white striped with and fractured, occasionally magnetic and poorly mineralized with trace euhedral fine pyrite disseminations. Fine grained pyrite replacement in matrix occurs to a lesser degree than PO, which is found in massive replacement slugs, around the rims of cobble sized fragments and locally disseminated in silicified cement. Sub rounded Argillaceous clasts are cherty and strongly magnetic. Upper and lower contacts are gradational and poorly defined.	

Major Lithologies

Hole Name	From	То	Length	Code	Description	Rep
CR-09-038	77.03	115.32	38.29	S4B	Huston Assemblage: Light grey coloured, clast-supported, subrounded to rounded, 80%-quartz cobble Conglomerate with locally well mineralized matrix cement from 5% to 40% locally heavy PO>PY. Quartz cobble clast are similar to those found in overlying matrix-supported unit, with stripped grey and white coloured finely alternating textures and fracturing. Poorly sorted and locally bedded sediments. 50% of Quartz clasts contain varying concentrations of finely disseminated sulphides, cheifly pyrite, from 2-10% within massive clasts. Heavy PO replacement preferentially replaces matrix where accomodation space between quartz cobble clasts is the greatest. Rounded PY blebs commonly are completely enveloped by replacive PO in matrix. Finer <1cm-sized angular clast, crugely defined beds contain proportionally more fine PY replacement than PO. Upper and lower contacts are gradational.	
CR-09-038	115.32	120.78	5.46	S4C	Matrix supported, Polymictic Conglomerate as similar to above 71.54 to 77.03m but more (up to 30% in conglomeratic sections) argillaceous matrix. Upper and lower contacts are gradational.	
CR-09-038	120.78	140.03	19.25	S6D	PO-mineralized Mudstone as above (2.75 to 40.49m) plus 25% matrix supported angular 2-10mm quartz conglomerate interbeds with up to 05% PO clast replacement (up to 5-20mm attenuated and rounded clasts). Crude conglomerate beds are irregular and occasionally at low angle to core axis.	
CR-09-038	140.03	160.00	19.97	S4C	10-20% sulphide bearing (cheifly PY), cherty overprinted, lithic and quartz fragment matrix supported, Polymictic Conglomerate similar to above 71.54 to 77.03m. Graded and sorted upper contact, fining upwards to top of Conglomerate bed at 140.03m at 65degCA.	
CR-09-038	160.00	164.35	4.35	S4B	Light grey coloured, clast-supported, subrounded to rounded, 80%-quartz cobble Conglomerate with locally well mineralized and silicified matrix cement from 5% to 40% locally heavy PO>PY as above from 77.03 to 115.32m	
CR-09-038	164.35	182.97	18.62	S4C	Up to 10% sulphide bearing (cheifly PY), cherty overprinted, lithic and quartz fragment matrix supported, Polymictic Conglomerate similar to above 71.54 to 77.03m. Slump structure with magnetic argillaceous mudstone and small subrounded (5-20mm scale) occurs over 177m to 178.68m. Slump contains 20cm of PY-(PO) Near-Solid-Sulphide in conglomeratic lower contact . PY-PO mineralized clasts Upper and lower contacts are gradational.	
CR-09-038	182.97	212.06	29.09	S3; S6D	Light grey coloured, massive, folded, lithic dominated, quartz clast bearing, Wacke and Mudstone with minor disseminated PO-(PY) thoughoutout. Generally well bedded at 62degCA. Conformable silty argillaceous Mudstone interbeds (20% of unit) seldom exceed 7m in thickness. One chl-act-carb bearing Mafic Dyke cross-cuts unit. Several minor 5-6cm scale, bleached beige coloured, fine grained, cross-cutting (50degCA) Quartz-Diorite narrow dykes. Upper contact is interfingered. Lower contact is gradational with undulating bedding.	

Hole Name	From	То	Length	Code	Description	Rep
CR-09-038	212.06	268.31	56.25	S6D; SHR	Light to dark grey coloured, folded and locally sheared, MT-PO-PY bearing argillaceous Mudstone as above at top of hole with intermixed siltstone and wackestone irregular slump beds and disseminated PO-(PY) throughout. Sheared minor units contain prospective sheared and brecciated quartz-(carbonate) veining. Highly variable and irregular bedding. Upper contact is gradational and lower contact is sheared.	
CR-09-038	268.31	304.15	35.84	S3; S6D	Light grey coloured, massive, folded, lithic dominated, quartz clast and carbonate bearing Wacke and Mudstone with minor disseminated PY thoughoutout as above with local cross-bedding in silty Wackestone sections. Few narrow PY-(PO) bearing muddy matrix supported Conglomerate interbeds are present and commonly bound by arillaceous Mudstone sediments. Bedding is planar between 45 and 65degCA. Upper contact is conformable at 40degCA.	
CR-09-038	304.15	318.35	14.20	S; SHR	Folded, PY-PO mineralized, variably sheared, locally minor (5%) quartz carbonate veined, Undifferentiated Sediment pile. Sequence is generally well bedded in finer sediments but is poorly sorted consisting of: mixed magnetic argillaceous and variably silty, PY-bearing Mud- to Wacke- stone; and, clast-supported polymictic quartz lithic, PY-(PO) mineralized Conglomerate. Pervasive carbonate alteration in Wacke as above. Upper and lower contacts are gradational.	
CR-09-038	318.35	330.72	12.37	S3; S6D	Siliceous, light grey coloured, massive, folded, lithic dominated, quartz clast and carbonate bearing Wacke and Mudstone with minor disseminated PY thoughoutout as above. Siliceous overprinting increases in downhole direction from 05% to 20% silica at lower contact. Very fine grained, dark grey coloured, variably magnetic Mudstone sediments have typical PY-defined bedding showing folding and highly variable bedding orientations. Additional sulphides in thin minor PY filled fractures (<1% in Mudstone beds) oriented 90degCA. Grey coloured quartz veins appear to be very early stage veining and have seen multiple deformation stages as they are generally fragmented, mimic bedding geometries and are unmineralized at large with rare cases showing carbonate veinlets cross-cutting quartz veins. Lower contact is sheared and overprinted by strongly disseminated to Solid Sulphide (Pyrite) replacement.	

Hole Name	From	То	Length	Code	Description	Rep
CR-09-038	330.72	334.33	3.61	WMIN; SS	Well Mineralized (20-50% sulphides) to SOLID SULPHIDE (>70% sulphides). Up to 85% Pyrite replacement of carbonate and silica matrix within weakly sheared quartz-cobble, matrix supported, Conglomerate. Quartz and carbonate-(quartz) veins are sheared (45degCA)and nearly completely replaced by PY. Occasional minor PO found in discontinuous, core axis parallel sulphide veins with minor PY crystal growth within. Rounded quartz cobbles are internally fratured and frequently stripped with alternating light and dark grey coloured quartz within clasts (primary feature predating deposition). Alteration associate with this mineralization occurance is silica dominated with associated pervasive carbonate and increased disseminated brilliant pyrite within sedimentary host.	
CR-09-038	334.33	344.65	10.32	S3; S6D	Siliceous, light grey coloured, massive, folded, lithic dominated, quartz clast and carbonate bearing Wacke and Mudstone with minor disseminated PY thoughoutout as above. Coarse disseminated PY laminations overprint silica alteration at 30degCA in Wacke beds with the coarsest sediment fraction over 20-70cm intervals.	
CR-09-038	344.65	384.75	40.10	SHR; S6D	Sheared and brecciated, silicified, mixed Huston Assemblage sediments comprised of magnetic variably silty to argillaceous Mudstone and muddy, polymictic, quartz-lithic, matrix-supported Conglomerate with 3-15% PY matrix replacement and fracture filling as 304.15 to 318.35m. Abundant thin irregular quartz veins in silicified argillaceous sediments with PY (NIL PO) mineralization. Two (2) narrow blocks of unsheared Basalt volcanics near lower contact within sheared sediments.	
CR-09-038	384.75	392.85	8.10	SHR	Huston - Balmer Unconformity. Sheared, 10-20% silica overprinted, argillaceous Mudstone sediments and (<5% silica overprinted) 05% quartz-carbonate veined Basalt volcanics with abundant dark grey coloured quartz veining (up to 40%) in seds near contact. Intense planar shearing at 55degCA. Sediments sharply contact volcanics at 388.60m. Poorly mineralized with 02-03% very finely disseminated PY throughout.	
CR-09-038	392.85	586.87	194.02	V3B; pil	Green coloured, quartz-carbonate-(chlorite) replaced pillow selvage, locally quartz-carbonate pillow rimmed, pillowed, chlorite-(actinolite)-(silica) greenschist altered Basalt, typical to Balmer Assemblage with abundant stockwork overprinted irregular quartz-carbonate-(PY) veining and fracture filling subparallel to weak foliation (-and attenuation) plane at 65degCA to 80degCA. Occasional undulating irregular continuous quartz-carbonate-(PY-PO) healed fractures are oriented sub CA and occur less than 1/30m. Regular grey coloured, locally plagioclase phyric, trace PY-(PO-APY)-mineralized, variably sil-ser altered Quartz Monzodiorite dykes with sharp contacts cut volcanic at conformable and acute cross-cutting angles seldom greater than 10deg to foliation. Sheared upper contact at date unconformity. Lower contact is gradational with similar, but silica charged, pillowed Basalt.	

Hole Name	From	То	Length	Code	Description	Rep
CR-09-038	586.87	616.00	29.13	V3B; pil	15-20% Silica charged, pillowed Basalt with up to 10% quartz-carbonate in pillow selvages with minor 5-10% chlorite. Similar to Basalt above but lacks crude and abundant vein overprinting. Minor narrow sheared horizons nearest interflow sediments and intrusives where rheology contrasts exist. Dark coloured, silty and argillaceous Balmer interflow sediments are well mineralized with up to 15PO-05MT-03PY over narrow widths. Lower contact is sheared with minor fault (1cm of carb-chl gouge).	
CR-09-038	616.00	870.40	254.40	I3A	Variably fine to coarse textured, quenched and emplacement contact sheared, weakly pervasive chlorite and quartz-carbonate vein altered Gabbro Intrusive Dyke. Trace disseminated PY-(PO) throughout. Strong mottled bt-chl-hb-plag texture in sections seldom greater than 10m in thickness adjacent dykes within intrusive (easily altered gabbro to bt-chl). Occasional broad quartz-carbonate blowout/veins, NIL sulphides. Core of Gabbro dyke/stock is fresh/unaltered. Good coring unit. Lower contact is faulted and contains Quartz monzonite dyking with quartz-fuch-PY-(PO-MT) veining.	
CR-09-038	870.40	870.80	0.40	FLT	Narrow sheared quartz vein and fault contact with gouge and PY-(PO-MT) in veining and wall rock. Quartz veining on mm to 15cm scale in hanging wall and to a lesser degree in footwall. Mineralization, cheifly 10PY, exists in silicified, very dark coloured, very fine grained volcanic (-or fault transported sediments, though it seems unlikely at this intrusive-volcanic contact). Dark coloured quartz veinlets are faulted and resheared. Bull quartz vein in hanging wall is sheared with fuchsite and minor very fine grained 02-03MT locally.	
CR-09-038	870.80	987.33	116.53	V3B; pil	Green coloured, fine to medium grained, weakly silica altered, locally massive to pillowed, quartz- carbonate selvage replaced Basalt with trace PY disseminated throughout. Upper contact is weakly sheared at fault over narrow 1m interval with associated fine grained biotite and minor carbonate.	
CR-09-038	986.33	988.05	1.72	FLT	Major Fault Unconformity with graphitic ground gouge, sheared quartz veins in footwall, and up to 10% sulphides (PY-PO). Weak, fine, quartz-carbonate veinlets in footwall of fault. Obliterated core with lustreous graphite and welded undulating fault surfaces at approximately 50degCA.	
CR-09-038	988.05	995.99	7.94	S6D; SHR	Bruce Channel Formation: Sheared, weakly locally magnetic, PO-PY sulphidized, cherty overprinted, 15-30% sil-(carb) replaced argillacous silty sediments as in CR-09-037. Similar strongly sheared zonations within silica overprinted argillaceous sediments as CR-09-037. Several boudinaged fine quartz veinlets with trace very fine grained PY within are sheared within sediments. Up to 10% PY-(PO) replacement within argillaceous mud sediments.	

Hole Name	From	То	Length	Code	Description	Rep
CR-09-038	995.99	996.00	0.01	ЕОН	EOH in Bruce Channel Formation Siltstone. Hole terminated due to exceeded normal opperating rig capacity of LF-70 drill (750m). Hole ended in targeted prospective sheared, quartz veined, cherty overprinted and sulphide mineralized sediments. EOH at 996.00m on October 31, 2009. Left Casing. Capped with stamped aluminum casing cap. Gyro surveyed. Core is stored at the Goldcorp Cochenour Mine Site in 226 NQ trays. 466 samples sent for Au fire assay (50g pulp) at SGS Labs, Red Lake, ON.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP				
				Narrow sheared silty argillaceous Mudstone with sheared, minor, irregular quartz-(ser-					
CR-09-038	17.41	17.81	SHR	carb) veins at 45degCA. Quartz veined upper contact at 55degCA. Lower contact is					
				shallow with quartz vein at 20degCA.					
				Minor cross-cutting sheared vein structure. Three closely spaced quartz veined and					
CR-09-038	33.80	35.40	SHR	locally PO-replaced sheared Mudstone structures at approximately 30degCA with 0 to					
				10degCA bedding in wallrock Mudstone.					
				Grey coloured, fine grained Quartz Monzodiorite dyke one shallow 30degCA minor					
CR-09-038	58.09	59.14	12G	quartz-carbonate vein with PY-replacive vein selvage in dyke. Upper contact is sharp at					
				85degCA. Lower conact is ground at minor fault.					
	FO 14	F0 21	FI T	Narrow minor carbonate healed Fault gouge containing up to 05% minor PY and 30%					
CR-09-038	59.14	59.31	FLI	green chlorite. Ground gouge has no fabric.					
	E0 21	60.6	60.6	60.6	60.6	60.6	560	PO-bearing Mudstone as major unit (2.75 to 40.49m). Flat MT-PO-silty bedding at 10 to	
CR-09-056	59.51						. 00.0	00.0	60.6
	60.6	61.40	61.40	61 40		Grey coloured, fine grained Quartz Monzodiorite as above. Upper contact is irregular			
CR-09-038	00.0			126	angular. Lower contact is sharp at 50degCA.				
	61 40	62 F	62 5 62	Grey coloured, lithic and quartz (30/70) Wacke interbed. Poorly defined bedding at					
CR-09-056	01.40	05.5	35	50degCA. Magnetite bearing.					
CR-09-038	63.5	64.3	12G	Grey coloured, fine grained Quartz Monzodiorite as above					
CR-09-038	64.3	66.14	S3	Lithic and quartz wacke as above (60.60 to 63.50m)					
				Mottled dark green with light coloured crystal carbonate intrusive and altered texture,					
CR-09-038	194.19	196.24	13	15chl-15act-06carb bearing, non-magnetic, fine to medium grained, Mafic Dyke with					
				sharp 52degCA contacts in seds.					
				PO-PY sulphidized, folded, rarely crossbedded, siliceous (05-10% silica) argillaceous					
CR-09-038	201.80	209.68	S6D	Mudstone. Highly variable sulphide defined bedding orientations from OdegCA to					
				85degCA.					
				minor sheared silt laiden Wacke slump structure. Contorted irregular bedding with					
CR-09-038	222.08	224.56	SHR; S3	folded minor quartz and carbonate veins. Poorly sulphide mineralized with fine grain					
				disseminated 02PY 02PO.					
	22774	220.20	121	Bleached beige coloured, fine grained, cross-cutting (50degCA) Quartz-Diorite narrow					
CR-09-038	227.74	220.20	121	dyke.					
	220.04	220 /F	121	Bleached beige coloured, fine grained, cross-cutting (50degCA) Quartz-Diorite narrow					
CK-09-038	229.94	230.43	121	dyke as above.					

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-09-038	230.45	237.07	SHR; bre	Sheared, silica overprinted, muddy Wacke sediments and minor brecciated veins. Sediments and fragmented quartz veins and carbonate veins contain PO-PY mineralization. Few undulating fractures with PY are parallel to core axis. Shear fabric is poorly developed at 60degCA. Few thin (<1cm thick) folded, irregular, laminated quartz-carb-(chert)-PY veins are closely associated with continuous undulating PY fractures CA. Upper contact is dyked and lower contact is irregular at low angle to core.	
CR-09-038	244.30	245.70	SHR; bre	Sheared, silica overprinted, muddy Wacke sediments and minor brecciated veins as above. 55degCA poorly developed shear fabric. Abundant narrow quartz and quartz- carbonate narrow fragmented and folded veins. One planar 2cm thick SS pyrrhotite vein. Upper contact is sharp with cross-cutting, planar quartz veining entact at 43degCA. Lower contact contains folded quartz-carbonate veins at low core angle (<30degCA).	
CR-09-038	248.25	253.5	SHR; S6D	Sheared, 15-25% silica and up to 10% Carbonate overprinted Mud- and Lithic Wacke- stone sediments with up to 10% pyrite matrix replacement. Quartz veins are folded and frequently dismembered, though the most significant vein is folded and entact at a low angle to the core axis. Few waxy quartz-carbonate veins are rounded and completely dismembered in sheared carbonate altered fine pyrite brown coloured sediments. Poorly developed 40degCA shear plane with thin planar carbonate vein cluster at lower contact. Upper and lower contacts are gradational and distinguishable by sheared fabric within locallized cluster of dismembered quartz veins and sulphide mineralization.	
CR-09-038	253.5	259.5	S3; SHR	Poorly developed local shearing in quartz lithic Wacke with irregular, well defined, muddy sections. Fine grained pyrite laminations throughout parallel to bedding planes. Minor faulted beds occur throughout, probably offset during lithification of sediments, no importance to mineralization. Several quartz-carbonate veined horizons with increased shearing.	
CR-09-038	259.5	260	WMIN; SHR	Strongly sheared (57degCA), silicified, fragmented quartz vein, brecciated, and PY- mineralized sediments over narrow interval. 10cm section of brown PY-carbonate pervasive replacement. Up to 20% replacement PY in matrix. Sharp upper and lower contacts.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-09-038	279.30	282.18	S4C; bre	10-20% sulphide bearing (cheifly PY), cherty overprinted, lithic and quartz fragment matrix supported, Polymictic Conglomerate similar to above 71.54 to 77.03m. Brecciated conglomerate contains several large cobble sized clasts are lithic and contain quartz clasts within clasts. Upper and lower contacts contain dark grey coloured Mudstone and are gradational.	
CR-09-038	288.78	289.60	S4C	10-20% sulphide bearing (cheifly PY), cherty overprinted, lithic and quartz fragment matrix supported, Polymictic Conglomerate similar to above 71.54 to 77.03m. Upper and lower contacts contain dark grey coloured Mudstone and are gradational.	
CR-09-038	294.00	294.30	WMIN; SHR	Narrow PO-PY replaced Well Mineralized (WMIN) shear structure with brecciated quartz vein fragments. 40% Mudstone, 15% replacement silica, 30% quartz veins, 10% PO and 05%PY replacement.	
CR-09-038	294.51	295.00	121	Two (2) brown-grey coloured, medium grained, weakly magnetic, strongly carbonate (- and silica) replaced, Quartz Diorite Dykes. The two dykes have converging orientations. Contacts on upper 5cm dyke are sharp and crosscut bedding at 75degCA. Lower dyke is 28cm thick with a sharp upper contact at 50degCA and lower contact at 40degCA.	
CR-09-038	311.65	313.40	WMIN; S4C	Quartz-lithic clast, 20% crystal PY-replaced cement, matrix-supported Conglomerate. Upper and lower contacts are gradational over narrow 0.20cm intervals with sharp increase and decrease in pyrite content.	
CR-09-038	321.86	324.10	121	Medium grained, carbonate-PY bearing Quartz Diorite as above within silicified Wacke sediments with whispy and pervasive Chert-PY-MT-Carb alteration halo adjacent dyke. Upper and lower contacts are overprinted by alteration and are sharp at 57degCA.	
CR-09-038	330.02	330.22	121	Medium grained, carbonate-PY bearing Quartz Diorite within silicified Wacke sediments with associated Chert-PY-MT-Carb alteration as above. Sharp upper and lower contacts at 54degCA and 68degCA.	
CR-09-038	333.39	334.33	SS	SOLID SULPHIDE (SS). 85% replacement pyrite (05% PO) interval within WMIN; SS major unit.	
CR-09-038	344.65	348.15	S4C	10-20% PY mineralized, quartz-(lithic) matrix-supported Conglomerate dominated minor unit within sheared and brecciated variably magnetic PY-mineralized argillaceous Mudstone with quartz veins.	
CR-09-038	367.1	369.05	BRE	Carbonate (5-8%) and silica (10%) altered, rounded fragment Brecciated Wackestone with PY-replacement in cement.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-09-038	379.07	384.75	I2E	Biotite bearing, trace pyrite mineralized, massive, medium grained, weakly sil-(ser) altered, Quartz-Monzonite within sheared Huston-Balmer unconformity. Foliated at Basalt block from 381.75 to 382.30m. Sharp upper and lower contacts at 64degCA and 58degCA.	
CR-09-038	415.95	416.35	I2E	Biotite bearing, trace pyrite mineralized, massive, medium grained, weakly sil-(ser) altered, Quartz-Monzonite as above, but in Balmer Assemblage. Sharp upper and lower contacts at 80degCA.	
CR-09-038	416.65	419.25	I2E	Quartz-Monzonite as above, but in Balmer Assemblage. Sharp upper and lower contacts at 70degCA.	
CR-09-038	423.4	427.1	12E	Quartz-Monzonite as above. Sharp upper and lower contacts at 65degCA and 50degCA.	
CR-09-038	434.75	435.1	12E	Quartz-Monzonite as above. Sharp upper and lower contacts at 68degCA and 58degCA.	
CR-09-038	438.55	443.85	I2E	Quartz-Monzonite as above. Sharp upper and lower contacts at 68degCA and 64degCA.	
CR-09-038	456.00	458.18	I2E	Quartz-Monzonite as above. One irregular, internally fractured, bull quartz-PY vein nearly parallel to CA. Sharp upper and lower contacts at 70degCA and 72degCA.	
CR-09-038	480.77	482.65	I2E	Quartz-Monzonite as above. Sharp upper and lower contacts at 68degCA and 60degCA.	
CR-09-038	490.04	490.79	I2E	Quartz-Monzonite as above with minor irregular carbonate-(quartz-biotite) veining and bleached wallrock near veins. Sharp upper and lower contacts at 70degCA and 72degCA.	
CR-09-038	492.04	497.81	12G	bt-bearing, bleached sil-ser altered Quartz Monzonite with rounded plagioclase phenocrysts and rounded quartz crystal eyes. Trace fine flecks of cubic arsenopyrite and attenuated blebby trace pyrite are clustered into foliated (75degCA) and tightly healed fractured sections. Occasional irregular white quartz-chlorite-(PY-bt) veins commonly cross-cut dyke. Sharp contacts at 66degCA and 68degCA.	
CR-09-038	503.69	504.38	I2E	Bleached bt-bearing Quartz-Monzonite as above. Foliated at 78degCA. Sharp upper and lower contacts at 68degCA and 60degCA.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-09-038	511.02	515.26	12E	bt-bearing, bleached sil-ser altered Quartz Monzodiorite with rounded plagioclase phenocrysts and rounded quartz crystal eyes. Trace fine flecks of cubic arsenopyrite and attenuated blebby trace pyrite are clustered into foliated (75degCA) and tightly healed fractured sections. Occasional irregular white quartz-chlorite-(PY-bt) veins commonly cross-cut dyke. Sharp contacts at 80degCA and 60degCA.	
CR-09-038	515.26	523.5	V3B	Pillowed Basalt as above (see Major Unit description) with quartz-carbonate veins and associated blebby PY-(PO). Quartz-carbonate selvage replacement is broad in places, up to 6cm thick with minor thin tightly folded veins suggest weak shearing near Intrustive contact boundaries. Gradational lower contact.	
CR-09-038	544.45	545.58	12E	Quartz-Monzonite (as above 415.95 to 416.35m). Sharp upper and lower contacts at 65degCA and 80degCA.	
CR-09-038	549.03	553.35	12E	bt-bearing, strongly bleached sil-ser altered Quartz Monzonite with rounded plagioclase phenocrysts and rounded quartz crystal eyes. Trace arsenopyrite flecks and trace pyrite throughout. Sharp contacts at 80degCA and 60degCA.	
CR-09-038	563.67	568.5	V3B; var	Massive, variolitic Basalt with coarsened hornblende crystals. NIL sulphides. Gradational upper and lower contacts.	
CR-09-038	594.5	598.12	121	Dark grey coloured, near massive, locally fine quartz carbonate veined, fine to medium grained, non-magnetic, biotite bearing, Quartz Diorite dyke. Trace disseminated PY. Few irregular quartz veins cross-cut intrusive with narrow assimilated block of basalt. Quartz veined upper contact is sharp at 60degCA. Lower contact is moderately sharp in silica charged basalt at 45degCA and has diffuse silica alteration.	
CR-09-038	603.89	604.3	12E	Quartz-Monzonite (as above 415.95 to 416.35m). Sharp upper and lower contacts at 65degCA and 80degCA.	
CR-09-038	611.7	611.89	12E	Quartz-Monzonite (as above 415.95 to 416.35m). Sharp upper and lower contacts at 80degCA.	
CR-09-038	612.28	613.3	I2E	Quartz-Monzonite, similar to above 415.95 to 416.35m, but with strong sil-ser alteration. Trace APY-PO-(PY) disseminations throughout. Transposed upper contact and sharp lower contact at 65degCA with quartz vein at interflow seds.	
CR-09-038	613.3	616	S	Dark coloured, sheared, silty and argillaceous Balmer interflow sediments are well mineralized with up to 15PO-05MT-03PY over narrow widths. Lower contact is sheared with minor fault (1cm of carb-chl gouge).	
CR-09-038	622.02	622.36	I2G	Dark grey coloured, massive, narrow, quartz Monzodiorite. No bleaching. Sharp contacts at 75degCA and 85degCA.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-09-038	639.09	642.3	12J	Grey coloured, massive, locally mottled, fine grained, magnetic, biotite bearing, (quartz-) Diorite with salt and pepper interlocking grain texture. Very weakly carbonate bearing (2%). Upper contact is undulating and planar at 54degCA. Lower contact is interfingered/transposed in gabbro at 85degCA.	
CR-09-038	643.28	648.47	I2J	Salt and pepper textured Diorite as above. Quenched fine grain textures at contacts. Sharp upper and lower contacts at 62degCA and 74degCA.	
CR-09-038	646.07	647.47	13A	Low angle Gabbro dyke within massive Gabbro. Fresh. HB-plag-act dominated. Sharp upper and lower contacts at 42degCA and 38degCA.	
CR-09-038	685.6	689.84	I2E	PO-mineralized Quartz-Monzonite with minor 05sil-05ser bleaching as above. Up to 02% disseminated PY blebs. Sheared and assimilated gabbro wall rock lower contact with minor quartz veining.	
CR-09-038	707.43	711.82	I2 E	Steel grey coloured, massive, plagioclase phyric, 03% biotite and occasional crystal quartz-eye bearing, weakly 05sil-05ser altered, 02% blebby pyrite mineralized Quartz Monzonite. Few minor 20degCA to 60degCA quartz-carbonate veins. Sharp upper and lower irregular contacts at 85degCA	
CR-09-038	732.31	733.7	I2E	Quartz Monzodiorite similar to above 707.43 to 713.82m with one irregular quartz-PY vein sub parallel to core axis. Weak bleaching throughout. Sharp upper contact at 75degCA. Lower contact is undulating with broad 10cm thick irregular quartz veining. Quartz veining at contact produces fine grained contact alteration biotite in gabbro wall rock.	
CR-09-038	802.03	808.39	SHR; I3A	Weakly sheared (52 to 75degCA) Gabbro intrusive with narrow boudinaged dark grey coloured quartz veins and 05% quartz-carbonate throughout in fine veinlets and pervasive carbonate. NIL sulphides. Three (3) bull quartz veins with no sulphides in shear oriented nearly parallel to shearing. Upper and lower contacts are gradational over 0.50m.	
CR-09-038	816	816.75	SHR; I3A	Similar to weak shearing above (802.03 to 808.39m) with up to 03% fine grained biotite and 35% sheared dark grey coloured quartz veins. Shear fabric is planar at 80degCA.	
CR-09-038	832.63	836.4	I2E	Quartz Monzodiorite similar to above 707.43 to 713.82m. Minor quartz carbonate at LC. Sharp upper and lower contacts with sheared gabbroic shoulders from emplacement at 65degCA.	
CR-09-038	863.6	869.16	I2E	Quartz Monzodiorite similar to above 707.43 to 713.82m. Disseminated 02% PY blebs throughout. Sharp upper contact at 75degCA. Lower contact has narrow block of Gabbro and carbonate vein.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
				Mottled, brown and green coloured, 20% chlorite, 15% biotite altered flow top pillow	
				breccia Basalt. Weak planar fabric, weak shearing, and fractures at 60-80degCA.	
	042 10	05416	V/2P, bro	Subrounded and healed fracture pillow top breccia is unmineralized and lacks silica,	
CK-09-038 5	943.10	954.10	vsb; bre	quartz carbonate veining, and sulphides to be prospective for mineralization. Volcanic	
				flow textures fine in up-hole direction. Upper contact is sharp 65degCA. Lower contact	
				is dyked out.	
				Strongly bleached, sil-ser-QV altered Quartz Monzonite. 02-03% PY mineralized with	
	05416	050 24	135	several irregular, 5-10cm thick, quartz veins. Frequent 85degCA fractures throughout	
CR-09-056 5	954.10	959.24	IZE	unit are tightly healed and discontinuous. Upper contact is irregular and transposed at	
				75degCA. Lower contact is sharp at 78degCA.	
				Bluish-green coloured, massive, silica altered Basalt with trace disseminated PY	
				throughout. Few continuous low angle brecciated quartz veinlets cut Basalt and contain	
	050.24	006 22	1/2P	minor PY. Strong silica overprinting from 979.40 to fault masks original fine to medium	
CR-09-038 5	959.24	980.33	V3D	grained volcanic textures. Upper contact is dyked out. Lower contact contains several	
				quartz veins in silicified volcanic with weak PY-(PO) mineralization at Major Fault	
				Unconformity.	

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-038	1645	9.38	10.38	1.00		Wing Sample: magnetic Huston Assemblage Mudstone with minor <01% quartz veinlets, trace sulphides	<5	RL37213
CR-09-038	1646	10.38	10.63	0.25	consecutive	Character Sample: Refolded quartz vein cluster with 20% quartz veins and trace sulphides	<5	RL37213
CR-09-038	1647	10.63	11.70	1.07	consecutive	Infill Wing Sample: magnetic Mudstone with several fine quartz veins and trace PO	<5	RL37213
CR-09-038	1648	11.70	12.26	0.56	consecutive	Character Sample: refolded quartz veins and irregular planar veins as above with trace sulphides	<5	RL37213
CR-09-038	1649	12.26	13.33	1.07	consecutive	Infill Wing Sample: magnetic Mudstone with several fine quartz veins and trace PO	<5	RL37213
CR-09-038	1650	0.00	0.00	0.00	not consecutive	SI42 1.761ppm	1830	RL37213
CR-09-038	1651	13.33	13.80	0.47	not consecutive	quartz veins in fold hinge within magnetic Huston Assemblage Mudstone. Trace Pyrrhotite.	<5	RL37213
CR-09-038	1652	13.80	14.80	1.00	consecutive	02-03% Quartz veins (minor folded and irregular symetries) in magnetite Mudstone with trace PO	<5	RL37213
CR-09-038	1653	14.80	15.80	1.00	consecutive	Infill Wing Sample: typical magnetic Huston Assemblage Mudstone with two (2) <<1cm quartz veinlets with no associated sulphides. Trace PO in Mudstone beds.	<5	RL37213
CR-09-038	1654	15.80	16.80	1.00	consecutive	Infill Wing Sample: magnetic Mudstone with several fine quartz veins and trace PO	<5	RL37213
CR-09-038	1655	5.80	6.30	0.50	not consecutive	Blank Sample: Wacke interbed at top of hole. NIL sulphides	<5	RL37213
CR-09-038	1656	16.80	17.41	0.61	not consecutive	Infill Wing Sample: magnetic Mudstone with several fine quartz veins and trace PO	<5	RL37213
CR-09-038	1657	17.41	17.81	0.40	consecutive	Character Sample: Narrow sheared Mudstone with sheared quartz veins and minor 02ser-01carb in veins with 02PO and trPY	<5	RL37213
CR-09-038	1658	17.81	18.81	1.00	consecutive	Wing Sample: very fine disseminated PO in bedding sub CA in magnetic Mudstone (no shearing) containing 01PO.	4970	RL37213
CR-09-038	1659	20.12	21.12	1.00	not consecutive	Wing Sample: magnetic Mudstone with several fine quartz veins and trace PO	<5	RL37213
CR-09-038	1660	21.38	22.38	1.00	not consecutive	Wing Sample: very fine disseminated PO in bedding sub CA in magnetic Mudstone (no shearing) containing 01PO. (Jump in sampling due to location of Double Split at narrow sample)	<5	RL37213
CR-09-038	1661	21.12	21.38	0.26	not consecutive	70% shallow 20degCA open folded quartz veins containing 02ser- 03carb alteration within magnetic, 01PO bearing Mudstone	<5	RL37213

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-038	1662	22.38	23.08	0.70	not consecutive	One planar vuggy quartz-PY-(PO) vein at 50degCA (1cm thick) with few open folded low angle 0.50cm thick (1%) quartz veins at 20degCA in magnetic 01PO-bearing Mudstone	<5	RL37213
CR-09-038	1663	23.08	24.08	1.00	consecutive	Wing Sample: magnetic Mudstone with several fine quartz veins and trace PO	<5	RL37213
CR-09-038	1664	26.20	27.20	1.00	not consecutive	Wing Sample: magnetic Mudstone with several fine quartz veins and trace PO	<5	RL37213
CR-09-038	1665	27.20	28.00	0.80	consecutive	Planar well bedded Mudstone with six (6) bedding parallel oriented quartz veinlets AND one cross-cutting tensional vein fragment within magnetic 01PO bearing Mudstone.	<5	RL37213
CR-09-038	1666	28.00	28.50	0.50	consecutive	Planar well bedded Mudstone with six (6) bedding parallel oriented quartz veinlets AND one cross-cutting tensional vein fragment within magnetic 01PO bearing Mudstone.	<5	RL37213
CR-09-038	1667	28.50	29.50	1.00	consecutive	Wing Sample: magnetic Mudstone with several fine quartz veins and 02PO and trace PY	<5	RL37213
CR-09-038	1668	57.09	58.09	1.00	not consecutive	Wing Sample: Argillaceous magnetic Mudstone. 01PO	<5	RL37213
CR-09-038	1669	58.09	59.14	1.05	consecutive	fine grained Quartz-Monzodiorite dyke with 1cm thick Quartz-PO vein and PO filled cross-cutting fracture blowout. 02PO.	<5	RL37213
CR-09-038	1670	0.00	0.00	0.00	not consecutive	OxK 3.583ppm	3640	RL37213
CR-09-038	1671	59.14	60.00	0.86	not consecutive	narrow minor fault with carb-chl filling within sulphidic magnetic Mudstone. 02PO	<5	RL37213
CR-09-038	1672	60.00	60.22	0.22	consecutive	massive, fractured quartz vein in Mudstone. trPY trPO.	<5	RL37213
CR-09-038	1673	60.22	60.60	0.38	consecutive	Wing Sample: magnetic Mudstone 01PO	<5	RL37213
CR-09-038	1674	60.60	61.40	0.80	consecutive	fine grained Quartz-Monzodiorite dyke. NIL sulphides.	<5	RL37213
CR-09-038	1675	61.40	62.40	1.00	consecutive	Blank Sample: lithic and quartz clast bearing Wacke with minor quartz vein. Trace PO.	<5	RL37213
CR-09-038	1676	65.14	66.14	1.00	not consecutive	Wing Sample: quartz/lithic Wacke with trace disseminated PO	<5	RL37213
CR-09-038	1677	66.14	66.43	0.29	consecutive	Infill Wing Sample: narrow Mudstone interval with 01PO	<5	RL37213
CR-09-038	1678	66.43	67.21	0.78	consecutive	Character Sample: 03PO-replaced fragments and matrix cement in angular Quartz clast polluted Argillaceous matrix conglomerate.	75	RL37213
CR-09-038	1679	67.21	68.28	1.07	consecutive	Character Sample: PY-PO-bearing magnetic Argillaceous Mudstone with associated quartz veining and 05PO-PY.	8	RL37213
CR-09-038	1680	68.28	68.97	0.69	consecutive	Character Sample: 15% PO mineralized, polymictic quartz-lithic, PO-replaced clast and cement, Conglomerate	<5	RL37213
CR-09-038	1681	68.97	70.00	1.03	consecutive	Wing Sample: 08-10% Magnetite and 02% PO bearing Mudstone	<5	RL37213

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-038	1682	70.00	71.50	1.50	consecutive	Wing Sample: 08-10% Magnetite and 02% PO bearing Mudstone with narrow 15cm thick 02-05% quartz fragment interflow with minor associated QV and 01PO. (Next sample in series is 01694)	<5	RL37213
CR-09-038	1683	76.20	77.20	1.00	not consecutive	05-10% silica altered, matrix supported Conglomerate with 02PO and trPY.	330	RL37213
CR-09-038	1684	77.20	77.87	0.67	consecutive	Character Sample: 1/2 of sample is narrow NSS containing up to 50PO cement and 05-08% PY replacement in quartz Conglomerate. 15% silica alteration in Conglomerate.	<5	RL37213
CR-09-038	1685	77.87	78.87	1.00	consecutive	Infill Wing: 15% silica alteration in quartz clast supported Conglomerate with small cm-scale clasts and 03PO.	<5	RL37213
CR-09-038	1686	78.87	79.50	0.63	consecutive	Infill Wing: 15% silica alteration in finely bedded (50degCA) quartz clast supported Conglomerate with heavy 05-08% PO 02PY. NSS PO-(PY) replacement over 7cm interval.	<5	RL37213
CR-09-038	1687	79.50	80.00	0.50	consecutive	Character Sample: Quartz clast-supported Conglomerate with fine beds and irregular quartz veining. Heavy 20PO-(02PY) Replacement. 15% silica alteration.	<5	RL37213
CR-09-038	1688	80.00	81.00	1.00	consecutive	Wing Sample: Quartz clast-supported Conglomerate with minimal PO>PY in blebs within 10% silica altered matrix. 02PO 01PY.	<5	RL37213
CR-09-038	1689	82.69	83.69	1.00	not consecutive	Wing Sample: 05% silica Siltstone interbed with 01PO fine bedding at 45degCA	<5	RL37213
CR-09-038	1690	0.00	0.00	0.00	not consecutive	SK43 4.086ppm	3910	RL37213
CR-09-038	1691	83.69	84.69	1.00	not consecutive	15% silica altered, heavy 10PO 02PY replaced matrix in fine subangular quartz clast Conglomerate	<5	RL37213
CR-09-038	1692	84.69	85.69	1.00	consecutive	Wing Sample: 15% silica altered, rounded quartz cobble clast- supported Conglomerate with 08PO 03PY.	<5	RL37213
CR-09-038	1693	89.00	90.00	1.00	not consecutive	80% quartz cobble, clast-supported, 10% silica altered, Conglomerate with 04PO 01PY.	<5	RL37213
CR-09-038	1694	71.50	73.00	1.50	not consecutive	Matrix-supported Conglomerate with 10PO 02PY	<5	RL37213
CR-09-038	1695	90.00	91.50	1.50	not consecutive	80% quartz cobble, clast-supported, 10% silica altered, Conglomerate with 04PO 01PY.	12	RL37213
CR-09-038	1696	91.50	93.00	1.50	consecutive	80% quartz cobble, clast-supported, 10% silica altered, Conglomerate with 04PO 01PY.	<5	RL37213
CR-09-038	1697	93.00	94.50	1.50	consecutive	80% quartz cobble, clast-supported, 10% silica altered, Conglomerate with 06PO 03PY.	<5	RL37213
CR-09-038	1698	94.50	96.00	1.50	consecutive	80% quartz cobble, clast-supported, 10% silica altered, Conglomerate with 06PO 03PY.	107	RL37213

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-038	1699	96.00	97.50	1.50	consecutive	80% quartz cobble, clast-supported, 10% silica altered, Conglomerate with 05PO 01PY.	41	RL37213
CR-09-038	1700	97.50	99.00	1.50	consecutive	Double Split	10	RL37213
CR-09-038	1701	99.00	99.83	0.83	consecutive	80% quartz cobble, clast-supported, 10% silica altered, Conglomerate with 04PO 01PY.	15	RL37213
CR-09-038	1702	99.83	100.70	0.87	consecutive	Quartz Diorite Dyke. 02% fine grained biotite, 01% carbonate, 03% silica, 01% very fine grained PY and 40% plagioclase.	<5	RL37213
CR-09-038	1703	100.70	102.00	1.30	consecutive	80% quartz cobble, clast-supported, 10% silica altered, Conglomerate with 02PO 02PY.	<5	RL37213
CR-09-038	1704	102.00	103.50	1.50	consecutive	80% quartz cobble, clast-supported, 10% silica altered, Conglomerate with 02PO 02PY.	45	RL37213
CR-09-038	1705	103.50	105.00	1.50	consecutive	80% quartz cobble, clast-supported, 10% silica altered, Conglomerate with 02PO 02PY.	12	RL37213
CR-09-038	1706	105.00	106.50	1.50	consecutive	80% quartz cobble, clast-supported, 10% silica altered, Conglomerate with 02PO 02PY.	<5	RL37213
CR-09-038	1707	106.50	108.00	1.50	consecutive	80% quartz cobble, clast-supported, 15% silica altered, Conglomerate with 02PO 03PY.	3920	RL37213
CR-09-038	1708	108.00	109.50	1.50	consecutive	80% quartz cobble, clast-supported, 15% silica altered, Conglomerate with 02PO 03PY.	22	RL37213
CR-09-038	1709	109.50	111.00	1.50	consecutive	80% quartz cobble, clast-supported, 15% silica altered, Conglomerate with 02PO 03PY.	23	RL37213
CR-09-038	1710	0.00	0.00	0.00	not consecutive	SI42 1.761ppm	1790	RL37213
CR-09-038	1711	111.00	112.50	1.50	not consecutive	60% quartz clast, 20% interbed Argillaceous matrix, 15% silica replacement, 05PO 02PY.	13	RL37213
CR-09-038	1712	112.50	114.00	1.50	consecutive	80% quartz cobble, clast-supported, 15% silica altered, Conglomerate with 02PO 03PY.	<5	RL37213
CR-09-038	1713	114.00	115.32	1.32	consecutive	80% quartz cobble, clast-supported, 15% silica altered, Conglomerate with 05PO.	87	RL37213
CR-09-038	1714	115.32	116.32	1.00	consecutive	Wing Sample: Matrix-supported Conglomerate with few 03PO trPY slugs	<5	RL37213
CR-09-038	1715	139.00	140.03	1.03	not consecutive	Blank Sample: Upper Wing Mudstone with 03PO trPY	<5	RL37213
CR-09-038	1716	140.03	141.50	1.47	consecutive	Cheifly Pyrite replaced matrix-supported Conglomerate 08PY 02PO. Graded bedding fines in up-hole direction.	<5	RL37213
CR-09-038	1717	141.50	143.00	1.50	consecutive	cherty overprinted, qtz-lithic clast Conglomerate with PY>PO 15% sulphides in clasts. 10PY 05PO.	<5	RL37213
CR-09-038	1718	143.00	144.50	1.50	consecutive	cherty overprinted, qtz-lithic clast Conglomerate with PY>PO 15% sulphides in clasts with two (2) narrow argillaceous MT-bearing Mudstone interbeds. 08PY 02PO.	12	RL37213

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-038	1719	144.50	146.00	1.50	consecutive	cherty overprinted, qtz-lithic clast Conglomerate with PY>PO 15% sulphides in clasts. 10PY 05PO.	<5	RL37213
CR-09-038	1720	146.00	147.50	1.50	consecutive	cherty overprinted, qtz-lithic clast Conglomerate with PY>PO 15% sulphides in clasts. 10PY 05PO.	205	RL37213
CR-09-038	1721	147.50	149.00	1.50	consecutive	cherty overprinted, qtz-lithic clast Conglomerate with PY>PO 15% sulphides in clasts. 10PY 05PO.	<5	RL37213
CR-09-038	1722	149.00	150.50	1.50	consecutive	cherty overprinted, qtz-lithic clast Conglomerate with PY>PO 15% sulphides in clasts. 10PY 05PO. One (1) narrow NSS 7cm thick band.	<5	RL37213
CR-09-038	1723	150.50	152.00	1.50	consecutive	cherty overprinted, qtz-lithic clast Conglomerate with PY>PO 15% sulphides in clasts. 10PY 05PO.	<5	RL37213
CR-09-038	1724	152.00	153.50	1.50	consecutive	cherty overprinted, qtz-lithic clast Conglomerate with PY>PO 15% sulphides in clasts. 10PY 05PO.	<5	RL37213
CR-09-038	1725	153.50	155.00	1.50	consecutive	cherty overprinted, qtz-lithic clast Conglomerate with PY>PO 15% sulphides in clasts. 10PY 05PO.	172	RL37213
CR-09-038	1726	155.00	156.50	1.50	consecutive	cherty overprinted, qtz-lithic clast Conglomerate with PY>PO 15% sulphides in clasts and 70cm thick Mudstone interbed. 10PY 05PO.	89	RL37213
CR-09-038	1727	156.50	158.00	1.50	consecutive	cherty overprinted, qtz-lithic clast Conglomerate with PY>PO 15% sulphides in clasts and 40cm thick Mudstone interbed. 08PY trPO.	35	RL37213
CR-09-038	1728	158.00	159.50	1.50	consecutive	cherty overprinted, qtz-lithic clast, matrix-supported Conglomerate with PY>PO 15% sulphides in clasts. 08PY trPO.	<5	RL37213
CR-09-038	1729	159.50	160.50	1.00	consecutive	Quartz clast-supported Conglomerate with 03PY 02-03PO mineralized cement	<5	RL37213
CR-09-038	1730	0.00	0.00	0.00	not consecutive	OxK 3.583ppm	3380	RL37213
CR-09-038	1731	160.50	162.00	1.50	not consecutive	Quartz clast-supported Conglomerate with 01PY 03PO mineralized cement	21	RL37213
CR-09-038	1732	162.00	163.50	1.50	consecutive	Quartz clast-supported Conglomerate with 01PY 03PO mineralized cement	6	RL37213
CR-09-038	1733	163.50	164.35	0.85	consecutive	Quartz clast-supported Conglomerate with 01PY 03PO mineralized cement	258	RL37213
CR-09-038	1734	164.35	165.00	0.65	consecutive	silicified matrix supported Conglomerate with 07PO 08PY blebby replacement. Pyrite inside Pyrrhotite.	45	RL37213
CR-09-038	1735	165.00	166.50	1.50	consecutive	high silica altered, 03PO 05PY blebs and disseminated sulphides in matrix-supported Conglomerate	9	RL37213

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-038	1736	166.50	168.00	1.50	consecutive	high silica altered, 04PO 02PY blebs and disseminated sulphides in matrix-supported Conglomerate. PO-NSS over 4cm thickness.	92	RL37213
CR-09-038	1737	168.00	169.50	1.50	consecutive	high silica altered, 03PO 05PY blebs and disseminated sulphides in matrix-supported Conglomerate	34	RL37213
CR-09-038	1738	169.50	171.00	1.50	consecutive	high silica altered, 03PO 05PY blebs and disseminated sulphides in matrix-supported Conglomerate	24	RL37213
CR-09-038	1739	171.00	172.50	1.50	consecutive	high silica altered, 03PO 05PY blebs and disseminated sulphides in matrix-supported Conglomerate	37	RL37213
CR-09-038	1740	172.50	174.00	1.50	consecutive	high silica altered, 02PO 04PY blebs and disseminated sulphides in matrix-supported Conglomerate	<5	RL37213
CR-09-038	1741	174.00	175.50	1.50	consecutive	high silica altered, 02PO 04PY blebs and disseminated sulphides in matrix-supported Conglomerate	<5	RL37213
CR-09-038	1742	175.50	176.25	0.75	consecutive	20% silica altered, 02PO 04PY blebs and disseminated sulphides in matrix-supported Conglomerate with up to 70% quartz clasts	32	RL37213
CR-09-038	1743	176.25	176.50	0.25	consecutive	broad 2cm open folded quartz veined with PY (minor within vein) 05PY in silicified matrix-supported Conglomerate	<5	RL37213
CR-09-038	1744	176.50	177.75	1.25	consecutive	40% magnetic sulphidized muddy cement within 50% matrix- supported Qtz-Lithic Conglomerate. 05% quartz veins. 03PO 03PY. Sulphide replaced clasts/fragments.	301	RL37213
CR-09-038	1745	177.75	178.41	0.66	consecutive	narrow Wacke/Argillaceous Mudstone with minor faulted/shear irregular quartz veinlets. 02PO 01PY.	<5	RL37213
CR-09-038	1746	178.41	178.68	0.27	consecutive	NSS 50PY 10PY in Qtz-Lithic angular Conglomerate. 50:50 (Clast- to Cement-Replacement).	7	RL37213
CR-09-038	1747	32.80	33.80	1.00	not consecutive	Wing Sample: 03PO mineralized Argillite/Mudstone with a few minor 0.5cm wide tension	<5	RL37213
CR-09-038	1748	33.80	34.60	0.80	consecutive	Two (2) minor sheared quartz vein minor structure with minor associated PO mineralization. 05PO.	<5	RL37213
CR-09-038	1749	34.60	35.40	0.80	consecutive	Same as above minor sheared quartz veins with 05-07PO concentrated in shear footwall.	16	RL37213
CR-09-038	1750	0.00	0.00	0.00	not consecutive	SK43 4.086ppm	4170	RL37213
CR-09-038	1751	35.40	36.40	1.00	not consecutive	Sulphidized minor narrow quartz veined MT-argillaceous Mudstone. 03PO.	<5	RL37213
CR-09-038	1752	178.68	180.00	1.32	not consecutive	10PY 05PO mineralized clast-supported Conglomerate. Primary mineralization mode is replaced rounded clasts/fragments.	<5	RL37213

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-038	1753	180.00	181.00	1.00	consecutive	10PY 05PO mineralized clast-supported Conglomerate. Primary mineralization mode is replaced rounded clasts/fragments.	<5	RL37213
CR-09-038	1754	181.00	182.00	1.00	consecutive	10PY 05PO mineralized clast-supported Conglomerate. Primary mineralization mode is replaced rounded clasts/fragments.	25	RL37213
CR-09-038	1755	182.00	182.97	0.97	consecutive	Blank Sample: (Wing) Transitional clast-supported Conglomerate to Wacke contact with replaced PO clasts in Conglomerate.	80	RL37213
CR-09-038	1756	182.97	184.00	1.03	consecutive	quartz-bearing Lithic Wacke with 02-04% disseminated PO-(PY)	<5	RL37213
CR-09-038	1757	221.08	222.08	1.00	not consecutive	Wing Sample: silty Mudstone with silty interbeds 02PY 01PO	<5	RL37213
CR-09-038	1758	222.08	223.08	1.00	consecutive	Minor shearing in silty Wackestone with 04% carbonate veins and 03% quartz veins. 02PO 02PY.	50	RL37213
CR-09-038	1759	223.08	224.36	1.28	consecutive	Minor shearing in silty Wackestone with 04% carbonate veins and 03% quartz veins. 02PO 02PY.	34	RL37213
CR-09-038	1760	224.36	225.36	1.00	consecutive	Wing Sample: silty Mudstone with silty interbeds 02PY 01PO	<5	RL37213
CR-09-038	1761	225.36	226.36	1.00	consecutive	Wing Sample: silty Mudstone with silty interbeds few minor 01% quartz veins and 01% carbonate veins. 02PY 01PO.	5	RL37213
CR-09-038	1762	229.00	229.94	0.94	not consecutive	Wing Sample: silty Mudstone with 02PY and trPO	514	RL37213
CR-09-038	1763	229.94	230.45	0.51	consecutive	minor bleached Quartz Diorite Dyke with trace sulphides	<5	RL37213
CR-09-038 CR-09-038	1763 1764	229.94 230.45	230.45 231.39	0.51	consecutive consecutive	minor bleached Quartz Diorite Dyke with trace sulphides Sheared mixed muddy Wackestone sediments with brecciated and fragmented Quartz -(carbonate) veins with 03PY 01PO	<5	RL37213 RL37213
CR-09-038 CR-09-038 CR-09-038	1763 1764 1765	229.94 230.45 231.39	230.45 231.39 232.00	0.51 0.94 0.61	consecutive consecutive consecutive	minor bleached Quartz Diorite Dyke with trace sulphides Sheared mixed muddy Wackestone sediments with brecciated and fragmented Quartz -(carbonate) veins with 03PY 01PO Narrow massive Wacke interbed with trace sulphides	<5 <5 <5	RL37213 RL37213 RL37213
CR-09-038 CR-09-038 CR-09-038 CR-09-038	1763 1764 1765 1766	229.94 230.45 231.39 232.00	230.45 231.39 232.00 233.00	0.51 0.94 0.61 1.00	consecutive consecutive consecutive consecutive	minor bleached Quartz Diorite Dyke with trace sulphides Sheared mixed muddy Wackestone sediments with brecciated and fragmented Quartz -(carbonate) veins with 03PY 01PO Narrow massive Wacke interbed with trace sulphides Sheared silty Mudstone with brecciated and fragmented Quartz - (carbonate) veins with 04PY 01PO	<5 <5 <5 20	RL37213 RL37213 RL37213 RL37213
CR-09-038 CR-09-038 CR-09-038 CR-09-038 CR-09-038	1763 1764 1765 1766 1767	229.94 230.45 231.39 232.00 233.00	230.45 231.39 232.00 233.00 234.00	0.51 0.94 0.61 1.00 1.00	consecutive consecutive consecutive consecutive consecutive	minor bleached Quartz Diorite Dyke with trace sulphides Sheared mixed muddy Wackestone sediments with brecciated and fragmented Quartz -(carbonate) veins with 03PY 01PO Narrow massive Wacke interbed with trace sulphides Sheared silty Mudstone with brecciated and fragmented Quartz - (carbonate) veins with 04PY 01PO Sheared silty Mudstone with brecciated and fragmented Quartz - (carbonate) veins with locally heavy 02PY 04PO	<5 <5 <5 20 88	RL37213 RL37213 RL37213 RL37213 RL37213
CR-09-038 CR-09-038 CR-09-038 CR-09-038 CR-09-038 CR-09-038 CR-09-038 CR-09-038 CR-09-038	1763 1764 1765 1766 1767 1768	229.94 230.45 231.39 232.00 233.00 234.00	230.45 231.39 232.00 233.00 234.00 234.50	0.51 0.94 0.61 1.00 1.00 0.50	consecutive consecutive consecutive consecutive consecutive consecutive	minor bleached Quartz Diorite Dyke with trace sulphides Sheared mixed muddy Wackestone sediments with brecciated and fragmented Quartz -(carbonate) veins with 03PY 01PO Narrow massive Wacke interbed with trace sulphides Sheared silty Mudstone with brecciated and fragmented Quartz - (carbonate) veins with 04PY 01PO Sheared silty Mudstone with brecciated and fragmented Quartz - (carbonate) veins with locally heavy 02PY 04PO Sheared silty Mudstone with brecciated and fragmented Quartz - (carbonate) veins with locally heavy 02PY 04PO	<5 <5 <5 20 88 6	RL37213 RL37213 RL37213 RL37213 RL37213 RL37213
CR-09-038 CR-09-038 CR-09-038 CR-09-038 CR-09-038 CR-09-038 CR-09-038	1763 1764 1765 1766 1767 1768 1769	229.94 230.45 231.39 232.00 233.00 234.00 234.50	230.45 231.39 232.00 233.00 234.00 234.50 235.00	0.51 0.94 0.61 1.00 1.00 0.50 0.50	consecutive consecutive consecutive consecutive consecutive consecutive consecutive	minor bleached Quartz Diorite Dyke with trace sulphides Sheared mixed muddy Wackestone sediments with brecciated and fragmented Quartz -(carbonate) veins with 03PY 01PO Narrow massive Wacke interbed with trace sulphides Sheared silty Mudstone with brecciated and fragmented Quartz - (carbonate) veins with 04PY 01PO Sheared silty Mudstone with brecciated and fragmented Quartz - (carbonate) veins with locally heavy 02PY 04PO Sheared silty Mudstone with brecciated and fragmented Quartz - (carbonate) veins with locally heavy 02PY 04PO Sheared silty Mudstone with brecciated and fragmented Quartz - (carbonate) veins with 04PY 01PO Sheared and brecciated silty and muddy Wackestone with up to 40% folded and fragmented quartz veins. One undulating continuous PY-PO fracture sub CA. 08PO 02PY.	<5 <5 <5 20 88 6 223	RL37213 RL37213 RL37213 RL37213 RL37213 RL37213 RL37213
CR-09-038	1763 1764 1765 1766 1767 1768 1769 1770	229.94 230.45 231.39 232.00 233.00 234.00 234.50 0.00	230.45 231.39 232.00 233.00 234.00 234.50 235.00 0.00	0.51 0.94 0.61 1.00 1.00 0.50 0.50 0.00	consecutive consecutive consecutive consecutive consecutive consecutive consecutive	minor bleached Quartz Diorite Dyke with trace sulphides Sheared mixed muddy Wackestone sediments with brecciated and fragmented Quartz -(carbonate) veins with 03PY 01PO Narrow massive Wacke interbed with trace sulphides Sheared silty Mudstone with brecciated and fragmented Quartz - (carbonate) veins with 04PY 01PO Sheared silty Mudstone with brecciated and fragmented Quartz - (carbonate) veins with locally heavy 02PY 04PO Sheared silty Mudstone with brecciated and fragmented Quartz - (carbonate) veins with locally heavy 02PY 04PO Sheared silty Mudstone with brecciated and fragmented Quartz - (carbonate) veins with 04PY 01PO Sheared and brecciated silty and muddy Wackestone with up to 40% folded and fragmented quartz veins. One undulating continuous PY-PO fracture sub CA. 08PO 02PY. SK43 4.086ppm	<5 <5 20 88 6 223 4260	RL37213
CR-09-038 CR-09-038	1763 1764 1765 1766 1767 1768 1769 1770 1771	229.94 230.45 231.39 232.00 233.00 234.00 234.50 0.00 235.00	230.45 231.39 232.00 233.00 234.00 234.50 235.00 0.00 235.50	0.51 0.94 0.61 1.00 1.00 0.50 0.50 0.50	consecutive consecutive consecutive consecutive consecutive consecutive consecutive not consecutive not consecutive	minor bleached Quartz Diorite Dyke with trace sulphides Sheared mixed muddy Wackestone sediments with brecciated and fragmented Quartz -(carbonate) veins with 03PY 01PO Narrow massive Wacke interbed with trace sulphides Sheared silty Mudstone with brecciated and fragmented Quartz - (carbonate) veins with 04PY 01PO Sheared silty Mudstone with brecciated and fragmented Quartz - (carbonate) veins with locally heavy 02PY 04PO Sheared silty Mudstone with brecciated and fragmented Quartz - (carbonate) veins with locally heavy 02PY 04PO Sheared silty Mudstone with brecciated and fragmented Quartz - (carbonate) veins with 04PY 01PO Sheared and brecciated silty and muddy Wackestone with up to 40% folded and fragmented quartz veins. One undulating continuous PY-PO fracture sub CA. 08PO 02PY. SK43 4.086ppm Continuation of sub CA PY-PO fracture from above. 10% quartz- (carbonate) veins. 03PO 03PY.	<5 <5 20 88 6 223 4260 13	RL37213 RL37213

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-038	1773	236.00	237.07	1.07	consecutive	weakly sheared muddy mixed Wackestone sediments with disseminated PY-PO. 03PY 02PO.	9	RL37213
CR-09-038	1774	237.07	238.00	0.93	consecutive	Infill Wing: 03PO trPY bearing, magnetic Mudstone	8	RL37213
CR-09-038	1775	238.00	239.50	1.50	consecutive	Infill Wing: 03PO trPY bearing, magnetic Mudstone	18	RL37213
CR-09-038	1776	239.50	240.39	0.89	consecutive	Infill Wing: 03PO trPY bearing, magnetic Mudstone	13	RL37213
CR-09-038	1777	240.39	241.14	0.75	consecutive	several fragmented irregular quartz-carbonate veins in silty Mudstone. 05PO trPY.	23	RL37213
CR-09-038	1778	241.14	242.30	1.16	consecutive	Silty Mudstone with up to 04PO and trPY	<5	RL37213
CR-09-038	1779	242.30	243.30	1.00	consecutive	Infill Wing: 03PO trPY bearing, magnetic Mudstone	7	RL37213
CR-09-038	1780	243.30	244.30	1.00	consecutive	highly silt laiden Mudstone with 03PO and trPY	<5	RL37213
CR-09-038	1781	244.30	245.00	0.70	consecutive	Sheared and Brecciated Wacke with small subangular to rounded quartz vein fragments. 04PO disseminated blebs.	7	RL37213
CR-09-038	1782	245.00	245.70	0.70	consecutive	Sheared and Brecciated Wacke with small subangular to rounded quartz vein fragments. 04PO disseminated blebs.	<5	RL37213
CR-09-038	1783	245.70	246.67	0.97	consecutive	Infill Wing Sample: silty magnetic sediments with up to 03% disseminated PO and one SS-PO 2cm thick vein at 50degCA.	117	RL37213
CR-09-038	1784	246.67	247.10	0.43	consecutive	Infill Wing Sample: magnetic argillaceous Mudstone with up to 04% PO	18	RL37213
CR-09-038	1785	247.10	247.50	0.40	consecutive	abundant irregular 15% quartz-veins in 10PY 02PO mineralized, siliceous, MT-argillaceous Mudstone	29	RL37213
CR-09-038	1786	247.50	248.25	0.75	consecutive	05PY mineralized, 1-5cm thick 02% quartz veined, locally magnetic argillaceous Mudstone	27	RL37213
CR-09-038	1787	248.25	248.75	0.50	consecutive	25% silica altered, minor quartz veinlets in silty Mudstone with 10PY with minor shearing	5	RL37213
CR-09-038	1788	248.75	249.25	0.50	consecutive	Sheared and folded, 25% silica altered, grey coloured 1-1.5cm thick, low angle quartz-PY veins in argillaceous Mudstone. 04PY.	14	RL37213
CR-09-038	1789	249.25	250.25	1.00	consecutive	04PY mineralized silty argillaceous Mudstone sediments with one shallow quartz vein	<5	RL37213
CR-09-038	1790	0.00	0.00	0.00	not consecutive	SI42 1.761ppm	1880	RL37213
CR-09-038	1791	250.25	250.75	0.50	not consecutive	04PY mineralized silty argillaceous Mudstone sediments with one shallow quartz vein	<5	RL37213
CR-09-038	1792	250.75	251.75	1.00	consecutive	05% silica alteration in sheared 10% abundant carbonate veined Lithic Wackestone. 03PO.	22	RL37213
CR-09-038	1793	251.75	252.25	0.50	consecutive	05% silica alteration in sheared 10% abundant carbonate veined Lithic Wackestone. 03PO.	<5	RL37213
CR-09-038	1794	252.25	252.90	0.65	consecutive	Block of unsheared carbonate veined Wacke with fine siliceous Wacke interbeds.	72	RL37213

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-038	1795	262.50	263.00	0.50	not consecutive	light grey coloured Siltstone with 01% fine grained PY. Well bedded.	14	RL37213
CR-09-038	1796	252.90	253.50	0.60	not consecutive	Strongly sheared cherty Mudstone with up to 08% dismembered quartz-carbonate veins and 04PY.	5	RL37213
CR-09-038	1797	253.50	255.00	1.50	consecutive	unsheared silt laiden, locally crossbedded Mudstone with 03PY	19	RL37213
CR-09-038	1798	255.00	255.83	0.83	consecutive	Weakly sheared, silt laiden Mudstone with 03PY and irregular quartz-carbonate vein fragments.	15	RL37213
CR-09-038	1799	255.83	256.74	0.91	consecutive	Sheared and folded, silty Mudstone (nearly Wacke) with folded and sheared quartz-carbonate veins and weak 03PY and 10sil.	7	RL37213
CR-09-038	1800	256.74	258.00	1.26	consecutive	Infill Wing Sample: Mixed Silt- and Wacke- stone with minor folded quartz-carbonate veins. 02PY at bedding interface between muddy Siltstone and Wacke layers.	16	RL37213
CR-09-038	1801	258.00	259.50	1.50	consecutive	mixed beds, weak shearing and fragmented quartz-carbonate veins in mixed fine grained sediments. Highly silicified Sheared Sediments at bottom of sample. 01PY.	15	RL37213
CR-09-038	1802	259.50	260.00	0.50	consecutive	WMIN 20PY in completely sheared and rounded clast brecciated quartz vein dominated (50%) and 20% sedimentary matrix, 05% brown locallized Carb-PY altered Shear Zone.	<5	RL37213
CR-09-038	1803	260.00	261.00	1.00	consecutive	Infill Wing: 03PY in bedded Mudstone	40	RL37213
CR-09-038	1804	261.00	261.70	0.70	consecutive	Weakly sheared and carbonate veined (15%) sediments with folded and sheared 05% PY bedding.	7	RL37213
CR-09-038	1805	261.70	262.50	0.80	consecutive	Wing: Mixed Mudstone and Qtz-Lithic Wackestone beds with rip- up structures.	35	RL37213
CR-09-038	1806	278.50	279.30	0.80	not consecutive	Wing Sample: 05PY disseminations in light grey coloured Wacke	27	RL37213
CR-09-038	1807	279.30	280.00	0.70	consecutive	Matrix-supported Conglomerate with clasts-in-clasts, 10% PY in matrix and fragments. 10PY.	<5	RL37213
CR-09-038	1808	280.00	280.75	0.75	consecutive	Matrix-supported Conglomerate with clasts-in-clasts, 10% PY in matrix and fragments. 10PY.	<5	RL37213
CR-09-038	1809	280.75	282.18	1.43	consecutive	Matrix-supported Conglomerate with clasts-in-clasts, 5% PY in matrix and fragments. 05PY.	<5	RL37213
CR-09-038	1810	0.00	0.00	0.00	not consecutive	OxK 3.583ppm	3520	RL37213
CR-09-038	1811	282.18	283.18	1.00	not consecutive	Wing Sample: PY-PO bearing, finely bedded, silty Mudstone with 01PY 01PO	<5	RL37213
CR-09-038	1812	287.65	288.65	1.00	not consecutive	Wing Sample: grey coloured, bedded, Wacke	<5	RL37213
CR-09-038	1813	288.65	289.60	0.95	consecutive	Clast-supported Conglomerate with 10PY	6	RL37213

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-038	1814	289.60	290.60	1.00	consecutive	Wing Sample: mixed argillaceous seds and conglomeratic Sedimentary beds	<5	RL37213
CR-09-038	1815	292.28	293.28	1.00	not consecutive	Blank Wing Sample: above faulted Seds with 01PY in mixed silty Sediments	<5	RL37213
CR-09-038	1816	293.28	293.68	0.40	consecutive	Minor Fault and ground core, chl-carb in Mudstone with 02PY	32	RL37213
CR-09-038	1817	293.68	294.00	0.32	consecutive	Infill Wing: narrow sample, Siltstone with fine crystal PY in irregular sulphide vein and bedding. 04PY.	<5	RL37213
CR-09-038	1818	294.00	294.30	0.30	consecutive	Narrow brecciated quartz vein structure within 40% muddy sediments. 30% quartz vein. 15% replacement silica in seds. 10% blebby PO and 05PY.	16	RL37213
CR-09-038	1819	294.30	295.30	1.00	consecutive	Wing Sample: Mudstone 02PY 02PO with two (2) quartz diorite narrow dykes.	13	RL37213
CR-09-038	1820	303.15	304.15	1.00	not consecutive	up to 05PY in folded Mudstone sediments	<5	RL37213
CR-09-038	1821	304.15	305.00	0.85	consecutive	Mixed muddy Wacke sediments with carbonate and 05PY	6	RL37213
CR-09-038	1822	305.00	306.00	1.00	consecutive	Mixed muddy Wacke sediments with carbonate and 05PY	<5	RL37213
CR-09-038	1823	306.00	307.25	1.25	consecutive	Mixed muddy Wacke and Conglomeratic sediments with 04PY 02PO. PY-replaced and rounded carbonate blebs	307	RL37213
CR-09-038	1824	307.25	308.45	1.20	consecutive	Folded, weakly sulphidized, thin grey bedded Mudstone sediments containing 02% carbonate with 04PY and trPO	<5	RL37213
CR-09-038	1825	308.45	309.20	0.75	consecutive	Matrix-supported Conglomerate with 05PY 02PO mineralized clasts and muddy matrix. PY-PO replaces carbonate.	<5	RL37235
CR-09-038	1826	309.20	310.50	1.30	consecutive	Folded, weakly sulphidized, thin grey bedded Mudstone sediments containing 02% carbonate with 04PY and trPO	<5	RL37235
CR-09-038	1827	310.50	311.65	1.15	consecutive	Grey-coloured lithic Wacke with 10% pervasive carbonate and 02% fine grained blebby PY	<5	RL37235
CR-09-038	1828	311.65	312.65	1.00	consecutive	Well mineralized crystal PY replaced cement matrix-supported Conglomerate with 20PY.	4400	RL37235
CR-09-038	1829	312.65	313.40	0.75	consecutive	Well mineralized crystal PY replaced cement matrix-supported Conglomerate with 15PY.	<5	RL37235
CR-09-038	1830	0.00	0.00	0.00	not consecutive	SI42 1.761ppm	1820	RL37235
CR-09-038	1831	313.40	314.27	0.87	not consecutive	carbonate bearing quartz-lithic Wacke with 04PY	<5	RL37235
CR-09-038	1832	314.27	315.27	1.00	consecutive	less than 10% quartz-carbonate veining within carbonate altered wacke (as above) with 04PY	<5	RL37235
CR-09-038	1833	315.27	316.27	1.00	consecutive	Muddy 20 silica altered nearly undifferentiated mixed seds. Quartz-Lithic clast Conglomerate dominated with PO-PY replaced clasts and cement. 02PO 08PY.	<5	RL37235

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-038	1834	316.27	317.27	1.00	consecutive	Muddy 20 silica altered nearly undifferentiated mixed seds. Quartz-Lithic clast Conglomerate dominated with PO-PY replaced clasts and cement. 03PO 12PY.	<5	RL37235
CR-09-038	1835	323.50	324.00	0.50	not consecutive	Blank Sample: poorly bleached quartz diorite intrusive with trace PY	103	RL37235
CR-09-038	1836	317.27	318.35	1.08	not consecutive	Mixed Mudstone and siliceous quartz-lithic wackestone with crystal PY replacement in cement. 10PY.	<5	RL37235
CR-09-038	1837	318.35	319.35	1.00	consecutive	Wing Sample: 04PY 01PO bearing, folded, 10% silica altered, Mudstone	<5	RL37235
CR-09-038	1838	328.40	329.90	1.50	not consecutive	25% silica altered, Wacke and Mudstone with 05PY	<5	RL37235
CR-09-038	1839	329.90	330.72	0.82	consecutive	10% irregular quartz-carbonate, 02% planar (70degCA) quartz veined, silicified Wacke with 04PY	<5	RL37235
CR-09-038	1840	330.72	331.72	1.00	consecutive	Well Mineralized (WMIN). Transition from Wacke to quartz- cobble Conglomerate with 20% near solid and whispy PY. 15% sheared Quartz Veins.	6	RL37235
CR-09-038	1841	331.72	332.72	1.00	consecutive	WMIN. Quartz-cobble Conglomerate with 20% PY	39	RL37235
CR-09-038	1842	332.72	333.39	0.67	consecutive	WMIN. Quartz-cobble Conglomerate with 20% PY	<5	RL37235
CR-09-038	1843	333.39	333.83	0.44	consecutive	Solid Sulphide (SS). 85PY 01PO.	5	RL37235
CR-09-038	1844	333.83	334.33	0.50	consecutive	Solid Sulphide (SS). 85PY 01PO.	<5	RL37235
CR-09-038	1845	334.33	335.50	1.17	consecutive	Infill Wing: Wacke with 25% silica and 02PY	<5	RL37235
CR-09-038	1846	335.50	336.91	1.41	consecutive	10% PY mineralized Quartz-Lithic Wacke with strong silica overprinting	<5	RL37235
CR-09-038	1847	336.91	338.41	1.50	consecutive	Infill Wing: silty Mudstone with 04PY and 05% quartz veins	6	RL37235R
CR-09-038	1848	338.41	339.88	1.47	consecutive	Infill Wing: silty Mudstone with 50cm of Qtz-Lithic Wacke as above and few very minor tensional carbonate veinlets at bed interfaces. 04PY	14	RL37235R
CR-09-038	1849	339.88	340.28	0.40	consecutive	Character Sample: 10PY in crudely banded (1cm-scale) matrix overprinting in siliceous (15sil) Wacke	8	RL37235R
CR-09-038	1850	0.00	0.00	0.00	not consecutive	SK43 4.086ppm	Insuff. Sample	RL37235R
CR-09-038	1851	340.28	341.30	1.02	not consecutive	Infill Wing: Poorly mineralized, 15% silica altered, well bedded Wacke with 03PY	<5	RL37235R
CR-09-038	1852	341.30	342.00	0.70	consecutive	Infill Wing: Poorly mineralized, 15% silica altered, well bedded Wacke with 03PY	<5	RL37235R
CR-09-038	1853	342.00	342.70	0.70	consecutive	Character Sample: 10PY in crudely banded (1cm-scale) matrix overprinting in siliceous (15sil) Wacke	<5	RL37235R
CR-09-038	1854	342.70	343.65	0.95	consecutive	Infill Wing: Poorly mineralized, 15% silica altered, well bedded Wacke with 03PY	9	RL37235R

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-038	1855	343.65	344.65	1.00	consecutive	Infill Wing: Poorly mineralized, 15% silica altered, well bedded Wacke with 03PY. No Blank, testing silicified stratigraphy.	<5	RL37235R
CR-09-038	1856	344.65	345.35	0.70	consecutive	Quartz clast matrix-supported, poorly sheared, 08PY bearing Conglomerate with brecciated quartz vein fragments	<5	RL37235R
CR-09-038	1857	345.35	346.15	0.80	consecutive	20PY (15cm NSS), poorly developed shear plane in matrix supported quartz-clast argillaceous matrix Conglomerate. One fractured planar <1cm quartz vein.	5	RL37235R
CR-09-038	1858	346.15	347.15	1.00	consecutive	Quartz clast matrix-supported, poorly sheared, 12PY bearing Conglomerate with brecciated quartz vein fragments and argillaceous matrix	<5	RL37235R
CR-09-038	1859	347.15	348.15	1.00	consecutive	Quartz clast matrix-supported, poorly sheared, 12PY bearing Conglomerate with brecciated quartz vein fragments and argillaceous matrix	<5	RL37235R
CR-09-038	1860	348.15	349.15	1.00	consecutive	Moderately Sheared, 06PY mineralized silty Wackestone with mud and minor conglomeratic sections.	<5	RL37235R
CR-09-038	1861	349.15	350.55	1.40	consecutive	20% thin quartz veins (<1.0cm thick) in strongly sheared and dismembered fragmented and attenuated Quartz veined argillaceous Mudstone. 03PY fracture filling and fine disseminate blebs.	41	RL37235R
CR-09-038	1862	350.55	351.55	1.00	consecutive	20% thin quartz veins (<1.0cm thick) in strongly sheared and dismembered fragmented and attenuated Quartz veined argillaceous Mudstone. 03PY fracture filling and fine disseminate blebs. 60degCA sheare fabric.	12	RL37235R
CR-09-038	1863	351.55	351.95	0.40	consecutive	Bull quartz-PY veins at cross-cutting shearing at 25degCA downhole in sheared argillaceous Mudstone	<5	RL37235R
CR-09-038	1864	351.95	352.60	0.65	consecutive	sheared 15% silica altered, 08% quartz veined, argillaceous Mudstone with minimal 01% very fine grained disseminated PY	20	RL37235R
CR-09-038	1865	352.60	352.90	0.30	consecutive	17cm thick, irregular Quartz-PY vein (90% QV) in sheared seds	<5	RL37235R
CR-09-038	1866	352.90	353.50	0.60	consecutive	Strongly sheared Mudstone with 20% quartz vein fragment (irregular sheared morphology) and 04-05% PY	<5	RL37235R
CR-09-038	1867	353.50	353.80	0.30	consecutive	21cm thick quartz vein (80% QV) in sheared seds	10	RL37235R
CR-09-038	1868	353.80	354.80	1.00	consecutive	Strongly sheared Mudstone with 10% quartz veins. One 8cm thick quartz vein at irregular contact (x-cutting). 04-05% PY	8	RL37235R
CR-09-038	1869	354.80	355.80	1.00	consecutive	Strongly sheared Mudstone with 10% quartz veins. Another 8cm thick quartz vein cross-cutting 80degCA. 04-05% PY	48	RL37235R
CR-09-038	1870	0.00	0.00	0.00	not consecutive	SI42 1.761ppm	1640	RL37235R

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-038	1871	355.80	357.00	1.20	not consecutive	Thin, less than 1.0cm, 10% Quartz Veins in strongly sheared, 15% silica altered, argillaceous Mudstone with 03PY.	<5	RL37235R
CR-09-038	1872	357.00	358.00	1.00	consecutive	Thin, less than 1.0cm, 10% Quartz Veins in strongly sheared, 15% silica altered, argillaceous Mudstone with 03PY.	<5	RL37235R
CR-09-038	1873	358.00	358.80	0.80	consecutive	05% quartz veins in strongly sheared argillaceous Mudstone with 01PY	8	RL37235R
CR-09-038	1874	358.80	360.00	1.20	consecutive	Mixed sheared Huston seds with amygdular Balmer Basalt Block. 01PY.	5	RL37235R
CR-09-038	1875	360.00	361.50	1.50	consecutive	Mixed sheared Huston seds with amygdular Balmer Basalt Block. 01PY.	<5	RL37235R
CR-09-038	1876	361.50	362.50	1.00	consecutive	100% basalt block in Huston Seds. Trace PY.	<5	RL37235R
CR-09-038	1877	362.50	363.40	0.90	consecutive	massive basalt block in sheared Huston sediments	8	RL37235R
CR-09-038	1878	363.40	364.40	1.00	consecutive	03PY mineralized, sheared Huston argillite/mudstone seds with 10% thin sheared (<1cm) quartz veins	<5	RL37235R
CR-09-038	1879	364.40	365.60	1.20	consecutive	03PY mineralized, sheared Huston argillite/mudstone seds with 10% thin sheared (<1cm) guartz veins	<5	RL37235R
CR-09-038	1880	365.60	366.60	1.00	consecutive	10% silica altered, brecciated and fragmented sheared quartz veins in argillite. 02-03% very fine grained PY.	<5	RL37235R
CR-09-038	1881	366.60	367.80	1.20	consecutive	Mixed sheared Argillite and Wacke with 05-08% carbonate and 10% silica alteration and 05% replaced PY cement	<5	RL37235R
CR-09-038	1882	367.80	369.05	1.25	consecutive	Mixed sheared Argillite and Wacke with 05-08% carbonate and 10% silica alteration and 05% replaced PY cement	<5	RL37235R
CR-09-038	1883	369.05	370.30	1.25	consecutive	silicified sheared Argillite with no quartz veins and 05PY	<5	RL37235R
CR-09-038	1884	370.30	370.80	0.50	consecutive	07PY replaced matrix with narrow quartz Conglomerate bed within sheared Mudstone sediments	<5	RL37235R
CR-09-038	1885	370.80	372.30	1.50	consecutive	silicified sheared Argillite with few irregular quartz veins (<2%) and 03PY	7	RL37235R
CR-09-038	1886	372.30	373.80	1.50	consecutive	silicified sheared Argillite with few irregular quartz veins (<2%) and 03PY	<5	RL37235R
CR-09-038	1887	373.80	374.75	0.95	consecutive	silicified sheared Argillite with few irregular quartz veins (<2%) and 03PY	<5	RL37235R
CR-09-038	1888	374.75	375.15	0.40	consecutive	Sheared fine quartz vein swarm over 02PY. 25% quartz veins.	<5	RL37235R
CR-09-038	1889	375.15	375.85	0.70	consecutive	MT-bearing Basalt block in shear with trace sulphides. 01% quartz veins.	9	RL37235R
CR-09-038	1890	0.00	0.00	0.00	not consecutive	SK43 4.086ppm	3900	RL37235R
CR-09-038	1891	375.85	376.85	1.00	not consecutive	increased quartz veining (10%) in sheared Mudstone with 03PY	5	RL37235R
CR-09-038	1892	376.85	378.00	1.15	consecutive	Strongly sheared, mixed Basalt and argillaceous Mudstone sediments at Huston Unconformity. < 10% silica. Trace PY.	70	RL37235R

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-038	1893	378.00	379.07	1.07	consecutive	Strongly sheared (60degCA), mixed Basalt and argillaceous Mudstone sediments at Huston Unconformity. < 10% silica. Trace PY.	<5	RL37235R
CR-09-038	1894	379.07	380.50	1.43	consecutive	quartz monzonite dyke with trace PY	8	RL37235R
CR-09-038	1895	380.50	381.75	1.25	consecutive	quartz monzonite dyke with trace PY	14	RL37235R
CR-09-038	1896	381.75	382.30	0.55	consecutive	Basalt block in dyke within sheared Seds. NIL sulphides.	9	RL37235R
CR-09-038	1897	382.30	383.80	1.50	consecutive	quartz monzonite dyke with trace PY	26	RL37235R
CR-09-038	1898	383.80	384.75	0.95	consecutive	quartz monzonite dyke with trace PY	145	RL37235R
CR-09-038	1899	384.75	386.00	1.25	consecutive	Intensely sheared, locally MT-bearing, argillaceous sediments with 05-10% quartz veins and lithic fragments. 04PY trPO. 02% carbonate.	12	RL37235R
CR-09-038	1900	386.00	387.00	1.00	consecutive	Intensely sheared, locally MT-bearing, argillaceous sediments with 05-10% quartz veins and lithic fragments. 04PY trPO. 02% carbonate. One very narrow 1cm fault gouge at 60degCA.	12	RL37235R
CR-09-038	1901	387.00	388.00	1.00	consecutive	40% dark grey coloured quartz veins in intensely sheared Huston Mudstone	<5	RL37235R
CR-09-038	1902	388.00	388.60	0.60	consecutive	Intensely sheared unconformity at sedimentary/volcanic contact. Last 60cm of Huston sampled.	<5	RL37235R
CR-09-038	1903	388.60	389.60	1.00	consecutive	Strongly sheared and bleached, pale light green coloured pervasive carbonate altered Basalt. Trace-01% QV. 05% fine carbonate veins. Trace PY.	18	RL37235R
CR-09-038	1904	389.60	391.00	1.40	consecutive	Bleached 10sil-10chl fractured 10carb altered fine grained Basalt with 02% quartz veins. Trace pyrite flecks.	<5	RL37235R
CR-09-038	1905	391.00	392.00	1.00	consecutive	15cm narrow sheared Mudstone block with 10chl-02sil-carb altered Basalt with bleaching and fracturing. 05% carbonate veins and 01% pervasive carbonate. NIL sulphides.	<5	RL37235R
CR-09-038	1906	392.00	392.85	0.85	consecutive	10chl-02sil-carb altered Basalt with bleaching and fracturing. 05% carbonate veins and 01% pervasive carbonate. NIL sulphides.	79	RL37235R
CR-09-038	1907	392.85	394.00	1.15	consecutive	Abundant 10% quartz-carbonate veining in poorly sheared, locally amygdular Basalt with trace PY flecks.	<5	RL37235R
CR-09-038	1908	394.00	395.50	1.50	consecutive	Abundant 10% quartz-carbonate veining in poorly sheared, locally amygdular Basalt with trace PY flecks.	104	RL37235R
CR-09-038	1909	395.50	397.00	1.50	consecutive	Abundant 10% quartz-carbonate veining in poorly sheared, locally amygdular Basalt with trace PY flecks.	102	RL37235R
CR-09-038	1910	0.00	0.00	0.00	not consecutive	SI42 1.761ppm	1650	RL37235R
CR-09-038	1911	397.00	398.50	1.50	not consecutive	Abundant 10% quartz-carbonate veining in locally amygdular Basalt with trace PY flecks.	<5	RL37235

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-038	1912	398.50	400.00	1.50	consecutive	Abundant 10% quartz-carbonate veining in locally amygdular Basalt with trace PY flecks.	<5	RL37235
CR-09-038	1913	400.00	401.50	1.50	consecutive	Abundant 10% quartz-carbonate veining in locally amygdular Basalt with trace PY flecks.	<5	RL37235
CR-09-038	1914	401.50	403.00	1.50	consecutive	Abundant 10% quartz-carbonate veining in locally amygdular Basalt with trace PY flecks.	<5	RL37235
CR-09-038	1915	403.00	404.50	1.50	consecutive	Abundant 10% quartz-carbonate veining in locally amygdular Basalt with trace PY flecks.	50	RL37235
CR-09-038	1916	404.50	406.00	1.50	consecutive	Abundant 10% quartz-carbonate veining in locally amygdular Basalt with trace PY flecks.	<5	RL37235
CR-09-038	1917	413.00	414.50	1.50	not consecutive	05% quartz-carbonate veining in locally amygdular Basalt with trace PY.	119	RL37235
CR-09-038	1918	414.50	415.95	1.45	consecutive	05% quartz-carbonate veining in locally amygdular Basalt with trace PY.	7	RL37235
CR-09-038	1919	415.95	416.65	0.70	consecutive	30cm of Basalt and 40cm of bleached, plag phyric, grey coloured, 10si-05ser-02bt bearing Quartz Monzonite with flecks of trace PY and PO	274	RL37235
CR-09-038	1920	416.65	418.00	1.35	consecutive	bleached, plag phyric, grey coloured, 10si-05ser-02bt bearing Quartz Monzonite with flecks of trace PY and PO. Two (2) low angle guartz veins.	18	RL37235
CR-09-038	1921	418.00	419.25	1.25	consecutive	bleached, plag phyric, grey coloured, 10si-05ser-02bt bearing Quartz Monzonite with flecks of trace PY and PO.	25	RL37235
CR-09-038	1922	419.25	420.25	1.00	consecutive	Wing: 05% quartz-carbonate veining in locally amygdular Basalt with trace PY.	12	RL37235
CR-09-038	1923	420.25	421.75	1.50	consecutive	Infill Wing: 05% quartz-carbonate veining in locally amygdular Basalt with trace PY.	<5	RL37235
CR-09-038	1924	421.75	422.50	0.75	consecutive	Infill Wing: 05% quartz-carbonate veining in locally amygdular Basalt with trace PY.	187	RL37235
CR-09-038	1925	422.50	423.40	0.90	consecutive	Wing: 05% quartz-carbonate veining in locally amygdular Basalt with trace PY.	38	RL37245
CR-09-038	1926	423.40	424.40	1.00	consecutive	bt-bearing, sil-ser altered, trace PO-PY mineralized Quartz Monzonite dyke.	<5	RL37245
CR-09-038	1927	424.40	425.40	1.00	consecutive	bt-bearing, sil-ser altered, trace PO-PY mineralized Quartz Monzonite dyke.	401	RL37245
CR-09-038	1928	425.40	426.40	1.00	consecutive	bt-bearing, sil-ser altered, trace PO-PY mineralized Quartz Monzonite dyke.	93	RL37245
CR-09-038	1929	426.40	427.10	0.70	consecutive	bt-bearing, sil-ser altered, trace PO-PY mineralized Quartz Monzonite dyke.	24	RL37245
CR-09-038	1930	0.00	0.00	0.00	not consecutive	OxK 3.583ppm	3270	RL37245

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-038	1931	427.10	428.60	1.50	not consecutive	Wing: 02-05% quartz-carbonate veining in locally amygdular Basalt with trace PY.	73	RL37245
CR-09-038	1932	428.60	430.00	1.40	consecutive	Infill Wing: 05% quartz-carbonate veining in locally amygdular Basalt with trace PY.	124	RL37245
CR-09-038	1933	430.00	431.00	1.00	consecutive	Infill Wing: 10% quartz-carbonate veining in locally amygdular Basalt with trace PY.	<5	RL37245
CR-09-038	1934	431.00	431.75	0.75	consecutive	Infill Wing: 10% quartz-carbonate veining in locally amygdular Basalt with trace PY.	188	RL37245
CR-09-038	1935	431.75	433.25	1.50	consecutive	Infill Wing: 05% quartz-carbonate veining in locally amygdular Basalt with trace PY.	<5	RL37245
CR-09-038	1936	433.25	434.75	1.50	consecutive	Infill Wing: 05% quartz-carbonate veining in locally amygdular Basalt with trace PY.	<5	RL37245
CR-09-038	1937	434.75	435.10	0.35	consecutive	fine grained quartz monzonite narrow dyke with trace PY	6	RL37245
CR-09-038	1938	435.10	436.55	1.45	consecutive	Infill Wing: 10% quartz-carbonate veining in locally amygdular Basalt with trace PY.	60	RL37245
CR-09-038	1939	436.55	437.55	1.00	consecutive	Infill Wing: 10% irregular quartz-carbonate veining in pillow Basalt with trace PY. Decreased silica to 05%.	<5	RL37245
CR-09-038	1940	437.55	438.55	1.00	consecutive	Infill Wing: 10% irregular quartz-carbonate veining in pillow Basalt with trace PY. Decreased silica to 05%.	<5	RL37245
CR-09-038	1941	438.55	439.55	1.00	consecutive	Bleached Quartz Monzonite with rounded blue quartz eyes and 01PY	<5	RL37245
CR-09-038	1942	439.55	440.75	1.20	consecutive	Bleached Quartz Monzonite with rounded blue quartz eyes and 01PY	<5	RL37245
CR-09-038	1943	440.75	441.85	1.10	consecutive	Bleached Quartz Monzonite with rounded blue quartz eyes and 01PY	<5	RL37245
CR-09-038	1944	441.85	443.00	1.15	consecutive	10% broad quartz-carbonate selvage replacement in pillowed basalt. Trace PY	280	RL37245
CR-09-038	1945	443.00	444.00	1.00	consecutive	06-08% broad quartz-carbonate selvage replacement in pillowed basalt. Trace PY	<5	RL37245
CR-09-038	1946	454.00	455.44	1.44	not consecutive	05% broad quartz-carbonate selvage replacement in pillowed basalt. NIL sulphides.	<5	RL37245
CR-09-038	1947	455.44	456.00	0.56	consecutive	narrow bt-bearing Quratz Monzonite dyke in medium grained, quartz carbonate veined Basalt with trace PY and PO	<5	RL37245
CR-09-038	1948	456.00	457.00	1.00	consecutive	Bleached Quartz Monzonite with rounded blue quartz eyes and 01PY	38	RL37245
CR-09-038	1949	457.00	458.18	1.18	consecutive	Bleached Quartz Monzonite with rounded blue quartz eyes. Bull guartz-chl-(PY) vein sub CA. Trace PY and PO.	20	RL37245
CR-09-038	1950	0.00	0.00	0.00	not consecutive	SK43 4.086ppm	4020	RL37245

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-038	1951	458.18	459.00	0.82	not consecutive	Wing Sample: pillowed basalt with 05% quartz carbonate veins and NIL sulphides	12	RL37245
CR-09-038	1952	476.00	477.00	1.00	not consecutive	Wing Sample: 10% quartz carbonate selvage and vein replacement in chlorite basalt with quartz amygdular pillow rims. NIL sulphides	<5	RL37245
CR-09-038	1953	477.00	477.40	0.40	consecutive	30cm of quartz-sericite-carbonate-(PY) vein with bleached (sil-ser altered) wall rock. Trace PO in fractures.	71	RL37245
CR-09-038	1954	477.40	478.40	1.00	consecutive	10-15% quartz carbonate selvage and vein replacement in chlorite basalt with quartz amygdular pillow rims. Trace PY.	<5	RL37245
CR-09-038	1955	478.40	479.40	1.00	consecutive	Blank Infill Wing: 10-15% quartz carbonate selvage and vein replacement in chlorite basalt with quartz amygdular pillow rims. Trace PY.	6	RL37245
CR-09-038	1956	479.40	480.77	1.37	consecutive	Infill Wing: 05% quartz veins in chlorite basalt	933	RL37245
CR-09-038	1957	480.77	481.70	0.93	consecutive	Bleached sil-ser-bt-(01PY-01PO-trAPY) quartz monzonite dyke	22	RL37245
CR-09-038	1958	481.70	482.65	0.95	consecutive	Bleached sil-ser-bt-(trPY-trAPY) quartz monzonite dyke	8	RL37245
CR-09-038	1959	482.65	483.65	1.00	consecutive	Infill Wing Sample: Pillowed chlorite Basalt (10chl) with 07% quartz- carbonate veins. Trace PY	<5	RL37245
CR-09-038	1960	483.65	484.65	1.00	consecutive	Wing Sample: Pillowed chlorite Basalt (10chl) with 07% quartz- carbonate veins. Trace PY	97	RL37245
CR-09-038	1961	488.00	489.00	1.00	not consecutive	Wing Sample: Pillowed chlorite Basalt (10chl) with 07% quartz- carbonate veins. Trace PY	65	RL37245
CR-09-038	1962	489.00	490.00	1.00	consecutive	05% pervasive carbonate, 10% chlorite, 10% quartz carbonate veining in Basalt	90	RL37245
CR-09-038	1963	490.00	490.79	0.79	consecutive	10sil-10ser Bleached 02PY bearing, qtz-chl-PY veined, bt-bearing Quartz Monzonite	25	RL37245
CR-09-038	1964	490.79	492.04	1.25	consecutive	Infill Wing Sample: near massive basalt with few quartz-carb veinlets. NIL sulphides.	26	RL37245
CR-09-038	1965	492.04	493.00	0.96	consecutive	10sil-10ser Bleached 02PY bearing, qtz-chl-PY veined, bt-bearing Quartz Monzonite	23	RL37245
CR-09-038	1966	493.00	494.00	1.00	consecutive	10sil-10ser Bleached 02PY bearing, qtz-chl-PY veined, bt-bearing Quartz Monzonite	5	RL37245
CR-09-038	1967	494.00	495.00	1.00	consecutive	10sil-10ser Bleached, bt-bearing Quartz Monzonite with one 8cm thick low angle qtz-chl-PY vein. 02PY.	<5	RL37245
CR-09-038	1968	495.00	496.00	1.00	consecutive	10sil-10ser Bleached, qtz-chl-PY veined, bt-bearing Quartz Monzonite. Trace PY-APY.	<5	RL37245
CR-09-038	1969	496.00	497.00	1.00	consecutive	Strongly bleached, 10sil-12ser altered Quartz Monzonite with flecks of trace APY and trPY-(PO)	<5	RL37245
CR-09-038	1970	0.00	0.00	0.00	not consecutive	SI42 1.761ppm	1660	RL37245

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-038	1971	497.00	497.81	0.81	not consecutive	10sil-10ser Bleached 02PY bearing, bt-bearing Quartz Monzonite	169	RL37245
CR-09-038	1972	497.81	499.00	1.19	consecutive	Infill Wing Sample: Chlorite pillowed Basalt with up to 10% quartz- carbonate veins. NIL sulphides.	<5	RL37245
CR-09-038	1973	499.00	500.00	1.00	consecutive	Infill Wing Sample: Chlorite pillowed Basalt with up to 10% quartz- carbonate veins. NIL sulphides.	12	RL37245
CR-09-038	1974	500.00	501.16	1.16	consecutive	Infill Wing Sample: Chlorite pillowed Basalt with up to 10% quartz- carbonate veins. NIL sulphides.	<5	RL37245
CR-09-038	1975	501.16	502.69	1.53	consecutive	Blank Infill Wing: Chlorite pillowed Basalt with up to 10% quartz- carbonate veins. NIL sulphides.	10	RL37245
CR-09-038	1976	502.69	503.69	1.00	consecutive	Infill Wing Sample: Chlorite pillowed Basalt with up to 10% quartz- carbonate veins. NIL sulphides.	27	RL37245
CR-09-038	1977	503.69	504.38	0.69	consecutive	Bleached Quartz Monzonite with 02bt-10sil-10ser alteration	19	RL37245
CR-09-038	1978	504.38	505.38	1.00	consecutive	Infill Wing Sample: Chlorite Basalt with 05-07% quartz carbonate veins. NIL sulphides.	6	RL37245
CR-09-038	1979	505.38	506.83	1.45	consecutive	Infill Wing Sample: Chlorite Basalt with 05-07% quartz carbonate veins. NIL sulphides.	9	RL37245
CR-09-038	1980	506.83	508.38	1.55	consecutive	Infill Wing Sample: Chlorite Basalt with 05-07% quartz carbonate veins. NIL sulphides.	13	RL37245
CR-09-038	1981	508.38	509.88	1.50	consecutive	Infill Wing Sample: Chlorite Basalt with 05-07% quartz carbonate veins. NIL sulphides.	<5	RL37245
CR-09-038	1982	509.88	511.02	1.14	consecutive	Infill Wing Sample: Chlorite Basalt with 05-07% quartz carbonate veins. NIL sulphides.	9	RL37245
CR-09-038	1983	511.02	512.00	0.98	consecutive	Strongly bleached bt-sil-ser altered, foliated Quartz Monzonite with trace APY 01PO and trPY	137	RL37245
CR-09-038	1984	512.00	513.00	1.00	consecutive	Intensely bleached bt-12sil-12ser altered, foliated Quartz Monzonite with trace APY 01PO and trPY	176	RL37245
CR-09-038	1985	513.00	514.00	1.00	consecutive	Intensely bleached bt-15sil-15ser altered, foliated Quartz Monzonite with trace APY 01PO and trPY	201	RL37245
CR-09-038	1986	514.00	515.26	1.26	consecutive	quartz cross-cutting, 2cm thick veing in bleached Quartz Monzonite	112	RL37245
CR-09-038	1987	515.26	516.26	1.00	consecutive	Character Sample: 02% fine grained biotite altered, 02PO 01PY bearing, 05% quartz-carbonate veined Basalt. Weakly Sheared contact.	17	RL37245
CR-09-038	1988	516.26	517.00	0.74	consecutive	Wing Sample: 02% fine grained biotite altered, 01PY trPO bearing, 05% quartz-carbonate veined Basalt. Weakly Sheared contact.	18	RL37245
CR-09-038	1989	517.00	518.00	1.00	consecutive	02bt-05qcb Basalt as above with 3cm thick carbonate-quartz- sericite vein	105	RL37245

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-038	1990	0.00	0.00	0.00	not consecutive	OxK 3.583ppm	3550	RL37245
CR-09-038	1991	518.00	519.00	1.00	not consecutive	15% quartz carbonate veined, 03PY 01MT 04% carbonate replacement in 15% chlorite bearing Basalt	31	RL37245
CR-09-038	1992	519.00	520.20	1.20	consecutive	Infill Wing Sample: 03% quartz-carbonate-01PY veins with 06% quartz-carbonate veins in 15chl pillowed Basalt	26	RL37245
CR-09-038	1993	520.20	521.50	1.30	consecutive	Infill Wing Sample: 05% quartz-carbonate veined 15chl pillowed Basalt	<5	RL37245
CR-09-038	1994	521.50	523.00	1.50	consecutive	Broad quartz-carbonate veins (up to 15% qcb) replacing pillow selvages in Basalt with 01PY	130	RL37245
CR-09-038	1995	523.00	524.00	1.00	consecutive	Blank Wing Sample: 05-07% QCB in pillow Basalt. Trace Sulphides.	20	RL37245
CR-09-038	1996	524.00	535.50	11.50	consecutive	Wing Sample: one fine shallow discontinuous quartz vein in quartz amygdular pillowed basalt with 10% broad quartz-carbonate selvage replacement. Trace PY.	35	RL37245
CR-09-038	1997	535.50	536.45	0.95	consecutive	Wing Sample: one fine shallow discontinuous quartz vein in quartz amygdular pillowed basalt with 10% broad quartz-carbonate selvage replacement. Trace PY.	15	RL37245
CR-09-038	1998	536.45	537.50	1.05	consecutive	Two (2) 10% discontinous quartz veins, 1cm thick and at shallow angles to core axis in locally massive pillowed basalt. NIL sulphides.	<5	RL37245
CR-09-038	1999	537.50	538.50	1.00	consecutive	Wing Sample: Basalt with 03% quartz-carbonate,. Large pillows, decreased selvage abundance. NIL sulphides.	11	RL37245
CR-09-038	2000	543.45	544.45	1.00	not consecutive	Wing Sample: Pillowed Basalt with less than 03% quartz-carbonate selvages. Trace PY.	81	RL37245
CR-09-038	7001	544.45	545.58	1.13	consecutive	08sil-07ser-02bt-03QV Quartz Monzonite	110	RL37245
CR-09-038	7002	545.58	546.58	1.00	consecutive	Infill Wing: several 10% quartz veins in pillowed Basalt with very weak contact shearing.	29	RL37245
CR-09-038	7003	546.58	548.00	1.42	consecutive	Infill Wing: low silica, pillowed Basalt, NIL sulphides, weak bleaching.	<5	RL37245
CR-09-038	7004	548.00	549.03	1.03	consecutive	Infill Wing: low silica, pillowed Basalt, NIL sulphides, weak bleaching.	<5	RL37245
CR-09-038	7005	549.03	550.00	0.97	consecutive	sil-ser-trAPY-trPY-trPO massive Quartz Monzonite dyke. One (1) cross-cutting quartz vein at 45degCA.	290	RL37245
CR-09-038	7006	550.00	551.00	1.00	consecutive	sil-ser-trAPY-trPY-trPO massive Quartz Monzonite dyke.	152	RL37245
CR-09-038	7007	551.00	552.00	1.00	consecutive	sil-ser-trAPY-trPY-trPO massive Quartz Monzonite dyke. One (1) cross-cutting fine 5mm thick quartz vein at 45degCA.	38	RL37245
CR-09-038	7008	552.00	553.35	1.35	consecutive	sil-ser-trAPY-trPY-trPO massive Quartz Monzonite dyke	12	RL37245
CR-09-038	7009	553.35	554.35	1.00	consecutive	Wing Sample: pillowed Basalt with 03% minor quartz carbonate fractures, 10% chlorite. NIL sulphides.	<5	RL37245

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-038	7010	0.00	0.00	0.00	not consecutive	SK43 4.086ppm	4110	RL37245
CR-09-038	7011	569.91	570.91	1.00	not consecutive	Wing Sample: 05% quartz-carbonate veins in pillowed Basalt. NIL sulphides.	<5	RL37245
CR-09-038	7012	570.91	572.00	1.09	consecutive	Character Sample: 01% Blebby PY in abundant 25% quartz- carbonate veins within 15chl-(act) pillowed Basalt.	<5	RL37245
CR-09-038	7013	572.00	573.44	1.44	consecutive	Character Sample: 01% Blebby PY in abundant 25% quartz- carbonate veins within 15chl-(act) pillowed Basalt.	47	RL37245
CR-09-038	7014	573.44	574.44	1.00	consecutive	Wing Sample: 05% quartz-carbonate veins in pillowed Basalt. NIL sulphides.	11	RL37245
CR-09-038	7015	588.00	589.00	1.00	not consecutive	Wing Sample: Siliceous pillowed Basalt. NIL sulphides.	12	RL37245
CR-09-038	7016	589.00	590.00	1.00	consecutive	Wing Sample: Siliceous pillowed Basalt. NIL sulphides.	22	RL37245
CR-09-038	7017	590.00	591.00	1.00	consecutive	Character Sample: silica charged, pillowed Basalt with abundant > 10% quartz carbonate veins. One (1) quartz vein in quartz carbonate, 2cm thick. 01PY blebs in QCB.	<5	RL37245
CR-09-038	7018	591.00	592.42	1.42	consecutive	Character Sample: silica charged, pillowed Basalt with abundant > 10% quartz carbonate veins. 01PY blebs in QCB.	28	RL37245
CR-09-038	7019	592.42	593.58	1.16	consecutive	Infill Wing Sample: Siliceous pillowed Basalt. NIL sulphides.	<5	RL37245
CR-09-038	7020	593.58	594.50	0.92	consecutive	Character Sample: abundant 10% quartz stockwork in siliceous pillowed Basalt. Trace PY	<5	RL37245
CR-09-038	7021	594.50	595.25	0.75	consecutive	Infill Wing Sample: Quartz Diorite. NIL sulphides.	8	RL37245
CR-09-038	7022	595.25	595.93	0.68	consecutive	irregular quartz veins in Quartz Diorite with minor 01 PY blebs	<5	RL37245
CR-09-038	7023	595.93	597.13	1.20	consecutive	Infill Wing Sample: Quartz Diorite with Basalt block. NIL sulphides.	<5	RL37245
CR-09-038	7024	597.13	598.12	0.99	consecutive	Infill Wing Sample: Quartz Diorite. NIL sulphides.	<5	RL37245
CR-09-038	7025	598.12	599.57	1.45	consecutive	10% silica altered, pillowed Basalt with <3% irregular quartz carbonate. Trace PY.	51	RL37254
CR-09-038	7026	599.57	599.95	0.38	consecutive	Infill Wing Sample: Quartz Diorite. NIL sulphides.	53	RL37254
CR-09-038	7027	599.95	601.45	1.50	consecutive	Infill Wing Sample: siliceous pillowed Basalt with <03% quartz- carbonate. NIL sulphides.	18	RL37254
CR-09-038	7028	601.45	602.95	1.50	consecutive	Infill Wing Sample: siliceous pillowed Basalt with <03% quartz- carbonate. NIL sulphides.	16	RL37254
CR-09-038	7029	602.95	603.89	0.94	consecutive	Infill Wing Sample: siliceous pillowed Basalt with <03% quartz- carbonate. NIL sulphides.	26	RL37254
CR-09-038	7030	0.00	0.00	0.00	not consecutive	SI42 1.761ppm	1670	RL37254
CR-09-038	7031	603.89	604.30	0.41	not consecutive	Plagioclase phyric Quartz Monzonite. Poorly trace PY/PO mineralized. Quartz-carbonate veined at lower contact. Blebby 03- 05% PY.	42	RL37254
CR-09-038	7032	604.30	605.80	1.50	consecutive	Infill Wing Sample: 10sil-03qcb-trPY pillowed Basalt	30	RL37254

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-038	7033	605.80	607.30	1.50	consecutive	Infill Wing Sample: 10sil-03qcb-trPY pillowed Basalt	168	RL37254
CR-09-038	7034	607.30	608.80	1.50	consecutive	Infill Wing Sample: Bleached, weakly 02ser-10sil altered Basalt with <01% quartz amygdules and 05% quartz-carbonate veining	44	RL37254
CR-09-038	7035	608.80	610.30	1.50	consecutive	Infill Wing Sample: Bleached, weakly 02ser-10sil altered Basalt with <01% quartz amygdules and 05% quartz-carbonate veining. NIL sulphides.	33	RL37254
CR-09-038	7036	610.30	611.70	1.40	consecutive	Infill Wing Sample: Bleached, weakly 02ser-10sil altered Basalt with <01% quartz amygdules and 05% quartz-carbonate veining	44	RL37254
CR-09-038	7037	611.70	612.28	0.58	consecutive	Character Sample: narrow Quartz Monzonite dyke (611.70 to 611.89m) with fine grained 08bt 10sil altered massive basalt	23	RL37254
CR-09-038	7038	612.28	613.30	1.02	consecutive	Bleached sil-ser altered weak 02bt bearing Quartz Monzonite dyke. 01PO trAPY.	33	RL37254
CR-09-038	7039	613.30	614.30	1.00	consecutive	Character Sample: 12cm heavy PO replacement in argillaceous and silty interflow sediments	37	RL37254
CR-09-038	7040	614.30	615.30	1.00	consecutive	05MT-05PY-02PO bearing interflow argillite	48	RL37254
CR-09-038	7041	615.30	616.00	0.70	consecutive	interflow fine grained silty seds with 1cm narrow minor Fault Gouge 55degCA	95	RL37254
CR-09-038	7042	616.00	617.50	1.50	consecutive	Wing Sample: fine grained, poorly sheared Gabbro contact with very fine grained disseminated PY	35	RL37254
CR-09-038	7043	617.50	618.50	1.00	consecutive	Character Sample: fine grained, poorly sheared Gabbro contact with very fine grained disseminated PY and 15cm 70degCA quartz vein	45	RL37254
CR-09-038	7044	618.50	620.00	1.50	consecutive	Wing Sample: Massive, fine grained, green coloured, 15chl Gabbro with quenched contact	42	RL37254
CR-09-038	7045	684.60	685.60	1.00	not consecutive	Wing Sample: massive gabbro, NIL sulphides	43	RL37254
CR-09-038	7046	685.60	687.00	1.40	consecutive	Minor 05sil-05ser in Quartz Monzonite with 01PY disseminated blebs	40	RL37254
CR-09-038	7047	687.00	688.50	1.50	consecutive	Minor 05sil-05ser in Quartz Monzonite with 01-02PY disseminated blebs. One (1) discontinuous planar quartz vein parallel to CA.	26	RL37254
CR-09-038	7048	688.50	689.84	1.34	consecutive	Minor 05sil-05ser altered Quartz Monzonite with 10% assimilated wallrock Gabbro. 03% quartz veins.	27	RL37254
CR-09-038	7049	689.84	691.00	1.16	consecutive	Wing in sheared lower contact Gabbro. Trace PY.	63	RL37254
CR-09-038	7050	0.00	0.00	0.00	not consecutive	ОхК 3.583ppm	3440	RL37254
CR-09-038	7051	706.43	707.43	1.00	not consecutive	Wing Sample: massive gabbro, NIL sulphides	28	RL37254
CR-09-038	7052	707.43	708.43	1.00	consecutive	Quartz-Monzonite with 01PY disseminated blebs	32	RL37254
CR-09-038	7053	708.43	709.43	1.00	consecutive	Quartz-Monzonite with 01PY disseminated blebs	33	RL37254

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-038	7054	709.43	710.43	1.00	consecutive	Quartz-Monzonite with 01PY disseminated blebs	22	RL37254
CR-09-038	7055	711.82	712.90	1.08	not consecutive	Blank Wing Sample: massive Gabbro. NIL sulphides.	53	RL37254
CR-09-038	7056	710.43	711.82	1.39	not consecutive	Quartz-Monzonite with 01PY disseminated blebs	24	RL37254
CR-09-038	7057	731.31	732.31	1.00	not consecutive	Wing Sample: weakly sheared, green Gabbro. NIL sulphides.	37	RL37254
						Quartz-Monzonite with 01PY disseminated blebs with sub CA		
CR-09-038	7058	732.31	733.70	1.39	consecutive	thin qtz-PY veins. Broad irregular quartz veining at Lower Contact	526	RL37254
						of dyke. 01% blebby PY.		
CR-09-038	7059	733.70	734.70	1.00	consecutive	Wing Sample: weakly sheared, green Gabbro. NIL sulphides.	38	RL37254
CR-09-038	7060	738.48	739.48	1.00	not consecutive	Wing Sample: weakly sheared, green Gabbro. NIL sulphides.	42	RL37254
CD 00 030	7001	720.40	740.27	0.00		Character Sample: green gabbro with 15% irregular quartz veins	4.1	
CR-09-038	7061	739.48	740.37	0.89	consecutive	oriented sub CA.	41	KL37254
CR-09-038	7062	740.37	741.37	1.00	consecutive	Wing Sample: massive gabbro, NIL sulphides	29	RL37254
	7062	004.20	00F 20	1.00	not concocutivo	Wing Sample: weak shearing in Gabbro. NIL sulphides. 05%	42	
CK-09-038	7063	804.39	805.39	1.00	not consecutive	sheared quartz-carbonate veins with 03% fine biotite.	43	RL37254
CD 00 039	7064	90F 20	806.00	0.61		Two (2) bull quartz veins: 10 and 20cm thick with trace PY in	25	
CK-09-038	7064	805.39	806.00	0.61	consecutive	sheared Gabbro	25	KL37254
CD 00 030	7005	000.00	007.00	1.00		Wing Sample: weak shearing in Gabbro. NIL sulphides. Several	20	
CR-09-038	7065	806.00	807.00	1.00	consecutive	boudinaged quartz veins in 52-75degCA shearing.	38	RL37254
						05% biotite and 05% quartz-carbonate in moderately sheared		
CR-09-038	7066	807.00	807.75	0.75	consecutive	Gabbro with irregular sheared and dissmembered quartz veins.	56	RL37254
						Trace PY.		
CD 00 039	7067	907 75	000 75	1.00	concocutivo	Wing Sample: Weakly sheared Gabbro. 03% biotite and 05%	22	
CR-09-038	7067	807.75	808.75	1.00	consecutive	quartz-carbonate veinlets.	23	KL37254
CD 00 039	7069	015 20	016 20	1.00		Wing Sample: green Gabbro with very weak sheareing. NIL	26	
CK-09-038	7068	815.20	810.20	1.00	not consecutive	sulphides.	30	KL37254
CD 00 030	7000	016 20	010 50	0.22		Sheared quartz veins in sheared Gabbro with minor 03% biotite.	10	
CK-09-038	7069	810.20	810.55	0.33	consecutive	80degCA Shearing. Trace PY.	10	KL37254
CR-09-038	7070	0.00	0.00	0.00	not consecutive	SI42 1.761ppm	1750	RL37254
CD 00 039	7071	016 53	017 50	1.00		Wing Sample: green Gabbro with very weak sheareing. NIL	<u>د ا</u>	
CK-09-038	/0/1	810.55	817.55	1.00	not consecutive	sulphides.	<0	KL37254
CD 00 030	7072	021 62	022 (2	1.00		Minor 05% quartz carbonate veined wing Gabbro with weak	<u>د ا</u>	
CR-09-038	/0/2	831.03	832.63	1.00	not consecutive	intrusive contact shearing from adjacent Quartz Monzonite.	<5	RL37254
CR-09-038	7073	832.63	834.00	1.37	consecutive	Massive, steel grey coloured, Quartz Monzonite with trace PY	<5	RL37254
CR-09-038	7074	834.00	835.40	1.40	consecutive	Massive, steel grey coloured, Quartz Monzonite with trace PY	123	RL37254
CR-09-038	7075	836.40	837.40	1.00	not consecutive	Massive Gabbro Wing. NIL sulphides.	60	RL37254
CD 00 030	7070	025 40	026 40	1.00		Massive, steel grey coloured, Quartz Monzonite with trace PY.	17	
CK-09-038	/0/6	835.40	830.40	1.00	not consecutive	Minor <01% quartz-carbonate veins at lower contact.	1/	KL3/254
CR-09-038	7077	862.60	863.60	1.00	not consecutive	Massive Gabbro Wing. NIL sulphides.	<5	RL37254

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-038	7078	863.60	864.60	1.00	consecutive	02% blebby PY disseminations in steel grey coloured Quartz Monzonite.	131	RL37254
CR-09-038	7079	864.60	866.10	1.50	consecutive	02% blebby PY disseminations in steel grey coloured Quartz Monzonite.	20	RL37254
CR-09-038	7080	866.10	867.60	1.50	consecutive	02% blebby PY disseminations in steel grey coloured Quartz Monzonite. One low angle quartz-carbonate vein.	<5	RL37254
CR-09-038	7081	867.60	868.60	1.00	consecutive	02% blebby PY disseminations in steel grey coloured Quartz Monzonite. Two (2) irregular quartz veins with trace associated PY and chlorite.	102	RL37254
CR-09-038	7082	868.60	869.16	0.56	consecutive	02% blebby PY disseminations in steel grey coloured Quartz Monzonite. Narrow 15cm of Basalt and broad 4cm thick carbonate vein near lower contact.	<5	RL37254
CR-09-038	7083	869.16	870.40	1.24	consecutive	Siliceous (20sil) pillowed Basalt with chl-sil replaced narrow selvages. No quartz.	7	RL37254
CR-09-038	7084	870.40	870.80	0.40	consecutive	Fault and gouge. 06PY 02PO 02MT. 20cm strongly sheared and faulted quartz-fuchsite-PY-(PO-MT) vein.	<5	RL37254
CR-09-038	7085	870.80	871.80	1.00	consecutive	Wing Sample: massive Basalt with 02-03% fine BT. NIL sulphides.	<5	RL37254
CR-09-038	7086	953.16	954.16	1.00	not consecutive	Wing Sample: Basalt. NIL Sulphides.	18	RL37261
CR-09-038	7087	954.16	955.16	1.00	consecutive	Strongly 15sil-15ser bleached Quartz Monzonite. 02PY and trAPY	12	RL37261
CR-09-038	7088	955.16	956.16	1.00	consecutive	Strongly 15sil-15ser bleached Quartz Monzonite. 02PY and trAPY	17	RL37261
CR-09-038	7089	956.16	957.16	1.00	consecutive	Strongly 15sil-15ser bleached Quartz Monzonite. 02PY	26	RL37261
CR-09-038	7090	0.00	0.00	0.00	not consecutive	SK43 4.086ppm	4270	RL37261
CR-09-038	7091	957.16	958.16	1.00	not consecutive	Strongly 15sil-15ser bleached Quartz Monzonite. 02PY and trAPY	76	RL37261
CR-09-038	7092	958.16	959.24	1.08	consecutive	Strongly 15sil-15ser bleached Quartz Monzonite with irregular low angle qtz-(carb) brecciated veins (05%). 02PY.	130	RL37261
CR-09-038	7093	959.24	960.24	1.00	consecutive	Wing Sample: 10% silica altered Basalt. NIL sulphides.	208	RL37261
CR-09-038	7094	978.00	979.40	1.40	not consecutive	Wing Sample: 05-10sil Basalt with 01% finely disseminated PY.	6	RL37261
CR-09-038	7095	979.40	980.40	1.00	consecutive	Blank Sample: stongly silica altered (10%) Basalt with 01-02PY	<5	RL37261
CR-09-038	7096	980.40	981.90	1.50	consecutive	Stongly silica altered (10%) Basalt with 01-02PY	33	RL37261
CR-09-038	7097	981.90	983.40	1.50	consecutive	Stongly silica altered (10%) Basalt with 01-02PY	<5	RL37261
CR-09-038	7098	983.40	984.90	1.50	consecutive	Stongly silica altered (10%) Basalt with 01-02PY	14	RL37261

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-09-038	7099	985.83	986.33	0.50	not consecutive	10% silica altered Basalt immediately above Major Unconformity containing one (1) 02PO 01PY fracture with PY inside PO. 02 PY	35	RL37261
						mineralization throughout sample.		
CR-09-038	7100	984.90	985.83	0.93	not consecutive	Stongly silica altered (10%) Basalt with 01-02PY	35	RL37261
CR-09-038	7101	985.83	987.00	1.17	consecutive	Major Unconformity Fault Gouge with 20% ground quartz veins and up to 10% sulphides. Graphitic.	<5	RL37261
CR-09-038	7102	987.00	988.05	1.05	consecutive	up to 10% quartz veins in faulted and sheared footwall argillaceous Seds	30	RL37261
CR-09-038	7103	988.05	989.45	1.40	consecutive	sheared silty silicified Mudstone with 02PY and trace PO	46	RL37261
CR-09-038	7104	989.45	990.45	1.00	consecutive	sheared silty silicified Mudstone with 02PY and trace PO	8	RL37261
CR-09-038	7105	990.45	991.75	1.30	consecutive	very weak locally sheared and silicified silty Mudstone with 01PY	<5	RL37261
CR-09-038	7106	991.75	992.71	0.96	consecutive	very weak locally sheared and silicified silty Mudstone with 01PY	6	RL37261
CR-09-038	7107	992.71	994.00	1.29	consecutive	sheared 03PY mineralized argillaceous and silty Mudstone with strong 15% silica overprinting	11	RL37261
CR-09-038	7108	994.00	995.00	1.00	consecutive	sheared 04PY 01PO mineralized argillaceous and silty Mudstone with strong 15% silica overprinting. Sulphides are disseminated replacement blebs.	6	RL37261
CR-09-038	7109	995.00	996.00	1.00	consecutive	sheared 04PY 01PO mineralized argillaceous and silty Mudstone with strong 15% silica overprinting. Sulphides are disseminated replacement blebs and vein replaced fragments. (EOH).	11	RL37261
CR-09-038	7110	0.00	0.00	0.00	not consecutive	SI42 1.761ppm	1670	RL37261

Gyro Survey Record

Hole ID	Station (m)	Dip (Degrees)	Azimuth	Easting (m)	Northing (m)	Elevation (m)
CR-09-038	0	-55.69	29.00	0.00	0.00	0.00
CR-09-038	5	-55.68	28.88	0.00	2.82	-4.13
CR-09-038	10	-55.63	28.90	-0.01	5.64	-8.26
CR-09-038	15	-55.49	28.91	-0.01	8.47	-12.38
CR-09-038	20	-55.36	29.14	-0.01	11.30	-16.50
CR-09-038	25	-55.26	29.28	0.00	14.15	-20.61
CR-09-038	30	-55.18	29.48	0.02	17.00	-24.72
CR-09-038	35	-55.10	29.62	0.04	19.86	-28.82
CR-09-038	40	-55.05	29.71	0.08	22.72	-32.92
CR-09-038	45	-54.97	29.80	0.12	25.59	-37.01
CR-09-038	50	-54.81	29.90	0.16	28.47	-41.10
CR-09-038	55	-54.73	30.14	0.21	31.35	-45.19
CR-09-038	60	-54.68	30.24	0.27	34.24	-49.27
CR-09-038	65	-54.62	30.30	0.33	37.13	-53.35
CR-09-038	70	-54.53	30.34	0.40	40.03	-57.42
CR-09-038	75	-54.44	30.40	0.47	42.93	-61.49
CR-09-038	80	-54.40	30.47	0.54	45.84	-65.56
CR-09-038	85	-54.33	30.45	0.62	48.75	-69.62
CR-09-038	90	-54.29	30.53	0.69	51.67	-73.68
CR-09-038	95	-54.20	30.52	0.77	54.59	-77.74
CR-09-038	100	-54.07	30.43	0.85	57.52	-81.79
CR-09-038	105	-54.01	30.41	0.92	60.45	-85.84
CR-09-038	110	-53.95	30.39	0.99	63.39	-89.88
CR-09-038	115	-53.86	30.44	1.06	66.34	-93.92
CR-09-038	120	-53.74	30.44	1.14	69.29	-97.96
CR-09-038	125	-53.60	30.57	1.21	72.25	-101.99
CR-09-038	130	-53.46	30.71	1.30	75.22	-106.01
CR-09-038	135	-53.31	30.83	1.39	78.20	-110.02
CR-09-038	140	-53.20	31.02	1.49	81.19	-114.03
CR-09-038	145	-53.11	31.17	1.60	84.19	-118.03
CR-09-038	150	-53.03	31.28	1.72	87.19	-122.03
CR-09-038	155	-52.90	31.34	1.84	90.20	-126.02
CR-09-038	160	-52.75	31.38	1.96	93.22	-130.00
CR-09-038	165	-52.63	31.39	2.09	96.24	-133.98
CR-09-038	170	-52.53	31.40	2.22	99.28	-137.95
CR-09-038	175	-52.43	31.37	2.34	102.32	-141.91
CR-09-038	180	-52.37	31.47	2.47	105.37	-145.88

Gyro Survey Record

Hole ID	Station (m)	Dip (Degrees)	Azimuth	Easting (m)	Northing (m)	Elevation (m)
CR-09-038	185	-52.24	31.72	2.61	108.42	-149.83
CR-09-038	190	-52.15	31.78	2.76	111.49	-153.78
CR-09-038	195	-52.09	31.93	2.91	114.55	-157.73
CR-09-038	200	-52.02	32.06	3.07	117.62	-161.67
CR-09-038	205	-51.94	32.18	3.24	120.70	-165.61
CR-09-038	210	-51.88	32.27	3.41	123.78	-169.55
CR-09-038	215	-51.78	32.40	3.59	126.86	-173.48
CR-09-038	220	-51.70	32.45	3.78	129.95	-177.40
CR-09-038	225	-51.58	32.51	3.97	133.05	-181.32
CR-09-038	230	-51.48	32.55	4.16	136.15	-185.24
CR-09-038	235	-51.41	32.55	4.35	139.26	-189.15
CR-09-038	240	-51.28	32.57	4.54	142.38	-193.05
CR-09-038	245	-51.17	32.57	4.74	145.51	-196.95
CR-09-038	250	-51.07	32.57	4.94	148.64	-200.84
CR-09-038	255	-50.90	32.60	5.13	151.78	-204.73
CR-09-038	260	-50.77	32.61	5.33	154.93	-208.61
CR-09-038	265	-50.67	32.62	5.53	158.09	-212.48
CR-09-038	270	-50.55	32.66	5.73	161.26	-216.34
CR-09-038	275	-50.46	32.62	5.93	164.43	-220.20
CR-09-038	280	-50.38	32.67	6.14	167.61	-224.05
CR-09-038	285	-50.29	32.73	6.34	170.80	-227.90
CR-09-038	290	-50.23	32.69	6.55	173.99	-231.75
CR-09-038	295	-50.13	32.78	6.76	177.18	-235.59
CR-09-038	300	-50.04	32.80	6.97	180.38	-239.42
CR-09-038	305	-49.93	32.88	7.18	183.59	-243.25
CR-09-038	310	-49.87	32.83	7.40	186.81	-247.07
CR-09-038	315	-49.79	32.85	7.62	190.02	-250.89
CR-09-038	320	-49.65	33.00	7.84	193.25	-254.71
CR-09-038	325	-49.44	32.95	8.06	196.49	-258.51
CR-09-038	330	-49.40	32.99	8.29	199.73	-262.31
CR-09-038	335	-49.38	32.94	8.51	202.98	-266.11
CR-09-038	340	-49.32	33.07	8.74	206.23	-269.90
CR-09-038	345	-49.27	33.22	8.98	209.48	-273.69
CR-09-038	350	-49.19	33.33	9.22	212.73	-277.48
CR-09-038	355	-49.06	33.43	9.47	216.00	-281.26
CR-09-038	360	-49.00	33.47	9.72	219.27	-285.03
CR-09-038	365	-48.92	33.57	9.98	222.54	-288.80

Gyro Survey Record

Hole ID	Station (m)	Dip (Degrees)	Azimuth	Easting (m)	Northing (m)	Elevation (m)
CR-09-038	370	-48.86	33.71	10.25	225.82	-292.57
CR-09-038	375	-48.80	33.74	10.52	229.10	-296.33
CR-09-038	380	-48.72	33.82	10.80	232.38	-300.09
CR-09-038	385	-48.66	33.88	11.07	235.67	-303.85
CR-09-038	390	-48.59	33.85	11.35	238.96	-307.60
CR-09-038	395	-48.56	33.95	11.64	242.26	-311.35
CR-09-038	400	-48.49	33.96	11.92	245.56	-315.10
CR-09-038	405	-48.41	33.94	12.21	248.86	-318.84
CR-09-038	410	-48.34	34.01	12.50	252.17	-322.58
CR-09-038	415	-48.27	34.04	12.79	255.48	-326.31
CR-09-038	420	-48.21	34.11	13.08	258.80	-330.04
CR-09-038	425	-48.12	34.11	13.38	262.12	-333.77
CR-09-038	430	-48.06	34.09	13.68	265.45	-337.49
CR-09-038	435	-47.97	34.10	13.97	268.78	-341.20
CR-09-038	440	-47.88	34.11	14.27	272.12	-344.91
CR-09-038	445	-47.82	34.20	14.57	275.46	-348.62
CR-09-038	450	-47.77	34.28	14.88	278.80	-352.33
CR-09-038	455	-47.68	34.28	15.19	282.15	-356.02
CR-09-038	460	-47.64	34.34	15.50	285.51	-359.72
CR-09-038	465	-47.56	34.28	15.81	288.86	-363.41
CR-09-038	470	-47.47	34.39	16.13	292.23	-367.10
CR-09-038	475	-47.41	34.49	16.45	295.59	-370.78
CR-09-038	480	-47.32	34.42	16.77	298.96	-374.46
CR-09-038	485	-47.26	34.47	17.09	302.34	-378.14
CR-09-038	490	-47.20	34.51	17.42	305.72	-381.81
CR-09-038	495	-47.08	34.52	17.74	309.10	-385.47
CR-09-038	500	-47.01	34.60	18.07	312.50	-389.13
CR-09-038	505	-46.94	34.68	18.41	315.89	-392.79
CR-09-038	510	-46.88	34.83	18.75	319.29	-396.44
CR-09-038	515	-46.79	34.92	19.10	322.69	-400.08
CR-09-038	520	-46.71	35.04	19.46	326.10	-403.73
CR-09-038	525	-46.66	35.05	19.82	329.51	-407.36
CR-09-038	530	-46.56	35.11	20.18	332.92	-411.00
CR-09-038	535	-46.53	35.19	20.55	336.34	-414.63
CR-09-038	540	-46.46	35.32	20.93	339.77	-418.25
CR-09-038	545	-46.35	35.26	21.30	343.19	-421.87
CR-09-038	550	-46.26	35.25	21.68	346.63	-425.49

Gyro Survey Record

Hole ID	Station (m)	Dip (Degrees)	Azimuth	Easting (m)	Northing (m)	Elevation (m)
CR-09-038	555	-46.21	35.44	22.06	350.06	-429.10
CR-09-038	560	-46.12	35.49	22.45	353.50	-432.71
CR-09-038	565	-46.04	35.52	22.85	356.95	-436.31
CR-09-038	570	-45.94	35.55	23.24	360.40	-439.91
CR-09-038	575	-45.89	35.53	23.64	363.86	-443.50
CR-09-038	580	-45.77	35.56	24.03	367.32	-447.08
CR-09-038	585	-45.63	35.77	24.44	370.79	-450.66
CR-09-038	590	-45.56	35.84	24.85	374.26	-454.23
CR-09-038	595	-45.46	36.01	25.28	377.74	-457.80
CR-09-038	600	-45.35	36.08	25.71	381.22	-461.36
CR-09-038	605	-45.25	36.16	26.14	384.71	-464.92
CR-09-038	610	-45.18	36.23	26.58	388.21	-468.46
CR-09-038	615	-45.10	36.41	27.03	391.71	-472.01
CR-09-038	620	-45.00	36.44	27.49	395.21	-475.55
CR-09-038	625	-44.93	36.43	27.95	398.72	-479.08
CR-09-038	630	-44.87	36.44	28.41	402.23	-482.61
CR-09-038	635	-44.80	36.47	28.87	405.74	-486.14
CR-09-038	640	-44.76	36.44	29.33	409.26	-489.66
CR-09-038	645	-44.72	36.47	29.79	412.78	-493.18
CR-09-038	650	-44.69	36.54	30.25	416.31	-496.69
CR-09-038	655	-44.65	36.48	30.72	419.83	-500.21
CR-09-038	660	-44.59	36.55	31.18	423.36	-503.72
CR-09-038	665	-44.56	36.70	31.65	426.89	-507.23
CR-09-038	670	-44.50	36.87	32.14	430.42	-510.74
CR-09-038	675	-44.45	36.99	32.63	433.96	-514.24
CR-09-038	680	-44.38	37.09	33.13	437.49	-517.74
CR-09-038	685	-44.32	37.20	33.63	441.03	-521.23
CR-09-038	690	-44.25	37.27	34.15	444.57	-524.73
CR-09-038	695	-44.23	37.23	34.66	448.12	-528.21
CR-09-038	700	-44.19	37.35	35.18	451.67	-531.70
CR-09-038	705	-44.14	37.39	35.70	455.22	-535.18
CR-09-038	710	-44.08	37.45	36.23	458.77	-538.66
CR-09-038	715	-43.99	37.47	36.75	462.32	-542.14
CR-09-038	720	-43.96	37.47	37.28	465.88	-545.61
CR-09-038	725	-43.90	37.53	37.82	469.44	-549.08
CR-09-038	730	-43.86	37.48	38.35	473.01	-552.55
CR-09-038	735	-43.81	37.55	38.88	476.57	-556.01

Gyro Survey Record

Hole ID	Station (m)	Dip (Degrees)	Azimuth	Easting (m)	Northing (m)	Elevation (m)
CR-09-038	740	-43.75	37.55	39.42	480.14	-559.47
CR-09-038	745	-43.65	37.54	39.96	483.72	-562.92
CR-09-038	750	-43.60	37.54	40.50	487.30	-566.37
CR-09-038	755	-43.54	37.60	41.04	490.88	-569.82
CR-09-038	760	-43.46	37.62	41.58	494.47	-573.26
CR-09-038	765	-43.40	37.60	42.12	498.06	-576.70
CR-09-038	770	-43.36	37.67	42.67	501.65	-580.13
CR-09-038	775	-43.29	37.67	43.22	505.25	-583.56
CR-09-038	780	-43.24	37.73	43.77	508.84	-586.99
CR-09-038	785	-43.18	37.74	44.32	512.45	-590.41
CR-09-038	790	-43.15	37.82	44.88	516.05	-593.83
CR-09-038	795	-43.12	37.85	45.44	519.66	-597.25
CR-09-038	800	-43.07	37.84	46.00	523.26	-600.67
CR-09-038	805	-43.00	37.91	46.56	526.87	-604.08
CR-09-038	810	-43.02	37.93	47.13	530.49	-607.49
CR-09-038	815	-43.00	37.98	47.70	534.10	-610.90
CR-09-038	820	-42.95	37.98	48.27	537.71	-614.31
CR-09-038	825	-42.94	38.00	48.84	541.33	-617.72
CR-09-038	830	-42.88	37.94	49.41	544.94	-621.12
CR-09-038	835	-42.84	37.96	49.98	548.56	-624.52
CR-09-038	840	-42.80	37.96	50.55	552.19	-627.92
CR-09-038	845	-42.74	37.98	51.13	555.81	-631.31
CR-09-038	850	-42.70	38.08	51.70	559.44	-634.71
CR-09-038	855	-42.68	38.05	52.28	563.07	-638.10
CR-09-038	860	-42.63	38.08	52.86	566.70	-641.48
CR-09-038	865	-42.63	38.07	53.44	570.34	-644.87
CR-09-038	870	-42.57	38.09	54.02	573.97	-648.25
CR-09-038	875	-42.55	38.14	54.60	577.61	-651.64
CR-09-038	880	-42.49	38.12	55.19	581.24	-655.02
CR-09-038	885	-42.45	38.17	55.78	584.89	-658.39
CR-09-038	890	-42.38	38.29	56.37	588.53	-661.76
CR-09-038	895	-42.31	38.32	56.97	592.18	-665.13
CR-09-038	900	-42.28	38.36	57.57	595.83	-668.50
CR-09-038	905	-42.23	38.39	58.17	599.48	-671.86
CR-09-038	910	-42.17	38.39	58.77	603.13	-675.22
CR-09-038	915	-42.12	38.31	59.37	606.79	-678.57
CR-09-038	920	-42.04	38.31	59.97	610.45	-681.92

Gyro Survey Record

Hole ID	Station (m)	Dip (Degrees)	Azimuth	Easting (m)	Northing (m)	Elevation (m)
CR-09-038	925	-42.00	38.47	60.58	614.12	-685.27
CR-09-038	930	-41.91	38.56	61.20	617.78	-688.61
CR-09-038	935	-41.85	38.60	61.81	621.45	-691.95
CR-09-038	940	-41.76	38.67	62.44	625.13	-695.28
CR-09-038	945	-41.70	38.70	63.07	628.81	-698.61
CR-09-038	950	-41.66	38.74	63.70	632.49	-701.94
CR-09-038	955	-41.61	38.75	64.33	636.17	-705.26
CR-09-038	960	-41.57	38.76	64.96	639.86	-708.58
CR-09-038	995	-41.23	38.96	69.60	666.46	-732.39

Conquest Resources Ltd.

Exploration Diamond Drill Log

CR-10-039

DRILL HOLE # CR-10-039	LOCATION Balmertown	, Balmer Tow	nship, Red Lake	District, Ontario	
PROJECT # Alexander	REFERENCE Alexander		GEOLOGIST	Meckert CLAIN	KRL 20488
	_				
GRID/ NAD-ZONE	NORTHING	EASTING		ELEVATION	GRID TYPE
GRID Alexander	RL 4+15 S	1+27 W		10000	М
UTM NAD83 / 1	5U 5656010	0449570		381	
COLLAR DIP -85	GRID DIRECTION	North		AZ DIRECTION	022
NTS REF # 052N04	NTS SHEET NAME	Red Lake, O	ntario		
	-				-
START DATE 27-Feb-10)	FINISH DATE	14-May-10		
DEPTH (EOH) 2084.00	- TARGET & Zone Depth	Test structu	re/stratigraphy b	elow Huston within Balm	er and BCF
PURPOSE Parent Ho	le for further wedging				
CASING BW na	CASING NW	v 3.00		CASING HW	ı <mark>na</mark>
PLUG @ na	– PLUG @	🤉 na		PLUG @	na
START DTH 0.00		» 320			
REDUCED @ na	– REDUCED @	p na			
HOLE STATUS completed	, thoroughly washed and w	edged at 320	(CR-10-039-W1)		
DRILLING CONTRACTOR	Boart Longyear Inc.		•		
RIG NO. LY 55 4154	4			BXS	- 488
	-				
GY	RO Survey: Multishot In and Out of	Hole			
DEPTH (m)	AZIMUTH		DIP	Comments:	
0	22.00		-84.26	1st Target was intersected	oetween 828m
100	27.01		-82.87	and 838m. A shear / breccia /	alteration zone
200	29.68		-81.64	in Balmer Basalts. While favo	rable structure
300	32.99		-79.18	and alteration are present the return significant gold assays.	Section aid not and Target was
400	39.95		-75.14	intersected between 1718m a	nd 1821m. This
500	46.37		-71.92	is a Chert horizon in Bruce Cha	nnel Formation
600	48.36	· ·	-68.67	showing sulphide healed f	ractures, solid
700	47.12	·	-66.43	sulphide stringers, and magne	tite bands. One
800	48.85	·	-64.22	assay at 1738m 0.73gr/t Au in	solid pyrite and
900	48.89	T	-63.11	a second in magnetite rich 8 Sgr/t Au at 1802m. This	unit warrants
1000	48.27		-61.72	further investigation. 3rd	Target was
1100	48.87	·	-60.98	intersected between 2061m	1 and 2066m
1200	50.27	· ·	-60.28	presumably still in Bruce Char	nel sediments.
1300	49.17		-58.85	Here a Chert horizon that	is flanked by
1400	48.25		-57.24	Gabbros is crosscut by thin	grey sulphide
1500	48.89		-55.36	filled veins. Gold values are ele	evated with the
1600	47.75		-53.59	unit has not been encounter	red before and
1700	46.91		-52.74	shows very good potential. Ap	part from these
1800	44.66		-50.94	targets Quartz Monzodiorite a	lso holds some
1900	42.95	· .	-49.42	potential on the property	with frequent
2000	42.97	· .	-48.64	elevated gold levels. Most not	ably 1.4gr/t Au
				between 857.43m to 860.43m	

Drill with 6m, double stablilized NQ core barrel

Planned hole depth is 2000m (6560')

Core stored at Alexander Core Yard at UTM 0449935 5656595

Water source: beaver pond located at 449718 5656178 UTM NAD83 15U

Core stored at Alexander Core Yard Drill type: LY-55

Major Lithologies

Hole Name	From	То	Length	Code	Description	Rep
CR-10-039	0.00	3.00	3.00	CAS	NW Casing into overburden and bedrock	
CR-10-039	3.00	6.88	3.88	S10C	<u>Huston Formation</u> . Milky white to grey green coloured and banded Chert. Banding is strongly undulating and folded in on itself. Crosscutting grey translucent, quarz veins are barren, but tend to show thin perpendicular fractures filled with sulphides. Pyrrhotite is dominant with minor pyrite and trace chalcopyrite present. A second set of fractures features angular wall rock fragments but also the occasional argillite and sulphide clast in a matrix of grey and milky white quartz.	
CR-10-039	6.88	24.14	17.26	S6E	Dark grey coloured and bedded, conductive PO - PY mineralized graphitic Argillite. Mostly pyrrhotite and minor pyrite in uneven bands. Also copious finely disseminated pyrrhotite throughout. Due to near surface situation unit show decalcification on thin fractures. Quartz veins tend to be light grey with later stage milky white filling. Veins barren but later stage thicker veins do show final stage pyrrhotite filling. A couple of thin brecciated horizons that seem to be synsedimentary show silicification of the matrix around the clasts.	
CR-10-039	24.14	26.48	2.34	S10C	Colour gets lighter as silica content increases downward. Quartz vein density increasing downwards as well. Otherwise like 3m to 6.88m above.	
CR-10-039	26.48	27.56	1.08	I2J	Medium grey coloured and fine grained Diorite. Upper contact is sharp and follows the banding in the chert. No contact metamorphosis obvious. Lower contact is sharp as well but angular. Unit is massive and very uniform with no crosscutting veins whatsoever.	
CR-10-039	27.56	40.21	12.65	S10C	Milky white to medium grey coloured, banded Chert. Banding is not as jittery as before. Number of crosscutting quartz veins has increased, while the amount of sulphides has remained fairly constant. Due to the number of crosscutting veins both the veins and the host rock look dismembered. Convoluted sulphide bands seem to be primary rather than later replacement. Some thicker veins in the unit contain ankerite.	
CR-10-039	40.21	50.00	9.79	S10	Medium grey to grey greenish coloured Chert. Mostly banded but massive in short sections. Quartz veins much less frequent than before. Sulphides less in bands than in blobs and thin fracture fillings and alongside veins.	

Hole Name	From	То	Length	Code	Description	Rep
CR-10-039	50.00	94.17	44.17	S6E	Dark grey coloured, mostly massive, conductive PO - PY mineralized graphitic Argillite. Bands are mostly pyrrhotite and very infrequent. Some slumping structures and autobrecciation with sulphide and argillite clasts swimming in a quartz matrix. Pyrrhotite and some magnetite finely disseminated and in secondary fractures in quartz veins. Some minor chert bands present. Quartz veins and some quartz carbonate veins show boudinage and complex folding. Some milky quartz veins show zonation around the outer edges.	
CR-10-039	94.17	117.36	23.19	S6E	Dark grey coloured, massive, conductive PO - PY mineralized graphitic Argillite. Very few thin pyrrhotite bands irregular in shape and not reliable to provide bedding information. Some flecks of chalcopyrite here and there. 1cm+ thick quartz veins all show multiple clear - milky quartz zonation along edges and around fragments, giving them a "graphic" look.	
CR-10-039	117.36	240.27	122.91	S10C	Starting as grey greenish coloured Chert with minor Argillite interbeds and gradually moving into medium to light grey colouration. Quartz veins with similar frequency to above but increasing with the "greying" of the rock. The same accounts for an increase in the number of quartz carbonate veins. Trace chlorite is showing as well. Some of the chert bands are hematitic. Orientation of Chert banding may also indicate rotation of larger 1m scale blocks against each other. PO mostly associated with veins and brecciated sections in the matrix as well as clasts. High concentration of magnetite in some chert bands. Minor Diorite dykes.	
CR-10-039	240.27	278.75	38.48	I2G	Steel grey green coloured, fine to medium grained, foliated and locally quartz crystal bearing Quartz Monzodiorite. Foliation is generally moderate in intensity with irregular and planar fracturing. Approximately 60% plagioclase and 10-15% quartz with 4-5% fine biotite. Unit is poorly altered 01-03 chlorite, <04% biotite, and local carbonate (calcite) and possible fine grained albite. Plagioclase is fine grained with occasional 2-3mm scale interlocking crystal textures in fine grained intrusive which are similar in texture to the quartz crystals present. Two phases of milky white to grey coloured, occasionally folded quartz veins. Wet surface shows sil-bt-(chl) healed fractures with no associated mineralization noted. Some veins in this unit are anastomosing and contain minor associated trace pyrite and arsenopyrite. Contacts are irregular due to high core angles. Lower contact is repeated within well mineralized PO-PY bearing sediments.	271.62 to 261.83

CONQUEST Resources Limited

Hole Name	From	То	Length	Code	Description	Rep
CR-10-039	278.75	279.87	1.12	SS	Solid Sulphide Pyrrhotite Replacement in cherty silica-(biotite) altered magnetite rich fine sediments in Huston Group. Sulphides are cheifly pyrrhotite (70%) with minor pyrite (10%). Upper contact is sheared at intrustive. Lower contact is gradational where sulphide replacement dissipates. Solid Sulphide replacement found in this unit is common but not frequent or correlateable within the Huston Group sediments. While it is encouraging to see the overprinted replacement textures and abundance of sulphides, the unit does not appear to vector further exploration toward any identifiable mineralization.	
CR-10-039	279.87	290.82	10.95	WMIN	Subangular to rounded Chert clast Breccia with Well Mineralized 20% pyrrhotite-pyrite replacement in magnetite rich (06-08%) fine sediments. Upper contact is gradational. Lower contact is sharp and contains significant grey coloured silica flooding. Silica flooding has <03% disseminated pyrite with no sulphide replacement.	
CR-10-039	290.82	427.00	136.18	S6A	Variably light to dark grey coloured, moderately well bedded, poorly mineralized, locally magnetic, at times muddy, siltstone within Huston Group. Few minor quartz and quartz carbonate veins with NIL mineralization. Rare cm-scale mafic plagioclase phyric chlorite-bearing dykes with NIL mineralization. Trace disseminated pyrite throughout. Upper contact is slightly sheared with minor coarsening and few coarse crystals of dark green coloured hornblende. Lower contact is sharp at 52degCA. Blocky coring unit. Good Recovery in general.	
CR-10-039	427.00	466.20	39.20	12G	Quartz Monzodiorite as above with trace pyrite throughout and no veining. Very weakly sericite altered. Upper contact is sharp at 52degCA. Lower Contact is sharp at 57degCA with 4cm of solid brassy coloured pyrite.	
CR-10-039	466.20	586.00	119.80	S6A	Siltstone, muddy at times, as above 290.82 to 427.00. Upper contact is sharp at 57degCA. Lower contact is sharp at 55degCA.	

Hole Name	From	То	Length	Code	Description	Rep
CR-10-039	586.00	591.67	5.67	SHR	Strongly quartz and quartz-carbonate veined, moderately sheared, poorly mineralized intercollated volcanic ash flow Breccia containing up to 02% fine pyrite. Up top 10% Carbonate is weakly pervasive though largely restricted to dismembered contorted veins with a weak association to finely disseminated pyrite. Quartz veins are thin (<5mm) and are folded with NIL sulphides. Host is poorly differentiated mixture of volcanic and clastic sediments (poorly graded and poorly sorted) with trace alteration magnetite in seds and green chlorite alteration in fine volcanic sediments. Unit is comprised of 25% alteration qtz-carb-chl-MT, 30% Clastic Sediments, and 45% Volcanic sediments. Multiple stages of dark grey quartz and pale brown to light grey coloured later quartz-carbonate veining dominates overprinting texture in moderate intensity Shear Zone. Upper contact is sharp at 55degCA. Lower contact is gradational grading to unsheared silty muddy clastics without quartz-carbonate veins.	
CR-10-039	591.67	611.17	19.50	S6D	Silty Mudstone as above. Local well mineralized narrow replacement pyrite interval with bt-ser alteration. Upper contact is gradational. Lower contact is sharp at porphyry intrusive at 35degCA.	
CR-10-039	611.17	666.80	55.63	I2G	Quartz Monzodiorite similar to above with coarse porphyritic texture locally with trace pyrite throughout and occasional trace cubic arsenopyrite. Medium grey to blueish green in colour. Cheifly fresh, massive and porphyritic in texture but becomes foliated and progressively more altered down hole. Occasional grey coloured cross-cutting quartz veining with NIL sulphides. Pervasive weakly sericite altered intrusive. Two colours of quartz crystals present: (a) dark blue green colour, subhedral, 1-3mm in scale; and, (b) light grey to light pale blue coloured, anhedral to locally amorphous, 2-5mm in scale. Narrow xenolith block of sedimentary wallrock from 612.85 to 614.00m is siliceous due to weak contact alteration. Upper contact is sharp at 35degCA. Lower Contact is sharp and contains wall rock sediments over 1m interval.	

Conquest Resources Ltd. Diamond Drill Record Major Lithologies

Hole Name	From	То	Length	Code	Description	Rep
CR-10-039	666.80	696.30	29.50	S6D	Silty Mudstone as above. Contact metamorphism from nearby porphyries has generated a medium grey coloured mottled, near intrusive looking texture with an unknown fine round mineral, non magnetic, looks like leucoxene but not volcanic sediments, approx hardness of 5, occurring pervasive throughout and not affected weak foliation, some beds contain more rounded alteration mineral than others. (Consideration when classifying this alteration texture was given to the possible to the presence of a very low angle diorite with assimilated fragments of mudstone, which would explain few low angle bedded sections, however contacts would be easier distinguished adjacent to clastic sediments). Upper contact is sharp with intrusive. Lower contact is brecciated and gradational over 692.05 to 695.30m.	
CR-10-039	696.30	731.39	35.09	I2G	Medium blue-grey to locally pale light green coloured, sericite altered Quartz Monzodiorite porphyry as above 611.17 666.80m. Trace pyrite and few trace disseminations of cubic arsenopyrite. Sharp contacts at 45degCA.	
CR-10-039	731.39	799.23	67.84	S6A	Light to medium grey coloured, bedded Siltstone with trace very fine disseminations of pyrite. Sharp upper contact at intrusive at 52degCA. Lower contact to basalt at 65degCA, slightly off from 50degCA bedding near contact. Minor lamprophyric dykes within first few meters of intervall. Pinkish garnets in a couple of thin layers point to the presence of volcaniclastic material. Rare occurences of tiny arsenopyrite in some thin quartz veins.	
CR-10-039	799.23	827.98	28.75	V3B	Balmer Formation. Pillowed to massive Basalt. Color tends to be greygreenish (fine grained)to very green (rather coarse grained) where the hb-chl alteration is more intense. Amygdules pretty much absent. Very uniform foliation throughout and carbonate filling of fracture systems. Quartz carbonate veins are few and far inbetween. In these some pyrrhotite and pyrite can be observed, with pyrrhotite outweighing the pyrite. Sulphides disseminated if present with the occasional fleck of chalcopyrite showing. Exception is a short section around 843m where pyrrhotite tends to fill voids around medium grained hornblende. Several sills can be observed, with all upper and lower contacts following the foliation orientation.	
CR-10-039	827.98	838.00	10.02	SHR	Breccia and Shear Zone with localized brown coloured iron-staining. Quartz carbonate-biotite overprinting alteration is altogether moderate from 05-15% quartz carbonate overprinting and associated fine brown biotite.	
CK-10-039	838.00	1085.41	247.41	V3B	AS above 799.23 to 827.98. Lower contact dyked out by Lamprophyre.	

hologies

Hole Name	From	То	Length	Code	Description	Rep
CR-10-039	1085.41	1232.28	146.87	I3A	Medium grey green coloured and medium grained foliated Gabbro. Foliation is often weak and not discernible. Any veins be it quartz or quartz carbonate are few and far inbetween. Quartz veins will contain the occasional bleb of PO and CP. Sulphides are otherwise absent except for a background level crystal of pyrite here and there.	
CR-10-039	1232.28	1239.34	7.06	I3A	Gradual contact between Gabbro and dark coloured grey pyrrhotite rich Mudstones. Gabbro is contact sheared and shows a moderate flaky biotite alteration and trace pyrite.	
CR-10-039	1239.34	1374.14	134.80	S6D	Bruce Channel Formation. Dark grey coloured sulphidic Mudstones, banded. Upper 6.5m folded and disturbed and intruded by thin felsic dyke. Past that the banding is straight again. Primary pyrrhotite in bands, streaks, and disseminated. No other sulphides discernible beyond trace level. Occasional siltier bands, about 5%. Looks very uniform throughout.	
CR-10-039	1374.14	1394.95	20.81	S6D/T1C	Dark grey coloured silty Mudstones. Sulphide content diminishing gradually to trace level. Sediment banding visible. Increasing amount of bands downward showing andalusite/chiastolite in phyllitic texture. Bands of wacke starting to show up that show a general downward coarsening. Reddish bands of clastic material in more intensely sheared stretch are interpreted as Rhyodacitic Tuff. These bands have a more intrusive look to them but where the transition fine to coarse can be observed it seems gradual. The rocks show a translucent "browning" that indicates talc content. Nevertheless the rocks are not soft owing to a low level of silicification. Rock in general is disturbed and blocky due to shearing and above mentioned phyllitic bands. Internal fracturing/brecciation in some bands.	
CR-10-039	1394.95	1398.15	3.20	FLT	Late stage brittle fault with broken up and leached core. General plane of fault at 75 degCA. Lithology is mudstones to wacke like in the units above and below.	
CR-10-039	1398.15	1457.00	58.85	S6D	Medium grey to sometimes greenish coloured, banded Mudstones, that have undergone weak silicification. Greenish sections due to chlorite. Some bands contain pale pinkish garnets. Occasional section with phyllitic texture with weak garnets (?), but never a full blown phyllite. Quarz veins are few and far inbetween and contain mostly chlorite and small aggregates of pyrite. Pyrite is also the only sulphide observed in the sediments and most likely primary. Some quartzitic to wacke interbeds diminishing downwards.	

Hole Name	From	То	Length	Code	Description	Rep
CR-10-039	1457.00	1469.72	12.72	M8B	Best characterized as a weak Biotite Schist. At about 1457m the sediments are becoming more massive and lose most of their internal primary structure. Banding is still visible but is mostly carried by alteration mineralogy. This may still reflect changes in sedimentary composition but that is difficult to tell. The fabric seems to be made up of lots of fine grained biotite with pyrite speckled in that has been silicified. Banding is based on corroded looking whitish grains, possible garnets. These changes in alteration are subtle and gradual.	
CR-10-039	1469.72	1486.95	17.23	SHR	Shear Zone contains sections of Biotite Schist as described in previous unit, sections of quite carbonaceous chloritic Schist and medium grained significantly altered sections that are interpreted as originally tufaceous material. Shears cut and truncate bands in the sediments. The rocks in some sections also show intense folding based on alteration bands and fine quartz veins. Main shear orientation runs at 60 degCA. The unevenly distributed bands of tufaceous material contain up to 10% cordierite, 7% biotite, some rather fresh colored garnet and 1.5% pyrite and traces of arsenopyrite.	
CR-10-039	1486.95	1520.88	33.93	M8B	Dominated by Biotite Schist with some chloritic carbonaceous bands. Sections of fairly undisturbed looking banded rocks to folded sections that contain thin quartz veins with trace carbonate and some pyrite in the veins. Changes from plain to folded are seamless.	
CR-10-039	1520.88	1535.13	14.25	M8A	Medium grey to greenish coloured amphibole Schist. One streaky biotitic section (weak), Quartz in round to subround chunks with no halos or rotational shadows. When dry it is possible to distinguish clasts of slightly different composition pointing to this being a conglomerate with components of mostly basaltic origin, that were subsequently fused together into one massive unit. Sharp contact on top at 70degCA. Bottom contact gradual.	
CR-10-039	1535.13	1566.99	31.86	S6D	Very sulphidic dark grey coloured Mudstones. Anoxic oceanfloor sediments. Thick bands and blobs of mostly pyrrhotite with some pyrite mixed in. Cut by quartz veins that contain a high amount of pyrrhotite as well, likely remobilized from surrounding sediments. In these occasional flakes of chalcopyrite. Few thin quartzitic bands are infused with finely disseminated pyrrhotite. Contact to next unit is sharp at 77degCA.	

CONQUEST Resources Limited

Major Lithologies

Hole Name	From	То	Length	Code	Description	Rep
CR-10-039	1566.99	1581.45	14.46	S6A	Grey coloured, banded Siltstone with many greenish chloritic bands. Thickness and frequency of the latter diminishing downwards. Primary sulphides well below 1%. Core broken up in several places but there is no indication of faulting. Change into next unit is gradual.	
CR-10-039	1581.45	1613.04	31.59	S6A	Grey to light grey coloured moderately silicified Siltstone to Quartzite with minor primary sulphides. Several meter scale fold noses in this section. Hence the banding changing directions several times.	
CR-10-039	1613.04	1617.79	4.75	I2E	Medium grey coloured and fine grained Quartzmonzonite. Upper contact sharp and irregular. Lower contact at 73degCA., in line with the sedimentary banding. The intrusive has seen some minor shearing, biotite alteration and quartz veining. Pyrite is present to 0.2% with traces of arsenopyrite throughout.	
CR-10-039	1617.79	1649.94	32.15	S6D	Dark grey coloured sulphidic Mudstones, banded. Sulphide is mostly pyrrhotite. One brecciated section with a carbonate sulphide matrix that also contains an elevated level of pyrite. Several small faults are present in this unit, evident through nicely visible rotational component that lets the banding run in opposite directions. Slumping structures and a moderate number of thin carbonate veins. Coarser sections (silt to sand) contain less sulphides.	
CR-10-039	1649.94	1666.52	16.58	V3B	Massive, dark grey coloured, basaltic interflow. Moderately foliated and showing thin carbonaceous fractures. Pyrite is finely disseminated throughout but amount varies from meter to meter. Larger aggregates of pyrite between 1664m and 1665m may be amygdules. Upper and lower contacts are sharp in line with bedding at 75 degCA.	

Hole Name	From	То	Length	Code	Description	Rep
CR-10-039	1666.52	1685.02	18.50	S6D	Dark grey coloured sulphidic Mudstones. As compared to similar mudstones above this one has an elevated amount of pyrite. Sedimentary banding is still present but it is not as even as before due to basaltic flow over top and thin basaltic flow within. Mudstones are contorted and brecciated on top of a thin interflow and likely representing proximal faulting. Several low angle cross-cutting massive very fine grained thin dioritic dykes are surrounded by poorly defined weak Mudstone Breccia that has lost its sedimentary structure. Dioritic intrusive has transposed folded sharp upper contacts with minor disseminated uniformly distributed 01-02% pyrite crystals and possible trace flecks of arsenopyrite. Sulphides in mudstone have blebby and whispy replacive morphologies. Attenuated spheroidal blebby <15% pyrite has brassy to brown coloured tarnished metalic lustre within replacive texture. Fewer sulphides present in Faulted 1.59m section.	
CR-10-039	1685.02	1718.48	33.46	S6D; S10	Dark grey coloured sulphidic Mudstone similar to above with alternating light grey to whitish coloured Chert intervals -an ideal Cap Rock. Mudstones comprise 50% of lithology and contains up to 03% spheroidal replacement pyrite. Sulphides are cheifly pyrrhotite - pyrite. Several episodes of sedimentation are dominated by a grainy quartzite internal fabric with significant silica flooding. Magnetite is present here leading to high MagSus readings comparable to the Huston Sediments at the top of the hole. One of the Chert sections shows signs of moderate shearing. Light pale grey to white coloured quartz veining amongst silica replaced and Chert layers is irregular, varying in thickness from 1cm to 7cm, and contains weakly associated selvage and disseminated pyrite. Good coring, hard unit with very few fractures.	
CR-10-039	1718.48	1725.91	7.43	S10; S6A	Medium to light grey coloured banded Cherts and Siltstones. Bands often distorted and folded. Some small scale brecciation. Darker bands are rich in magnetite and therefore quite magnetic. Some pyrite and pyrrhotite banding, mostly where sediment is siltier and as fracture fillings. One near massive sulphide section that consists mostly of pyrite.	
CR-10-039	1725.91	1726.25	0.34	NSS	Heavy Sulphide Replacement within Bruce Channel Sediments cheifly pyrite (70%) within a highly siliceous silty Mudstone Chert (-cherty due to silica influx). Sulphides present in two bands crudely oriented sub parallel to foliation and bedding. Original host rock texture has been obliterated. These sulphides are common in cherty rocks of this kind in this camp.	

CR-10-039

Hole Name	From	То	Length	Code	Description	Rep
CR-10-039	1726.25	1736.76	10.51	DIS	Sulphide bearing Chert with silica flooded silty sediments. Up to 07% pyrite dominated sulphide mineralization present in irregular whispy replacive textures throughout, but are not homogeneously distributed, such that narrow intervals of heavy sulphides over 5 to 25cm create WMIN/NSS intervals which are conductive. Good IP unit. Good coring, hard, good recovery unit.	
CR-10-039	1736.76	1738.00	1.24	NSS	Breccia with sulphide matrix. Over all 60% sulphides 55% pyrrhotite and 05% pyrite. The latter mostly as idiomorph crystals up to 5 mm in size. Clasts are dominated by silty Mudstone.	
CR-10-039	1738.00	1741.62	3.62	SS	Heavy Sulphide Replacement within Bruce Channel Sediments. 90% sulphides. This looks less like a breccia and more like primary sediment. Where thin muddy bands are present these look quite undisturbed. Sulphides dominated by 75% pyrite versus 15% pyrrhotite.	
CR-10-039	1741.62	1821.85	80.23	S10; S6A	Medium to light grey coloured banded Chert and Siltstone as above (1718.48-1821.85m).	
					Medium to dark grey coloured, mostly massive andesitic Basalt. Foliation pretty much perpendicular to core axis mimicking sedimentary bedding due to color changes from more chloritic to more biotitc bands. This is less obvious in more silicified sections like at the top of the unit. A very recognizable characteristic of this unit is the ubiquitous garnet. Garnet may be pinkish and quite fresh looking to weathered white disintegrating blurring the line to the also present plagioklas crystals. Sulphides are finely disseminated but the distribution is erratic.	

Only at the top of the unit sulphides appear in thin bands along foliation and in fractures which

is likely infused from the sulphide richer Cherts above. Carbonacous fractures can be found throughout, something not observed in the two previous units. As of 1834m core contains lots of open fractures perpendicular to core axis. In intervals the core is broken along these in shards and tends to be quite blocky and leached in general. At 1867m an additional set of fractures parallel to core axis worsen ground condition. Unit is bordered by a whitish grainy looking guartz vein or remobilized Chert at the top and a major fault structure at the bottom.

CR-10-039 1821.85 1960.20 138.35

V3A

Major Lithologies

Hole Name	From	То	Length	Code	Description	Rep
CR-10-039	1960.20	1966.08	5.88	FLT/BRX	Fault and Breccia zone. Silicious as well as carbonaceous clasts in a very fine grained at times black matrix. Some sections look fairly undisturbed while others appear to be intensely sheared. Here grains and clasts have been elongated and mylonitic flame structures can be observed. A competent cherty section at the center of the unit seems to consist of more than 50 % quartz veining. Veins are mostly blown up with sulphides on fractures and late Rodochrosite fill of remaining voids. Sulphides present are dominated by pyrrhotite, but chalcopyrite and arsenopyrite can be observed throughout. Sulphides are finely disseminated. There is a marked change in lithology between the previous and following units and it is likely that this fault marks a formational boundary.	
CR-10-039	1966.08	1997.33	31.25	S	Undifferentiated Sediments. Mix of cherty bands with magnetite and darker muddier sections that show sulphide bands. Sulphides present are pyrrhotite, pyrite, chalcopyrite and arsenopyrite. Rocks show some folding and minor shearing. Some cherty bands show strong autobrecciation with fractures mostly filled by sulphides. Thin quartz carbonate veins within the darker veins show nice boudinage structures.	
CR-10-039	1997.33	2036.67	39.34	I3A	Gabbro. At upper contact highly altered to a blueish coloured translucent schist. Gradually losing schistosity downwards and coarsening at the same time. Carbonaceaous shear in center. Lower contact biotite altered and sheared. Sharp upper contact follows chert banding at 72 degCA. Lower contact is broken but it looks like it follows the same orientation.	
CR-10-039	2036.67	2071.88	35.21	S10	Medium grey coloured banded Siltstone. Bands 1 - 3 cm some of them showing lamination. Occasional darker siltier bands. Banding fairly orderly, some folding most likely associated with surrounding Gabbro. Unit is also moderately hornfelsedat the upper and lower contacts, where garnets and epidote are present. Minor quartz veining which tends to be buff colored closer to the contacts. Sulphides are present as thin bands (mostly pyrrhotite) and associated with fractures and veining, here pyrite, chalcopyrite and sometimes larger aggregates of arsenopyrite can be observed. In a few places small masses red sphalerite can be observed.	
CR-10-039	2071.88	2083.99	12.11	I3A	Blueish green coloured Gabbro. Very fine grained and foliated at contact, with a couple of 2 -3 cm milky quartz veins crossing at top. Weak biotite alteration with minor carbonate veining. 7m past the contact starting to show medium grained massive texture.	

Hole Name	From	То	Length	Code	Description	Rep
CR-10-039	2083.99	2084.00	0.01	EOH	EOH in Bruce Channel Formation. Hole ended 120m past marker breccia/fault horizon in Bruce Channel with Chert banded sediments and blue Gabbro. EOH at 2084.00m on May 13, 2010. Hole maintained for subsequent wedging. Gyro surveyed. Core is stored at the Conquest Core Facility on the Alexander Property in 488 NQ trays in racks. 752 samples sent for Au fire assay (50g pulp) at AGAT Labs, Mississauga, ON.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-10-039	140.50	172.00	S10/S5E	Banded Chert and brecciated Chert. Brecciation pattern follows the banding pattern. Clasts in Breccia consist of banded Chert and an ample amount of reworked qv fragments indicating repeat opening of fractures. Matrix can consist of some quartz but is dominated by pyrrhotite. This section contains several red ferruginous bands as well as high concentrations of Magnetite at times. Almost all thicker veins in this unit contain carbonate.	
CR-10-039	172.00	179.95	\$10F	Banded Chert, comparatively undisturbed looking but with many distinct grey magnetic layers. Veins carry carbonate.	
CR-10-039	179.95	185.80	S6E	Dark grey graphitic Argillite, massive. Pyrrhotite banding indicates bedding. Qv tend to be milky and mineralogically uneventful.	
CR-10-039	185.80	186.83	12J	Medium grey coloured and fine grained Diorite. Medium feldspars closer to upper and lower contacts. Some crystals show green chloritic halo. Some pervasive quartz possible. Upper and lower contacts sharp at 70degCA.	
CR-10-039	186.83	189.33	S6E	Argillite as in 179.95 - 185.80	
CR-10-039	226.23	230.90	I2J	Three medium grey coloured Diorites in short succession. From fine to medium grained downwards. Weak foliation can be observed. Stringes separated by thin sections of ferroginous Chert.	
CR-10-039	230.90	240.27	S10F	Grey coloured, banded ferroginous Chert. Uneventful	
CR-10-039	285.20	289.40	12	Siliceous weakly sheared sediments with narrow grey coloured intermediate porphyry dyke.	
CR-10-039	355.50	361.30	Т3	Dark green coloured intercollated mafic tuffaceous volcanic sediments containing very fine grained trace disseminated pyrite. Coarsened 2-3mm scale chloritized mafic mineral crystals (<10%) occur in crude banding in fine grained low silica content sugary textured groundmass showing poorly defined bedding at approximately 35degCA. One 4cm thick quartz vein at 80degCA. Upper contact is sharp at 35degCA. Lower contact is sharp at 35degCA with several fine irregular and anastomosing quartz-carbonate-chlorite veins and fractures at 10degCA and 45degCA.	
CR-10-039	428.95	430.35	12J	Brown grey coloured Diorite intrusive with trace pyrite.	
CR-10-039	501.00	504.50	S6A	Light grey coloured siltstone sorted bed within otherwise silty Mudstone major unit. Sharp upper and lower contacts at low core angles (approx 20degCA). NIL sulphides.	
CR-10-039	508.40	522.50	S6A	Light grey coloured Siltstone bed as above within Mudstone. Gradational contacts.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-10-039	546.20	557.63	S6A	Light grey coloured Siltstone bed as above within Mudstone. Well bedded with minor local turbidation and gradational upper and lower contacts.	
CR-10-039	557.63	563.36	S6	Mixed Mudrock with minor irregular wackestone beds. Poorly graded. Minor trace sulphides.	
CR-10-039	563.36	567.40	S3A	Mixed Wackestone interbed with whispy muddy interbedding. Poorly mineralized with up to 04% Pyrite in fine grained blebby disseminations. Minor foliation and attenuation along beds. Upper and lower contacts are sharp and undulating at approximately 30-40degCA.	
CR-10-039	621.07	623.28	S6	Poorly mineralized, pyrite bearing mixed Mudstone and Siltstone block within Quartz Monzodiorite Porphyry. Sharp upper and lower contacts.	
CR-10-039	639.75	640.43	I2J	Fine grained brownish grey coloured Diorite dyke with sharp upper and lower contacts within Quartz Monzodiorite Porphyry at 40degCA and 65degCA, respectively.	
CR-10-039	692.05	695.3	BRE	Tightly healed Contact Wall-Rock Breccia at contact between Mudstone and Quartz Monzonite intrusive with several crosscutting and locally irregular discordant quartz veins. Sericite and minor chlorite alteration.	
CR-10-039	714.25	714.56	I2J	Narrow brown coloured foliated Diorite dyke within Quartz Monzodiorite intrusive with sharp irregular contacts.	
CR-10-039	736.63	737.20	130	Lamprophyre dyke. Carbonaceous intrusive dominated by brown biotite (phlogopite). Mostly fine grained and hard to discern other mafic components. Diopsidic pyroxen most likely. Rounded felsic kernels are plagioclas. Hairline fractures and mm thin quartz veins show bleached halos.	
CR-10-039	746.40	747.58	130	as above 736.63 to 737.20	
CR-10-039	748.34	748.91	130	as above 736.63 to 737.20	
CR-10-039	751.97	753.28	130	as above 736.63 to 737.20. Upper and lower contact at 15 degCA.	
CR-10-039	758.35	760.09	130	as above 736.63 to 737.20	
CR-10-039	761.58	768.28	130	as above 736.63 to 737.20. Lower half of dyke contains larger aggregates of phlogopite. Most dyke contacts sharp and almost perpendicular to CA.	
CR-10-039	773.65	775.26	130	as above 736.63 to 737.20. More visible pyrite and darker in color.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-10-039	800.73	802.93	I2F	Dark greenish grey coloured, fine grained dacitic Dyke. Massive with trace disseminated sulphides and some fine biotite. Upper contact is diffuse, lower contact is sharp 70 degCA.	
CR-10-039	802.93	811.41	SHR	Poorly sheared Basalt. Quartz carbonate vein overprinting 10 - 15%. Minor quartz veins on cm scale cross cutting at 20-45 degCA. Trace pyrite finely disseminated. Good solid core.	
CR-10-039	811.41	813.57	130	Lamprophyre is almost dioritic looking, Biotite is dark brown coloured and plagioclase looks more defined. While foliation is present, rock looks more mixed in center and exhibits what might be a flowstructure at the bottom of unit.	
CR-10-039	813.57	814.31	V3B	Distinctly brown coloured, altered Basalt. Looks more like talc than biotite alteration. May indicate hiatus in production of lavas and a zone of weakness that was subsequently used by the above sill.	
CR-10-039	814.31	818.15	SHR	as above poorly sheared Basalt (802.93-811.41m)	
CR-10-039	823.50	826.91	V3B	As in 802.93 to 818.15, but quartz carbonate vein overprinting weaker at 5 - 8%.	
CR-10-039	826.91	827.98	I2E	Rather nondescript looking Quartz Monzonite with larger darker biotite but little else in discerning features.	
CR-10-039	827.98	831.34	BRE	Brecciated Basalt, well healed. Fleshy brown coloured alteration mostly Fe based. Some dismembered quartz monzonite chunks in pseudimylonitic fabric. Upper contact dyked out with some wall rock biotite alteration. Lower contact gradual.	
CR-10-039	834.47	838.00	SHR	Sheared Basalt. Brecciated upper contact over 1m. Early veining dismembered and displaced to a low degree, "grinding". Altogether of moderate intesity. Gradational lower contact over 1/2m.	
CR-10-039	857.43	862.25	I2G	Pale grey to sometimes blueish coloured Quartz Monzodiorite. Sericite altered. At center biotite dominating and brown in color, foliation looks more intense. Change is not abrupt indicating change in composition during emplacement. Cooling at contacts while center is still flowing. Medium grained grey quartz crystals throughout.	
CR-10-039	885.28	887.17	I2H	Light to medium grey coloured and fine grained Monzodiorite. Sericite altered and partially bleached and some pervasive silicification. Foliation only recognizable through oriented growth of biotite platelets.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-10-039	901.87	904.76	I2H	Medium grey coloured and fine grained Monzodiorite. Less sericite and no quartz. Plagioclas roughly aligned with foliation pattern. Disseminated sulphides, mostly pyrite, throughout. Minor presence of carbonate.	
CR-10-039	917.50	917.93	I2H	Medium grey coloured and fine grained Monzodiorite. Streaks of biotite along foliation.	
CR-10-039	934.68	936.03	12H	as above 901.87 to 904.76 minus the sulpides.	
CR-10-039	936.90	939.80	I2H	Medium grey coloured and finegrained Monzodiorite with some quartz. Weak foliation, no carbonate. Some dismembered quartz carbonate veins with no distinctive features. 1 to 2 mm aggregates of pyrrhotite throughout. All Monzodiorite contacts still follow local foliation pattern.	
CR-10-039	964.48	965.64	V3B	Biotitic Basalt, carbonaceous. Biotite growth following foliation pattern. Trace amounts of pyrite and arsenopyrite.	
CR-10-039	974.50	980.40	V3B	Biotite altered Basalt, brown coloured, foliated. Carrying trace pyrite and trace arsenopyrite. The latter seems restricted to quartz carbonate veins. Biotite growth following foliation giving this section a banded look for the most part.	
CR-10-039	980.40	984.50	V3B	Foliated Basalt, weakly biotitic. Nothing special.	
CR-10-039	984.50	986.28	DIS	Basalt, foliated and strongly altered. Sulphides, mostly pyrrhotite disseminated and in streaks and stringers. Section is also very silicified and carbonaceous. Some bands exhibit a high concentration of chlorite and medium grained pale garnet porphyroblasts. Upper contact sharp at 65 degCA and lower contact sharp at 60 degCA, with garnets bleeding into underlying Basalt.	
CR-10-039	992.47	995.48	I2H	Medium grey coloured and fine grained Monzodiorite, weak foliation and shearing and spotty bleaching. Sulphides disseminated and in small aggregates	
CR-10-039	997.12	1000.03	12H	Monzodiorite as in 992.47 to 995.48	
CR-10-039	1033.45	1034.06	I2H	Medium grey coloured and fine grained Monzodiorite, some quartz, slightly biotite altered with more sulphides than before including trace arsenopyrite.	
CR-10-039	1034.06	1034.58	V3B	Basalt, slightly biotite altered and weakly sheared. Showing trace amounts of sulphides.	
CR-10-039	1034.58	1038.92	I2H	Monzodiorite as in 1033.45 to 1034.06, but with quartz carbonate veins, weak shearing and associated bleaching at center of unit. Sulphides are disseminated in larger aggregates and in quartz carbonate veins	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-10-039	1058.13	1059.74	12J	Medium grey coloured and fine grained Diorite, moderately foliated and biotite altered. A few dismembered quartz carbonate veins are present. Trace pyrite and arsenopyrite can be found throughout.	
CR-10-039	1059.74	1061.37	S6E/S10	Dark grey coloured Argillite with cherty bands. Argillite contains up to 5% PO and traces of pyrite and chalcopyrite. Medium grey coloured cherty bands also contain some magnetite and thin pyrrhotite bands. Biotite is absent and sulphides appear primary.	
CR-10-039	1061.37	1063.98	V3B	Pillowed basalt with nice boudinage showing near the top (string of pearls). Center of unit looks "normal" while the last short stretch contacting the next unit is weakly biotite altered. Changes are expressed in sample intervals.	
CR-10-039	1063.98	1067.52	I2H	Medium grey coloured and fine grained Monzodiorite, The outer edges contain quartz while this can not be seen in the remainder of the unit. Seems more pervasive than in distinct crystals. Weakly foliated and sheared. Areas where shearing occured have a blotchy bleached look. Small cubic crystals of arsenopyrite throughout. Pyrite mostly paired with biotite aggregates. Few quartz carbonate veins are uneventful.	
CR-10-039	1067.52	1075.67	V3B	Basalt, massive and weakly foliated and biotite altered. Pyrite in traces here and there. Almost no veining.	
CR-10-039	1075.67	1078.40	130	Dark grey coloured and very fine grained Lamprophyre. Well foliated, which is nicely visible on the elongated plagiclase crystals. Biotite the only other discernible feature except for a pyrite crystal here and there. Contains small section of biotite altered basalt of less than 20cm. The last 60cm show some stronger signs of bleaching especially around a biotite filled fracture that also contains larger aggregates of arsenopyrite. Only very weakly carbonaceous, more so in bleached parts.	
CR-10-039	1078.40	1081.25	V3B	Basalt, massive and weakly foliated and biotite altered. Pyrite in traces here and there. Almost no veining.	
CR-10-039	1081.25	1085.41	130	Dark grey coloured and very fine grained Lamprophyre. Showing a fair amount of finely disseminated pyrite. A coarse strip of 9cm at 1084m seems to be a quartz carbonate vein containing lots of lamprophyre fragments. Unit is weakly carbonaceous.	
CR-10-039	1085.41	1086.00	I3A	Quartz carbonate over printed upper contact of gabbro. Looks intense but is very late stage	
CR-10-039	1103.15	1103.89	I3A	Medium green grey coloured and fine to medium grained Gabbro with sericite and little biotite. Foliated but sericite does not follow foliation	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-10-039	1103.89	1110.15	I2H	Medium grey coloured and fine grained Monzodiorite, weakly foliated and with minor biotite. Arsenopyrite and pyrite are finely disseminated but the distribution is somewhat uneven. A thicker barren quartz vein crosscuts near the bottom of the unit. Contacts as before follow the foliation pattern.	
CR-10-039	1209.00	1210.73	I3A	Biotite altered and foliated Gabbro with trace amonts of pyrite finely disseminated throughout. Carbonate filled fractures and minor quartz veins.	
CR-10-039	1239.34	1239.92	S6D	Hornfelsed Mudstone, biotite and carbonate enriched. From stacked flakes at the top to discernible bedding structures at the base. 3-5% pyrrhotite.	
CR-10-039	1239.92	1242.16	12J	Grey greenish coloured and fine grained Diorite, bleached. Elevated levels of sulphides. pyrrhotite 1+% and pyrite to 0.25%. Couple of arsenopyrite crystals observed as well. Bleaching is continuous throughout. Minor foliation and retention of dioritic granular fabric. Trace veining.contains some pyrrhotite.	
CR-10-039	1242.16	1246.75	S6D	Dark grey coloured Mudstone. Folded and contorted and disturbed due to adjacent Diorite intrusion.	
CR-10-039	1318.53	1324.38	V3B	Small basaltic interflow. Quartz pillow selvages containing chlorite, no sulphides. Trace biotite present.	
CR-10-039	1340.76	1341.56	l1F	Very fine grained pale yellow brown coloured aplitic dyke. Couple of thin quartz veins, otherwise massive, nondescript.	
CR-10-039	1357.90	1359.42	V3B	Thin basaltic interflow, massive, nondescript.	
CR-10-039	1391.20	1392.30	V3B	Thin basaltic interflow, garnetiferous and sheared. Upper contact may be sheared. Lower contact irregular. Does not look particularly mineralized.	
CR-10-039	1398.15	1402.45	S6D	Silicified silty Mudstones with wacke interbeds. Showing short stretches of fractured rock paralleling the shear zone immediately above.	
CR-10-039	1402.45	1405.85	S6D	Silty Mudstones with wacke interbeds, sheared. Some chloritic greenish diffuse parts that show an elevated pyrite level.	
CR-10-039	1405.85	1408.70	S6D	Mudstones losing most of the silt and wacke. More and more andalusite/chiastolith phyllitic sections. Rock much less disturbed than before.	
CR-10-039	1432.82	1434.12	I2J	Medium grey coloured Diorite, very fine grained at contacts. Very weak biotite alteration. Contacts sharp at 80 degCA.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-10-039	1444.03	1444.92	I2J	Medium grey coloured Diorite, fine to coarse grained, Foliated with a few garnets at upper and lower contacts. Very weak biotite alteration. Contacts sharp at 80 degCA.	
CR-10-039	1621.77	1624.75	S5B	Monomictic Breccia, with quartzitic components. Matrix is made up of carbonate and a PO/ PY mix of 65% / 35%. Unusual because the surrounding sediments contain mostly only traces of pyrite.	
CR-10-039	1624.75	1625.25	S6D	Very sulphidic Mudstone underneath Breccia contains fair amount of pyrite which hints to a remobilisation of sulphides as in the unit above.	
CR-10-039	1641.87	1642.65	S5F	Polymictic Breccia. Few chunks of mudstone but mostly made up of carbonate fragments and an intact carbonate band topping the unit. Matrix appears to be 100% pyrrhotite	
CR-10-039	1666.52	1667.59	S6A	Muddy Siltstones, sedimentary structures more or less intact with up to 15% pyrite (blebby whispy replacement).	
CR-10-039	1667.59	1668.00	I2J	Steel grey coloured, fine grained, siliceous, Diorite with trace pyrite. Sharp upper and lower contacts at 70 degCA.	
CR-10-039	1668.00	1669.57	FLT	Brecciated Mudstone with blocky fragments of Basalt. The latter are slickensided indicating that this a Fault Zone. No obvious direction or indication of displacement.	
CR-10-039	1669.57	1671.42	V3B	Thin basaltic interflow, uneventful. Irregular top. Lower contact follows bedding at 80degCA.	
CR-10-039	1680.00	1681.38	12J	Medium grey coloured and fine grained Diorite with up to 02% pyrite. Weakly foliated. Crosscutting stratigraphy at 20 degCA on top and 60 degCA at bottom. Two thin (10 - 20 cm) crosscutting dykes of similar composition can be observed just over top of this unit.	
CR-10-039	1804.80	1809.83	12E	Light grey coloured and fine grained Quartz Monzonite. Fairly uniform and massive. Minor grainsize differences towards upper and lower contacts. Weakly foliated with trace sericite. Upper contact irregular. Lower contact sharp at 69 degCA.	
CR-10-039	1809.83	1814.50	S6E	Dark grey coloured, graphitic Argillite. Sedimentary structure is contorted and very irregular. Blebby pyrite is quite prominent, next to pyrrhotite that seems tied to fractures and streaks that could indicate that it is a replacement.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-10-039	1860.45	1866.80	V3A	Medium to light grey coloured bleached andesitic Basalt. Section is very porous and weathered looking. The bleaching seems associated with ongoing and rather recent leaching processes.	
CR-10-039	1866.80	1909.00	V3A	Medium to dark grey coloured waxy looking andesitic Basalt with varying sections on 1m scale that are more silicified. Ground tends to be very bad where silicification is lowest due to intense crosscutting fracture systems. Quite garnetiferous and some trace fine grained sulphides. Few white milky quartz veins with traces of tourmaline and occasional calcitic fractures.	
CR-10-039	1960.20	1961.25	FLT	Very fine grained black matrix, quite soft. Most features associated with carbonaceous veining. At least two stages present. Boudinaged veins and later thicker veins that are sheared and dismembered. In the later ones some sulphide replacement has taken place. Quartz veins present but separate from the carbonaceous ones. Garnets present appear to be rather late stage metamorphosis.	
CR-10-039	1921.25	1962.91	FLT	Very colorful cherty material with lots of quartz veining. Dominated by brecciated and sheared translucent quartz vein with late rose colored carbonate filling, possibly rodochrosite. Ample amount of replacement sulphides dominated by pyrrhotite, but chalcopyrite and arsenopyrite are frequent as well. Sulphides also in the abundant permeating fractures. A later stage milky white quartz vein shows a final stage sulphidic fill. This center part of the fault is more competent due to the high silica content and seems to have seen multiple phases of reactivation and fluid movement. The finegrained dense nature of the fault material surrounding seems to have prevented silicification beyond this center conduit.	
CR-10-039	1962.91	1966.08	BRE	Fine grained soft dark coloured matrix along the line of 1960.20 - 1921.25 with lots of angular clasts coarsening downwards. Clasts are cherty, quartz vein fragments fine clastic chunks and carbonaceous material. Shearing mostly in the upper part is quite intense and expresses itself in elongation of clasts, narrow striation. As clasts get bigger they seem more unaffected even though shearplanes now 1 -3 cm apart are still visible. Some late garnets postdate movement as the crystals seem unaffected by shearing. Sulphides are mostly finely disseminated but there is also some replacement going on. Pyrrhotite dominates but chalcopyrite and arsenopyrite can be found throughout as well.	
CR-10-039	1971.38	1972.96	I3A	Green gray coloured and very fine grained Gabbro with carbonate veining. Lower 10cm are biotite altered. Upper contact with bedding at 84 degCA, lower at 90 degCA.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-10-039	1992.63	1997.33	M18	Hornfelsed silicous sediments at the contact to Gabbro. Fine clastic bands are rich in garnets and chlorite. More silicious bands are microfractured. These fractures are filled with milky green coloured material, possibly hornblende and sulphides. Small cubic arsenopyrite is present as well. Same sulphides also in thin more prominent fractures crosscutting this unit.	
CR-10-039	1997.33	2014.36	М9	Bluish grey coloured Orthoschist. Biotite dominating, with Sericite being a minor component. Schistosity gradually retreating until original Gabbro fabric is starting to show.	
CR-10-039	2020.52	2021.23	SHR	Carbonaceous shear in biotite altered Gabbro. Sulphides as vein selvedges and as replacement. Pyrrhotite dominating with traces of chalcopyrite and arsenopyrite. Small garnets sprinkled in, no quartz veins.	
CR-10-039	2033.50	2036.67	I3A	Brown, contact sheared biotite altered Gabbro with some carbonate veining. Partly leached and brittle broken.	
CR-10-039	2036.67	2040.35	M18	Hornfelsed silicous sediments at the contact to Gabbro. Fine clastic bands are rich in coarse garnets. Epidote present. More silicious bands are translucent and likely re recrystalised giving them the appearance of quartz veins. A variety of sulphides, among them arsenopyrite and red sphalerite are present. Some folding, likely due to intrusive contact.	
CR-10-039	2070.28	2070.73	130	Dark grey coloured and fine grained Lamprophyre dyke with a couple of thin quartz veins containing sulphide traces. Upper contact 60 degCA. Lower contact irregular, roughly at 80 degCA.	
CR-10-039	2071.00	2071.88	M18	Like 2036.67 - 2040.35, but less intense looking. Carbonaceous and decreasing amount of sulphides towards contact with Gabbro.	

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-10-039	7151	229.90	230.90	1.00		Character Sample: salt and pepper Diorite with trace sulphides (PY)	6	10U397535
CR-10-039	7152	230.90	231.90	1.00	consecutive	Character Sample: Chert (oxide IF) up to 10MT trPY trPO	7	10U397535
CR-10-039	7153	231.90	232.85	0.95	consecutive	Character Sample: Chert (oxide IF) up to 10MT trPY trPO	11	10U397535
CR-10-039	7154	232.85	233.85	1.00	consecutive	Character Sample: Chert (oxide IF) up to 10MT trPY trPO	3	10U397535
CR-10-039	7155	228.38	228.88	0.50	not consecutive	Blank Sample: Diorite NIL sulphides	6	10U397535
CR-10-039	7156	233.85	234.35	0.50	not consecutive	up to 25% quartz veins cross-cutting foliation and bedding in Chert with trace Sulphides	159	10U397535
CR-10-039	7157	234.35	235.35	1.00	consecutive	Wing Sample: Chert with 02-03PY 10MT	4	10U397535
CR-10-039	7158	248.36	249.36	1.00	not consecutive	Wing Sample: Monzodiorite moderately sheared with trPY	2	10U397535
CR-10-039	7159	249.36	250.06	0.70	consecutive	Character Sample: Monzodiorite with folded quartz vein and carbonate. 01PY trPO	2	10U397535
CR-10-039	7160	250.06	251.06	1.00	consecutive	Wing Sample: Monzodiorite moderately sheared with trPY	13	10U397535
CR-10-039	7161	276.16	277.00	0.84	not consecutive	Sheared Intrusive with minor trAPY	4	10U397535
CR-10-039	7162	277.00	277.75	0.75	consecutive	Sheared Intrusive with minor trAPY	2	10U397535
CR-10-039	7163	277.75	278.95	1.20	consecutive	Sheared Intrusive with minor trAPY	6	10U397535
CR-10-039	7164	278.95	279.40	0.45	consecutive	Solid Sulphide Replacement 70PO 10PY in Huston Chert Breccia	3	10U397535
CR-10-039	7165	279.40	279.87	0.47	consecutive	Solid Sulphide Replacement 70PO 10PY in Huston Chert Breccia	13	10U397535
CR-10-039	7166	279.87	281.00	1.13	consecutive	Well Mineralized brecciated cherty Huston with up to 25% (PY:PO) 10MT	7	10U397535
CR-10-039	7167	281.00	282.00	1.00	consecutive	Well Mineralized brecciated cherty Huston with up to 25% (PY:PO) 10MT	6	10U397535
CR-10-039	7168	282.00	283.00	1.00	consecutive	Well Mineralized brecciated cherty Huston with up to 25% (PY:PO) 10MT	8	10U397535
CR-10-039	7169	283.00	284.00	1.00	consecutive	Well Mineralized breccia as above with narrow silica flooding (up to 20% of sample)	6	10U397535
CR-10-039	7170	0.00	0.00	0.00	not consecutive	Standard Sample: Si42 1.761ppm Au	1752	10U397535
CR-10-039	7171	284.00	285.00	1.00	not consecutive	Huston Chert with silica flooding (<5%)	5	10U397535
CR-10-039	7172	285.00	286.00	1.00	consecutive	Huston Chert with silica flooding (<5%)	5	10U397535
CR-10-039	7173	286.00	287.00	1.00	consecutive	Chert with Narrow 35cm dark grey intermediate porphyry	6	10U397535
CR-10-039	7174	287.00	288.00	1.00	consecutive	Huston Chert with silica flooding (<5%)	13	10U397535
CR-10-039	7175	365.00	365.50	0.50	not consecutive	Blank Sample: trace PY in Huston Siltstone	2	10U397535
CR-10-039	7176	288.00	289.40	1.40	not consecutive	Huston Chert with silica flooding (<5%) with increased sulphides up to 20PO	7	10U397535
CR-10-039	7177	289.40	290.20	0.80	consecutive	98% silica flooding and trPY	2	10U397535
CR-10-039	7178	290.20	290.82	0.62	consecutive	98% silica flooding and trPY	3	10U397535
CR-10-039	7179	290.82	292.00	1.18	consecutive	Wing Sample: trace sulphides in dark grey blue coloured siliceous silty sediments with 02MT	3	10U397535

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-10-039	7180	359.19	360.19	1.00	not consecutive	Wing Sample: Mafic Tuffaceous intercollated sediments with trace very fine grained PY	5	10U397535
						Character Sample: One quartz vein at 80degCA within Mafic Tuff		
CR-10-039	7181	360.19	360.89	0.70	consecutive	beds with quartz-carbonate healed fractures subparallel to CA and	9	10U397535
						irregular veins		
CR-10-039	7182	360.89	361 30	0.41	consecutive	Wing Sample: Mafic Tuffaceous intercollated sediments with trace	8	1011397535
	/ 102	500.05	501.50	0.41	consecutive	very fine grained PY	0	100557555
CR-10-039	7183	361.30	362.30	1.00	consecutive	Wing Sample to 7183: below contact in Huston Siltsone with trace PY	6	10U397535
CR-10-039	7184	427.00	428.00	1.00	not consecutive	poorly altered quartz monzodiorite with trace pyrite	1	10U397535
CR-10-039	7185	428.00	428.95	0.95	consecutive	poorly altered quartz monzodiorite with trace pyrite	6	10U397535
CR-10-039	7186	428.95	430.35	1.40	consecutive	narrow diorite dyke with 02PY	4	10U397535
CR-10-039	7187	430.35	431.00	0.65	consecutive	poorly altered quartz monzodiorite with trace pyrite	2	10U397535
CR-10-039	7188	431.00	432.00	1.00	consecutive	poorly altered quartz monzodiorite with trace pyrite	2	10U397535
CR-10-039	7189	432.00	433.00	1.00	consecutive	poorly altered quartz monzodiorite with trace pyrite	1	10U397535
CR-10-039	7190	0.00	0.00	0.00	not consecutive	Standard Sample: Si42 1.761ppm Au	1785	10U397535
CR-10-039	7191	433.00	434.00	1.00	not consecutive	poorly altered quartz monzodiorite with trace pyrite	3	10U397535
CR-10-039	7192	434.00	435.00	1.00	consecutive	poorly altered quartz monzodiorite with trace pyrite	3	10U397535
CR-10-039	7193	435.00	436.00	1.00	consecutive	poorly altered quartz monzodiorite with trace pyrite	1	10U397535
CR-10-039	7194	436.00	437.00	1.00	consecutive	poorly altered quartz monzodiorite with trace pyrite	1	10U397535
CR-10-039	7195	437.00	438.00	1.00	consecutive	Character Sample: quartz monzodiorite with trace pyrite, no Blank	2	10U397535
CR-10-039	7196	438.00	439.00	1.00	consecutive	poorly altered quartz monzodiorite with trace pyrite	5	10U397535
CR-10-039	7197	439.00	440.00	1.00	consecutive	poorly altered quartz monzodiorite with trace pyrite	1	10U397535
CR-10-039	7198	440.00	441.00	1.00	consecutive	poorly altered quartz monzodiorite with trace pyrite	1	10U397535
CR-10-039	7199	441.00	442.00	1.00	consecutive	poorly altered quartz monzodiorite with trace pyrite	4	10U397535
CR-10-039	7200	442.00	443.00	1.00	consecutive	poorly altered quartz monzodiorite with trace pyrite	1	10U397535
CR-10-039	7201	443.00	444.00	1.00	consecutive	poorly altered quartz monzodiorite with trace pyrite	2	10U397535
CR-10-039	7202	444.00	445.00	1.00	consecutive	poorly altered quartz monzodiorite with trace pyrite	4	10U397535
CR-10-039	7203	445.00	446.00	1.00	consecutive	poorly altered quartz monzodiorite with trace pyrite	18	10U397535
CR-10-039	7204	446.00	447.00	1.00	consecutive	poorly altered quartz monzodiorite with trace pyrite	2	10U397535
CR-10-039	7205	447.00	448.00	1.00	consecutive	poorly altered quartz monzodiorite with trace pyrite	2	10U397535
CR-10-039	7206	448.00	449.00	1.00	consecutive	poorly altered quartz monzodiorite with trace pyrite	2	10U397535
CR-10-039	7207	449.00	450.00	1.00	consecutive	poorly altered quartz monzodiorite with trace pyrite	1	10U397535
CR-10-039	7208	450.00	451.00	1.00	consecutive	poorly altered quartz monzodiorite with trace pyrite	2	10U397535
CR-10-039	7209	451.00	452.00	1.00	consecutive	poorly altered quartz monzodiorite with trace pyrite	1	10U397535
CR-10-039	7210	0.00	0.00	0.00	not consecutive	Standard Sample: OxK69 3.583ppm Au	3977	10U397535
CR-10-039	7211	452.00	453.00	1.00	not consecutive	poorly altered quartz monzodiorite with trace pyrite	2	10U397535
CR-10-039	7212	453.00	454.00	1.00	consecutive	poorly altered quartz monzodiorite with trace pyrite	2	10U397535
CR-10-039	7213	454.00	455.00	1.00	consecutive	poorly altered quartz monzodiorite with trace pyrite	2	10U397535

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-10-039	7214	455.00	456.00	1.00	consecutive	poorly altered quartz monzodiorite with trace pyrite	2	10U397535
CR-10-039	7215	456.00	457.00	1.00	consecutive	Mass character sample no Blank. Quartz Monzodiorite	2	10U397535
CR-10-039	7216	457.00	458.00	1.00	consecutive	poorly altered quartz monzodiorite with trace pyrite	2	10U397535
CR-10-039	7217	458.00	459.00	1.00	consecutive	poorly altered quartz monzodiorite with trace pyrite	12	10U397535
CR-10-039	7218	459.00	460.00	1.00	consecutive	poorly altered quartz monzodiorite with trace pyrite	2	10U397535
CR-10-039	7219	460.00	461.00	1.00	consecutive	poorly altered quartz monzodiorite with trace pyrite	2	10U397535
CR-10-039	7220	461.00	462.00	1.00	consecutive	poorly altered quartz monzodiorite with trace pyrite	3	10U397535
CR-10-039	7221	462.00	463.00	1.00	consecutive	poorly altered quartz monzodiorite with trace pyrite	83	10U397535
CR-10-039	7222	463.00	464.00	1.00	consecutive	poorly altered quartz monzodiorite with trace pyrite	2	10U397535
CR-10-039	7223	464.00	465.00	1.00	consecutive	poorly altered quartz monzodiorite with trace pyrite	2	10U397535
CR-10-039	7224	465.00	466.30	1.30	consecutive	poorly altered quartz monzodiorite with trace pyrite	4	10U397535
CR-10-039	7225	466.30	467.00	0.70	consecutive	Wing Sample: Quartz Monzodiorite with 02PO 02PY	21	10U397535
CR-10-039	7226	585.00	586.00	1 00	not consecutive	Wing Sample: minor tr-01PY in fine sediments with minor quartz-	5	1011397535
CR-10-055	7220	565.00	580.00	1.00	not consecutive	carbonate	5	100337333
CR-10-039	7227	586.00	587.00	1 00	consecutive	Sheared Clastic sediments with 04MT trPY and abundant	6	1011397535
CR-10-055	1221	500.00	567.00	1.00	consecutive	dismembered quartz rich beds and veins	0	100337333
						Shear Zone: up to 10% quartz-carb-(ankerite) veins in Tuffaceous		
CR-10-039	7228	587.00	588.00	1.00	consecutive	Volcanic Seds and Mudrock with ser-chl alteration 02% very fine	3	10U397535
						grained disseminated PY		
						Shear Zone: up to 10% quartz-carb-(ankerite) veins in Tuffaceous		
CR-10-039	7229	588.00	589.00	1.00	consecutive	Volcanic Seds and Mudrock with ser-chl alteration 02% very fine	3	10U397535
						grained disseminated PY		
CR-10-039	7230	0.00	0.00	0.00	not consecutive	Standard Sample: OxK69 3.583ppm Au	3528	10U397535
						Shear Zone: up to 10% quartz-carb-(ankerite) veins in Tuffaceous		
CR-10-039	7231	589.00	590.00	1.00	not consecutive	Volcanic Seds and Mudrock with ser-chl alteration 02% very fine	11	10U397535
						grained disseminated PY		
						Shear Zone: up to 05% quartz-carb-(ankerite) veins in Tuffaceous		
CR-10-039	7232	590.00	591.00	1.00	consecutive	Volcanic Seds and Mudrock with ser-chl alteration trace very fine	3	10U397535
						grained disseminated PY		
						Shear Zone: up to 05% quartz-carb-(ankerite) veins in Tuffaceous		
CR-10-039	7233	591.00	591.67	0.67	consecutive	Volcanic Seds and Mudrock with ser-chl alteration trace very fine	11	10U397535
						grained disseminated PY		
CR-10-039	7234	591.67	593.00	1.33	consecutive	Wing Sample: Huston Mudrock with 10% MT and trPY	73	10U397535
CR-10-039	7235	593.00	594.00	1.00	consecutive	Blank Sample: Huston Mudrock with 10% MT and trPY similar to	8	10U397535
	/ 200	000.00	00.000	2.00		above	C	200007000
CR-10-039	7236	605.00	606.46	1.46	not consecutive	MT-bearing silty Mudstone with 01PY in beds	12	10U397535
CR-10-039	7237	606.46	607.46	1.00	consecutive	Wing Sample: light grey coloured Mudstone with trPY	26	10U397535
CR-10-039	7238	607.46	608.29	0.83	consecutive	Wing Sample: light grey coloured Mudstone with trPY	9	10U397535
CR-10-039	7239	608.29	608.59	0.30	consecutive	WMIN 24PY 01PO Heavy Replacement in Muddy Clastics with low	50	10U397535
CR 10 000	,235	000.25	000.00	0.50		core angle bedding	55	100337333

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-10-039	7240	608.59	609.59	1.00	consecutive	Variable low angle bedding in chl-bt-(ser) altered Siltstone with very fine grained blebby Pyrite	34	10U397535
CR-10-039	7241	609.59	610.59	1.00	consecutive	Wing Sample to intrusive below: Variable low angle bedding in chl- bt-(ser) altered Siltstone with very fine grained blebby trace to 01% Pyrite	11	10U397535
CR-10-039	7242	610.59	611.17	0.58	consecutive	Wing Sample to intrusive below: Variable low angle bedding in chl- bt-(ser) altered Siltstone with very fine grained blebby trace to 01% Pyrite	8	10U397535
CR-10-039	7243	611.17	612.00	0.83	consecutive	poorly ser alt'd Quartz Monzodiorite porphyry with blebby local tr- 01PY tr PO trAPY	2	10U397535
CR-10-039	7244	612.00	612.85	0.85	consecutive	poorly ser alt'd Quartz Monzodiorite porphyry with blebby local tr- 01PY tr PO trAPY	2	10U397535
CR-10-039	7245	612.85	614.00	1.15	consecutive	bleached silty Mudstone/Siltstone xenolith within I2G with trPY	5	10U397535
CR-10-039	7246	614.00	615.00	1.00	consecutive	poorly ser alt'd Quartz Monzodiorite porphyry with blebby local tr- 01PY tr PO trAPY	2	10U397535
CR-10-039	7247	615.00	616.00	1.00	consecutive	poorly ser alt'd Quartz Monzodiorite porphyry with blebby local tr- 01PY tr PO trAPY	1	10U397535
CR-10-039	7248	616.00	617.00	1.00	consecutive	poorly ser alt'd Quartz Monzodiorite porphyry with blebby local tr- 01PY tr PO trAPY	7	10U397535
CR-10-039	7249	617.00	618.00	1.00	consecutive	poorly ser alt'd Quartz Monzodiorite porphyry with blebby local tr- 01PY tr PO trAPY	2	10U397535
CR-10-039	7250	0.00	0.00	0.00	not consecutive	Standard Sample: SK43 4.086 ppm Au	3977	10U397535
CR-10-039	E5129560	618.00	619.00	1.00	not consecutive	ser alt'd Quartz Monzodiorite porphyry with tr-01PY trAPY	2	10U397535
CR-10-039	E5129561	619.00	620.00	1.00	consecutive	ser alt'd Quartz Monzodiorite porphyry with tr-01PY trAPY	1	10U397535
CR-10-039	E5129562	620.00	621.07	1.07	consecutive	ser alt'd Quartz Monzodiorite porphyry with tr-01PY trAPY	2	10U397535
CR-10-039	E5129563	621.07	622.07	1.00	consecutive	siliceous siltstone and mudstone block within intrusive 02PY	10	10U397535
CR-10-039	E5129564	622.07	623.28	1.21	consecutive	siliceous siltstone and mudstone block within intrusive replacement in bed 05PY	20	10U397535
CR-10-039	E5129565	623.28	624.00	0.72	consecutive	ser alt'd Quartz Monzodiorite porphyry with tr-01PY trAPY	2	10U397535
CR-10-039	E5129566	624.00	625.00	1.00	consecutive	ser alt'd Quartz Monzodiorite porphyry with tr-01PY trAPY	3	10U397535
CR-10-039	E5129567	625.00	626.00	1.00	consecutive	ser alt'd Quartz Monzodiorite porphyry with tr-01PY trAPY	3	10U397535
CR-10-039	E5129568	626.00	627.00	1.00	consecutive	ser alt'd Quartz Monzodiorite porphyry with tr-01PY trAPY	1	10U397535
CR-10-039	E5129569	627.00	628.00	1.00	consecutive	ser alt'd Quartz Monzodiorite porphyry with tr-01PY trAPY	8	10U397535
CR-10-039	E5129570	0.00	0.00	0.00	not consecutive	Standard Sample: OxK69 3.583ppm Au	3515	10U397535
CR-10-039	E5129571	628.00	629.00	1.00	not consecutive	ser alt'd Quartz Monzodiorite porphyry with tr-01PY trAPY	3	10U397535
CR-10-039	E5129572	629.00	630.00	1.00	consecutive	ser alt'd Quartz Monzodiorite porphyry with tr-01PY trAPY	3	10U397535
CR-10-039	E5129573	630.00	631.00	1.00	consecutive	ser alt'd Quartz Monzodiorite porphyry with tr-01PY trAPY	8	10U397535
CR-10-039	E5129574	631.00	632.00	1.00	consecutive	ser alt'd Quartz Monzodiorite porphyry with tr-01PY trAPY	2	10U397535
CR-10-039	E5129575	675.00	675.50	0.50	not consecutive	Blank Sample: Mudstone with 03MT 01PY trPO in Huston	10	10U397535

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-10-039	E5129576	632.00	633.00	1.00	not consecutive	ser alt'd Quartz Monzodiorite porphyry with tr-01PY trAPY	3	10U397535
CR-10-039	E5129577	633.00	634.00	1.00	consecutive	ser alt'd Quartz Monzodiorite porphyry with tr-01PY trAPY	2	10U397535
CR-10-039	E5129578	634.00	635.00	1.00	consecutive	ser alt'd Quartz Monzodiorite porphyry with tr-01PY trAPY	2	10U397535
CR-10-039	E5129579	635.00	636.00	1.00	consecutive	ser alt'd Quartz Monzodiorite porphyry with tr-01PY trAPY	5	10U397535
CR-10-039	E5129580	636.00	637.00	1.00	consecutive	ser alt'd Quartz Monzodiorite porphyry with tr-01PY trAPY	7	10U397535
CR-10-039	E5129581	637.00	638.00	1.00	consecutive	ser alt'd Quartz Monzodiorite porphyry with tr-01PY trAPY	3	10U397535
CR-10-039	E5129582	638.00	639.00	1.00	consecutive	ser alt'd Quartz Monzodiorite porphyry with tr-01PY trAPY	2	10U397535
CR-10-039	E5129583	639.00	640.00	1.00	consecutive	ser alt'd Quartz Monzodiorite porphyry with tr-01PY trAPY	3	10U397535
CR-10-039	E5129584	640.00	641.00	1.00	consecutive	ser alt'd Quartz Monzodiorite porphyry with tr-01PY trAPY	2	10U397535
CR-10-039	E5129585	641.00	642.00	1.00	consecutive	ser alt'd Quartz Monzodiorite porphyry with tr-01PY trAPY	2	10U397535
CR-10-039	E5129586	642.00	643.00	1.00	consecutive	ser alt'd Quartz Monzodiorite porphyry with tr-01PY trAPY	1	10U397535
CR-10-039	E5129587	643.00	644.00	1.00	consecutive	ser alt'd Quartz Monzodiorite porphyry with tr-01PY trAPY	1	10U397535
CR-10-039	E5129588	644.00	645.00	1.00	consecutive	ser alt'd Quartz Monzodiorite porphyry with tr-01PY trAPY	<1	10U397535
CR-10-039	E5129589	645.00	646.00	1.00	consecutive	ser alt'd Quartz Monzodiorite porphyry with tr-01PY trAPY	2	10U397535
CR-10-039	E5129590	0.00	0.00	0.00	not consecutive	Standard Sample: SK43 4.086 ppm Au	4093	10U397535
CR-10-039	E5129591	646.00	647.00	1.00	not consecutive	ser alt'd Quartz Monzodiorite porphyry with tr-01PY trAPY	2	10U397535
CR-10-039	E5129592	647.00	648.00	1.00	consecutive	ser alt'd Quartz Monzodiorite porphyry with tr-01PY trAPY	14	10U397535
CR-10-039	E5129593	648.00	649.00	1.00	consecutive	ser alt'd Quartz Monzodiorite porphyry with tr-01PY trAPY	<1	10U397535
CR-10-039	E5129594	649.00	650.00	1.00	consecutive	ser alt'd Quartz Monzodiorite porphyry with tr-01PY trAPY	4	10U397535
CR-10-039	E5129595	674.00	674.50	0.50	not consecutive	Blank Sample: Mudstone with 03MT 01PY trPO in Huston	5	10U397535
CR-10-039	E5129596	650.00	651.00	1.00	not consecutive	ser alt'd Quartz Monzodiorite porphyry with tr-01PY trAPY	1	10U397535
CR-10-039	E5129597	651.00	652.00	1.00	consecutive	ser alt'd Quartz Monzodiorite porphyry with tr-01PY trAPY	1	10U397535
CR-10-039	E5129598	652.00	653.00	1.00	consecutive	ser alt'd Quartz Monzodiorite porphyry with tr-01PY trAPY	2	10U397535
CR-10-039	E5129599	653.00	654.00	1.00	consecutive	ser alt'd Quartz Monzodiorite porphyry with tr-01PY trAPY	4	10U397535
CR-10-039	E5129600	654.00	655.00	1.00	consecutive	ser alt'd Quartz Monzodiorite porphyry with tr-01PY trAPY	3	10U397535
CR-10-039	E5129601	655.00	656.00	1.00	consecutive	ser alt'd Quartz Monzodiorite porphyry with tr-01PY trAPY	23	10U397535
CR-10-039	E5129602	656.00	657.00	1.00	consecutive	ser alt'd Quartz Monzodiorite porphyry with tr-01PY trAPY	6	10U397535
CR-10-039	E5129603	657.00	658.00	1.00	consecutive	ser alt'd Quartz Monzodiorite porphyry with tr-01PY trAPY	1	10U397535
CR-10-039	E5129604	658.00	659.00	1.00	consecutive	ser alt'd Quartz Monzodiorite porphyry with tr-01PY trAPY	1	10U397535
CR-10-039	E5129605	659.00	660.00	1.00	consecutive	ser alt'd Quartz Monzodiorite porphyry with tr-01PY trAPY	5	10U397535
CR-10-039	E5129606	660.00	661.00	1.00	consecutive	ser alt'd Quartz Monzodiorite porphyry with tr-01PY trAPY	1	10U397535
CR-10-039	E5129607	661.00	662.00	1.00	consecutive	ser alt'd Quartz Monzodiorite porphyry with tr-01PY trAPY	1	10U397535
CR-10-039	E5129608	662.00	663.00	1.00	consecutive	ser alt'd Quartz Monzodiorite porphyry with tr-01PY trAPY	2	10U397535
CR-10-039	E5129609	663.00	664.00	1.00	consecutive	ser alt'd Quartz Monzodiorite porphyry with tr-01PY trAPY	2	10U397535
CR-10-039	E5129610	664.00	665.00	1.00	consecutive	ser alt'd Quartz Monzodiorite porphyry with tr-01PY trAPY	2	10U397535
CR-10-039	E5129611	665.00	666.00	1.00	consecutive	ser alt'd Quartz Monzodiorite porphyry with tr-01PY trAPY	1	10U397535
CR-10-039	E5129612	666.00	666.80	0.80	consecutive	ser alt'd Quartz Monzodiorite porphyry with tr-01PY trAPY	1	10U397535
CR-10-039	E5129613	666.80	667.62	0.82	consecutive	Wing Infill Sample: Mixed intrusive and mudrock mostly light grey coloured siltstone NIL sulphides	2	10U397535

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-10-039	E5129614	667.62	668.62	1.00	consecutive	Wing Sample: Silty sediments in Huston with up to 02PY in fine bedding	13	10U397535
CR-10-039	E5129615	673.50	674.00	0.50	not consecutive	Blank Sample: 03PY-trMT bearing Mudstone	8	10U397535
CR-10-039	E5129616	668.62	670.00	1.38	not consecutive	Wing Infill Sample: Mudstone trPY	8	10U397535
CR-10-039	E5129617	670.00	671.40	1.40	consecutive	Wing Infill Sample: Mudstone trPY	10	10U397535
CR-10-039	E5129618	671.40	672.10	0.70	consecutive	Replacement Sulphide 05PY in silty grey coloured Mudrock	13	10U397535
CR-10-039	E5129619	672.10	673.00	0.90	consecutive	Wing Infill Sample: Mudstone trPY	6	10U397535
CR-10-039	E5129620	688.60	689.60	1.00	not consecutive	Wing Sample: trace pyrite in Mudrock	7	10U397535
CR-10-039	E5129621	689.60	690.15	0.55	consecutive	Character Sample: Several narrow cross-cutting Quartz Veins and dilatant calcited filled fractures in Mudrock with trPY	5	10U397535
CR-10-039	E5129622	690.15	691.15	1.00	consecutive	Wing Sample: trace pyrite in Mudrock	11	10U397535
CR-10-039	E5129623	691.15	692.05	0.90	consecutive	Wing Sample: trace pyrite in Mudrock	5	10U397535
CR-10-039	E5129624	692.05	693.00	0.95	consecutive	Wallrock Breccia with quartz veins and pseudo mylonitic ground	3	10U397535
CR-10-039	E5129625	693.00	694.00	1.00	consecutive	Mixed brecciated Quartz Monzodiorite and Mudstone with sericite and minor trace PY	4	10U397535
CR-10-039	E5129626	694.00	695.00	1.00	consecutive	Mixed brecciated Quartz Monzodiorite and Mudstone with sericite and minor trace PY	2	10U397535
CR-10-039	E5129627	695.00	696.30	1.30	consecutive	Wing Sample: mostly massive section of fine sediments in contact breccia NIL sulphides	4	10U397535
CR-10-039	E5129628	696.30	697.50	1.20	consecutive	Grey-green coloured sericite altered and foliated quartz vein bearing Quartz Monzodiorite Porphyry with trPY and occasional trAPY	1	10U397535
CR-10-039	E5129629	697.50	699.00	1.50	consecutive	Foliated porphyry as above	1	10U397535
CR-10-039	E5129630	0.00	0.00	0.00	not consecutive	Standard Sample: Si42 1.761ppm Au	1770	10U397535
CR-10-039	E5129631	699.00	700.00	1.00	not consecutive	Foliated porphyry as above	2	10U397535
CR-10-039	E5129632	700.00	701.00	1.00	consecutive	Foliated porphyry as above	2	10U397535
CR-10-039	E5129633	701.00	702.00	1.00	consecutive	Foliated porphyry as above no quartz veins	2	10U397535
CR-10-039	E5129634	702.00	703.00	1.00	consecutive	Strongly sil-ser bleached foliated intrusive with trPY trAPY	2	10U397535
CR-10-039	E5129635	749.41	750.41	1.00	not consecutive	grey banded siltstone, infill sample	1	10U397535
CR-10-039	E5129636	703.00	704.00	1.00	not consecutive	Strongly sil-ser bleached foliated intrusive with trPY trAPY	1	10U397535
CR-10-039	E5129637	704.00	705.00	1.00	consecutive	Strongly sil-ser bleached foliated intrusive with trPY trAPY	4	10U397535
CR-10-039	E5129638	705.00	706.00	1.00	consecutive	Strongly sil-ser bleached foliated intrusive with trPY trAPY	2	10U397535
CR-10-039	E5129639	706.00	707.00	1.00	consecutive	Strongly sil-ser bleached foliated intrusive with trPY trAPY	2	10U397535
CR-10-039	E5129640	707.00	708.00	1.00	consecutive	Strongly sil-ser bleached foliated intrusive with trPY trAPY	2	10U397535
CR-10-039	E5129641	708.00	709.00	1.00	consecutive	Strongly sil-ser bleached foliated intrusive with trPY trAPY	2	10U397535
CR-10-039	E5129642	709.00	710.00	1.00	consecutive	Strongly sil-ser bleached foliated intrusive with trPY trAPY	1	10U397535
CR-10-039	E5129643	710.00	711.00	1.00	consecutive	Strongly sil-ser bleached foliated intrusive with trPY trAPY	2	10U397535
CR-10-039	E5129644	711.00	712.00	1.00	consecutive	Strongly sil-ser bleached foliated intrusive with trPY trAPY	4	10U397535
CR-10-039	E5129645	712.00	713.00	1.00	consecutive	Strongly sil-ser bleached foliated intrusive with trPY trAPY	1	10U397535

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-10-039	E5129646	713.00	714.00	1.00	consecutive	Strongly sil-ser bleached foliated intrusive with trPY trAPY	2	10U397535
CR-10-039	E5129647	714.00	715.00	1.00	consecutive	Strongly sil-ser bleached foliated intrusive with trPY trAPY	1	10U397535
CR-10-039	E5129648	715.00	716.00	1.00	consecutive	Strongly sil-ser bleached foliated intrusive with trPY trAPY	2	10U397535
CR-10-039	E5129649	716.00	717.00	1.00	consecutive	Strongly sil-ser bleached foliated intrusive with trPY trAPY	2	10U397535
CR-10-039	E5129650	0.00	0.00	0.00	not consecutive	Standard Sample: OxK69 3.583ppm Au	3584	10U399987
CR-10-039	E5129651	717.00	718.50	1.50	not consecutive	Mixed intrusive and fine clastics trPY	2	10U399987
CR-10-039	E5129652	718.50	720.00	1.50	consecutive	Wing Infill Sample: Mixed intrusive and fine clastics trPY mostly clastics	1	10U399987
CR-10-039	E5129653	720.00	721.50	1.50	consecutive	as above 651	24	10U399987
CR-10-039	E5129654	721.50	723.00	1.50	consecutive	as above 651	3	10U399987
CR-10-039	E5129655	750.41	751.47	1.06	not consecutive	grey banded siltstone, infill sample	1	10U399987
CR-10-039	E5129656	723.00	724.50	1.50	not consecutive	as above 651	1	10U399987
CR-10-039	E5129657	724.50	726.00	1.50	consecutive	as above 651	1	10U399987
CR-10-039	E5129658	726.00	727.50	1.50	consecutive	as above 651	<1	10U399987
CR-10-039	E5129659	727.50	729.00	1.50	consecutive	as above 651	<1	10U399987
CR-10-039	E5130110	0.00	0.00	0.00	not consecutive	Standard OxK 3.583 ppm Au	3262	10U399987
CR-10-039	E5130111	729.00	730.50	1.50	not consecutive	as above 651	4	10U399987
CR-10-039	E5130112	730.50	731.39	0.89	consecutive	as above 651	1	10U399987
CR-10-039	E5130113	731.39	732.00	0.61	not consecutive	wing sample, medium grey siltstone	5	10U399987
CR-10-039	E5130114	736.12	736.63	0.51	not consecutive	wing sample, medium grey siltstone	9	10U399987
CR-10-039	E5130115	799.23	800.73	1.50	not consecutive	top of Balmer, foliated basalt with lots of carbonate	4	10U399987
CR-10-039	E5130116	736.63	737.20	0.57	not consecutive	weakly altered lamprophyre	2	10U399987
CR-10-039	E5130117	737.20	737.51	0.31	not consecutive	wing sample, grey banded siltstone	1	10U399987
CR-10-039	E5130118	745.90	746.40	0.50	not consecutive	wing sample, pyritic and garnetiferous siltstone	8	10U399987
CR-10-039	E5130119	746.40	747.58	1.18	consecutive	weakly altered lamprophyre	1	10U399987
CR-10-039	E5130120	747.58	748.34	0.76	consecutive	siltstone between lamprophyres	3	10U399987
CR-10-039	E5130121	748.34	748.91	0.57	consecutive	weakly altered lamprophyre	4	10U399987
CR-10-039	E5130122	748.91	749.41	0.50	not consecutive	wing sample, grey banded siltstone	7	10U399987
CR-10-039	E5130123	751.47	751.97	0.50	not consecutive	wing sample, grey banded siltstone	3	10U399987
CR-10-039	E5130124	751.97	753.28	1.31	consecutive	weakly altered lamprophyre	6	10U399987
CR-10-039	E5130125	753.28	753.78	0.50	not consecutive	wing sample, grey banded siltstone	4	10U399987
CR-10-039	E5130126	757.85	758.35	0.50	not consecutive	wing sample, grey banded siltstone	4	10U399987
CR-10-039	E5130127	758.35	760.09	1.74	consecutive	weakly altered lamprophyre	3	10U399987
CR-10-039	E5130128	760.09	761.58	1.49	consecutive	grey siltstone between lamprophyres	10	10U399987
CR-10-039	E5130129	761.58	762.70	1.12	consecutive	moderately altered lamprophyre	10	10U399987
CR-10-039	E5130130	0.00	0.00	0.00	not consecutive	Standard SK43 4.086ppm Au	3850	10U399987
CR-10-039	E5130131	762.70	763.28	0.58	not consecutive	lamprophyre with larger phlogopit aggregates	9	10U399987
CR-10-039	E5130132	763.28	763.78	0.50	not consecutive	wing sample, grey banded siltstone	6	10U399987
CR-10-039	E5130133	773.15	773.65	0.50	not consecutive	wing sample, grey banded siltstone	6	10U399987

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-10-039	E5130134	773.65	775.26	1.61	consecutive	weakly altered lamprophyre, long sample but core loss in here	5	10U399987
CR-10-039	E5130135	842.42	843.23	0.81	not consecutive	Basalt section with 1% PO, not observed elsewhere.	6	10U399987
CR-10-039	E5130136	775.26	775.76	0.50	not consecutive	wing sample, silty mudstone	12	10U399987
CR-10-039	E5130137	810.91	811.41	0.50	not consecutive	wing sample, basalt	15	10U399987
CR-10-039	E5130138	811.41	812.73	1.32	consecutive	lamprophyre	696	10U399987
CR-10-039	E5130139	812.73	813.57	0.84	consecutive	lamprophyre with flowstructure (?)	20	10U399987
CR-10-039	E5130140	813.57	814.24	0.67	not consecutive	wing sample, brownish basalt, talc	6	10U399987
CR-10-039	E5130141	826.41	826.91	0.50	not consecutive	wing sample, basalt	10	10U399987
CR-10-039	E5130142	826.91	827.98	1.07	consecutive	lamprophyre	3	10U399987
CR-10-039	E5130143	827.98	828.48	0.50	not consecutive	wing sample, basalt	14	10U399987
CR-10-039	E5130144	856.93	857.43	0.50	not consecutive	wing sample, basalt	29	10U399987
CR-10-039	E5130145	857.43	858.93	1.50	consecutive	Quartzmonzodiorite, light colored outer rim	1521	10U399987
CR-10-039	E5130146	858.93	860.43	1.50	consecutive	Quartzmonzodiorite, biotite richer center of sill	1278	10U399987
CR-10-039	E5130147	860.43	861.49	1.06	consecutive	as above 146	20	10U399987
CR-10-039	E5130148	861.49	862.25	0.76	consecutive	as above 145	34	10U399987
CR-10-039	E5130149	862.25	862.75	0.50	not consecutive	wing sample, basalt	9	10U399987
CR-10-039	E5130150	0.00	0.00	0.00	not consecutive	standard SK43 4.086ppm Au	4065	10U399987
CR-10-039	E5130151	884.78	885.28	0.50	not consecutive	wing sample, basalt	11	10U399987
CR-10-039	E5130152	885.28	886.18	0.90	consecutive	Monzodiorite	4	10U399987
CR-10-039	E5130153	886.18	887.17	0.99	consecutive	Monzodiorite	11	10U399987
CR-10-039	E5130154	887.17	887.67	0.50	not consecutive	wing sample, basalt	4	10U399987
CR-10-039	E5130155	907.94	908.56	0.62	not consecutive	Short stretch of biotitic basalt w magnetic qcv	4	10U399987
CR-10-039	E5130156	901.37	901.87	0.50	not consecutive	Wing sample, basalt	6	10U399987
CR-10-039	E5130157	901.87	903.37	1.50	consecutive	Monzodiorite	2	10U399987
CR-10-039	E5130158	903.37	904.76	1.39	consecutive	Monzodiorite	2	10U399987
CR-10-039	E5130159	904.76	905.26	0.50	consecutive	wing sample, basalt	9	10U399987
CR-10-039	E5130160	917.00	917.50	0.50	not consecutive	wing sample, basalt	10	10U399987
CR-10-039	E5130161	917.50	917.93	0.43	consecutive	Monzodiorite	1	10U399987
CR-10-039	E5130162	917.93	918.43	0.50	not consecutive	wing sample, basalt	9	10U399987
CR-10-039	E5130163	934.18	934.68	0.50	not consecutive	wing sample, basalt	20	10U399987
CR-10-039	E5130164	934.68	936.03	1.35	consecutive	Monzodiorite	25	10U399987
CR-10-039	E5130165	936.03	936.90	0.87	consecutive	unaltered basalt between sills	15	10U399987
CR-10-039	E5130166	936.90	938.40	1.50	consecutive	Monzodiorite	4	10U399987
CR-10-039	E5130167	938.40	939.80	1.40	consecutive	Monzodiorite	2	10U399987
CR-10-039	E5130168	939.80	940.44	0.64	consecutive	weakly biotite altered basalt with 2 PO rich qcv	5	10U399987
CR-10-039	E5130169	940.44	940.94	0.50	not consecutive	wing sample, basalt	4	10U399987
CR-10-039	E5130170	0.00	0.00	0.00	not consecutive	Standard OxK 3.583	3652	10U399987
CR-10-039	E5130171	963.98	964.48	0.50	not consecutive	wing sample, basalt	6	10U399987
CR-10-039	E5130172	964.48	965.64	1.16	consecutive	biotite altered carbonaceous basalt	4	10U399987

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-10-039	E5130173	965.64	966.14	0.50	not consecutive	wing sample, basalt	4	10U399987
CR-10-039	E5130174	974.04	974.54	0.50	not consecutive	wing sample, basalt	4	10U399987
CR-10-039	E5130175	981.50	983.00	1.50	not consecutive	basalt between two wing samples	4	10U399987
CR-10-039	E5130176	974.54	976.04	1.50	not consecutive	biotite altered basalt	5	10U399987
CR-10-039	E5130177	976.04	977.54	1.50	consecutive	as above 176	41	10U399987
CR-10-039	E5130178	977.54	979.04	1.50	consecutive	as above 176	17	10U399987
CR-10-039	E5130179	979.04	980.40	1.36	consecutive	as above 176	8	10U399987
CR-10-039	E5130180	980.40	981.50	1.10	not consecutive	wing sample, basalt	4	10U399987
CR-10-039	E5130181	983.00	984.50	1.50	not consecutive	marginally altered biotitic basalt	17	10U399987
CR-10-039	E5130182	984.50	985.58	1.08	consecutive	silicified, carbonaceous, garnetiferous basalt with ample PO	32	10U399987
CR-10-039	E5130183	985.58	986.28	0.70	consecutive	asabove 182	7	10U399987
CR-10-039	E5130184	986.28	986.91	0.63	consecutive	basalt silicified and garnetiferous	7	10U399987
CR-10-039	E5130185	986.91	987.41	0.50	not consecutive	wing sample, basalt	4	10U399987
CR-10-039	E5130186	991.97	992.47	0.50	not consecutive	wing sample, basalt	9	10U399987
CR-10-039	E5130187	992.47	993.97	1.50	consecutive	Monzodiorite, weakly altered	13	10U399987
CR-10-039	E5130188	993.97	995.48	1.51	consecutive	Monzodiorite, weakly altered	10	10U399987
CR-10-039	E5130189	995.48	996.00	0.52	not consecutive	wing sample, basalt	10	10U399987
CR-10-039	E5130190	0.00	0.00	0.00	not consecutive	standard SK43 4.086ppm Au	4104	10U399987
CR-10-039	E5130191	996.00	997.12	1.12	not consecutive	wing sample, basalt	9	10U399987
CR-10-039	E5130192	997.12	998.62	1.50	consecutive	Monzodiorite, weakly altered	102	10U399987
CR-10-039	E5130193	998.62	1000.03	1.41	consecutive	Monzodiorite, weakly altered	58	10U399987
CR-10-039	E5130194	1000.03	1000.53	0.50	not consecutive	wing sample, basalt	5	10U399987
CR-10-039	E5130195	1089.00	1090.00	1.00	not consecutive	Gabbro	3	10U399987
CR-10-039	E5130196	1032.95	1033.45	0.50	not consecutive	wing sample, basalt	4	10U399987
CR-10-039	E5130197	1033.45	1034.06	0.61	consecutive	moderately altered monzodiorite with trace APY	3	10U399987
CR-10-039	E5130198	1034.06	1034.58	0.52	consecutive	weakly altered basalt between Monzos	2	10U399987
CR-10-039	E5130199	1034.58	1036.08	1.50	consecutive	as above 197	50	10U399987
CR-10-039	E5130200	1036.08	1037.58	1.50	consecutive	as above 197 with weak shear and bleaching	5	10U399987
CR-10-039	E5130201	1037.58	1038.92	1.34	consecutive	as above 197	10	10U399987
CR-10-039	E5130202	1038.92	1039.42	0.50	not consecutive	wing sample, basalt	7	10U399987
CR-10-039	E5130203	1057.63	1058.13	0.50	not consecutive	wing sample, basalt	5	10U399987
CR-10-039	E5130204	1058.13	1059.00	0.87	consecutive	Diorite	2	10U399987
CR-10-039	E5130205	1059.00	1059.74	0.74	consecutive	Diorite	6	10U399987
CR-10-039	E5130206	1059.74	1060.83	1.09	consecutive	Argillite with up to 5% PO and tr PY, likely primary sulphides	297	10U399987
CR-10-039	E5130207	1060.83	1061.37	0.54	consecutive	banded chert/argillite with Magnetite and PO	<1	10U399987
CR-10-039	E5130208	1061.37	1062.51	1.14	consecutive	pillowed basalt, boudines, no mineralsation	6	10U399987
CR-10-039	E5130209	1062.51	1063.44	0.93	consecutive	basalt, unaltered	4	10U399987
CR-10-039	E5130210	0.00	0.00	0.00	not consecutive	Standard Sample: Si42 1.761ppm Au	1746	10U399987
CR-10-039	E5130211	1063.44	1063.98	0.54	not consecutive	moderately biotite altered basalt	7	10U399987
CR-10-039	E5130212	1063.98	1065.48	1.50	consecutive	Monzodiorite with silicified rim	76	10U399987

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-10-039	E5130213	1065.48	1066.98	1.50	consecutive	Monzodiorite	100	10U399987
CR-10-039	E5130214	1066.98	1067.52	0.54	not consecutive	Monzodiorite with silicified rim	69	10U399987
CR-10-039	E5130215	1098.00	1099.00	1.00	not consecutive	Gabbro	6	10U399987
CR-10-039	E5130216	1067.52	1069.02	1.50	not consecutive	moderately biotite altered basalt	4	10U399987
CR-10-039	E5130217	1069.02	1070.52	1.50	consecutive	as above 216	3	10U399987
CR-10-039	E5130218	1070.52	1072.02	1.50	consecutive	as above 216	6	10U399987
CR-10-039	E5130219	1072.02	1073.52	1.50	consecutive	as above 216	5	10U399987
CR-10-039	E5130220	1073.52	1075.02	1.50	consecutive	as above 216	2	10U399987
CR-10-039	E5130221	1075.02	1075.67	0.65	consecutive	as above 216	10	10U399987
CR-10-039	E5130222	1075.67	1077.00	1.33	consecutive	Monzodiorite	10	10U399987
CR-10-039	E5130223	1077.00	1078.40	1.40	consecutive	Monzodiorite	14	10U399987
CR-10-039	E5130224	1078.40	1079.90	1.50	consecutive	moderately biotite altered basalt	22	10U399987
CR-10-039	E5130225	1079.90	1081.25	1.35	consecutive	moderately biotite altered basalt	5	10U399987
CR-10-039	E5130226	1081.25	1082.75	1.50	consecutive	Lamprophyre	<1	10U399987
CR-10-039	E5130227	1082.75	1084.25	1.50	consecutive	Lamprophyre	2	10U399987
CR-10-039	E5130228	1084.25	1085.41	1.16	consecutive	Lamprophyre	1	10U399987
CR-10-039	E5130229	1085.41	1086.00	0.59	not consecutive	wing sample, basalt	9	10U399987
CR-10-039	E5130230	0.00	0.00	0.00	not consecutive	Standard Sample: Si42 1.761ppm Au	1698	10U399987
CR-10-039	E5130231	1102.65	1103.15	0.50	not consecutive	wing sample, gabbro	1	10U399987
CR-10-039	E5130232	1103.15	1103.89	0.74	consecutive	Gabbro with sericite	13	10U399987
CR-10-039	E5130233	1103.89	1105.39	1.50	consecutive	Monzodiorite	17	10U399987
CR-10-039	E5130234	1105.39	1106.89	1.50	not consecutive	Monzodiorite	120	10U399987
CR-10-039	E5130235	1110.65	1112.00	1.35	not consecutive	foliated gabbro	2	10U399987
CR-10-039	E5130236	1106.89	1108.39	1.50	not consecutive	Monzodiorite	14	10U399987
CR-10-039	E5130237	1108.39	1109.30	0.91	consecutive	Monzodiorite	10	10U399987
CR-10-039	E5130238	1109.30	1110.15	0.85	consecutive	Monzodiorite with qv	160	10U399987
CR-10-039	E5130239	1110.15	1110.65	0.50	not consecutive	Gabbro with weak biotite	12	10U399987
CR-10-039	E5130240	1208.50	1209.00	0.50	not consecutive	wing sample, gabbro	3	10U399987
CR-10-039	E5130241	1209.00	1209.90	0.90	consecutive	biotite altered gabbro with trace pyrite	7	10U399987
CR-10-039	E5130242	1209.90	1210.73	0.83	consecutive	biotite altered gabbro with trace pyrite	8	10U399987
CR-10-039	E5130243	1210.73	1211.23	0.50	not consecutive	wing sample, gabbro	16	10U399987
CR-10-039	E5130244	1238.34	1239.34	1.00	not consecutive	wing sample, biotite gabbro/sed contact zone	4	10U399987
CR-10-039	E5130245	1239.34	1239.92	0.58	consecutive	carbonate enriched mudstone with primary pyrrhotite	18	10U399987
CR-10-039	E5130246	1239.92	1241.20	1.28	consecutive	bleached, sulphidic diorite	28	10U399987
CR-10-039	E5130247	1241.20	1242.16	0.96	consecutive	bleached, sulphidic diorite	18	10U399987
CR-10-039	E5130248	1242.16	1242.66	0.50	not consecutive	wing sample, pyrrhotitic mudstone	37	10U399987
CR-10-039	E5130249	1344.99	1345.49	0.50	not consecutive	wing sample, pyrrhotitic mudstone	10	10U399987
CR-10-039	E5130250	0.00	0.00	0.00	not consecutive	standardOxK 69 3.583 ppm Au	3462	10U399987
CR-10-039	E5130251	1345.49	1345.96	0.47	not consecutive	qv with 20% PO, likely remobilized from seds	14	10U399987
CR-10-039	E5130252	1345.96	1346.46	0.50	not consecutive	wing sample, pyrrhotitic mudstone	11	10U399987

Sampling Record

CR-10-039E51302531385.301385.800.50not consecutivewing sample, grey mudstone and wacke110U399987CR-10-039E51302541385.801386.901.10consecutivevolcaniclastic bands and mudstone210U399987CR-10-039E51302551444.001445.001.00not consecutivefoliated diorite110U399987CR-10-039E51302561386.901388.041.14not consecutivevolcaniclastic bands in shearing410U399987CR-10-039E51302571388.041389.940.90consecutivevolcaniclastic bands in shearing210U399987CR-10-039E51302581388.941389.900.96consecutivevolcaniclastics, sheared with trace pyrite1310U399987CR-10-039E51302591389.901391.201.30consecutivesastic rock sheared1110U399987CR-10-039E51302601391.201.30consecutivevolcaniclastics, sheared with trace pyrite1310U399987CR-10-039E51302591389.901391.201.30consecutiveas 258 but more shearing1510U399987CR-10-039E51302601391.201.30consecutivebasaltic rock sheared1610U399987
CR-10-039 E5130254 1385.80 1386.90 1.10 consecutive volcaniclastic bands and mudstone 2 10U399987 CR-10-039 E5130255 1444.00 1445.00 1.00 not consecutive foliated diorite 1 10U399987 CR-10-039 E5130256 1386.90 1388.04 1.14 not consecutive volcaniclastic bands in shearing 4 10U399987 CR-10-039 E5130257 1388.04 1388.94 0.90 consecutive volcaniclastic bands in shearing 2 10U399987 CR-10-039 E5130257 1388.04 1388.94 0.90 consecutive wacke and mudstone 2 10U399987 CR-10-039 E5130258 1388.94 1389.90 0.96 consecutive volcaniclastics, sheared with trace pyrite 13 10U399987 CR-10-039 E5130259 1389.90 1391.20 1.30 consecutive as 258 but more shearing 15 10U399987 CR-10-039 E5130260 1391.20 1.30 consecutive as 258 but more shearing 15 10U399987 CR-10-039 E5130260 1391.
CR-10-039 E5130255 1444.00 1445.00 1.00 not consecutive foliated diorite 1 10U399987 CR-10-039 E5130256 1386.90 1388.04 1.14 not consecutive volcaniclastic bands in shearing 4 10U399987 CR-10-039 E5130257 1388.04 1388.94 0.90 consecutive wacke and mudstone 2 10U399987 CR-10-039 E5130258 1388.94 1389.90 0.96 consecutive volcaniclastics, sheared with trace pyrite 13 10U399987 CR-10-039 E5130259 1389.90 1391.20 1.30 consecutive as 258 but more shearing 15 10U399987 CR-10-039 E5130260 1391.20 1.30 consecutive as 258 but more shearing 15 10U399987 CR-10-039 E5130260 1391.20 1.30 consecutive basaltic rock sheared 16 10U399987
CR-10-039 E5130256 1386.90 1388.04 1.14 not consecutive volcaniclastic bands in shearing 4 10U399987 CR-10-039 E5130257 1388.04 1388.94 0.90 consecutive wacke and mudstone 2 10U399987 CR-10-039 E5130258 1388.94 1389.90 0.96 consecutive volcaniclastics, sheared with trace pyrite 13 10U399987 CR-10-039 E5130259 1389.90 1391.20 1.30 consecutive as 258 but more shearing 15 10U399987 CR-10-039 E5130260 1391.20 1.30 consecutive as 258 but more shearing 15 10U399987 CR-10-039 E5130260 1391.20 1.30 consecutive as 258 but more shearing 15 10U399987 CR-10-039 E5130260 1391.20 1.10 consecutive basaltic rock sheared 16 10U399987
CR-10-039 E5130257 1388.04 1388.94 0.90 consecutive wacke and mudstone 2 10U399987 CR-10-039 E5130258 1388.94 1389.90 0.96 consecutive volcaniclastics, sheared with trace pyrite 13 10U399987 CR-10-039 E5130259 1389.90 1391.20 1.30 consecutive as 258 but more shearing 15 10U399987 CR-10-039 E5130260 1391.20 1.30 consecutive as 258 but more shearing 15 10U399987 CR-10-039 E5130260 1391.20 1.30 consecutive basaltic rock sheared 16 10U399987
CR-10-039 E5130258 1388.94 1389.90 0.96 consecutive volcaniclastics, sheared with trace pyrite 13 10U399987 CR-10-039 E5130259 1389.90 1391.20 1.30 consecutive as 258 but more shearing 15 10U399987 CR-10-039 E5130260 1391.20 1.30 consecutive basaltic rock sheared 16 10U399987
CR-10-039 E5130259 1389.90 1391.20 1.30 consecutive as 258 but more shearing 15 10U399987 CR-10-039 E5130260 1391.20 1392.30 1.10 consecutive basaltic rock sheared 16 10U399987
CR-10-039 E5130260 1391.20 1392.30 1.10 consecutive basaltic rock sheared 16 10U399987
<u>CR-10-039 E5130261 1392.30 1393.70 1.40 consecutive Volcaniclastics, sheared 1 10U399987</u>
CR-10-039 E5130262 1393.70 1394.95 1.25 consecutive as 261 1 10U399987
CR-10-039 E5130263 1394.95 1395.45 0.50 not consecutive wing sample, broken shearzone material, mudstone and wacke 2 10U399987
CR-10-039 E5130264 1401.95 1402.45 0.50 not consecutive wing sample, silt to wacke 3 10U399987
CR-10-039 E5130265 1402.45 1403.85 1.40 consecutive banded chloritic schist with trace Py 2 10U399987
CR-10-039 E5130266 1403.85 1405.35 1.50 consecutive silty mudstones sheared 3 10U399987
CR-10-039 E5130267 1405.35 1405.85 0.50 consecutive clastic and volcaniclastic bands 2 10U399987
CR-10-039 E5130268 1405.85 1406.35 0.50 consecutive wing sample, silty mudstones 5 10U399987
CR-10-039 E5130269 1469.22 1469.72 0.50 not consecutive wing sample, silicified biotite schist <1 10U399987
CR-10-039 E5130270 0.00 0.00 not consecutive Standard SK 43 4.086 ppm Au 4080 10U399987
CR-10-039 E5130271 1469.72 1471.10 1.38 not consecutive Schist with bands of volcaniclastics, cordierite and pyrite 2 10U399987
CR-10-039 E5130272 1471.10 1472.10 1.00 consecutive biotite/chlorite schist with thin bands of volcaniclastics as in 271 7 10U399987
CR-10-039 E5130273 1472.10 1473.53 1.43 consecutive biotite / chlorite schist 4 10U399987
CR-10-039 E5130274 1473.53 1474.79 1.26 not consecutive volcaniclastics as in 271 with thin bands of biotite / chlorite schist 3 10U399987
CR-10-039 E5130275 1478.30 1479.73 1.43 not consecutive chlorite schist 2 10U399987
CR-10-039 E5130276 1474.79 1476.29 1.50 not consecutive biotite / chlorite schist 2 10U399987
CR-10-039 E5130277 1476.29 1477.75 1.46 consecutive volcaniclastics with highest alteration grade 2 10U399987
CR-10-039 E5130278 1477.75 1478.30 0.55 not consecutive wing sample, biotite schist 4 10U399987
CR-10-039 E5130279 1479.73 1481.23 1.50 not consecutive bridge sample, biotite / chlorite schist 3 10U399987
CR-10-039 E5130280 1481.23 1482.17 0.94 consecutive biotite / chlorite schist with marginally altered coarser bands 2 10U399987
CR-10-039 E5130281 1482.17 1482.67 0.50 consecutive volcaniclastic band, as in 271 2 10U399987
CR-10-039 E5130282 1482.67 1483.73 1.06 consecutive biotite / chlorite schist 10 10U399987
CR-10-039 E5130283 1483.73 1484.23 0.50 consecutive volcaniclastic band, as in 271 2 10U399987
CR-10-039 E5130284 1484.23 1484.73 0.50 not consecutive wing sample, biotite chlorite schist 1 10U399987
CR-10-039 E5130285 1525.59 1526.59 1.00 not consecutive wing sample, biotite streaked, garnetiferous, amphibolitic 3 10U399987
CR-10-039 E5130286 1526.59 1527.27 0.68 consecutive dense fused, with quartz clasts. Conglomeratic origin. Some garnets 3 10U399987 and pyrite
CR-10-039 E5130287 1527.27 1528.07 0.80 consecutive very garnetiferous and finely disseminated pyrite 4 10U399987

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-10-039	E5130288	1528.07	1528.57	0.50	not consecutive	wing sample, as in 286	4	10U399987
CR-10-039	E5130289	1553.40	1553.90	0.50	not consecutive	wing sample, mudstone with PO bands and blobs	4	10U399987
CR-10-039	E5130290	0.00	0.00	0.00	not consecutive	Standard Sample: Si42 1.761ppm Au	1772	10U399987
CR-10-039	E5130291	1553.90	1554.67	0.77	not consecutive	Quartzite, sulphide infused	4	10U399987
CR-10-039	E5130292	1554.67	1555.60	0.93	consecutive	very sulphidic slumped mudstone	20	10U399987
CR-10-039	E5130293	1555.60	1556.40	0.80	consecutive	sulphidic mudstone with qv containing PO,PY and CPY	10	10U399987
CR-10-039	E5130294	1556.40	1557.00	0.60	not consecutive	wing sample, slumped sulphidic mudstone	17	10U399987
CR-10-039	E5130295	1632.00	1633.00	1.00	not consecutive	sulphidic banded mudstone	6	10U399987
CR-10-039	E5130296	1563.00	1563.55	0.55	not consecutive	wing sample, mudstone with PO bands and blobs	10	10U399987
CR-10-039	E5130297	1563.55	1564.00	0.45	consecutive	mostly qv with lots of remobilized PO	9	10U399987
CR-10-039	E5130298	1564.00	1565.50	1.50	consecutive	as in 296	13	10U399987
CR-10-039	E5130299	1565.50	1566.00	0.50	consecutive	slumped mudstone, less sulphides than before	6	10U399987
CR-10-039	E5130300	1566.00	1567.00	1.00	consecutive	Quartzite, sulphide infused	4	10U399987
CR-10-039	E5130301	1567.00	1567.50	0.50	consecutive	wing sample, fine clastic sediment of basaltic origin	1087	10U401616
CR-10-039	E5130302	1612.54	1613.04	0.50	not consecutive	wing sample, siltstone with some biotite	4	10U401616
CR-10-039	E5130303	1613.04	1614.24	1.20	consecutive	Quartzmonzonite with trace PY and APY	32	10U401616
CR-10-039	E5130304	1614.24	1615.44	1.20	consecutive	as above 303	73	10U401616
CR-10-039	E5130305	1615.44	1616.64	1.20	consecutive	as above 303	33	10U401616
CR-10-039	E5130306	1616.64	1617.79	1.15	consecutive	as above 303	46	10U401616
CR-10-039	E5130307	1617.79	1618.29	0.50	not consecutive	wing sample, silty mudstone with sulphides	6	10U401616
CR-10-039	E5130308	1621.27	1621.77	0.50	not consecutive	wing sample, siltstone to quartzite	6	10U401616
CR-10-039	E5130309	1621.77	1623.27	1.50	not consecutive	Breccia with carbonate-PY-Po matrix, predominant quartzitic clasts.	6	10U401616
CR-10-039	E5130310	0.00	0.00	0.00	not consecutive	Standard SK 43 4.086 ppm Au	3865	10U401616
CR-10-039	E5130311	1623.27	1624.75	1.48	not consecutive	as above 309	4	10U401616
CR-10-039	E5130312	1624.75	1625.25	0.50	consecutive	dark mudstones with high sulphide content	407	10U401616
CR-10-039	E5130313	1625.25	1625.75	0.50	not consecutive	wing sample, low sulphide siltstones	1	10U401616
CR-10-039	E5130314	1641.37	1641.87	0.50	not consecutive	wing sample, mudstone low sulphide with graphitic fault in middle	7	10U401616
CR-10-039	E5130315	1664.00	1665.00	1.00	not consecutive	basalt with PY blebs, possibly amygdules	1	10U401616
CR-10-039	E5130316	1641.87	1642.65	0.78	not consecutive	reworked/sheared carbonate in PO matrix	10	10U401616
CR-10-039	E5130317	1642.65	1643.15	0.50	not consecutive	wing sample, sulphidic mudstone	10	10U401616
CR-10-039	E5130318	1736.26	1736.76	0.50	not consecutive	wing sample, chert with little PO	4	10U401616
CR-10-039	E5130319	1736.76	1738.00	1.24	consecutive	Near solid sulphides breccia mostly PO	108	10U401616
CR-10-039	E5130320	1738.00	1739.50	1.50	consecutive	Near solid sulphides, more than 90% PY.	729	10U401616
CR-10-039	E5130321	1739.50	1741.00	1.50	consecutive	as above 320	84	10U401616
CR-10-039	E5130322	1741.00	1741.62	0.62	consecutive	Near solid sulphides, but some silty bands indicating undisturbed bedding?	172	10U401616
CR-10-039	E5130323	1741.62	1742.12	0.50	not consecutive	wing sample, bedded silty mudstone with equal PO-PY content	63	10U401616

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-10-039	E5130324	814.24	815.00	0.76	not consecutive	Poorly sheared basalt with fine PY, 10-15% qcv overprinting	<1	10U401616
CR-10-039	E5130325	815.00	816.00	1.00	consecutive	as above 324	2	10U401616
CR-10-039	E5130326	816.00	817.00	1.00	consecutive	as above 324	2	10U401616
CR-10-039	E5130327	817.00	818.15	1.15	consecutive	as above 324	<1	10U401616
CR-10-039	E5130328	818.15	819.00	0.85	consecutive	weakly altered basalt	5	10U401616
CR-10-039	E5130329	819.00	820.00	1.00	not consecutive	weakly altered basalt	7	10U401616
CR-10-039	E5130330	0.00	0.00	0.00	not consecutive	Standard Sample: Si42 1.761ppm Au	1768	10U401616
CR-10-039	E5130331	820.00	821.00	1.00	not consecutive	weakly altered basalt	3	10U401616
CR-10-039	E5130332	821.00	822.00	1.00	consecutive	weakly altered basalt	4	10U401616
CR-10-039	E5130333	822.00	823.50	1.50	consecutive	weakly altered basalt	7	10U401616
CR-10-039	E5130334	823.50	824.00	0.50	not consecutive	poorly sheared basalt with fine PY, weak qcv overprinting	4	10U401616
CR-10-039	E5130335	1832.00	1833.00	1.00	not consecutive	silica flooded chert with garnets, trace fine PY and greyish mineral	2	10U401616
CR-10-039	E5130336	824.00	825.00	1.00	not consecutive	poorly sheared basalt with fine PY, weak qcv overprinting	4	10U401616
CR-10-039	E5130337	825.00	826.00	1.00	consecutive	as above 336	17	10U401616
CR-10-039	E5130338	828.48	829.48	1.00	not consecutive	brecciated brownish basalt well healed	1	10U401616
CR-10-039	E5130339	829.48	830.48	1.00	consecutive	as above 338	2	10U401616
CR-10-039	E5130340	830.48	831.34	0.86	consecutive	as above 338	3	10U401616
CR-10-039	E5130341	831.34	832.34	1.00	consecutive	weakly altered basalt	4	10U401616
CR-10-039	E5130342	832.34	833.34	1.00	consecutive	weakly altered basalt	3	10U401616
CR-10-039	E5130343	833.34	834.47	1.13	consecutive	weakly altered basalt	3	10U401616
CR-10-039	E5130344	834.47	835.00	0.53	consecutive	brecciated brownish basalt well healed	10	10U401616
CR-10-039	E5130345	835.00	836.00	1.00	consecutive	moderately sheared basalt with dismembered early veining	6	10U401616
CR-10-039	E5130346	836.00	837.00	1.00	consecutive	as above 345	2	10U401616
CR-10-039	E5130347	837.00	838.00	1.00	consecutive	as above 345	3	10U401616
CR-10-039	E5130348	838.00	839.00	1.00	consecutive	weakly altered basalt	2	10U401616
CR-10-039	E5130349	839.00	840.00	1.00	not consecutive	weakly altered basalt	2	10U401616
CR-10-039	E5130350	0.00	0.00	0.00	not consecutive	Standard OxK69 3.583 ppm Au	3599	10U401616
CR-10-039	E5130351	840.00	841.20	1.20	not consecutive	weakly altered basalt	2	10U401616
CR-10-039	E5130352	841.20	842.42	1.22	not consecutive	weakly altered basalt	<1	10U401616
CR-10-039	E5130353	800.73	801.83	1.10	not consecutive	dacitic dyke, fine grained massive	2	10U401616
CR-10-039	E5130354	801.83	802.93	1.10	consecutive	as above 353	2	10U401616
CR-10-039	E5130355	802.93	804.00	1.07	consecutive	Poorly sheared basalt with fine PY, 10-15% qcv overprinting	2	10U401616
CR-10-039	E5130356	804.00	805.00	1.00	consecutive	as above 355	<1	10U401616
CR-10-039	E5130357	805.00	806.00	1.00	consecutive	as above 355	6	10U401616
CR-10-039	E5130358	806.00	807.00	1.00	consecutive	as above 355	4	10U401616
CR-10-039	E5130359	807.00	808.00	1.00	consecutive	as above 355	3	10U401616
CR-10-039	E5130360	808.00	809.00	1.00	consecutive	as above 355	<1	10U401616
CR-10-039	E5130361	809.00	810.00	1.00	consecutive	as above 355	4	10U401616
CR-10-039	E5130362	810.00	810.91	0.91	not consecutive	as above 355	5	10U401616

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-10-039	E5130363	1242.66	1244.00	1.34	not consecutive	Dark mudstones contorted with PO and carbonaceous bands	34	10T406539
CR-10-039	E5130364	1244.00	1245.00	1.00	consecutive	as above 363	43	10T406539
CR-10-039	E5130365	1245.00	1246.00	1.00	consecutive	as above 363	34	10T406539
CR-10-039	E5130366	1246.00	1247.00	1.00	consecutive	as above 363	36	10T406539
CR-10-039	E5130367	1247.00	1248.00	1.00	consecutive	dark mudstones with PO streaks, bands and disseminated, weak	40	10T406539
						shearing, minor qv	-	
CR-10-039	E5130368	1248.00	1249.00	1.00	consecutive	as above 367	25	10T406539
CR-10-039	E5130369	1249.00	1250.00	1.00	not consecutive	as above 367	25	10T406539
CR-10-039	E5130370	0.00	0.00	0.00	not consecutive	Standard Sample: Si42 1.761ppm Au	1860	10T406539
CR-10-039	E5130371	1250.00	1251.00	1.00	not consecutive	as above 367	24	10T406539
CR-10-039	E5130372	1251.00	1252.00	1.00	consecutive	as above 367	30	10T406539
CR-10-039	E5130373	1252.00	1253.00	1.00	consecutive	mudstones, banding jittery, weak shearing, PO as before	56	10T406539
CR-10-039	E5130374	1253.00	1254.00	1.00	consecutive	as above 373	44	10T406539
CR-10-039	E5130375	1254.00	1255.00	1.00	consecutive	as above 373	27	10T406539
CR-10-039	E5130376	1255.00	1256.00	1.00	consecutive	as above 373, with 10cm qv with PO and chlorite	20	10T406539
CR-10-039	E5130377	1256.00	1257.00	1.00	consecutive	mudstones with PO streaks, bands and diss., thin qv every 40cm	18	10T406539
CR-10-039	E5130378	1257.00	1258.00	1.00	consecutive	as above 377	17	10T406539
CR-10-039	E5130379	1258.00	1259.00	1.00	consecutive	as above 377	19	10T406539
CR-10-039	E5130380	1259.00	1260.00	1.00	consecutive	as above 377	20	10T406539
CR-10-039	E5130381	1260.00	1261.00	1.00	consecutive	as above 377	17	10T406539
CR-10-039	E5130382	1261.00	1262.00	1.00	consecutive	as above 377	16	10T406539
CR-10-039	E5130383	1262.00	1263.00	1.00	consecutive	as above 377	15	10T406539
CR-10-039	E5130384	1263.00	1264.00	1.00	consecutive	mudstones, PO content increasing to 3%	21	10T406539
CR-10-039	E5130385	1264.00	1265.00	1.00	consecutive	as above 384	13	10T406539
CR-10-039	E5130386	1265.00	1266.00	1.00	consecutive	as above 384	15	10T406539
CR-10-039	E5130387	1266.00	1267.00	1.00	consecutive	as above 384	14	10T406539
CR-10-039	E5130388	1267.00	1268.00	1.00	consecutive	more shearing and some slightly siltier bands PO the same	11	10T406539
CR-10-039	E5130389	1268.00	1269.00	1.00	not consecutive	as above 388	12	10T406539
CR-10-039	E5130390	0.00	0.00	0.00	not consecutive	Standard OxK 69 3.583 ppm Au	3510	10T406539
CR-10-039	E5130391	1269.00	1270.00	1.00	not consecutive	as above 388	10	10T406539
CR-10-039	E5130392	1270.00	1271.00	1.00	consecutive	as above 388	12	10T406539
CR-10-039	E5130393	1271.00	1272.00	1.00	consecutive	as above 388	12	10T406539
CR-10-039	E5130394	1272.00	1273.00	1.00	consecutive	as above 388	12	10T406539
CR-10-039	E5130395	1273.00	1274.00	1.00	consecutive	as above 388	11	10T406539
CR-10-039	E5130396	1274.00	1275.00	1.00	consecutive	as above 388	16	10T406539
CR-10-039	E5130397	1275.00	1276.00	1.00	consecutive	as above 388	12	10T406539
CR-10-039	E5130398	1276.00	1277.00	1.00	consecutive	as above 388	8	10T406539
CR-10-039	E5130399	1277.00	1278.00	1.00	consecutive	as above 388	10	10T406539
CR-10-039	E5130400	1278.00	1279.00	1.00	consecutive	as above 388	8	10T406539

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-10-039	E5130401	1279.00	1280.00	1.00	consecutive	as above 388	9	10T406539
CR-10-039	E5130402	1280.00	1281.00	1.00	consecutive	as above 388 but with more thin folded qv	12	10T406539
CR-10-039	E5130403	1281.00	1282.00	1.00	consecutive	as above 402	12	10T406539
CR-10-039	E5130404	1282.00	1283.00	1.00	consecutive	as above 402	13	10T406539
CR-10-039	E5130405	1283.00	1284.00	1.00	consecutive	as above 402	9	10T406539
CR-10-039	E5130406	1284.00	1285.00	1.00	consecutive	as above 402	11	10T406539
CP 10 020	EE120407	1295 00	1296.00	1 00	concocutivo	siltier bands with disseminated PO, streaks and bands in	11	107406520
CK-10-039	23130407	1285.00	1280.00	1.00	consecutive	mudstones. Fewer qv	11	101400555
CR-10-039	E5130408	1286.00	1287.00	1.00	consecutive	as above 407	15	10T406539
CR-10-039	F5130/09	1287 00	1288 00	1 00	not consecutive	mudstones with 1cm qv in 30cm intervals, thicker PO bands and	17	107/06539
CR-10-035	E3130403	1207.00	1200.00	1.00	not consecutive	boudines.	17	101400555
CR-10-039	E5130410	0.00	0.00	0.00	not consecutive	Standard Sample: Si42 1.761ppm Au	1750	10T406539
CR-10-039	E5130411	1288.00	1289.00	1.00	not consecutive	as above 409, with 10cm shear and 15cm milky qv	15	10T406539
CR-10-039	E5130412	1289.00	1290.00	1.00	consecutive	as above 409	12	10T406539
CR-10-039	E5130413	1290.00	1291.00	1.00	consecutive	as above 409	15	10T406539
CR-10-039	E5130414	1291.00	1292.00	1.00	consecutive	mudstones with up to 1cm PO bands and boudines.	17	10T406539
CR-10-039	E5130415	1292.00	1293.00	1.00	consecutive	as above 414	9	10T406539
CR-10-039	E5130416	1293.00	1294.00	1.00	consecutive	as above 414	12	10T406539
CR-10-039	E5130417	1294.00	1295.00	1.00	consecutive	as above 414	16	10T406539
CR-10-039	E5130418	1295.00	1296.00	1.00	consecutive	more silty bands with fine PO and no streaks	6	10T406539
CR-10-039	E5130419	1296.00	1297.00	1.00	consecutive	as 418 with more thin qv and larger PO masses	9	10T406539
CR-10-039	E5130420	1297.00	1298.00	1.00	consecutive	as above 419	8	10T406539
CR-10-039	E5130421	1298.00	1299.00	1.00	consecutive	as above 419	8	10T406539
CR-10-039	E5130422	1299.00	1300.00	1.00	consecutive	as above 419	7	10T406539
CR-10-039	E5130423	1300.00	1301.00	1.00	consecutive	as above 419	10	10T406539
CR-10-039	E5130424	1301.00	1302.00	1.00	consecutive	as above 419	7	10T406539
						carbonaceous bands, several generations, with folding.		
CR-10-039	E5130425	1302.00	1303.00	1.00	consecutive	Littlesulphides in those. PO in intervening mudstones in streaks and	5	10T406539
						thin bands. Some shearing		
CR-10-039	E5130426	1303.00	1304.00	1.00	consecutive	as above 425	7	10T406539
CR-10-039	E5130427	1304.00	1305.00	1.00	consecutive	as above 425	3	10T406539
CR-10-039	E5130428	1305.00	1306.00	1.00	consecutive	as above 425	4	10T406539
CR-10-039	E5130429	1306.00	1307.00	1.00	not consecutive	all carbonaceous	6	10T406539
CR-10-039	E5130430	0.00	0.00	0.00	not consecutive	Standard Sample: Si42 1.761ppm Au	1770	10T406539
CR-10-039	E5130431	1307.00	1308.00	1.00	not consecutive	mudstones with streaks and blebs of PO, minor qv	8	10T406539
CR-10-039	E5130432	1308.00	1309.00	1.00	consecutive	as above 431	10	10T406539
CR-10-039	E5130433	1309.00	1310.00	1.00	consecutive	as above 431	9	10T406539
CR-10-039	E5130434	1310.00	1311.00	1.00	consecutive	as above 431	10	10T406539
CR-10-039	E5130435	1311.00	1312.00	1.00	consecutive	as above 431	16	10T406539
CR-10-039	E5130436	1312.00	1313.00	1.00	consecutive	as above 431	17	10T406539

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-10-039	E5130437	1313.00	1314.00	1.00	consecutive	blebs diminish other PO stays	24	10T406539
CR-10-039	E5130438	1314.00	1315.00	1.00	consecutive	as above 437	16	10T406539
CR-10-039	E5130439	1315.00	1316.00	1.00	consecutive	as above 437	26	10T406539
CR-10-039	E5130440	1316.00	1317.00	1.00	consecutive	as above 437	17	10T406539
CR-10-039	E5130441	1317.00	1318.00	1.00	consecutive	as above 437	19	10T406539
CR-10-039	E5130442	1318.00	1318.53	0.53	not consecutive	as above 437	16	10T406539
CR-10-039	E5130443	1340.00	1340.76	0.76	not consecutive	moderately sheared mudstone with blebs, bands. Siltier bands with	17	10T406539
CP-10-030	E5120///	12/0 76	12/1 56	0.80	consecutive	Aplitic duke	1	107/06520
CP 10 020	E5120444	12/1 56	1242.70	1 1 /	consecutive	Aplific uyke	12	101400339
CR-10-039	E5130445	1241.50	1342.70	1.14	consecutive	as above 44E	15	101400559
CR-10-039	E5130440	1342.70	1344.00	1.30	consecutive		14	101406539
CR-10-039	E5130447	1344.00	1344.99	0.99	consecutive	as above 445	13	101406539
CR-10-039	E5130448	1346.46	1347.46	1.00	not consecutive	silty mudstones some diss and streaky PO	12	101406539
CR-10-039	E5130449	1347.46	1348.20	0.74	not consecutive	as above 448	15	101406539
CR-10-039	E5130450	0.00	0.00	0.00	not consecutive	Standard SK 43 4.086 ppm Au	4160	10T406539
CR-10-039	E5130451	1348.20	1349.00	0.80	not consecutive	carbonaceous siltstone with brown Fe richer bands, non magnetic	11	10T406539
CR-10-039	E5130452	1349.00	1350.00	1.00	consecutive	siltstone banded, carbonaceous sections. PO mostly in elongate	9	10T406539
CP 10 020	EE1204E2	1250.00	1251.00	1.00	concocutivo	IIdKes	11	107406520
CR 10 039	E5130455	1350.00	1351.00	1.00	consecutive	as above 432	- 11	101400339
CR-10-039	E5150454	1351.00	1352.00	1.00	consecutive	silty mudstone dies and streaky DO minor shear	/	101400559
CR-10-039	E5130455	1361.00	1362.00	1.00	consecutive	silty mudstone, diss and streaky PO, minor snear	22	101406539
CR-10-039	E5130456	1362.00	1363.00	1.00	consecutive	dismembered	28	10T406539
CR-10-039	E5130457	1363.00	1364.00	1.00	consecutive	as above 456 but PO content waning downward.	18	10T406539
CR-10-039	E5130458	1535.13	1536.00	0.87	not consecutive	silty mudstone, streaks, blebs bands and diss PO. Thin qv.	11	10T406539
CR-10-039	E5130459	1536.00	1537.00	1.00	consecutive	as above 458	23	10T406539
CR-10-039	E5130460	1537.00	1538.00	1.00	consecutive	mudstone, blebs and thin bands PO.	11	10T406539
CR-10-039	E5130461	1538.00	1539.00	1.00	consecutive	as above 460 + PO fracture filling around sheared qv.	9	10T406539
CR-10-039	E5130462	1539.00	1540.00	1.00	consecutive	mudstone, more cooked/less internal structure. PO bands and	13	10T406539
CR-10-039	F5130463	1540.00	1541 00	1 00	consecutive	as have 462 + silicified PO diss section near ton	11	10T406539
<u>en 10 055</u>	23130403	1340.00	1341.00	1.00	consecutive	mudstone up to 1cm blebs bands PO some diss. Occasional 2-3cm		101400555
CR-10-039	E5130464	1541.00	1542.00	1.00	consecutive	qv with PO.	10	10T406539
CR-10-039	E5130465	1542.00	1543.00	1.00	consecutive	as above 464	43	10T406539
CR-10-039	E5130466	1543.00	1544.00	1.00	consecutive	as above 464	8	10T406539
CR-10-039	E5130467	1544.00	1545.00	1.00	consecutive	mudstone PO bands thinner, almost no blebs.	9	10T406539
CR-10-039	E5130468	1545.00	1546.00	1.00	consecutive	as above 467	4	10T406539
CR-10-039	E5130469	1546.00	1547.00	1.00	not consecutive	silty mudstone almost laminated, multitude of wispy thin PO bands	8	10T406539

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-10-039	E5130470	0.00	0.00	0.00	not consecutive	Standard OxK 69 3.583 ppm Au	3520	10T406539
CR-10-039	E5130471	1547.00	1548.00	1.00	not consecutive	as above 469	8	10T406539
CR-10-039	E5130472	1548.00	1549.00	1.00	consecutive	more thicker PO bands, siltier towards bottom with qcv. In those fractures filled with PO	9	10T406539
CR-10-039	E5130473	1549.00	1550.00	1.00	consecutive	silty mudstone, PO bands diminishing towards bottom.	8	10T406539
CR-10-039	E5130474	1550.00	1551.00	1.00	consecutive	silty mudstone, less than 1% PO.	9	10T406539
CR-10-039	E5130475	1551.00	1552.00	1.00	consecutive	as above 474	8	10T406539
CR-10-039	E5130476	1552.00	1553.40	1.40	not consecutive	banded siltstone almost no PO	5	10T406539
CR-10-039	E5130477	1557.00	1558.00	1.00	not consecutive	massive siltstone with some PO bands and PO in fractures	18	10T406539
CR-10-039	E5130478	1558.00	1559.00	1.00	consecutive	as above 477	15	10T406539
CR-10-039	E5130479	1559.00	1560.00	1.00	consecutive	as above 477 less the fractures. With 3cm qv contains PO & PY	9	10T406539
CR-10-039	E5130480	1560.00	1561.00	1.00	consecutive	as above 479, multiple qv.	12	10T406539
CR-10-039	E5130481	1561.00	1562.00	1.00	consecutive	as above 479	9	10T406539
CR-10-039	E5130482	1562.00	1563.00	1.00	not consecutive	silty mudstone with minor PO	6	10T406539
CR-10-039	E5130483	1618.29	1619.79	1.50	not consecutive	dark brown siltstone with minor PO	8	10T406539
CR-10-039	E5130484	1619.79	1621.27	1.48	not consecutive	as above 483	6	10T406539
CR-10-039	E5130485	1625.75	1627.00	1.25	not consecutive	dark grey mudstone, thin streaks and diss PO. Occasional up to 10cm band of breccia with PO matrix. Some cubic PY.	5	10T406539
CR-10-039	E5130486	1627.00	1628.00	1.00	consecutive	as above 485	53	10T406539
CR-10-039	E5130487	1628.00	1629.00	1.00	consecutive	as above 485	10	10T406539
CR-10-039	E5130488	1629.00	1630.00	1.00	consecutive	as above 485	7	10T406539
CR-10-039	E5130489	1630.00	1631.00	1.00	consecutive	as above 485	8	10T406539
CR-10-039	E5130490	0.00	0.00	0.00	not consecutive	Standard Sample: Si42 1.761ppm Au	1730	10T406539
CR-10-039	E5130491	1631.00	1632.00	1.00	not consecutive	as above 485	12	10T406539
CR-10-039	E5130492	1633.00	1634.00	1.00	not consecutive	as above 485	7	10T406539
CR-10-039	E5130493	1634.00	1635.00	1.00	consecutive	siltstone, diss PO and as fracture fillings.	7	10T406539
CR-10-039	E5130494	1635.00	1636.00	1.00	consecutive	siltstone with 15cm breccia with PO matrix, PO filled fractures	11	10T406539
CR-10-039	E5130495	1636.00	1637.00	1.00	consecutive	siltstone, some PO bands, weak folding and shear.	12	10T406539
CR-10-039	E5130496	1637.00	1638.00	1.00	consecutive	silty mudstone, diss PO, thin bands almost laminated	8	10T406539
CR-10-039	E5130497	1638.00	1639.00	1.00	consecutive	sandy siltstone, little PO except in brecciated bands towards base as matrix.	13	10T406539
CR-10-039	E5130498	1639.00	1640.35	1.35	consecutive	silty mudstone, PO in bands and diss an thin breccia, few qv with PO.	19	10T406539
CR-10-039	E5130499	1640.35	1641.37	1.02	consecutive	silty mudstone little PO mostly diss	11	10T406539
CR-10-039	E5130500	1643.15	1644.00	0.85	not consecutive	silty mudstone little PO mostly diss and streaks	10	10T406539
CR-10-039	E5130501	1644.00	1645.00	1.00	consecutive	as above 500	5	10T406539
CR-10-039	E5130502	1645.00	1646.00	1.00	consecutive	as above 500	4	10T406539
CR-10-039	E5130503	1646.00	1647.00	1.00	consecutive	as above 500	149	10T406539

CONQUEST Resources Limited

Conquest Resources Ltd. Diamond Drill Record

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-10-039	E5130504	1647.00	1648.00	1.00	consecutive	as above 500	2	10T406539
CR-10-039	E5130505	1648.00	1649.00	1.00	consecutive	as above 500 + carbonaceous bands and 5cm qcv vein	3	10T406539
CR-10-039	E5130506	1649.00	1649.94	0.94	consecutive	as above 505	8	10T406539
CR-10-039	E5130507	1679.00	1680.00	1.00	not consecutive	mudstone and breccia with PO matrix, speroidal PY replacement.	11	10T406539
CR-10-039	E5130508	1680.00	1681.40	1.40	consecutive	Diorite dyke with diss PY.	3	10T406539
CR-10-039	E5130509	1681.40	1682.50	1.10	not consecutive	mudstone with spheroidal PY.	7	10T406539
CR-10-039	E5097460	1684.00	1685.02	1.02	not consecutive	mudstone, PO as breccia matrix, fracture fillings and spheroids. Minor PY	11	10T406539
CR-10-039	E5097461	1685.02	1686.00	0.98	consecutive	grey chert with PO in fractures	1	10T406539
CR-10-039	E5097462	1686.00	1687.00	1.00	consecutive	as above 461	1	10T406539
CR-10-039	E5097463	1687.00	1688.00	1.00	consecutive	chert bands, caught edge of dioritic intrusion, PO in fractures.	9	10T406539
CR-10-039	E5097464	1688.00	1689.00	1.00	consecutive	mudstone with PO boudines, 20cm breccia with PO matrix, few PY cubes	12	10T406539
CR-10-039	E5097465	1689.00	1690.00	1.00	consecutive	cherty mudstone. PO bands, PO in fractures, short dioritic intersection.	5	10T406539
CR-10-039	E5097466	1690.00	1691.00	1.00	consecutive	mudstone to chert, PO bands boudines and fracture fillings	5	10T406539
CR-10-039	E5097467	1691.00	1692.00	1.00	consecutive	chert to mudstone, PO as breccia matrix, fracture fillings and thin bands	6	10T406539
CR-10-039	E5097468	1692.00	1693.00	1.00	consecutive	mudstone to chert, PO breccia matrix, as fracture fillings and spheroids	4	10T406539
CR-10-039	E5097469	1693.00	1694.00	1.00	not consecutive	chert with PO fracture fillings.	2	10T406539
CR-10-039	E5097470	0.00	0.00	0.00	not consecutive	Standard Sample: Si42 1.761ppm Au	1720	10T406539
CR-10-039	E5097471	1694.00	1695.00	1.00	not consecutive	chert to mudstone, PO as bands fracture fillings and breccia matrix	9	10T406539
CR-10-039	E5097472	1695.00	1696.00	1.00	consecutive	silty mudstone, PO bands, streaks and fracture fillings	12	10T406539
CR-10-039	E5097473	1696.00	1697.00	1.00	consecutive	as above 472	11	10T406539
CR-10-039	E5097474	1697.00	1698.00	1.00	consecutive	as above 472	16	10T406539
CR-10-039	E5097475	1698.00	1699.00	1.00	consecutive	mudstone to chert with thick milky qv with PO	7	10T406539
CR-10-039	E5097476	1699.00	1700.00	1.00	consecutive	mudstone to chert, PO bands , streaks and fracture fillings	9	10T406539
CR-10-039	E5097477	1700.00	1701.00	1.00	consecutive	chert with mudstone bands. PO as fracture fillings	11	10T406539
CR-10-039	E5097478	1706.90	1707.90	1.00	not consecutive	mudstone to chert, PO as bands, spheroids breccia matrix and fracture fillings.	31	10T406539
CR-10-039	E5097479	1708.95	1709.85	0.90	not consecutive	mudstone, PO bands, blebs and thin fracture fillings.	25	10T406539
CR-10-039	E5097480	1712.28	1713.17	0.89	not consecutive	mudstone, PO as bands, boudines.	23	10T406539
CR-10-039	E5097481	1713.17	1714.17	1.00	consecutive	chert with PO fracture fillings.	5	10T406539
CR-10-039	E5097482	1714.17	1715.00	0.83	consecutive	mudstone, PO as bands boudines and breccia matrix	21	10T406539
CR-10-039	E5097483	1715.00	1716.00	1.00	consecutive	as above 482	10	10T406539
CR-10-039	E5097484	1716.00	1717.00	1.00	consecutive	as above 482 + chert with PO fracture fillings	8	10T406539

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-10-039	E5097485	1717.00	1718.00	1.00	not consecutive	mudstone, PO bands streaks and boudines.	24	10T406539
CR-10-039	E5097486	1725.91	1726.25	0.34	not consecutive	NSS breccia	269	10T406539
CR-10-039	E5097487	1726.25	1726.25	0.00	not consecutive	mudstone to WMIN band at base	123	10T406539
CR-10-039	E5097488	1732.00	1733.00	1.00	not consecutive	chert with PO fracture fillings	7	10T406539
CR-10-039	E5097489	1733.00	1733.80	0.80	not consecutive	chert with trace sulphides	3	10T406539
CR-10-039	E5097490	0.00	0.00	0.00	not consecutive	Standard SK 43 4.086 ppm Au	3950	10T406539
CR-10-039	E5097491	1733.80	1734.75	0.95	not consecutive	chert breccia with PO matrix	4	10T406539
CR-10-039	E5097492	1734.75	1735.17	0.42	consecutive	chert with trace sulphides	3	10T406539
CR-10-039	E5097493	1735.17	1736.26	1.09	not consecutive	as above 491	4	10T406539
CR-10-039	E5097494	1742.12	1743.18	1.06	not consecutive	mudstone to chert, PO bands and fracture fillings, spheroidal PY replacement.	10	10T406539
CR-10-039	E5097495	1743.18	1744.30	1.12	consecutive	chert with PY bands to 2cm thick and 10cm NSS near base	82	10T406539
CR-10-039	E5097496	1744.30	1745.30	1.00	consecutive	chert with trace sulphides	6	10T406539
CR-10-039	E5097497	1745.30	1746.14	0.84	consecutive	as above 496	14	10T406539
CR-10-039	E5097498	1746.14	1747.00	0.86	not consecutive	mudstone with breccia, PO matrix	53	10T406539
CR-10-039	E5097499	1750.56	1751.56	1.00	not consecutive	banded chert, magnetite rich, trace sulphides with qv	5	10T406539
CR-10-039	E5097500	1751.56	1752.46	0.90	not consecutive	as above 499	27	10T406539
CR-10-039	E5097501	1757.23	1757.84	0.61	not consecutive	chert magnetite rich with NSS breccia band at top	24	10T406539
CR-10-039	E5097502	1757.84	1758.63	0.79	not consecutive	chert magnetite rich, trace sulphides	10	10T406539
CR-10-039	E5097503	1760.33	1760.92	0.59	not consecutive	chert with minor PO bands	15	10T406539
CR-10-039	E5097504	1766.38	1767.56	1.18	not consecutive	chert magnetite rich, moderatly sheared, PO in fractures	13	10T406539
CR-10-039	E5097505	1776.60	1777.40	0.80	not consecutive	chert magnetite rich, moderately sheared, trace sulphides	22	10T406539
CR-10-039	E5097506	1777.40	1778.02	0.62	not consecutive	chert breccia with PO in fractures	34	10T406539
CR-10-039	E5097507	1782.99	1784.13	1.14	not consecutive	banded chert with PO bands	21	10T406539
CR-10-039	E5097508	1790.00	1791.00	1.00	not consecutive	mudstone with PO bands going into chert with PO fracture fillings	24	10T406539
CR-10-039	E5097509	1791.00	1792.00	1.00	not consecutive	chert with PO fracture fillings	5	10T406539
CR-10-039	E5097510	0.00	0.00	0.00	not consecutive	Standard SK 43 4.086 ppm Au	4110	10T406539
CR-10-039	E5097511	1792.00	1793.00	1.00	not consecutive	chert, partially brecciated with PO matrix	28	10T406539
CR-10-039	E5097512	1793.00	1794.00	1.00	consecutive	chert magnetite rich, trace sulphides	7	10T406539
CR-10-039	E5097513	1794.00	1795.00	1.00	consecutive	as above 512	10	10T406539
CR-10-039	E5097514	1795.00	1796.00	1.00	consecutive	chert, magnetite rich, PO bands and fracture fillings	21	10T406539
CR-10-039	E5097515	1796.00	1797.00	1.00	consecutive	banded chert, magnetite rich, PO bands and fracture fillings	14	10T406539
CR-10-039	E5097516	1797.00	1798.00	1.00	consecutive	chert, PO bands and fracture fillings	12	10T406539
CR-10-039	E5097517	1798.00	1799.00	1.00	consecutive	as above 516	15	10T406539
CR-10-039	E5097518	1799.00	1800.00	1.00	consecutive	as above 516	8	10T406539
CR-10-039	E5097519	1800.00	1801.00	1.00	consecutive	banded chert, magnetite rich, trace sulphides.	11	10T406539
CR-10-039	E5097520	1801.00	1802.00	1.00	consecutive	chert brecciated with PO matrix	89	10T406539
CR-10-039	E5097521	1802.00	1803.00	1.00	consecutive	banded chert, magnetite rich, trace sulphides	8490	10T406539
CR-10-039	E5097522	1803.00	1804.00	1.00	consecutive	as above 521	33	10T406539

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-10-039	F5097523	1804 00	1804 80	0.80	consecutive	banded chert, magnetite rich, streaky swirly PO in last 25cm at	14	10T406539
	20007020	100 100	100 1100	0.00		contact to intrusive below.		1011000000
CR-10-039	E5097524	1804.80	1806.00	1.20	consecutive	light grey massive Quartzmonzonite.	2	10T406539
CR-10-039	E5097525	1806.00	1807.00	1.00	consecutive	as above 524	7	10T406539
CR-10-039	E5097526	1807.00	1808.00	1.00	consecutive	as above 524	6	10T406539
CR-10-039	E5097527	1808.00	1809.00	1.00	consecutive	as above 524	5	10T406539
CR-10-039	E5097528	1809.00	1809.83	0.83	consecutive	as above 524	10	10T406539
CR-10-039	E5097529	1809.83	1811.00	1.17	not consecutive	mudstone, PY diss, flakes and spheroidal masses.	25	10T406539
CR-10-039	E5097530	0.00	0.00	0.00	not consecutive	Standard OxK 69 3.583 ppm Au	3730	10T406539
CR-10-039	E5097531	1811.00	1812.00	1.00	not consecutive	as above 529	37	10T406539
CR-10-039	E5097532	1812.00	1813.00	1.00	consecutive	as above 529, chert at bottom	18	10T406539
CR-10-039	E5097533	1813.00	1814.00	1.00	consecutive	massive light grey chert some garnets trace sulphides	4	10T406539
CR-10-039	E5097534	1814.00	1815.00	1.00	consecutive	chert, magnetite rich, trace sulphides	32	10T406539
CR-10-039	E5097535	1815.00	1816.00	1.00	consecutive	as above 534	40	10T406539
CR-10-039	E5097536	1816.00	1817.00	1.00	consecutive	banded chert, magnetite rich, trace sulphides.	11	10T406539
CR-10-039	E5097537	1817.00	1818.00	1.00	consecutive	as above 536	5	10T406539
CR-10-039	E5097538	1818.00	1819.00	1.00	consecutive	chert moderately sheared going into PO rich argillite.	48	10T406539
CD 10 020	55007520	1010 00	1920.00	1 00		banded chert, magnetite rich, trace sulphides, mostly as fracture	20	107406520
CK-10-039	E2097239	1819.00	1820.00	1.00	consecutive	fillings	20	101400539
CR-10-039	E5097540	1820.00	1821.00	1.00	consecutive	as above 539	4	10T406539
CR-10-039	E5097541	1821.00	1821.85	0.85	consecutive	as above 539	2	10T406539
CD 10 020		1001 05	1922.00	1 1 5		medium grey massive andesitic basalt, garnetiferous, PO bands and	0	107406520
CR-10-039	E5097542	1821.85	1823.00	1.15	consecutive	fracture fillings.	9	101400539
CR-10-039	E5097543	1823.00	1824.50	1.50	consecutive	dark grey massive andesitic basalt, trace sulphides.	3	10T406539
CR-10-039	E5097544	1824.50	1825.40	0.90	not consecutive	dark grey massive andesitic basalt with PO filled fractures.	11	10T406539
CR-10-039	E5097545	1959.20	1960.20	1.00	not consecutive	wing sample, andesitic basalt, massive and garnetiferous	7	10T406539
CR-10-039	E5097546	1960.20	1961.25	1.05	consecutive	dark fault material with carbonate and sulphides	10	10T406539
CR-10-039	E5097547	1961.25	1962.00	0.75	consecutive	cherty center of fault with qv, sulphides	85	10T406539
CR-10-039	E5097548	1962.00	1962.91	0.91	consecutive	as above 547	66	10T406539
CD 40 030	55007540	1002.04	1062 70	0.00		dark fault material with small clasts, strongly sheared. Disseminated	20	407406520
CR-10-039	E5097549	1962.91	1963.79	0.88	not consecutive	sulphides	28	101406539
CR-10-039	E5097550	0.00	0.00	0.00	not consecutive	Standard SK 43 4.086 ppm Au	4330	10T406539
<u> </u>	55007554	4062 70	4064.00	4.42		dark fault material with medium sized clasts. Less shearing,	-	407406520
CR-10-039	E5097551	1963.79	1964.92	1.13	not consecutive	disseminated sulphides.	/	101406539
CR-10-039	E5097552	1964.92	1966.08	1.16	consecutive	yet larger clasts and less shearing, disseminated sulphides.	7	10T406539
CR-10-039	E5097553	1966.08	1967.00	0.92	consecutive	Mixed sediments 9chert to mudstone with sulphides	6	10T406539
CR-10-039	E5097554	1967.00	1968.00	1.00	consecutive	as above 553	6	10T406539
CR-10-039	E5097555	1968.00	1969.00	1.00	consecutive	as above 553	6	10T406539
CR-10-039	E5097556	1969.00	1970.00	1.00	consecutive	as above 553	11	10T406539
CR-10-039	E5097557	1970.00	1971.38	1.38	consecutive	as above 553	7	10T406539

CR-10.03 E599755 1971.38 1972.96 1.58 conservice gabbro with carbonate veins and minor biotile alteration 5 107406539 CR-10.038 E599756 1974.00 1975.00 1.00 consecutive as above 553 52 107406539 CR-10.038 E5997561 1976.00 1977.00 1.00 consecutive as above 553 26 107406539 CR-10.038 E5997561 1977.00 1978.00 1.00 consecutive as above 553 49 107406539 CR-10.038 E5997561 1978.00 1.00 consecutive as above 553 9 107406539 CR-10.038 E5997561 1981.00 1.00 consecutive as above 553 48 107406539 CR-10.038 E5997561 1981.00 1.00 consecutive as above 553 36 107406539 CR-10.038 E5997561 1981.00 1.00 consecutive as above 553 36 107406539 CR-10.038 E5997561 1981.00 1.00 consecutive as above 553 17 107406539 CR-1	HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-10.032 ES097559 1972.66 1974.00 1.04 consecutive as above 553 52 107406539 CR-10.032 ES097561 1975.00 1975.00 1975.00 1977.00 1076.00 1.00 consecutive as above 553 52 107406539 CR-10.032 ES097561 1976.00 100 consecutive as above 553 26 107406539 CR-10.032 ES097565 1972.00 1978.00 1.00 consecutive as above 553 9 107406539 CR-10.032 ES097565 1972.00 188.00 1.00 consecutive as above 553 48 107406539 CR-10.032 ES097565 1982.00 188.00 1.00 consecutive as above 553 88 107406539 CR-10.032 ES097567 1982.00 1983.00 1.00 consecutive as above 553 17 107406539 CR-10.032 ES097570 1982.00 1.00 consecutive as above 553 13 107406539 CR-10.032 ES097570 1.00 0.00 0.00 moterecutive as above 553 13 107406539 CR-10.032 ES097571 <td< td=""><td>CR-10-039</td><td>E5097558</td><td>1971.38</td><td>1972.96</td><td>1.58</td><td>consecutive</td><td>gabbro with carbonate veins and minor biotite alteration</td><td>5</td><td>10T406539</td></td<>	CR-10-039	E5097558	1971.38	1972.96	1.58	consecutive	gabbro with carbonate veins and minor biotite alteration	5	10T406539
CR-10-039 ES097560 1974.00 1975.00 1.00 consecutive as above 553 45 107406539 CR-10-038 ES097561 1975.00 1977.00 1.00 consecutive as above 553 26 107406539 CR-10-038 ES097561 1977.00 1978.00 100 consecutive as above 553 49 107406539 CR-10-038 ES097561 1978.00 1978.00 100 consecutive as above 553 9 107406539 CR-10-038 ES097561 1988.00 1.00 consecutive as above 553 48 107406539 CR-10-038 ES097567 1988.00 1.00 consecutive as above 553 36 107406539 CR-10-038 ES097567 1988.00 1.00 consecutive as above 553 17 107406539 CR-10-038 ES097570 0.00 0.00 not consecutive as above 553 13 107406539 CR-10-038 ES097571 1986.00 1.00 consecutive as above 553 13 107406539 CR-10-038 ES097575	CR-10-039	E5097559	1972.96	1974.00	1.04	consecutive	as above 553	16	10T406539
CR-10-039 ES997561 1975.00 1975.00 1976.00 1.00 consecutive as above 553 26 107406539 CR-10-039 ES997564 1978.00 1.00 consecutive as above 553 9 107406539 CR-10-039 ES997564 1978.00 1.00 consecutive as above 553 9 107406539 CR-10-039 ES997566 1978.00 1.00 consecutive as above 553 48 107406539 CR-10-039 ES997566 1980.00 1981.00 1.00 consecutive as above 553 36 107406539 CR-10-038 ES997567 1980.00 1.00 consecutive as above 553 17 107406539 CR-10-038 ES997571 1980.00 1.00 consecutive as above 553 17 107406539 CR-10-038 ES997571 1980.00 1.00 consecutive as above 553 13 107406539 CR-10-038 ES997571 1980.00 1.00 consecutive as above 553 11 107406539 CR-10-038 ES997571 1980.00	CR-10-039	E5097560	1974.00	1975.00	1.00	consecutive	as above 553	52	10T406539
CR-10-039 ES097552 1976.00 1977.00 1977.00 1977.00 1977.00 1978.00 100 connective as above 553 49 107406539 CR-10-038 ES097564 1978.00 1980.00 1.00 connective as above 553 9 107406539 CR-10-038 ES097565 1980.00 1.900 connective as above 553 48 107406539 CR-10-038 ES097565 1981.00 1982.00 1.00 connective as above 553 88 107406539 CR-10-038 ES097561 1983.00 1.00 connective as above 553 88 107406539 CR-10-038 ES097571 1984.00 1.00 net connective as above 553 13 107406539 CR-10-038 ES097571 1984.00 1.900 ont connective as above 553 13 107406539 CR-10-038 ES097571 1984.00 1.900 connective as above 553 13 107406539 CR-10-038 ES097571 1984.00 1.00 connective as above 553 13 107406539 <td>CR-10-039</td> <td>E5097561</td> <td>1975.00</td> <td>1976.00</td> <td>1.00</td> <td>consecutive</td> <td>as above 553</td> <td>45</td> <td>10T406539</td>	CR-10-039	E5097561	1975.00	1976.00	1.00	consecutive	as above 553	45	10T406539
CR-10039 ES097561 1972.00 1978.00 1.00 connective as above 553 9 107406539 CR-10039 ES097565 1978.00 1980.00 1.00 connective as above 553 9 107406539 CR-10039 ES097565 1980.00 1.00 connective as above 553 48 107406539 CR-10039 ES097566 1981.00 1.00 connective as above 553 48 107406539 CR-10039 ES097567 1981.00 1.00 connective as above 553 17 107406539 CR-10039 ES097570 1.00 connective as above 553 13 107406539 CR-10039 ES097571 1.986.00 1.00 connective as above 553 13 107406539 CR-10039 ES097571 1.986.00 1.00 connective as above 553 13 107406539 CR-10039 ES097571 1.986.00 1.00 connective as above 553 20 107406539	CR-10-039	E5097562	1976.00	1977.00	1.00	consecutive	as above 553	26	10T406539
CR-10-039 ES097566 1978.00 1979.00 1000 consecutive consecutive as above 55.3 9 107406539 CR-10-039 ES097566 1980.00 182.00 1.000 consecutive as above 55.3 36 107406539 CR-10-039 ES097566 1980.00 1982.00 1.000 consecutive as above 55.3 36 107406539 CR-10-039 ES097566 1982.00 1983.00 1.000 consecutive as above 55.3 38 107406539 CR-10-039 ES097570 1984.00 1.000 not consecutive as above 55.3 13 107406539 CR-10-039 ES097571 1984.00 1.000 consecutive as above 55.3 13 107406539 CR-10-039 ES097571 1984.00 1.000 consecutive as above 55.3 13 107406539 CR-10-039 ES097571 1988.00 1.000 consecutive as above 55.3 17 107406539 CR-10-039 ES097577 1980.00 1990.00 1.000 consecutive as above 55.3 20 107406539	CR-10-039	E5097563	1977.00	1978.00	1.00	consecutive	as above 553	49	10T406539
CR-10-039 ES097565 197.00 1980.00 1.00 consecutive as above 553 with 10cm solid Po band 40 107406539 CR-10-039 ES097567 1981.00 1.00 consecutive as above 553 36 107406539 CR-10-039 ES097567 1981.00 1.00 consecutive as above 553 36 107406539 CR-10-039 ES097570 1.00 consecutive as above 553 17 107406539 CR-10-039 ES097570 0.00 0.00 not consecutive as above 553 13 107406539 CR-10-039 ES097571 1986.00 1.00 consecutive as above 553 13 107406539 CR-10-039 ES097571 1986.00 1.00 consecutive as above 553 13 107406539 CR-10-039 ES097575 1988.00 1.00 consecutive as above 553 20 107406539 CR-10-039 ES097577 1980.00 1.00 consecutive as above 553 20 107406539 CR-10-039 ES097578 1990.00 1.00 consecutiv	CR-10-039	E5097564	1978.00	1979.00	1.00	consecutive	as above 553	9	10T406539
CR-10-039 E5097566 1980.00 1981.00 1.00 consecutive as above 553 48 107406539 CR-10-039 E5097567 1983.00 1.00 consecutive as above 553 17 107406539 CR-10-039 E5097568 1983.00 1.00 not consecutive as above 553 17 107406539 CR-10-039 E5097570 1084.00 1.00 not consecutive as above 553 13 107406539 CR-10-039 E5097571 1984.00 1.00 not consecutive as above 553 13 107406539 CR-10-039 E5097571 1984.00 1.00 consecutive as above 553 20 107406539 CR-10-039 E5097577 1988.00 1.00 consecutive as above 553 20 107406539 CR-10-039 E5097575 1989.00 1.00 consecutive as above 553 20 107406539 CR-10-039 E5097577 1988.00 1.00 consecutive as above 553 29 107406539 CR-10-039 E5097577 1989.00 1.00 consecutive as	CR-10-039	E5097565	1979.00	1980.00	1.00	consecutive	as above 553, with 10cm solid Po band	40	10T406539
CR-10-039 E5097567 1981.00 1982.00 1.00 consecutive as above 553 36 107406539 CR-10-033 E5097569 1983.00 1.00 not consecutive as above 553 17 107406539 CR-10-033 E5097570 0.00 0.00 not consecutive as above 553 13 107406539 CR-10-039 E5097571 1984.00 1982.00 1.00 consecutive as above 553 13 107406539 CR-10-039 E5097573 1986.00 1.00 consecutive as above 553 13 107406539 CR-10-039 E5097573 1988.00 1.00 consecutive as above 553 20 107406539 CR-10-039 E5097575 1988.00 1.00 consecutive as above 553 17 107406539 CR-10-038 E5097575 1989.00 1.00 consecutive as above 553 17 107406539 CR-10-038 E5097575 1989.00 1.00 consecutive as above 553 29 107406539 CR-10-038 E5097578 1991.00 1.00	CR-10-039	E5097566	1980.00	1981.00	1.00	consecutive	as above 553	48	10T406539
CR-10-039 E5097568 1982.00 1.00 consecutive as above 553 88 107406539 CR-10-039 E5097569 1983.00 1.00 not consecutive as above 553 17 107406539 CR-10-039 E5097571 1984.00 1.00 not consecutive as above 553 13 107406539 CR-10-039 E5097571 1986.00 1.00 consecutive as above 553 31 107406539 CR-10-039 E5097574 1987.00 1.00 consecutive as above 553 20 107406539 CR-10-039 E5097575 1988.00 1.00 consecutive as above 553 17 107406539 CR-10-039 E5097575 1989.00 1.900 consecutive as above 553 17 107406539 CR-10-039 E5097575 1989.00 1990.00 1.00 consecutive as above 553 34 107406539 CR-10-039 E5097579 1991.00 1.00 consecutive as above 553 34 107406539 CR-10-039 E5097578 1992.00 1.00 consecutive as ab	CR-10-039	E5097567	1981.00	1982.00	1.00	consecutive	as above 553	36	10T406539
CR-10-039 E5097569 1983.00 1.00 ent consecutive as above 553 17 107406539 CR-10-039 E5097571 1984.00 1985.00 1.00 ent consecutive as above 553 13 107406539 CR-10-039 E5097571 1986.00 1.00 consecutive as above 553 31 107406539 CR-10-039 E5097573 1987.00 1.00 consecutive as above 553 20 107406539 CR-10-039 E5097574 1987.00 1.00 consecutive as above 553 20 107406539 CR-10-039 E5097575 1988.00 1.00 consecutive as above 553 48 107406539 CR-10-039 E5097577 1990.00 1.00 consecutive as above 553 48 107406539 CR-10-039 E5097577 1990.00 1.00 consecutive as above 553 34 107406539 CR-10-039 E5097581 1992.00 1.00 consecutive as above 553 34 107406539 </td <td>CR-10-039</td> <td>E5097568</td> <td>1982.00</td> <td>1983.00</td> <td>1.00</td> <td>consecutive</td> <td>as above 553</td> <td>88</td> <td>10T406539</td>	CR-10-039	E5097568	1982.00	1983.00	1.00	consecutive	as above 553	88	10T406539
CR-10-039 E5097570 0.00 0.00 not consecutive standard Sample: S42 1.761ppm Au 1700 107406539 CR-10-039 E5097571 1984.00 1.00 not consecutive as above 553 31 107406539 CR-10-039 E5097572 1985.00 1987.00 1.00 consecutive as above 553 20 107406539 CR-10-039 E5097574 1988.00 1.00 consecutive as above 553 20 107406539 CR-10-039 E5097576 1989.00 1.00 consecutive as above 553 29 107406539 CR-10-039 E5097577 1989.00 1.00 consecutive as above 553 29 107406539 CR-10-039 E5097578 1991.00 1.00 consecutive as above 553 29 107406539 CR-10-039 E5097578 1991.00 1.00 consecutive as above 553 24 107406539 CR-10-039 E5097581 1992.63 1.00 consecutive as above 580 7	CR-10-039	E5097569	1983.00	1984.00	1.00	not consecutive	as above 553	17	10T406539
CR-10-039 ES907571 1984.00 1985.00 1.00 not consecutive as above 553 13 107406539 CR-10-039 ES097572 1985.00 1986.00 1.00 consecutive sulphicil mudstone folded and moderately sheared 26 107406539 CR-10-039 ES097571 1986.00 1987.00 1.00 consecutive sulphicil mudstone folded and moderately sheared 26 107406539 CR-10-039 ES097575 1988.00 1990.00 1.00 consecutive as above 553 17 107406539 CR-10-039 ES097577 1990.00 1.00 consecutive as above 553 48 107406539 CR-10-039 ES097578 1991.00 1.00 consecutive as above 553 29 107406539 CR-10-039 ES097578 1992.00 1.00 consecutive mudstone with minor sulphides 24 107406539 CR-10-039 ES097581 1993.63 1.00 consecutive as above 580 7 107406539 CR-10-039 ES097581 1994.63 1.00 consecutive as above 580 3 107406	CR-10-039	E5097570	0.00	0.00	0.00	not consecutive	Standard Sample: Si42 1.761ppm Au	1700	10T406539
CR:10-039 E5097572 1985.00 1.00 consecutive sulphidic mudstone folded and moderately sheared 26 107406539 CR:10-039 E5097573 1986.00 1.00 consecutive sulphidic mudstone folded and moderately sheared 26 107406539 CR:10-039 E5097575 1988.00 1.00 consecutive as above 553 20 107406539 CR:10-039 E5097576 1988.00 1.00 consecutive as above 553 48 107406539 CR:10-039 E5097577 1980.00 1.00 consecutive as above 553 29 107406539 CR:10-039 E5097577 1991.00 1.00 consecutive as above 553 34 107406539 CR:10-039 E5097579 1992.00 1.00 consecutive as above 580 7 107406539 CR:10-039 E5097581 1993.63 1.00 consecutive as above 580 7 107406539 CR:10-039 E5097581 1995.63 1.00 consecutive as above 580 3 107406539 CR:10-039 E5097581 1995.63 1.00	CR-10-039	E5097571	1984.00	1985.00	1.00	not consecutive	as above 553	13	10T406539
CR:10-039 E5097573 1988.00 1987.00 1.00 consecutive consecutive as above 553 20 107406539 CR:10-039 E509757 1988.00 1980.00 1.00 consecutive as above 553 20 107406539 CR:10-039 E509757 1988.00 1990.00 1.00 consecutive as above 553 17 107406539 CR:10-039 E509757 1990.00 1.00 consecutive as above 553 29 107406539 CR:10-039 E509757 1991.00 1.00 consecutive as above 553 34 107406539 CR:10-039 E509758 1992.00 1.00 consecutive mudstone with minor sulphides 24 107406539 CR:10-039 E509758 1993.63 1.00 consecutive as above 580 3 107406539 CR:10-039 E5097581 1993.63 1.00 consecutive as above 580 3 107406539 CR:10-039 E5097581 1995.63 1.00 consecutive as above 580 14 107406539 CR:10-039 E5097585 19	CR-10-039	E5097572	1985.00	1986.00	1.00	consecutive	as above 553	31	10T406539
CR-10-039 E5097574 1988.00 1.00 consecutive consecutive as above 553 20 107406539 CR-10-039 E5097575 1988.00 1990.00 1.00 consecutive as above 553 48 107406539 CR-10-039 E5097577 1990.00 1991.00 1.00 consecutive as above 553 29 107406539 CR-10-039 E5097577 1990.00 1992.00 1.00 consecutive as above 553 34 107406539 CR-10-039 E5097578 1992.00 1.00 consecutive as above 553 34 107406539 CR-10-039 E5097581 1992.63 1.00 consecutive as above 580 7 107406539 CR-10-039 E5097581 1993.63 1.00 consecutive as above 580 3 107406539 CR-10-039 E5097581 1995.63 1.00 consecutive as above 580 3 107406539 CR-10-039 E5097584 1996.63 1.00 consecutive as above 580 3 107406539 CR-10-039 E5097587 <t< td=""><td>CR-10-039</td><td>E5097573</td><td>1986.00</td><td>1987.00</td><td>1.00</td><td>consecutive</td><td>sulphidic mudstone folded and moderately sheared</td><td>26</td><td>10T406539</td></t<>	CR-10-039	E5097573	1986.00	1987.00	1.00	consecutive	sulphidic mudstone folded and moderately sheared	26	10T406539
CR-10-039 E5097575 1988.00 1990.00 1.00 consecutive as above 553 17 10T406539 CR-10-039 E5097576 1990.00 1991.00 1.00 consecutive as above 553 29 10T406539 CR-10-039 E5097578 1991.00 1992.00 1.00 consecutive as above 553 34 10T406539 CR-10-039 E5097578 1992.00 1992.63 0.63 consecutive mudstone with minor sulphides 24 10T406539 CR-10-039 E5097581 1993.63 100 consecutive morfelsed silicious sediments at contact with gabbro. 4 10T406539 CR-10-039 E5097581 1993.63 1.00 consecutive as above 580 7 10T406539 CR-10-039 E5097581 1995.63 1.00 consecutive as above 580 14 10T406539 CR-10-039 E5097581 1995.63 1.00 consecutive as above 580 14 10T406539 CR-10-039 E5097584 1996.63 1.00 consecutive as above 585 3 10T406539 <tr< td=""><td>CR-10-039</td><td>E5097574</td><td>1987.00</td><td>1988.00</td><td>1.00</td><td>consecutive</td><td>as above 553</td><td>20</td><td>10T406539</td></tr<>	CR-10-039	E5097574	1987.00	1988.00	1.00	consecutive	as above 553	20	10T406539
CR-10-039 E5097576 1980.00 1.00 consecutive as above 553 48 107406539 CR-10-039 E5097577 1990.00 1991.00 1.00 consecutive as above 553 29 107406539 CR-10-039 E5097579 1992.00 1992.63 0.63 consecutive mudstone with minor sulphides 24 107406539 CR-10-039 E5097580 1992.63 1993.63 1.00 consecutive as above 580 7 107406539 CR-10-039 E5097581 1993.63 1.00 consecutive as above 580 7 107406539 CR-10-039 E5097582 1994.63 1.00 consecutive as above 580 3 107406539 CR-10-039 E5097584 1996.63 1.00 consecutive as above 580 14 107406539 CR-10-039 E5097584 1996.63 1.00 consecutive as above 580 4 107406539 CR-10-039 E5097584 1997.03 0.70 consecutive as above 585 3 107406539 CR-10-039 E5097586 1998.00 <td>CR-10-039</td> <td>E5097575</td> <td>1988.00</td> <td>1989.00</td> <td>1.00</td> <td>consecutive</td> <td>as above 553</td> <td>17</td> <td>10T406539</td>	CR-10-039	E5097575	1988.00	1989.00	1.00	consecutive	as above 553	17	10T406539
CR-10-039E50975771990.001991.001.00consecutiveas above 55329107406539CR-10-039E50975781992.001992.030.63consecutiveas above 55324107406539CR-10-039E50975781992.031992.630.63consecutivemudstone with minor sulphides24107406539CR-10-039E50975801992.631993.631.00consecutiveas above 5807107406539CR-10-039E50975821994.631995.631.00consecutiveas above 5803107406539CR-10-039E50975811995.631.00consecutiveas above 58014107406539CR-10-039E50975841995.631.00consecutiveas above 5804107406539CR-10-039E50975841995.631.00consecutiveas above 5804107406539CR-10-039E50975851997.330.70consecutiveas above 5804107406539CR-10-039E50975871999.001.00consecutiveas above 5853107406539CR-10-039E50975871999.001.00consecutiveas above 5853107406539CR-10-039E50975871999.001.00consecutivewing sample, as above 5853107406539CR-10-039E50975871999.002.000.001.00not consecutivewing sample, moderately biotite altered gabbro5107406539CR-10-039<	CR-10-039	E5097576	1989.00	1990.00	1.00	consecutive	as above 553	48	10T406539
CR-10-039 E5097578 1991.00 1.90 consecutive as above 553 34 107406539 CR-10-039 E5097579 1992.00 1992.03 0.63 consecutive mudstone with minor sulphides 24 107406539 CR-10-039 E5097580 1993.63 1.00 consecutive hornfelsed silicious sediments at contact with gabbro. 4 107406539 CR-10-039 E5097580 1993.63 1.00 consecutive as above 580 7 107406539 CR-10-039 E5097581 1995.63 1.00 consecutive as above 580 14 107406539 CR-10-039 E5097584 1996.63 1.00 consecutive as above 580 14 107406539 CR-10-039 E5097584 1996.63 1.00 consecutive as above 580 4 107406539 CR-10-039 E5097584 1997.63 1997.00 0.67 consecutive orthoschist, (gabbro) 6 107406539 CR-10-039 E5097584 1999.00 1.00 consecutive wing sample, as above 585 3 107406539 <	CR-10-039	E5097577	1990.00	1991.00	1.00	consecutive	as above 553	29	10T406539
CR-10-039 E5097579 1992.00 1992.63 0.63 consecutive mudstone with minor sulphides 24 107406539 CR-10-039 E5097580 1992.63 1993.63 1.00 consecutive as above 580 7 107406539 CR-10-039 E5097581 1993.63 1995.63 1.00 consecutive as above 580 3 107406539 CR-10-039 E5097581 1995.63 1.00 consecutive as above 580 3 107406539 CR-10-039 E5097584 1996.63 1.00 consecutive as above 580 14 107406539 CR-10-039 E5097584 1996.63 1.00 consecutive as above 580 4 107406539 CR-10-039 E5097584 1998.00 0.67 consecutive as above 585 3 107406539 CR-10-039 E5097587 1999.00 1.00 consecutive wing sample, as above 585 3 107406539 CR-10-039 E5097588 202.00 2020.52 0.52 not consecutive wing sample, as above 585 3 107406539 CR-10-039 <td>CR-10-039</td> <td>E5097578</td> <td>1991.00</td> <td>1992.00</td> <td>1.00</td> <td>consecutive</td> <td>as above 553</td> <td>34</td> <td>10T406539</td>	CR-10-039	E5097578	1991.00	1992.00	1.00	consecutive	as above 553	34	10T406539
CR-10-039E50975801992.631993.631.00consecutivehornfelsed silicious sediments at contact with gabbro.410T406539CR-10-039E50975811993.631994.631.00consecutiveas above 580710T406539CR-10-039E50975821994.631995.631.00consecutiveas above 580310T406539CR-10-039E50975831995.631.00consecutiveas above 5801410T406539CR-10-039E50975841996.631.00consecutiveas above 580410T406539CR-10-039E50975851997.330.70consecutiveas above 580410T406539CR-10-039E50975861998.001.00consecutiveorthoschist, (gabbro)610T406539CR-10-039E50975871999.001.00consecutivewing sample, as above 585310T406539CR-10-039E50975882020.002000.001.00not consecutivewing sample, moderately biotite altered gabbro510T406539CR-10-039E50975892020.522021.230.71not consecutivecarbonaceous shear with diss sulphides in gabbro.310T406539CR-10-039E50975912021.232022.31.00not consecutivemoderately biotite altered gabbro510T406539CR-10-039E50975922022.232022.730.50not consecutivewing sample, medium grained gabbro310T406539CR-10-039E5	CR-10-039	E5097579	1992.00	1992.63	0.63	consecutive	mudstone with minor sulphides	24	10T406539
CR-10-039E50975811993.631994.631.00consecutive consecutiveas above 580710T406539CR-10-039E50975821994.631995.631.00consecutive consecutiveas above 5801410T406539CR-10-039E50975831995.631996.631.00consecutive consecutiveas above 5801410T406539CR-10-039E50975841996.631997.330.70consecutive consecutiveas above 580410T406539CR-10-039E50975851997.331998.000.67consecutive consecutiveas above 585310T406539CR-10-039E50975861999.001.00consecutive wing sample, as above 585310T406539CR-10-039E50975882020.00200.020.52not consecutive wing sample, as above 585310T406539CR-10-039E50975882020.02202.520.52not consecutive wing sample, moderately biotite altered gabbro510T406539CR-10-039E50975892020.522021.230.71not consecutive ving sample, moderately biotite altered gabbro310T406539CR-10-039E50975972021.232022.31.00not consecutive ving sample, moderately biotite altered gabbro310T406539CR-10-039E50975922022.232022.730.50not consecutive wing sample, medium grained gabbro310T406539CR-10-039E50975932036.072036.670.67not	CR-10-039	E5097580	1992.63	1993.63	1.00	consecutive	hornfelsed silicious sediments at contact with gabbro.	4	10T406539
CR-10-039E50975821994.631995.631.00consecutive consecutiveas above 580310T406539CR-10-039E50975841996.631997.330.70consecutive consecutiveas above 580410T406539CR-10-039E50975841996.631997.330.70consecutive consecutiveas above 580410T406539CR-10-039E50975851997.331998.000.67consecutive consecutiveorthoschist, (gabbro)610T406539CR-10-039E50975861999.001.00consecutive consecutiveorthoschist, (gabbro)310T406539CR-10-039E50975871999.002000.001.00not consecutive wing sample, as above 585310T406539CR-10-039E50975882020.002020.520.52not consecutive wing sample, moderately biotite altered gabbro510T406539CR-10-039E50975892020.522021.230.71not consecutive carbonaceous shear with diss sulphides in gabbro.310T406539CR-10-039E50975912021.232022.231.00not consecutive wing sample, medium grained gabbro310T406539CR-10-039E50975922022.232022.730.50not consecutive wing sample, biotite altered sheared gabbro310T406539CR-10-039E50975932036.002036.670.67not consecutive wing sample, medium grained gabbro310T406539CR-10-039E50975932036.67	CR-10-039	E5097581	1993.63	1994.63	1.00	consecutive	as above 580	7	10T406539
CR-10-039E50975831995.631996.631.00consecutive consecutiveas above 5801410T406539CR-10-039E50975841996.631997.330.70consecutive consecutiveas above 580410T406539CR-10-039E50975851997.331998.000.67consecutive consecutiveOrthoschist, (gabbro)610T406539CR-10-039E50975861998.001999.001.00consecutive consecutiveas above 585310T406539CR-10-039E50975871999.002000.001.00not consecutive ving sample, as above 585310T406539CR-10-039E50975882020.002020.520.52not consecutive carbonaceous shear with diss sulphides in gabbro.310T406539CR-10-039E50975900.000.00not consecutive carbonaceous shear with diss sulphides in gabbro.310T406539CR-10-039E50975912021.232022.231.00not consecutive moderately biotite altered gabbro with weaker carbonate shear510T406539CR-10-039E50975922022.232022.730.50not consecutive wing sample, medium grained gabbro310T406539CR-10-039E50975932036.002036.670.67not consecutive wing sample, biotite altered sheared gabbro310T406539CR-10-039E50975942036.672038.001.33consecutive wing sample, biotite altered sheared gabbro910T406539CR-10-039E50	CR-10-039	E5097582	1994.63	1995.63	1.00	consecutive	as above 580	3	10T406539
CR-10-039E50975841996.631997.330.70consecutive consecutiveas above 580410T406539CR-10-039E50975851997.331998.000.67consecutiveOrthoschist, (gabbro)610T406539CR-10-039E50975861998.001999.001.00consecutiveas above 585310T406539CR-10-039E50975871999.002000.001.00not consecutivewing sample, as above 585310T406539CR-10-039E50975882020.002020.520.52not consecutivewing sample, moderately biotite altered gabbro510T406539CR-10-039E50975892020.522021.230.71not consecutivecarbonaceous shear with diss sulphides in gabbro.310T406539CR-10-039E50975900.000.00not consecutiveStandard SK 43 4.086 ppm Au383010T406539CR-10-039E50975912021.232022.730.50not consecutivewing sample, medium grained gabbro310T406539CR-10-039E50975922022.232022.730.50not consecutivewing sample, biotite altered sheared gabbro310T406539CR-10-039E50975932036.002036.670.67not consecutivewing sample, medium grained gabbro310T406539CR-10-039E50975932036.070.67not consecutivewing sample, biotite altered sheared gabbro910T406539CR-10-039E50975942036.672038.00 <td>CR-10-039</td> <td>E5097583</td> <td>1995.63</td> <td>1996.63</td> <td>1.00</td> <td>consecutive</td> <td>as above 580</td> <td>14</td> <td>10T406539</td>	CR-10-039	E5097583	1995.63	1996.63	1.00	consecutive	as above 580	14	10T406539
CR-10-039 E5097585 1997.33 1998.00 0.67 consecutive Orthoschist, (gabbro) 6 10T406539 CR-10-039 E5097586 1998.00 1999.00 1.00 consecutive as above 585 3 10T406539 CR-10-039 E5097587 1999.00 2000.00 1.00 not consecutive wing sample, as above 585 3 10T406539 CR-10-039 E5097588 2020.00 2020.52 0.52 not consecutive wing sample, moderately biotite altered gabbro 5 10T406539 CR-10-039 E5097589 2020.52 2021.23 0.71 not consecutive carbonaceous shear with diss sulphides in gabbro. 3 10T406539 CR-10-039 E5097590 0.00 0.00 not consecutive Standard SK 43 4.086 ppm Au 3830 10T406539 CR-10-039 E5097591 2021.23 2022.73 0.50 not consecutive wing sample, medium grained gabbro 3 10T406539 CR-10-039 E5097592 2022.23 2022.73 0.50 not consecutive <	CR-10-039	E5097584	1996.63	1997.33	0.70	consecutive	as above 580	4	10T406539
CR-10-039E50975861998.001999.001.00consecutiveas above 5853107406539CR-10-039E50975871999.002000.001.00not consecutivewing sample, as above 5853107406539CR-10-039E50975882020.002020.520.52not consecutivewing sample, moderately biotite altered gabbro5107406539CR-10-039E50975892020.522021.230.71not consecutivecarbonaceous shear with diss sulphides in gabbro.3107406539CR-10-039E50975900.000.00not consecutiveStandard SK 43 4.086 ppm Au3830107406539CR-10-039E50975912021.232022.231.00not consecutivemoderately biotite altered gabbro with weaker carbonate shear5107406539CR-10-039E50975922022.232022.730.50not consecutivemoderately biotite altered gabbro with weaker carbonate shear5107406539CR-10-039E50975932036.002036.670.67not consecutivewing sample, medium grained gabbro3107406539CR-10-039E50975942036.672038.001.33consecutivewing sample, biotite altered sheared gabbro9107406539CR-10-039E50975952038.002039.001.00consecutivewing sample, biotite altered sheared gabbro52107406539CR-10-039E50975952038.002039.001.00consecutivewing sample, biotite altered sheared gabbro52 </td <td>CR-10-039</td> <td>E5097585</td> <td>1997.33</td> <td>1998.00</td> <td>0.67</td> <td>consecutive</td> <td>Orthoschist, (gabbro)</td> <td>6</td> <td>10T406539</td>	CR-10-039	E5097585	1997.33	1998.00	0.67	consecutive	Orthoschist, (gabbro)	6	10T406539
CR-10-039 E5097587 1999.00 2000.00 1.00 not consecutive wing sample, as above 585 3 10T406539 CR-10-039 E5097588 2020.00 2020.52 0.52 not consecutive wing sample, moderately biotite altered gabbro 5 10T406539 CR-10-039 E5097589 2020.52 2021.23 0.71 not consecutive carbonaceous shear with diss sulphides in gabbro. 3 10T406539 CR-10-039 E5097590 0.00 0.00 not consecutive Standard SK 43 4.086 ppm Au 3830 10T406539 CR-10-039 E5097591 2021.23 2022.23 1.00 not consecutive Standard SK 43 4.086 ppm Au 3830 10T406539 CR-10-039 E5097592 2022.23 2022.73 0.50 not consecutive moderately biotite altered gabbro with weaker carbonate shear 5 10T406539 CR-10-039 E5097592 2022.23 2022.73 0.50 not consecutive wing sample, medium grained gabbro 3 10T406539 CR-10-039 E5097593 2036.00 2036.67 0.67 not consecutive wing sample, biotite altered sheared gabbro	CR-10-039	E5097586	1998.00	1999.00	1.00	consecutive	as above 585	3	10T406539
CR-10-039 E5097588 2020.00 2020.52 0.52 not consecutive wing sample, moderately biotite altered gabbro 5 10T406539 CR-10-039 E5097589 2020.52 2021.23 0.71 not consecutive carbonaceous shear with diss sulphides in gabbro. 3 10T406539 CR-10-039 E5097590 0.00 0.00 not consecutive Standard SK 43 4.086 ppm Au 3830 10T406539 CR-10-039 E5097591 2021.23 2022.23 1.00 not consecutive Standard SK 43 4.086 ppm Au 3830 10T406539 CR-10-039 E5097591 2021.23 2022.23 1.00 not consecutive moderately biotite altered gabbro with weaker carbonate shear 5 10T406539 CR-10-039 E5097592 2022.23 2022.73 0.50 not consecutive wing sample, medium grained gabbro 3 10T406539 CR-10-039 E5097593 2036.00 2036.67 0.67 not consecutive wing sample, biotite altered sheared gabbro 9 10T406539 CR-10-039 E5097594 2036.67	CR-10-039	E5097587	1999.00	2000.00	1.00	not consecutive	wing sample, as above 585	3	10T406539
CR-10-039 E5097589 2020.52 2021.23 0.71 not consecutive carbonaceous shear with diss sulphides in gabbro. 3 10T406539 CR-10-039 E5097590 0.00 0.00 not consecutive Standard SK 43 4.086 ppm Au 3830 10T406539 CR-10-039 E5097591 2021.23 2022.23 1.00 not consecutive moderately biotite altered gabbro with weaker carbonate shear 5 10T406539 CR-10-039 E5097592 2022.23 2022.73 0.50 not consecutive wing sample, medium grained gabbro 3 10T406539 CR-10-039 E5097592 2022.23 2026.77 0.50 not consecutive wing sample, medium grained gabbro 3 10T406539 CR-10-039 E5097593 2036.00 2036.67 0.67 not consecutive wing sample, biotite altered sheared gabbro 9 10T406539 CR-10-039 E5097594 2036.67 2038.00 1.33 consecutive hornfelsed seds at contact to gabbro with coarse very dark garnets. 52 10T406539 CR-10-039 E5097595	CR-10-039	E5097588	2020.00	2020.52	0.52	not consecutive	wing sample, moderately biotite altered gabbro	5	10T406539
CR-10-039 E5097590 0.00 0.00 not consecutive Standard SK 43 4.086 ppm Au 3830 10T406539 CR-10-039 E5097591 2021.23 2022.23 1.00 not consecutive moderately biotite altered gabbro with weaker carbonate shear 5 10T406539 CR-10-039 E5097592 2022.23 2022.73 0.50 not consecutive wing sample, medium grained gabbro 3 10T406539 CR-10-039 E5097593 2036.00 2036.67 0.67 not consecutive wing sample, biotite altered sheared gabbro 9 10T406539 CR-10-039 E5097594 2036.67 2.067 0.67 not consecutive wing sample, biotite altered sheared gabbro 9 10T406539 CR-10-039 E5097594 2036.67 2.038.00 1.33 consecutive hornfelsed seds at contact to gabbro with coarse very dark garnets. 52 10T406539 CR-10-039 E5097595 2038.00 1.00 consecutive as above 594 54 10T406539	CR-10-039	E5097589	2020.52	2021.23	0.71	not consecutive	carbonaceous shear with diss sulphides in gabbro.	3	10T406539
CR-10-039 E5097591 2021.23 2022.23 1.00 not consecutive moderately biotite altered gabbro with weaker carbonate shear 5 10T406539 CR-10-039 E5097592 2022.23 2022.73 0.50 not consecutive wing sample, medium grained gabbro 3 10T406539 CR-10-039 E5097593 2036.00 2036.67 0.67 not consecutive wing sample, biotite altered sheared gabbro 9 10T406539 CR-10-039 E5097594 2036.67 2038.00 1.33 consecutive hornfelsed seds at contact to gabbro with coarse very dark garnets. 52 10T406539 CR-10-039 E5097595 2038.00 2039.00 1.00 consecutive as above 594 54 10T406539	CR-10-039	E5097590	0.00	0.00	0.00	not consecutive	Standard SK 43 4.086 ppm Au	3830	10T406539
CR-10-039 E5097592 2022.23 2022.73 0.50 not consecutive wing sample, medium grained gabbro 3 10T406539 CR-10-039 E5097593 2036.00 2036.67 0.67 not consecutive wing sample, biotite altered sheared gabbro 9 10T406539 CR-10-039 E5097594 2036.67 2038.00 1.33 consecutive hornfelsed seds at contact to gabbro with coarse very dark garnets. 52 10T406539 CR-10-039 E5097595 2038.00 1.00 consecutive as above 594 54 10T406539	CR-10-039	E5097591	2021.23	2022.23	1.00	not consecutive	moderately biotite altered gabbro with weaker carbonate shear	5	10T406539
CR-10-039 E5097593 2036.00 2036.67 0.67 not consecutive wing sample, biotite altered sheared gabbro 9 10T406539 CR-10-039 E5097594 2036.67 2038.00 1.33 consecutive hornfelsed seds at contact to gabbro with coarse very dark garnets. 52 10T406539 CR-10-039 E5097595 2038.00 2039.00 1.00 consecutive as above 594 54 10T406539	CR-10-039	E5097592	2022.23	2022.73	0.50	not consecutive	wing sample, medium grained gabbro	3	10T406539
CR-10-039 E5097594 2036.67 2038.00 1.33 consecutive hornfelsed seds at contact to gabbro with coarse very dark garnets. 52 10T406539 CR-10-039 E5097595 2038.00 2039.00 1.00 consecutive as above 594 54 10T406539	CR-10-039	E5097593	2036.00	2036.67	0.67	not consecutive	wing sample, biotite altered sheared gabbro	9	10T406539
CR-10-039 E5097595 2038.00 2039.00 1.00 consecutive as above 594 54 10T406539	CR-10-039	E5097594	2036.67	2038.00	1.33	consecutive	hornfelsed seds at contact to gabbro with coarse very dark garnets.	52	10T406539
	CR-10-039	E5097595	2038.00	2039.00	1.00	consecutive	as above 594	54	10T406539

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-10-039	E5097596	2039.00	2040.35	1.35	consecutive	as above 594	115	10T406539
CR-10-039	E5097597	2040.35	2041.00	0.65	consecutive	chert with PO, CPY, APY, SP	15	10T406539
CR-10-039	E5097598	2041.00	2042.00	1.00	not consecutive	as above 597	77	10T406539
CR-10-039	E5097599	2046.00	2047.00	1.00	not consecutive	dark grey cherty seds with 3cm vein with ample PO, SP and APY	135	10T406539
CR-10-039	E5097600	2050.00	2051.00	1.00	not consecutive	chert, several cm qv with PO, CPY, SP and APY	16	10T406539
CR-10-039	E5097601	2060.00	2061.00	1.00	not consecutive	chert with minor qv, PO and Apy	40	10T406539
CR-10-039	E5097602	2061.00	2062.00	1.00	consecutive	as above 601	121	10T406539
CR-10-039	E5097603	2062.00	2063.00	1.00	consecutive	as above 601	161	10T406539
CR-10-039	E5097604	2063.00	2064.00	1.00	consecutive	as above 601	519	10T406539
CR-10-039	E5097605	2064.00	2065.00	1.00	consecutive	as above 601	276	10T406539
CR-10-039	E5097606	2065.00	2066.00	1.00	consecutive	as above 601, with highest APY content	717	10T406539
CR-10-039	E5097607	2066.00	2067.00	1.00	consecutive	chert, sulphides waning with fault in center	12	10T406539
CR-10-039	E5097608	2070.00	2071.00	1.00	not consecutive	wing sample, chert with thin lamprophyre dyke	5	10T406539
CR-10-039	E5097609	2071.00	2071.88	0.88	consecutive	hornfelsed sediments with garnets, iron carbonate at contact to gabbro.	7	10T406539
CR-10-039	E5097610	0.00	0.00	0.00	not consecutive	Standard OxK 69 3.583 ppm Au	3600	10T406539
CR-10-039	E5097611	2071.88	2073.00	1.12	not consecutive	wing sample, moderately sheared and biotite altered gabbro.	10	10T406539

Gyro Survey Record

Hole ID	Station (m)	Dip (Degrees)	Azimuth
CR-10-039	0	-84.26	22.00
CR-10-039	5	-84.33	20.74
CR-10-039	10	-84.20	21.32
CR-10-039	15	-84.21	21.40
CR-10-039	20	-84.06	22.26
CR-10-039	25	-83.88	23.07
CR-10-039	30	-83.78	23.38
CR-10-039	35	-83.72	23.48
CR-10-039	40	-83.60	24.03
CR-10-039	45	-83.59	25.37
CR-10-039	50	-83.46	26.01
CR-10-039	55	-83.28	26.45
CR-10-039	60	-83.10	27.11
CR-10-039	65	-83.10	27.52
CR-10-039	70	-83.04	27.67
CR-10-039	75	-83.00	27.10
CR-10-039	80	-82.98	26.51
CR-10-039	85	-82.90	26.77
CR-10-039	90	-82.92	26.64
CR-10-039	95	-82.89	27.19
CR-10-039	100	-82.87	27.01
CR-10-039	105	-82.79	27.14
CR-10-039	110	-82.72	27.98
CR-10-039	115	-82.67	27.88
CR-10-039	120	-82.70	28.98
CR-10-039	125	-82.62	28.71
CR-10-039	130	-82.58	28.91
CR-10-039	135	-82.54	29.71
CR-10-039	140	-82.49	29.43
CR-10-039	145	-82.40	29.73
CR-10-039	150	-82.36	29.78
CR-10-039	155	-82.14	30.71
CR-10-039	160	-82.08	31.00
CR-10-039	165	-81.96	30.61
CR-10-039	170	-81.95	31.09
CR-10-039	175	-81.89	31.17
CR-10-039	180	-81.78	30.46

Gyro Survey Record

Hole ID	Station (m)	Dip (Degrees)	Azimuth
CR-10-039	185	-81.75	30.93
CR-10-039	190	-81.76	30.67
CR-10-039	195	-81.74	30.24
CR-10-039	200	-81.64	29.68
CR-10-039	205	-81.56	29.33
CR-10-039	210	-81.44	29.45
CR-10-039	215	-81.39	29.47
CR-10-039	220	-81.35	29.67
CR-10-039	225	-81.33	30.50
CR-10-039	230	-81.24	30.41
CR-10-039	235	-81.07	30.87
CR-10-039	240	-80.84	30.67
CR-10-039	245	-80.86	31.63
CR-10-039	250	-80.79	31.26
CR-10-039	255	-80.57	30.90
CR-10-039	260	-80.36	31.23
CR-10-039	265	-80.08	30.98
CR-10-039	270	-79.74	31.56
CR-10-039	275	-79.53	32.22
CR-10-039	280	-79.26	32.48
CR-10-039	285	-79.19	32.69
CR-10-039	290	-79.24	33.30
CR-10-039	295	-79.26	33.28
CR-10-039	300	-79.18	32.99
CR-10-039	305	-79.04	33.18
CR-10-039	310	-79.02	33.13
CR-10-039	315	-78.97	33.53
CR-10-039	320	-78.83	32.98
CR-10-039	325	-78.66	33.38
CR-10-039	330	-78.59	33.13
CR-10-039	335	-78.44	34.03
CR-10-039	340	-78.10	34.31
CR-10-039	345	-77.98	34.57
CR-10-039	350	-77.89	34.58
CR-10-039	355	-77.69	34.63
CR-10-039	360	-77.48	34.81
CR-10-039	365	-77.35	35.00

Gyro Survey Record

Hole ID	Station (m)	Dip (Degrees)	Azimuth
CR-10-039	370	-77.14	35.40
CR-10-039	375	-76.83	36.05
CR-10-039	380	-76.56	36.44
CR-10-039	385	-76.18	37.35
CR-10-039	390	-75.82	38.07
CR-10-039	395	-75.44	39.13
CR-10-039	400	-75.14	39.95
CR-10-039	405	-74.91	40.18
CR-10-039	410	-74.62	40.76
CR-10-039	415	-74.42	41.29
CR-10-039	420	-74.30	41.69
CR-10-039	425	-74.13	41.92
CR-10-039	430	-74.04	42.13
CR-10-039	435	-73.94	42.17
CR-10-039	440	-73.74	42.00
CR-10-039	445	-73.63	42.12
CR-10-039	450	-73.56	42.45
CR-10-039	455	-73.47	43.09
CR-10-039	460	-73.29	43.41
CR-10-039	465	-73.16	43.86
CR-10-039	470	-72.95	44.42
CR-10-039	475	-72.76	44.81
CR-10-039	480	-72.65	45.18
CR-10-039	485	-72.47	45.62
CR-10-039	490	-72.27	46.01
CR-10-039	495	-72.08	46.22
CR-10-039	500	-71.92	46.37
CR-10-039	505	-71.82	46.80
CR-10-039	510	-71.67	46.97
CR-10-039	515	-71.55	47.17
CR-10-039	520	-71.49	47.14
CR-10-039	525	-71.27	47.07
CR-10-039	530	-71.10	47.28
CR-10-039	535	-71.03	47.47
CR-10-039	540	-70.81	47.65
CR-10-039	545	-70.65	47.95
CR-10-039	550	-70.44	48.41

Gyro Survey Record

Hole ID	Station (m)	Dip (Degrees)	Azimuth
CR-10-039	555	-70.30	48.15
CR-10-039	560	-70.16	47.96
CR-10-039	565	-69.92	47.72
CR-10-039	570	-69.75	47.98
CR-10-039	575	-69.62	47.98
CR-10-039	580	-69.45	48.08
CR-10-039	585	-69.32	48.17
CR-10-039	590	-69.19	48.55
CR-10-039	595	-68.94	48.63
CR-10-039	600	-68.67	48.36
CR-10-039	605	-68.39	48.27
CR-10-039	610	-68.38	48.56
CR-10-039	615	-68.19	48.70
CR-10-039	620	-68.03	48.73
CR-10-039	625	-67.89	48.69
CR-10-039	630	-67.70	48.46
CR-10-039	635	-67.63	47.94
CR-10-039	640	-67.54	47.70
CR-10-039	645	-67.45	47.44
CR-10-039	650	-67.28	47.13
CR-10-039	655	-67.13	46.88
CR-10-039	660	-66.98	46.69
CR-10-039	665	-66.88	46.77
CR-10-039	670	-66.84	46.86
CR-10-039	675	-66.78	47.23
CR-10-039	680	-66.68	47.20
CR-10-039	685	-66.61	47.07
CR-10-039	690	-66.54	47.13
CR-10-039	695	-66.46	47.16
CR-10-039	700	-66.43	47.12
CR-10-039	705	-66.38	47.17
CR-10-039	710	-66.27	47.07
CR-10-039	715	-66.24	47.24
CR-10-039	720	-66.14	47.46
CR-10-039	725	-66.09	47.38
CR-10-039	730	-65.92	47.61
CR-10-039	735	-65.86	47.70

Gyro Survey Record

Hole ID	Station (m)	Dip (Degrees)	Azimuth
CR-10-039	740	-65.76	47.78
CR-10-039	745	-65.61	47.92
CR-10-039	750	-65.49	48.03
CR-10-039	755	-65.38	48.23
CR-10-039	760	-65.23	48.38
CR-10-039	765	-65.00	48.33
CR-10-039	770	-64.89	48.47
CR-10-039	775	-64.75	48.77
CR-10-039	780	-64.63	48.90
CR-10-039	785	-64.48	48.88
CR-10-039	790	-64.39	48.96
CR-10-039	795	-64.29	48.91
CR-10-039	800	-64.22	48.85
CR-10-039	805	-64.16	48.71
CR-10-039	810	-64.20	48.83
CR-10-039	815	-64.13	48.92
CR-10-039	820	-64.01	48.85
CR-10-039	825	-64.00	48.96
CR-10-039	830	-63.92	49.02
CR-10-039	835	-63.82	49.04
CR-10-039	840	-63.78	49.05
CR-10-039	845	-63.73	48.97
CR-10-039	850	-63.70	49.09
CR-10-039	855	-63.72	49.02
CR-10-039	860	-63.65	49.08
CR-10-039	865	-63.60	48.93
CR-10-039	870	-63.48	49.01
CR-10-039	875	-63.49	49.02
CR-10-039	880	-63.49	49.05
CR-10-039	885	-63.40	49.07
CR-10-039	890	-63.34	49.21
CR-10-039	895	-63.24	48.97
CR-10-039	900	-63.11	48.89
CR-10-039	905	-63.02	48.82
CR-10-039	910	-62.87	48.66
CR-10-039	915	-62.84	48.61
CR-10-039	920	-62.57	48.72

Gyro Survey Record

Hole ID	Station (m)	Dip (Degrees)	Azimuth
CR-10-039	925	-62.50	48.26
CR-10-039	930	-62.42	48.27
CR-10-039	935	-62.36	48.34
CR-10-039	940	-62.35	48.30
CR-10-039	945	-62.31	48.28
CR-10-039	950	-62.20	48.13
CR-10-039	955	-62.27	48.18
CR-10-039	960	-62.16	48.20
CR-10-039	965	-62.08	48.31
CR-10-039	970	-61.93	48.08
CR-10-039	975	-61.89	48.16
CR-10-039	980	-61.87	48.20
CR-10-039	985	-61.82	48.23
CR-10-039	990	-61.74	48.22
CR-10-039	995	-61.74	48.28
CR-10-039	1000	-61.72	48.27
CR-10-039	1005	-61.65	48.38
CR-10-039	1010	-61.60	48.35
CR-10-039	1015	-61.53	48.30
CR-10-039	1020	-61.48	48.36
CR-10-039	1025	-61.52	48.27
CR-10-039	1030	-61.48	48.35
CR-10-039	1035	-61.47	48.40
CR-10-039	1040	-61.42	48.44
CR-10-039	1045	-61.40	48.43
CR-10-039	1050	-61.28	48.33
CR-10-039	1055	-61.27	48.29
CR-10-039	1060	-61.20	48.33
CR-10-039	1065	-61.22	48.41
CR-10-039	1070	-61.16	48.35
CR-10-039	1075	-61.19	48.39
CR-10-039	1080	-61.12	48.77
CR-10-039	1085	-61.01	48.73
CR-10-039	1090	-61.00	48.72
CR-10-039	1095	-60.95	48.74
CR-10-039	1100	-60.98	48.87
CR-10-039	1105	-60.90	48.86

Gyro Survey Record

Hole ID	Station (m)	Dip (Degrees)	Azimuth
CR-10-039	1110	-60.94	48.92
CR-10-039	1115	-60.82	49.00
CR-10-039	1120	-60.82	49.04
CR-10-039	1125	-60.79	49.06
CR-10-039	1130	-60.80	49.21
CR-10-039	1135	-60.70	49.27
CR-10-039	1140	-60.65	49.32
CR-10-039	1145	-60.59	49.44
CR-10-039	1150	-60.53	49.57
CR-10-039	1155	-60.51	49.80
CR-10-039	1160	-60.53	49.86
CR-10-039	1165	-60.53	49.92
CR-10-039	1170	-60.50	50.02
CR-10-039	1175	-60.46	50.01
CR-10-039	1180	-60.39	50.10
CR-10-039	1185	-60.37	50.09
CR-10-039	1190	-60.33	50.18
CR-10-039	1195	-60.30	50.19
CR-10-039	1200	-60.28	50.27
CR-10-039	1205	-60.25	50.33
CR-10-039	1210	-60.27	50.44
CR-10-039	1215	-60.25	50.42
CR-10-039	1220	-60.22	50.38
CR-10-039	1225	-60.18	50.33
CR-10-039	1230	-60.19	50.36
CR-10-039	1235	-60.16	50.38
CR-10-039	1240	-60.14	50.44
CR-10-039	1245	-60.08	50.41
CR-10-039	1250	-60.00	50.22
CR-10-039	1255	-59.89	50.17
CR-10-039	1260	-59.87	50.06
CR-10-039	1265	-59.78	50.00
CR-10-039	1270	-59.71	49.93
CR-10-039	1275	-59.61	49.89
CR-10-039	1280	-59.48	49.82
CR-10-039	1285	-59.32	49.64
CR-10-039	1290	-59.15	49.40

Gyro Survey Record

Hole ID	Station (m)	Dip (Degrees)	Azimuth
CR-10-039	1295	-59.00	49.32
CR-10-039	1300	-58.85	49.17
CR-10-039	1305	-58.80	49.29
CR-10-039	1310	-58.68	49.16
CR-10-039	1315	-58.59	49.08
CR-10-039	1320	-58.50	49.14
CR-10-039	1325	-58.44	49.02
CR-10-039	1330	-58.34	48.91
CR-10-039	1335	-58.23	48.95
CR-10-039	1340	-58.13	48.89
CR-10-039	1345	-58.01	48.67
CR-10-039	1350	-57.91	48.48
CR-10-039	1355	-57.81	48.38
CR-10-039	1360	-57.77	48.30
CR-10-039	1365	-57.71	48.22
CR-10-039	1370	-57.69	48.14
CR-10-039	1375	-57.68	48.15
CR-10-039	1380	-57.58	48.21
CR-10-039	1385	-57.49	48.13
CR-10-039	1390	-57.40	48.15
CR-10-039	1395	-57.36	48.14
CR-10-039	1400	-57.24	48.25
CR-10-039	1405	-57.21	48.34
CR-10-039	1410	-57.23	48.35
CR-10-039	1415	-57.06	48.41
CR-10-039	1420	-56.83	48.65
CR-10-039	1425	-56.63	49.05
CR-10-039	1430	-56.46	48.96
CR-10-039	1435	-56.20	49.08
CR-10-039	1440	-56.01	49.10
CR-10-039	1445	-55.90	49.15
CR-10-039	1450	-55.84	49.09
CR-10-039	1455	-55.76	49.09
CR-10-039	1460	-55.73	49.05
CR-10-039	1465	-55.65	49.04
CR-10-039	1470	-55.58	49.08
CR-10-039	1475	-55.50	49.01

Gyro Survey Record

Hole ID	Station (m)	Dip (Degrees)	Azimuth
CR-10-039	1480	-55.48	48.95
CR-10-039	1485	-55.42	48.97
CR-10-039	1490	-55.41	48.95
CR-10-039	1495	-55.37	48.91
CR-10-039	1500	-55.36	48.89
CR-10-039	1505	-55.28	49.04
CR-10-039	1510	-55.22	49.00
CR-10-039	1515	-55.16	48.86
CR-10-039	1520	-55.11	48.84
CR-10-039	1525	-55.08	48.85
CR-10-039	1530	-54.98	48.87
CR-10-039	1535	-55.05	48.69
CR-10-039	1540	-55.01	48.59
CR-10-039	1545	-55.17	48.36
CR-10-039	1550	-55.15	48.26
CR-10-039	1555	-55.07	48.24
CR-10-039	1560	-54.88	48.05
CR-10-039	1565	-54.39	47.84
CR-10-039	1570	-54.18	47.78
CR-10-039	1575	-54.02	47.58
CR-10-039	1580	-53.86	47.59
CR-10-039	1585	-53.68	47.58
CR-10-039	1590	-53.64	47.61
CR-10-039	1595	-53.61	47.71
CR-10-039	1600	-53.59	47.75
CR-10-039	1605	-53.58	47.77
CR-10-039	1610	-53.56	47.80
CR-10-039	1615	-53.50	47.93
CR-10-039	1620	-53.49	47.95
CR-10-039	1625	-53.48	47.88
CR-10-039	1630	-53.42	47.87
CR-10-039	1635	-53.26	47.77
CR-10-039	1640	-53.26	47.60
CR-10-039	1645	-53.16	47.61
CR-10-039	1650	-53.11	47.59
CR-10-039	1655	-53.11	47.58
CR-10-039	1660	-53.10	47.45

Gyro Survey Record

Hole ID	Station (m)	Dip (Degrees)	Azimuth
CR-10-039	1665	-53.03	47.35
CR-10-039	1670	-52.96	47.20
CR-10-039	1675	-52.95	47.28
CR-10-039	1680	-52.92	47.25
CR-10-039	1685	-52.84	47.25
CR-10-039	1690	-52.81	47.32
CR-10-039	1695	-52.73	47.14
CR-10-039	1700	-52.74	46.91
CR-10-039	1705	-52.70	46.65
CR-10-039	1710	-52.69	46.51
CR-10-039	1715	-52.64	46.45
CR-10-039	1720	-52.47	46.48
CR-10-039	1725	-52.40	46.39
CR-10-039	1730	-52.26	46.28
CR-10-039	1735	-52.19	46.18
CR-10-039	1740	-52.12	46.20
CR-10-039	1745	-52.01	46.11
CR-10-039	1750	-51.95	45.94
CR-10-039	1755	-51.87	45.86
CR-10-039	1760	-51.80	45.91
CR-10-039	1765	-51.77	45.87
CR-10-039	1770	-51.72	45.79
CR-10-039	1775	-51.58	45.58
CR-10-039	1780	-51.48	45.41
CR-10-039	1785	-51.38	45.27
CR-10-039	1790	-51.24	45.16
CR-10-039	1795	-51.08	44.87
CR-10-039	1800	-50.94	44.66
CR-10-039	1805	-50.87	44.54
CR-10-039	1810	-50.88	44.20
CR-10-039	1815	-50.78	44.19
CR-10-039	1820	-50.78	44.08
CR-10-039	1825	-50.74	44.02
CR-10-039	1830	-50.69	44.03
CR-10-039	1835	-50.65	44.11
CR-10-039	1840	-50.58	44.03
CR-10-039	1845	-50.33	44.02

Gyro Survey Record

Hole ID	Station (m)	Dip (Degrees)	Azimuth
CR-10-039	1850	-50.31	43.91
CR-10-039	1855	-50.14	43.82
CR-10-039	1860	-49.88	43.55
CR-10-039	1865	-49.67	43.15
CR-10-039	1870	-49.60	43.00
CR-10-039	1875	-49.55	42.96
CR-10-039	1880	-49.51	43.03
CR-10-039	1885	-49.57	43.02
CR-10-039	1890	-49.58	42.90
CR-10-039	1895	-49.50	42.83
CR-10-039	1900	-49.42	42.95
CR-10-039	1905	-49.19	42.91
CR-10-039	1910	-49.17	42.71
CR-10-039	1915	-49.16	42.60
CR-10-039	1920	-49.12	42.60
CR-10-039	1925	-49.03	42.78
CR-10-039	1930	-49.01	42.82
CR-10-039	1935	-48.96	42.86
CR-10-039	1940	-48.90	42.73
CR-10-039	1945	-48.84	42.72
CR-10-039	1950	-48.85	42.79
CR-10-039	1955	-48.84	42.76
CR-10-039	1960	-48.82	42.69
CR-10-039	1965	-48.81	42.69
CR-10-039	1970	-48.84	42.65
CR-10-039	1975	-48.87	42.78
CR-10-039	1980	-48.80	42.92
CR-10-039	1985	-48.81	42.88
CR-10-039	1990	-48.73	42.92
CR-10-039	1995	-48.69	42.99
CR-10-039	2000	-48.64	42.97
CR-10-039	2010	-48.50	42.97
CR-10-039	2040	-48.30	42.97
CR-10-039	2070	-48.30	42.97
CR-10-039	2084	-48.30	42.97

Conquest Resources Ltd.

Exploration Diamond Drill Log

CR-10-039-W1

DRILL HOLE # CR-10-039-W	1 LOCATION Balmertown	, Balmer Town	ship, Red Lake I	District, Ontar	io	
PROJECT # Alexander	REFERENCE Alexander		GEOLOGIST	Meckert	CLAIM	KRL 20488
GRID/ NAD-ZONE	NORTHING	EASTING		ELEVATION		GRID TYPE
GRID Alexander RL	8+70 S	1+26 W		9935.7		Μ
UTM NAD83 / 15U	5656049.3	449592.2		316.7		
COLLAR DIP -77.6 Wedge	GRID DIRECTION	North			AZ DIRECTION	34.3
NTS REF # 052N04	NTS SHEET NAME	Red Lake, Ont	ario		-	
START DATE 13-May-10		FINISH DATE	8-Jun-10			
DEPTH (EOH) 1226.00	TARGET & Zone Depth	Approx 500m o	f Balmer Assemb	lage and Upper	Bruce Channel	
PURPOSE Wedge hole	rom CR-10-039 to test Bal	mer				
CASING BW na	CASING NW	/ <u>na</u>			CASING HW	na
PLUG @ na	PLUG @	na na			PLUG @	na
START DTH 320.00	WEDGE @	320				
REDUCED @ na	REDUCED @	na na				
HOLE STATUS Completed, v	vashed and capped. Hole	terminated ear	ly. Core Barrel	and bit left in	hole at 1,226	m
DRILLING CONTRACTOR	Boart Longyear Inc.					
RIG NO. LY 55 4154					BXS.	210
					-	

GYR	O Survey: Multishot In and Out of Ho	ble	
DEPTH (m)	AZIMUTH	DIP	Comments:
320	34.32	-77.63	1st Target was intersected between 736m
370	45.62	-61.84	and 766m. The first 30m of the Balmer Basalt
420	47.67	-59.78	show a varying degree of shearing, biotite
470	48.77	-58.23	alteration and buff colored aluminous
520	49.04	-56.49	the necessary ingredients were present the
570	49.36	-54.88	assays did not return any significant gold
620	51.47	-53.07	values. 2nd Target A moderate carbonaceous
670	51.75 -51.19	-51.19	shear was encountered between 779m and
720	52.57	-50.58	782m with the center yielding an assay of
770	53.63	-49.89	.81gr/t Au. <u>3rd Target</u> Another shear
820	53.57	-49.14	structure between 832m and 835m again did
870	54.38	-48.79	Unfortunately the hole was terminated
920	55.56	-48.41	prematurely due to driller error and the two
970	56.83	-48.06	promising chert horizons encountered in the
1020	57.49	-47.56	parent hole within the Bruce Channel
1070	58.33	-46.96	Formation were not tested.
1120	60.16	-46.51	
1170	62.58	-46.03	
1220	64.18	-45.51	

Drill with 6m standard NQ core barrel

Planned hole depth was 1700m (5580'), EOH was early due to bit sticking at 1226m depth. Hole Terminated.

Core stored at Alexander Core Yard at UTM 0449935 5656595

Water source: beaver pond located at 449718 5656178 UTM NAD83 15U

Drill type: LY-55

Conquest Resources Ltd. Diamond Drill Record Major Lithologies

Hole Name	From	То	Length	Code	Description	Rep
CR-10-039-W1	320.00	401.88	81.88	S6A	Variably light to dark grey coloured, moderately well bedded, poorly mineralized, locally magnetic, at times muddy, Siltstone within Huston Group. Few minor quartz and quartz carbonate veins with NIL mineralization. Rare cm-scale mafic plagioclase phyric chlorite-bearing dykes with NIL mineralization. Trace disseminated pyrite throughout. Upper contact is slightly sheared with minor coarsening and few coarse crystals of dark green coloured horneblende. Blocky coring unit. Good Recovery in general.	
CR-10-039-W1	401.88	440.63	38.75	I2G	Steel grey green coloured, fine to medium grained, foliated and locally quartz crystal bearing Quartz Monzodiorite. Foliation is generally moderate in intensity with irregular and planar fracturing. Approximately 60% plagioclase and 10-15% quartz with 4-5% fine biotite. Unit is poorly altered 01-03 chlorite, <04% biotite, and local carbonate (calcite) and 1% sericite. Plagioclase is fine grained with occasional 2-3mm scale interlocking crystal textures in fine grained intrusive which are similar in texture to the quartz crystals present. Minor quartz veins. Trace Pyrite. Upper contacts is sharp at 62 degCa. Lower contact is irregular at roughly 20 degCa.	
CR-10-039-W1	440.63	461.45	20.82	S6A	As above 320 - 401.88 without dykes.	
CR-10-039-W1	461.45	520.66	59.21	S6D	Medium grey coloured silty Mudstone with flames, blebs and disseminated pyrrhotite. Sulphide content decreasing downward. Bedding goes from orderly to contorted in muddy as well as siltier sections. Occasional quartz carbonate veins tend to be folded and are often dismembered. Contacts between silty and muddy sections are sharp.	
CR-10-039-W1	520.66	523.22	2.56	SHR	Sheared and silicified Siltstones and tufaceous material (chloritic and garnetiferous) with quartz and quartzcarbonate veins. Veins are folded, dismembered and anastomosing. Only minute traces of sulphides can be observed.	
CR-10-039-W1	523.22	549.23	26.01	S6A	Medium grey coloured, banded to massive siltstone to quartzite. Bedding structures may run from 65 degCa to parallel to core axis. Folding may be related to underlying intrusive. Plain, lightly folded qcv contain trace PY. Some veins (earlier phase) have been boudinaged and the resulting vein bits have been almost perfectly rounded, making it look more like a conglomerate at first.	
CR-10-039-W1	549.23	568.34	19.11	12G	As above 320 - 401.88 without dykes. Upper contact at 36 degCa, lower contact at 56 degCa follows bedding in underlying rocks.	
CR-10-039-W1	568.34	615.31	46.97	S6A	As above 523.22 to 549.23 but bedding is less contorted.	

Reso	ources Lim	ited				
Hole Name	From	То	Length	Code	Description	Rep
CR-10-039-W1	615.31	685.81	70.50	I2G	Quartz Monzodiorite similar to above with coarse porphyritic texture locally with trace pyrite throughout and occasional trace cubic arsenopyrite. Medium grey to blueish green in colour. Cheifly fresh, massive and porphyritic in texture, unevenly foliated. Occasional milky coloured cross-cutting quartz veining with NIL sulphides. Pervasive weakly sericite altered intrusive. Many chunks to large xenolith blocks of sedimentary wallrock troughout this unit. Blocks can be up to 4.5m in size. Many wallrock fragments have been hornfelsed, the most easily identifiable mineral is garnet. Siltier wall rock fragments tend to be lesser affected. Upper contact is diffuse and uneven. Lower Contact is sharp at 61 degCa, following the foliation pattern.	
CR-10-039-W1	685.81	736.17	50.36	S6D	Medium grey coloured, banded silty Mudstone. Banding is mostly undisturbed following 62 degCa throughout. Frequent sections of chloritic and garnetiferous volcaniclastic material of up to 50cm length. Sulphide content, mostly pyrrhotite, is higher than in the siltstone units above and chiefly occurs finely disseminated even where content exeeds 20% in a band.	
CR-10-039-W1	736.17	738.32	2.15	VN; SHR; BRE	Formational Contact Zone at Balmer and Huston formations. Zone is well characterized by multi-stage quartz veining and bleaching of host rock that is cheifly comprised by brecciated and sheared late intermediate intrusive (similar in original composition likely to typical Quartz Monzodiorite) and minor Basalt all of which is very strongly bleached by silica-sericite (albite) buff coloured aluminous alteration. Model of rehealing in brecciated intrusive and minor volcanic is primarily quartz veining with poorly distinguished siliceous fluids. Late stage milky white plain quartz veins contain very little mineralisation and are locally graphic with minor biotite-(tourmaline). Unit has a mottled look due to shearing and the presence of pinkish brown biotite on shear planes. Possible trace amounts of fuchsite and epidote within lesser fraction of basalt. Pyrrhotite, chalcopyrite, and arsenopyrite are present. Trace fine grained magnetite.	
CR-10-039-W1	738.82	740.09	1.27	130	Dark to medium grey fine grained carbonaceous Lamprophyre dyke exploiting Balmer Basalt contact zone. Some quartz veining and minor foliation.	
CR-10-039-W1	740.09	741.08	0.99	SHR	Strongly sheared Basalt. High degree silicic replacement of almost all carbonate. Brown to pinkish brown in colour due to high biotite content. Sulphides are mostly very fine grained and disseminated throughout. Pyrrhotite and pyrite dominate but chalcopyrite and arsenopyrite are present as well.	
CR-10-039-W1	741.08	742.11	1.03	SHR	Moderately sheared Basalt with only minor silicic replacement. Fractures and veins are dominated by carbonate. Basalt host is moderately biotite altered and brownish green. Trace sulphides can be observed.	

Major Lithologies

Hole Name	From	То	Length	Code	Description	Rep
CR-10-039-W1	742.11	766.00	23.89	ATZ	Grey-green and locally buff coloured, 05-10% quartz-carbonate veined and bleached aluminous altered (K-Mg-Fe cation leaching), well healed fractured Basalt. Several local examples of folded quartz veins with associated fine pyrite in veins and finely disseminated pyrite in wall rock. Moderated silicification, though likely not due to the influx of silica, but rather depletion during aluminous leaching. Some evidence of minor "grey sulphide" masses within carbonaceous and bleached sections.	
CR-10-039-W1	766.00	832.06	66.06	V3B	Greenish grey poorly defined pillowed Basalts. Abundant irregular fractures and pillow selveges are dominated by carbonate. Occasional minor narrow cm-scale sections of apparent shearing and brecciation from volcanic processes. Quartz carbonate veins are eratic and irrregularly spaced throughout usually containing fine grained sulphides. Unit is crosscut by a number of dioritic and lamprophyric dykes.	
CR-10-039-W1	832.06	835.00	2.94	SHR	Well sheared section with a fair amount of quartz carbonate veining. There is some minor biotite alteration and a good part of the sulphides present are tied to this alteration. Pyrite, which dominates the sulphides can also be observed in quartz carbonate veins as well as finely disseminated, along with pyrrhotite and traces of chalcopyrite and arsenopyrite. A 10cm carbonaceous fracture also shows a fair amount of chlorite. Veins tend to be folded and stacked and often show extension fractures.	
CR-10-039-W1	835.00	862.66	27.66	V3B	as above 742.11 to 832.06 but without the Lamprophyre dykes.	
CR-10-039-W1	862.66	883.13	20.47	V3B	Fine grained light green coloured, fractured, massive to foliated Basalt with a number of minor sheared sections. Shears do show signs of some fine sulphide replacement at mm-scale. Most veins and fractures are plain carbonate. Occasional milky quartz veins lack sulphides.	
CR-10-039-W1	883.13	885.08	1.95	SHR	Carbonaceous Shear. Some minor quartz carbonate veins. Unit is quite garnetiferous. Garnets predate shearing because crystals have been drawn out and flattened where shearing is most intense. Sulphides are occuring mostly alongside biotite platelets. Pyrite, pyrrhotite and chalcopyrite can be observed. Two 20cm sections where shearing was most intense also contain magnetite.	
CR-10-039-W1	885.08	898.60	13.52	V3B	Basalt as above. Lower contact is moderately sheared and biotite altered, sharp at 66 degCA	
CR-10-039-W1	898.60	914.14	15.54	SHR	Moderately sheared Basalt. Starting with a couple of pyroclastic interflow horizons that are very colorful due to garnets chlorite sulphide replacement and a 03-05% magnetite. Basalt contains more amygdules than can usually be observed. Lower contact is very difficult to make out because of core axis parallel fractures that have seen some minor brecciation and movement.	

Major Lithologies

Hole Name	From	То	Length	Code	Description	Rep
CR-10-039-W1	914.14	955.98	41.84	V3B	Greenish grey coloured, fine grained, uniform massive to foliated, variolitic Basalt pile. No amygdules. When compared to the Basalts above, this pile looks generally more uniform with fresh looking carbonaceous fractures. The carbonate veins and fracture filling are irregular and locally abundant. At 933m some coarser, nearly gabbroic textures are present in core of volcanic pile. Upper and lower contacts are transitional form fine to medium grained Basalt at 70degCA.	
CR-10-039-W1	955.98	982.31	26.33	V3B	Pale medium green coloured Basalt with 02-05% irregular quartz-carbonate fractures throughout and minor disseminated pyrite. Occassional 5-10cm thick planar quartz veins emplaced at low angles to core axis have blebby associated Pyrite and trace Chalcopyrite (see 973.50m) within minor Monzodiorite dyking which intrudes the Basalt host sharply at 65degCA. One narrow 45cm weak iron formation with intense silica and 05% pyrite with very fine grained magnetite in amorphous silica at 981.89m. Background greenschist chlorite pervasive throughout Basalt with typical minor non-descript whispy blebs of chlorite and biotite replacing fine to medium grained hornblende and plagioclase. Original volcanic textures are preserved with minor foliation at 65degCA. A few localized clusters of quartz-carbonate veins over 1-metre scale intervals have associated biotite in vein selvages and assimilated wall rock fragments. Upper contact is sharp at 55degCA but looks close in texture to the adjacent Gabbro.	
CR-10-039-W1	982.31	1186.73	204.42	I3A	Medium grey green coloured, graded fine to coarse grained, mostly massive Gabbro with occasional irregular quartz-carbonate veining. Occasional intermediate dyking within Gabbro. Foliated sections are limited to 5m thick intervals at approximately 55-60degCA (see 1130m). NIL mineralization. Sharp upper contact with strong silica and narrow iron formation at contact. There is a minor zone of bimodal salt and pepper textured diorite-gabbro dyking through 1176.33 to 1180.86m with several sharp irregular contacts oriented approximately 60degCA. Lower contact grades from very coarse grained typical gabbroic texture to fine grained intrusive texture over 5 metres to a sharp lower contact at 68degCA.	
CR-10-039-W1	1186.73	1210.73	24.00	S6A; V3B	Unit looks sedimentary in nature but is dominated by chloritic fine grained material and occasional larger "clasts" of variolitic Basalt. There are quite a few thin quartz veins, some of them boudinaged. Locally there are clasts or grey quartz-(carbonate) vein fragments. Strong bedding parallel foliation at 75degCA. Late stage, planar, fine carbonate fracture filling. Unit has weathered look to it and may have been close to surface at some point and was welded back together during subsequent burial/sedimentation. Several dykes cut this unit in short succession an may indicate a zone of weakness.	

Major Lithologies

, nes	ources Lin	neu				
Hole Name	From	То	Length	Code	Description	Rep
CR-10-039-W1	1210.73	1225.99	15.26	S6D	Banded dark grey coloured, sulphidic mudstones interbedded with medium grey siltier sections. Banding is quite contorted and at times bands are brecciated or have been dismembered by shearing along the Balmer / Bruce Channel contact.	
CR-10-039-W1	1225.99	1226.00	0.01	EOH	EOH in Bruce Channel Formation. EOH at 1226.00 metres on June 8, 2010. Hole was terminated early due to driller's mechanical error in after terminally sticking the core barrel and bit at 1226 metres. Full rod string was recovered except two 3m standard core barrels, one reaming shell, and one diamond drill bit. Hole was maintained for subsequent wedging. Gyro surveyed. Core is stored at the Conquest Core Facility on the Alexander Property in 210 NQ trays in racks. 135 samples were sent for Au fire assay (50g pulp) at AGAT Labs, Mississauga, ON.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-10-039-W1	349.06	354.70	T3	Dark green coloured intercollated mafic Volcaniclastics containing very fine grained trace disseminated pyrite. Coarsened 2-3mm scale chloritized mafic mineral crystals (<10%) occur in crude banding in fine grained low silica content sugary textured groundmass showing poorly defined bedding at approximately 38degCA. Upper contact is sharp at 35degCA. Lower contact is sharp at 46 degCa. Minor quartz carbonate veins and carbonaceous fractures.	
CR-10-039-W1	436.55	438.28	12J	Brown grey coloured Diorite intrusive with trace pyrite.	
CR-10-039-W1	634.24	635.33	130	Lamprophyre dyke. Brown coloured and rich in biotite close to contact. Progressively greener downward. Foliation follows same trend as in surrounding Quartz Monzodiorite.	
CR-10-039-W1	636.36	642.13	130	Very green coloured Lamprophyre probably due to strong chlorite alteration. Occasional biotite richer bands.	
CR-10-039-W1	644.10	644.80	130	Brown coloured, biotite dominated Lamprophyre. Obviously the last three units belong closely together and it is very interesting to note the strong biotite alteration at the outer edges while the center is chlorite dominated. Strong reaction to acid attests to the presence of carbonate. Some chunks of Quartz Monzodiorite have been assimilated, but don't show any further alteration. All the contacts are quite uneven but it is certain that the dykes are quite steep dipping.	
CR-10-039-W1	696.68	697.57	130	Dark grey coloured and very fine grained carbonaceous Lamprophyre. No other qualifiers. Upper contact at 52 degCa crosscutting bedding. Lower contact at 56 degCa.	
CR-10-039-W1	718.74	722.73	12J	Dark to medium grey coloured fine grained Diorite, containing many wall rock fragments. Contacts to these fragments often seem to be shear planes, but no other evidence of shearing can be observed. Milky quartz veins, like in the surrounding sediments, are late emplacement and mostly unaffected by foliation or shearing.	
CR-10-039-W1	747.75	748.16	12H	Narrow stringer of medium grey coloured and fine grained Monzodiorite.	
CR-10-039-W1	753.78	754.42	12H	short section of medium grey weakly foliated Monzodiorite.	
CR-10-039-W1	759.50	762.77	I2H	Medium grey coloured, weakly foliated Monzodiorite.	
CR-10-039-W1	774.06	775.00	130	Medium grey coloured and fine to medium grained Lamprophyre dyke containing 05% biotite, 03% carbonate and trace disseminated sulphides. Upper and lower contacts are sharp at 60 degCA and 65 degCA, respectively.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-10-039-W1	775.33	775.97	130	Dark grey and fine grained Lamprophyre as above 774.06 to 775.97m. Upper and lower contacts are sharp 68degCA and 64degCA, respectively. Upper contact cross cuts foliation and assumed stratigraphy unlike above Lamp. Dyke only 33cm above which appears conformable.	
CR-10-039-W1	783.30	785.50	12J	Medium grey coloured and fine to medium grained diorite Dyke, Contacts are sharp and irregular. (Possibly Lamprophyric. <03% pervasive carbonate.) Upper contact 70degCA crosscuts foliation with fine biotite in Basalt wallrock.	
CR-10-039-W1	786.16	790.95	I2H	Medium to light grey coloured, foliated Monzodiorite with a narrow 15cm block or narrow dyke of Diorite. It is not clear if this Monzodiorite was cut by diorite or if the narrow Diorite in the Monzodiorite is an incorporated block of wall rock. Monzodiorite is foliated. Contacts are sharp but irregular and fractured.	
CR-10-039-W1	796.32	796.87	130	Dark grey coloured and fine grained Lamprophyre with a thick cross-cutting plain quartz vein.	
CR-10-039-W1	800.56	802.38	130	Dark grey coloured and fine grained Lamprophyre with a mottled look. Unit is brecciated and has experienced some shearing. Trace pyrite throughout. Planes of movement parallel to core axis, which make the contacts very difficult to discern.	
CR-10-039-W1	805.20	805.98	12J	edium grey coloured and fine grained Diorite dyke with uneven contacts.	
CR-10-039-W1	808.66	814.59	I2J	Medium grey coloured and fine grained Diorite dyke. Contacts are sharp but very difficult to discern. Both Contacts at about 70 degCa.	
CR-10-039-W1	818.97	819.48	12J	Medium grey coloured and fined grained Diorite dyke with uneven contacts	
CR-10-039-W1	824.10	827.40	I2J	Medium grey coloured and fine grained Diorite dyke. Moderately biotite altered and foliated. Contacts are uneven.	
CR-10-039-W1	827.40	827.94	V3B	Basalt inbetween Diorite dykes with a 20cm qv at base. Vein contains nil sulphides and seems to be associated with late shearing in Diorite underneath it.	
CR-10-039-W1	827.94	829.10	12J	Wedium grey coloured and fine grained Diorite. Strongly sheared/foliated in upper half.	
CR-10-039-W1	845.76	846.09	I2H	Medium grey coloured, moderately foliated Monzodiorite. Minor biotite alteration and pyrrhotite - pyrite in mm size aggregates. Contacts are sharp and follow 65 degCa fairly consistent.	
CR-10-039-W1	846.77	848.75	12H	as above 845.76 to 846.09	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-10-039-W1	868.75	872.70	12H	as above 845.76 to 846.09	
CR-10-039-W1	898.60	903.08	VS	Pyroclastic Sediments. Dark grey to greenish coloured and mostly fine grained unit except for two distinct sections that are medium to coarse grained, showing chlorite, garnets and a fair amount of magnetite and carbonate. These sections are the product of pyroclastic activity. Amongst the sulphides present, pyrrhotite is dominant, but pyrite and chalcopyrite appear as traces. Sulphides may appear in streaks and mm thick bands or disseminated. It is difficult to discern where the basalt exactly starts because the unit has seen some shearing that has obscured the primary characteristics of the rock.	
CR-10-039-W1	916.35	919.52	I2H	Medium grey and fine grained Monzodiorite with some minor quartz in places. Unit has seen some minor biotite alteration. Contacts are sharp and somewhat uneven, both following roughly 70 degCa.	
CR-10-039-W1	963.87	965.19	I2H	Pale bleached grey coloured Monzodiorite with trace disseminated blebs of pyrite and few quartz veins.	
CR-10-039-W1	969.62	975.21	12H	As above 963.87 to 965.19m Monzodiorite with traces of blebby of pyrite. One irregular quartz vein with associated small pyrite aggregates and minor chalcopyrite in vein.	
CR-10-039-W1	976.94	978.52	I2H	As above 963.87 to 965.19m Monzodiorite, foliated at 60degCA with typical trace disseminated sulphides (pyrite).	
CR-10-039-W1	981.89	982.34	S10A	One narrow 45cm weak iron formation with intense silica and 05% pyrite with very fine grained magnetite in amorphous silica with sharp upper and lower contacts. The best Iron Formation characterized portion of this narrow interval is only 15cm and is amorphous and dark grey in colour when wet. Later fine textured quartz and quartz-carbonate veining has preferentially emplaced along this horizon/structure. No shearing visible.	
CR-10-039-W1	999.52	1001.88	I2H	As above 963.87 to 965.19m Monzodiorite, foliated at 60degCA. Occasional quartz crystals in plagioclasy phyric fine grained intrusive texture. Nil sulphides. Sharp upper and lower contacts at 80degCA and 64degCA respectively.	
CR-10-039-W1	1008.07	1008.34	12H	As above 963.87 to 965.19m narrow massive Monzodiorite.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-10-039-W1	1045.19	1046.19	12H	As above 963.87 to 965.19m narrow massive Monzodiorite.	
CR-10-039-W1	1059.52	1060.51	12G	Light grey coloured Quartz Monzonite with sharp contacts at 75degCA and two irregular quartz veins at 5cm scale at low angles to core. Trace to 01% disseminated pyrite throughout.	
CR-10-039-W1	1191.21	1194.15	12J	Biotite bearing (02-03%), highly magnetic , foliated, Diorite Dyke. Fine to medium grained. Nearly lamprophyric texture with trace pervasive carbonate. Intrusive texture is characterized in principle by 1-2mm corroded plagioclase crystals in a fine grained groundmass texture containing biotite occasional <1mm actinolite laths all of which lends itself to a faintly sodic ghost crystal texture. Generally fresh with minor <05% chlorite. Few 5mm thick, planar, carbonate and quartz-carbonate veins at 35degCA. One irregular grey coloured quartz-biotite-(carbonate-pyrite-pyrrhotite) vein at low angle to core axis. Contacts are undulating and sharp at 90degCA.	
CR-10-039-W1	1195.26	1199.82	12J	Similar to above biotite bearing Diorite but with rare andalusite/sillimanite crystals (see 1197m). Highly magnetic. One low angle, 3cm thick, light grey coloured quartz vein showing significant pale grey-buff coloured wall rock bleaching and abundant irregular fracturing. 01% pyrite blebby disseminations throughout. Sharp upper contact at 62degCA with quartz veining (quartz as described above with wall rock bleaching). Lower contact is sharp at 70degCA.	
CR-10-039-W1	1205.73	1208.68	12G	Grey mottled and translucent looking Quartz Monzodiorite. Weakly foliated with less than 1% biotite. Feldspars are quite fine grained. Pyrite is finely disseminated throughout but also occurs as small blebby masses. From 1206.18 to 1207.08 the unit gets cut by a lamprophyric dyke that doesn't differ from previous lamprophyres encountered. The Lamprophyre contact at the top is marked by an 18cm late milky quartz vein that shows som turmaline. The Lamprophyre contacts are irregular, the Quartz Monzodiorite contacts are sharp, 56 degCa at the top and 68 degCA at the base.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-10-039-W1	1210.25	1210.73	V3B	Yellow brownish to grey grainy Basalt in the immediate contact to dark grey Bruce Channel mudstones. Yellow brownish areas look like fragments of bleached variolitic basalt whereas grey grainy areas are very carbonaceous and look like reconstituted chunks of quartz carbonate veins. The many thin distinct quartz carbonate veins present in the bleached part at the top are absent in the grey grainy part near the bottom. There is quite a bit of pyrite and pyrrhotite disseminated and in larger aggregates throughout.	
CR-10-039-W1	1215.00	1215.55	12J	Very fine grained light to medium grey coloured mottled looking Diorite with lamprophyric texture. Finely disseminated pyrite to 0.1% finely disseminated throughout. Contacts are sharp at 44 degCa following sedimentary banding.	
CR-10-039-W1	1218.18	1226.00	130	Dark grey coloured very weakly foliated Lamprophyre with few small corroded looking feldspars. MM size opaque black grains are probably hornblende. Pyrite is disseminated to 0.2% throughout. Upper contact is sharp but wavy at roughly 44 degCa. The lower 220cm almost appear as if there was a second phase of much finer grained lamprophyre intruding that assimilated some of the already emplaced material that is not as fine grained.	

CR-10-039-W1

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-10-039-W1	E5097612	735.67	736.17	0.50	not consecutive	wing sample, banded siltstone	7	10T408075
CR-10-039-W1	E5097613	736.17	737.17	1.00	consecutive	Quartz vein at contact to basalt	172	10T408075
CR-10-039-W1	E5097614	737.17	738.32	1.15	consecutive	Quartz vein at contact to basalt	214	10T408075
CR-10-039-W1	E5097615	738.32	739.32	1.00	consecutive	Lamprophyre	58	10T408075
CR-10-039-W1	E5097616	739.32	740.09	0.77	consecutive	as above 615	9	10T408075
CR-10-039-W1	E5097617	740.09	741.08	0.99	consecutive	sheared silicified basalt with biotite alteration and diss sulphides	108	10T408075
CR-10-039-W1	E5097618	741.08	742.11	1.03	consecutive	sheared carbonaceous basalt with trace sulphides	4	10T408075
CR-10-039-W1	E5097619	742.11	743.00	0.89	consecutive	brecciated carbonaceous basalt	4	10T408075
CR-10-039-W1	E5097620	743.00	744.00	1.00	consecutive	as above 619	5	10T408075
CR-10-039-W1	E5097621	744.00	745.00	1.00	consecutive	as above 619	5	10T408075
CR-10-039-W1	E5097622	745.00	746.33	1.33	consecutive	as above 619	6	10T408075
CR-10-039-W1	E5097623	746.33	747.10	0.77	consecutive	strong iron carbonate replacement in basalt	5	10T408075
CR-10-039-W1	E5097624	747.10	747.75	0.65	consecutive	brecciated basalt, some iron carbonate	8	10T408075
CR-10-039-W1	E5097625	747.75	748.16	0.41	consecutive	Plain diorite	9	10T408075
CR-10-039-W1	E5097626	748.16	749.33	1.17	consecutive	strong iron carbonate replacement in basalt	4	10T408075
CR-10-039-W1	E5097627	749.33	750.31	0.98	consecutive	brecciated basalt with ironcarbonate replacement and qcv	2	10T408075
CR-10-039-W1	E5097628	750.31	751.31	1.00	consecutive	as above 627	3	10T408075
CR-10-039-W1	E5097629	751.31	752.31	1.00	not consecutive	as above 627	3	10T408075
CR-10-039-W1	E5097630	0.00	0.00	0.00	not consecutive	Standard OxK 69 3.583ppm Au	3580	10T408075
CR-10-039-W1	E5097631	752.31	753.78	1.47	not consecutive	brecciated basalt, weakly mineralised	6	10T408075
CR-10-039-W1	E5097632	753.78	754.42	0.64	consecutive	Plain diorite	3	10T408075
CR-10-039-W1	E5097633	754.42	755.42	1.00	consecutive	weakly mineralized basalt	5	10T408075
CR-10-039-W1	E5097634	755.42	756.42	1.00	consecutive	as above 633	4	10T408075
CR-10-039-W1	E5097635	756.42	757.42	1.00	consecutive	as above 633	5	10T408075
CR-10-039-W1	E5097636	757.42	758.42	1.00	consecutive	as above 633	3	10T408075
CR-10-039-W1	E5097637	758.42	759.50	1.08	consecutive	as above 633	13	10T408075
CR-10-039-W1	E5097638	759.50	761.00	1.50	consecutive	intrusive	8	10T408075
CR-10-039-W1	E5097639	761.00	762.00	1.00	consecutive	as above 638	17	10T408075
CR-10-039-W1	E5097640	762.00	762.77	0.77	consecutive	as above 638	9	10T408075
CR-10-039-W1	E5097641	762.77	764.00	1.23	consecutive	basalt with carbonaceous pillow selvedges and fractures	8	10T408075
CR-10-039-W1	E5097642	764.00	765.00	1.00	consecutive	as above 641	3	10T408075
CR-10-039-W1	E5097643	765.00	766.00	1.00	not consecutive	as above 641	5	10T408075
CR-10-039-W1	E5097644	777.00	778.00	1.00	not consecutive	basalt with carbonaceous pillow selvedges and some qcv containing sulphides	20	10T408075
CR-10-039-W1	E5097645	780.00	781.00	1.00	not consecutive	weak carbonaceous shear in basalt	809	10T408075
CR-10-039-W1	E5097646	781.00	782.00	1.00	consecutive	as above 645	7	10T408075
CR-10-039-W1	E5097647	782.00	783.00	1.00	not consecutive	basalt with few qcv	4	10T408075
CR-10-039-W1	E5097648	791.00	792.00	1.00	not consecutive	basalt with few qcv and minor biotite alteration	22	10T408075

CONQUEST Resources Limited

CR-10-039-W1

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-10-039-W1	E5097649	793.00	794.00	1.00	not consecutive	basalt with carbonaceous pillow selvedges and some qcv	41	10T408075
CR-10-039-W1	E5097650	0.00	0.00	0.00	not consecutive	Standard Si 42 1.761 ppm Au	1760	10T408075
CR-10-039-W1	E5097651	794.00	795.00	1.00	not consecutive	as above 649	10	10T408075
CR-10-039-W1	E5097652	795.00	796.00	1.00	consecutive	as above 649	7	10T408075
CR-10-039-W1	E5097653	796.00	797.00	1.00	consecutive	basalt with thin lamprophyric intrusion	10	10T408075
CR-10-039-W1	E5097654	797.00	798.00	1.00	consecutive	as above 649	15	10T408075
CR-10-039-W1	E5097655	798.00	799.00	1.00	consecutive	as above 649	7	10T408075
CR-10-039-W1	E5097656	799.00	800.56	1.56	consecutive	brecciated basalt at contact to intrusion underneath	13	10T408075
CR-10-039-W1	E5097657	800.56	801.56	1.00	consecutive	brecciated lamprophyre with finely disseminated PY	4	10T408075
CR-10-039-W1	E5097658	801.56	802.38	0.82	consecutive	as above 657	14	10T408075
CR-10-039-W1	E5097659	802.38	803.38	1.00	consecutive	weakly biotite altered and brecciated basalt with some qcv	7	10T408075
CR-10-039-W1	E5097660	803.38	804.38	1.00	consecutive	as above 659	12	10T408075
CR-10-039-W1	E5097661	804.38	805.20	0.82	consecutive	as above 659	15	10T408075
CR-10-039-W1	E5097662	814.09	814.59	0.50	not consecutive	wing sample, diorite	13	10T408075
CR-10-039-W1	E5097663	814.59	814.94	0.35	consecutive	carbonaceous and moderately biotite altered basalt at base of	5	10T408075
CR-10-039-W1	F5097664	814.94	815.44	0.50	not consecutive	20cm diorite followed by "normal" basalt	7	10T408075
CR-10-039-W1	E5097665	830.00	831.00	1.00	not consecutive	basalt with minor gcy_carbonaceous fractures	8	10T408075
CR-10-039-W1	E5097666	831.00	832.06	1.06	consecutive	as above 665	4	10T408075
CR-10-039-W1	E5097667	832.06	833.00	0.94	consecutive	Shear in basalt with gcy and sulphides	5	10T408075
CR-10-039-W1	E5097668	833.00	834.00	1.00	consecutive	as above 667	5	10T408075
CR-10-039-W1	E5097669	834.00	835.00	1.00	not consecutive	as above 667	3	10T408075
CR-10-039-W1	E5097670	0.00	0.00	0.00	not consecutive	Standard SK 43 4.086 ppm Au	4200	10T408075
CR-10-039-W1	E5097671	835.00	836.00	1.00	not consecutive	Weakly sheared basalt	4	10T408075
CR-10-039-W1	E5097672	836.00	837.00	1.00	not consecutive	"normal" basalt	5	10T408075
CR-10-039-W1	E5097673	841.00	842.00	1.00	not consecutive	basalt with qcv and some brecciation	4	10T408075
CR-10-039-W1	E5097674	842.00	843.00	1.00	consecutive	as above 674	5	10T408075
CR-10-039-W1	E5097675	843.00	844.00	1.00	consecutive	as above 674	7	10T408075
CR-10-039-W1	E5097676	844.00	845.00	1.00	not consecutive	as above 674	12	10T408075
CR-10-039-W1	E5097677	860.00	861.00	1.00	not consecutive	basalt with minor qcv, carbonaceous fractures	3	10T408075
CR-10-039-W1	E5097678	882.63	883.13	0.50	not consecutive	wing sample, moderatly biotite altered gabbro	5	10T408075
CR-10-039-W1	E5097679	883.13	883.58	0.45	consecutive	carbonaceous shear with fair amount of magnetite	8	10T408075
CR-10-039-W1	E5097680	883.58	884.19	0.61	consecutive	weaker part of carbonaceous shear	3	10T408075
CR-10-039-W1	E5097681	884.19	885.08	0.89	consecutive	strongly sheared as 679	3	10T408075
CR-10-039-W1	E5097682	885.08	885.58	0.50	not consecutive	wing sample, foliated gabbro	3	10T408075
CR-10-039-W1	E5097683	898.10	898.60	0.50	not consecutive	wing sample, sheared biotite altered gabbro	3	10T408075
CR-10-039-W1	E5097684	898.60	899.31	0.71	consecutive	sheared streaky carbonaceous volcanic seds with fair PO	17	10T408075
CR-10-039-W1	E5097685	899.31	900.21	0.90	consecutive	coarser garnetiferous, carbonaceous pyroclastic rock with sulphide replacement, magnetite	20	10T408075

CONQUEST Resources Limited

CR-10-039-W1

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-10-039-W1	E5097686	900.21	901.30	1.09	consecutive	moderately sheared basaltic rocks with diss sulphides	5	10T408075
CR-10-039-W1	E5097687	901.30	902.32	1.02	consecutive	as above 686	6	10T408075
CR-10-039-W1	E5097688	902.32	903.08	0.76	consecutive	as above pyroclastic 685	14	10T408075
CR-10-039-W1	E5097689	903.08	904.00	0.92	consecutive	wing sample, foliated basalt with minor biotite alteration and trace sulphides	5	10T408075
CR-10-039-W1	E5097690	0.00	0.00	0.00	not consecutive	Standard SI42 1.761 ppm Au	1810	10T408075
CR-10-039-W1	E5097691	963.00	963.87	0.87	not consecutive	Wing Sample: 10% quartz carbonate veins in Basalt in contact with Monzodiorite	4	10T409119
CR-10-039-W1	E5097692	963.87	964.75	0.88	consecutive	Monzodiorite Dyke with trace Pyrite and no veining	3	10T409119
CR-10-039-W1	E5097693	964.75	965.19	0.44	consecutive	Monzodiorite Dyke with trace Pyrite and quartz veining	2	10T409119
CR-10-039-W1	E5097694	965.19	966.25	1.06	consecutive	Wing Sample: Weakly sheared Basalt to above Monzodiorite	17	10T409119
CR-10-039-W1	E5097695	968.69	969.62	0.93	not consecutive	Wing Sample: Basalt with trace Pyrite	12	10T409119
CR-10-039-W1	E5097696	969.62	970.50	0.88	consecutive	Monzodiorite with trace Pyrite	128	10T409119
CR-10-039-W1	E5097697	970.50	972.00	1.50	consecutive	Monzodiorite with trace Pyrite	62	10T409119
CR-10-039-W1	E5097698	972.00	973.20	1.20	consecutive	Monzodiorite with trace Pyrite	20	10T409119
CR-10-039-W1	E5097699	973.20	973.60	0.40	consecutive	Character Sample: Monzodiorite with low angle quartz veins containing PY-CPY-APY	49	10T409119
CR-10-039-W1	E5097700	973.60	974.60	1.00	consecutive	Monzodiorite with trace Pyrite	26	10T409119
CR-10-039-W1	E5097701	974.60	975.21	0.61	consecutive	Monzodiorite with trace Pyrite	25	10T409119
CR-10-039-W1	E5097702	975.21	976.21	1.00	consecutive	Wing Sample: Basalt with trace Pyrite	9	10T409119
CR-10-039-W1	E5097703	980.89	981.89	1.00	not consecutive	Wing Sample: Basalt NIL sulphides	11	10T409119
CR-10-039-W1	E5097704	981.89	982.34	0.45	consecutive	Very strongly magnetic, silica-quartz-carbonate-QV narrow	23	10T409119
CR-10-039-W1	E5097705	982.34	983.31	0.97	consecutive	Infill Wing Sample: Gabbro between NIL sulphide Gabbro and strongly magnetic Quartz Veined Basalt.	9	10T409119
CR-10-039-W1	E5097706	983.31	983.61	0.30	consecutive	Character Sample: 10% quartz-carbonate veined and 10% quartz veined, narrow Gabbro interval in upper contact zone of Gabbro with trace Pyrite with no structure.	7	10T409119
CR-10-039-W1	E5097707	983.61	984.61	1.00	consecutive	Wing Sample: fine grained Gabbro	8	10T409119
CR-10-039-W1	E5097708	766.00	767.00	1.00	not consecutive	Poorly pillowed Basalt with trace to 02% biotite, 01% Pyrite and up to 10% quartz carbonate veins	4	10T409119
CR-10-039-W1	E5097709	767.00	768.00	1.00	consecutive	Poorly pillowed Basalt as above with 10QCBV 02BT 01PY	5	10T409119
CR-10-039-W1	E5097710	0.00	0.00	0.00	not consecutive	Standard Sample: Si42 1.761ppm Au	1790	10T409119
CR-10-039-W1	E5097711	768.00	769.00	1.00	not consecutive	Poorly pillowed Basalt as above with 10QCBV 02BT 01PY	4	10T409119
CR-10-039-W1	E5097712	769.00	770.00	1.00	consecutive	Poorly pillowed Basalt as above with 10QCBV 02BT 01PY	4	10T409119
CR-10-039-W1	E5097713	770.00	771.00	1.00	consecutive	Poorly pillowed Basalt as above with 10QCBV 02BT 01PY	3	10T409119
CR-10-039-W1	E5097714	771.00	772.00	1.00	consecutive	Poorly pillowed Basalt similar to above with up to 15QCBV and several attenuated carbonate filled vesicules	4	10T409119
CR-10-039-W1	E5097715	783.30	784.30	1.00	not consecutive	Blank Sample: Lamprophyre Dyke (Diorite similar composition) with carbonate and fine grained 01% Pyrite	6	10T409119

CONQUEST Resources Limited

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-10-039-W1	E5097716	772.00	773.00	1.00	not consecutive	Poorly pillowed Basalt as above with 10QCBV 02BT 01PY	3	10T409119
						Basalt with 05% quartz carbonate veins and fractures and		
CR-10-039-W1	E5097717	773.00	774.04	1.04	consecutive	abundant low angle fractures which are have buff brown tight	3	10T409119
						healing. NIL Pyrite.		
CR-10-039-W1	E5097718	774.04	775.00	0.96	consecutive	Medium grained Lamprophyre Dyke with 05BT-03CB-01PY	1	10T409119
CP 10 020 W/1	EE007710	775 00	776.00	1.00	consocutivo	One small 30cm section of Basalt and 70cm fine grained	2	107/00110
CK-10-039-001	23037713	773.00	770.00	1.00	consecutive	Lamprophyric Dyke. NIL sulphides.	Z	101409119
						Infill Wing Sample: Basalt with minor low angle bleached fractures		
CR-10-039-W1	E5097720	776.00	777.00	1.00	consecutive	similar to above with up to 05% guartz-carbonate veins. NIL Pyrite.	3	10T409119
CD 40 020 M/4	55007724	777 00	770.00	2.00		Basalt with abundant (15%) quartz carbonate veins and few low	2	407400440
CR-10-039-W1	E5097721	///.00	779.00	2.00	consecutive	angle quartz-carbonate-nornblende-(chalopyrite) veins on 5mm	3	101409119
						scale.		
CR-10-039-W1	E5097722	779.00	780.00	1.00	consecutive	Pacalt trRT 01DV	9	10T409119
CR-10-039-W1	E5097723	784.30	785.50	1.20	not consecutive	Infill Wing Sample: Diorite Lamprophyric Dyke with trace Pyrite.	1	10T409119
CD 10 020 W/1	FF007724		706 16	0.66	aanaa auti ya	Narrow Basalt between dykes with abundant hairline fractures and	c	107400110
CK-10-059-001	E3097724	785.50	/80.10	0.00	consecutive	foliation at 85degCA	0	101409119
CR-10-039-\W/1	F5097725	786 16	787 32	1 16	consecutive	Monzodiorite with minor 01BT locally and buff sericite fractures	2	107/00110
	23037723	700.10	707.52	1.10	consecutive	which are tightly healed.		101403113
						Monzodiorite as above but with an additional 40degCA quartz-		
CR-10-039-W1	E5097726	787.32	787.89	0.57	consecutive	(hornblende) vein (1cm thick) and one irregular quartz-carbonate	3	10T409119
						grey coloured vein.		
CR-10-039-W1	E5097727	787.89	789.00	1.11	consecutive	Monzodiorite as above with one continuous 10degCA qtz-bt-(PY)	7	10T409119
						vein and fractures. Bleached host rock.		
CR-10-039-W1	E5097728	789.00	789.50	0.50	consecutive	Pale light grey bleached zonation of Monzodionte with quartz-	4	10T409119
						Carbonale-Diolite low angle Iractures. 01% Pyrite.		
CR-10-039-W1	E5097729	789.50	791.00	1.50	consecutive	which are tightly healed	14	10T409119
CR-10-039-W1	F5097730	0.00	0.00	0.00	not consecutive	Standard Sample: Sid2 1 761ppm Au	1700	10T409119
<u>en 10 055 W1</u>	23037730	0.00	0.00	0.00	not consecutive	Abundant guartz-carbonate veins within 03% biotite bearing fine	1,00	101403113
CR-10-039-W1	E5097731	792.00	793.00	1.00	not consecutive	grained Basalt with trace Pyrite and a few offsetting low angle	3	10T413779
						fractures.	-	
CR-10-039-W1	E5097732	819.00	820.00	1.00	not consecutive	Wing Sample: 50cm of Basalt and 50cm of Diorite	1	10T413779
CD 40 020 W/	55007700	020.00	024.00	1.00		Character Sample: Narrow quartz-carbonate vein structure (likely		407440330
CK-10-039-W1	E209//33	820.00	821.00	1.00	consecutive	attenuated pillow selvage) with 02% Pyrite.	3	101413779
CR-10-039-W1	E5097734	821.00	822.00	1.00	consecutive	Wing Sample: Pillowed Basalt with trace disseminated Pyrite	5	10T413779
CR-10-039-W1	E5097735	825.00	826.00	1.00	not consecutive	Blank Sample: Diorite	1	10T413779

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-10-039-W1	E5097736	1202.00	1203.00	1.00	not consecutive	Wing sample, weathered looking, fragmental, cloritic, fine grained.	1	10T413779
CR-10-039-W1	E5097737	1203.00	1204.00	1.00	consecutive	as above 736	4	10T413779
CR-10-039-W1	E5097738	1204.00	1205.00	1.00	consecutive	as above 736	6	10T413779
CR-10-039-W1	E5097739	1205.00	1205.73	0.73	consecutive	as above 736	28	10T413779
CR-10-039-W1	E5097740	1205.73	1206.18	0.45	consecutive	Mottled quartzmonzodiorite with PY and fine APY + milky quartz vein.	338	10T413779
CR-10-039-W1	E5097741	1206.18	1207.08	0.90	consecutive	Dark grey fine grained lamprophyre with fine trace PY	39	10T413779
CR-10-039-W1	E5097742	1207.08	1208.68	1.60	consecutive	as above740	197	10T413779
CR-10-039-W1	E5097743	1208.68	1209.48	0.80	consecutive	Chloritic very fine grained basalt with minor biotite	11	10T413779
CR-10-039-W1	E5097744	1209.48	1210.25	0.77	consecutive	as above 744	18	10T413779
CR-10-039-W1	E5097745	1210.25	1210.73	0.48	consecutive	Bleached, carbonaceous multistage qcv basalt with sulphides, at contact to sediments.	6	10T413779
CR-10-039-W1	E5097746	1210.73	1211.23	0.50	consecutive	Wing sample, sulphidic Bruce Channel mudstones.	22	10T413779

Hole ID	Station (m)	Dip (Degrees)	Azimuth
CR-10-039-W1	320	-77.63	34.32
CR-10-039-W1	325	-76.36	37.01
CR-10-039-W1	330	-72.06	40.78
CR-10-039-W1	335	-68.83	42.43
CR-10-039-W1	340	-67.06	43.54
CR-10-039-W1	345	-65.20	44.67
CR-10-039-W1	350	-63.98	45.12
CR-10-039-W1	355	-63.02	45.32
CR-10-039-W1	360	-62.63	45.44
CR-10-039-W1	365	-62.26	45.51
CR-10-039-W1	370	-61.84	45.62
CR-10-039-W1	375	-61.49	46.01
CR-10-039-W1	380	-61.16	46.10
CR-10-039-W1	385	-60.93	46.24
CR-10-039-W1	390	-60.64	46.67
CR-10-039-W1	395	-60.44	46.93
CR-10-039-W1	400	-60.27	47.28
CR-10-039-W1	405	-60.06	47.45
CR-10-039-W1	410	-59.96	47.57
CR-10-039-W1	415	-59.85	47.60
CR-10-039-W1	420	-59.78	47.67
CR-10-039-W1	425	-59.67	47.91
CR-10-039-W1	430	-59.48	47.91
CR-10-039-W1	435	-59.36	47.99
CR-10-039-W1	440	-59.20	48.12
CR-10-039-W1	445	-59.08	48.17
CR-10-039-W1	450	-58.96	48.17
CR-10-039-W1	455	-58.85	48.34
CR-10-039-W1	460	-58.61	48.60
CR-10-039-W1	465	-58.52	48.67
CR-10-039-W1	470	-58.23	48.77
CR-10-039-W1	475	-58.03	48.73
CR-10-039-W1	480	-57.79	48.77
CR-10-039-W1	485	-57.59	48.85
CR-10-039-W1	490	-57.49	48.78
CR-10-039-W1	495	-57.35	48.89
CR-10-039-W1	500	-57.23	48.87

Hole ID	Station (m)	Dip (Degrees)	Azimuth
CR-10-039-W1	505	-57.05	48.79
CR-10-039-W1	510	-56.86	48.91
CR-10-039-W1	515	-56.71	48.97
CR-10-039-W1	520	-56.49	49.04
CR-10-039-W1	525	-56.40	48.99
CR-10-039-W1	530	-56.28	48.99
CR-10-039-W1	535	-56.17	49.04
CR-10-039-W1	540	-55.98	49.26
CR-10-039-W1	545	-55.71	49.41
CR-10-039-W1	550	-55.69	49.23
CR-10-039-W1	555	-55.44	49.39
CR-10-039-W1	560	-55.33	49.35
CR-10-039-W1	565	-55.05	49.19
CR-10-039-W1	570	-54.88	49.36
CR-10-039-W1	575	-54.60	49.34
CR-10-039-W1	580	-54.50	49.45
CR-10-039-W1	585	-54.35	49.38
CR-10-039-W1	590	-54.13	49.61
CR-10-039-W1	595	-53.89	49.68
CR-10-039-W1	600	-53.77	50.05
CR-10-039-W1	605	-53.52	50.51
CR-10-039-W1	610	-53.40	50.91
CR-10-039-W1	615	-53.22	51.31
CR-10-039-W1	620	-53.07	51.47
CR-10-039-W1	625	-52.95	51.49
CR-10-039-W1	630	-52.72	51.58
CR-10-039-W1	635	-52.56	51.94
CR-10-039-W1	640	-52.51	51.91
CR-10-039-W1	645	-52.37	51.99
CR-10-039-W1	650	-52.20	51.97
CR-10-039-W1	655	-51.77	51.84
CR-10-039-W1	660	-51.55	51.87
CR-10-039-W1	665	-51.33	51.80
CR-10-039-W1	670	-51.19	51.75
CR-10-039-W1	675	-51.20	52.08
CR-10-039-W1	680	-51.04	51.95
CR-10-039-W1	685	-50.96	52.08

Hole ID		Station (m)	Dip (Degrees)	Azimuth
	CR-10-039-W1	690	-50.95	52.02
	CR-10-039-W1	695	-50.87	52.09
	CR-10-039-W1	700	-50.88	52.23
	CR-10-039-W1	705	-50.89	52.29
	CR-10-039-W1	710	-50.74	52.43
	CR-10-039-W1	715	-50.63	52.48
	CR-10-039-W1	720	-50.58	52.57
	CR-10-039-W1	725	-50.50	52.64
	CR-10-039-W1	730	-50.42	52.77
	CR-10-039-W1	735	-50.30	52.95
	CR-10-039-W1	740	-50.15	53.02
	CR-10-039-W1	745	-50.11	53.17
	CR-10-039-W1	750	-50.15	53.19
	CR-10-039-W1	755	-50.08	53.28
	CR-10-039-W1	760	-50.04	53.37
	CR-10-039-W1	765	-49.93	53.47
	CR-10-039-W1	770	-49.89	53.63
	CR-10-039-W1	775	-49.79	53.65
	CR-10-039-W1	780	-49.79	53.85
	CR-10-039-W1	785	-49.75	53.82
	CR-10-039-W1	790	-49.65	53.73
	CR-10-039-W1	795	-49.58	53.81
	CR-10-039-W1	800	-49.32	53.67
	CR-10-039-W1	805	-49.36	53.54
	CR-10-039-W1	810	-49.28	53.64
	CR-10-039-W1	815	-49.14	53.65
	CR-10-039-W1	820	-49.14	53.57
	CR-10-039-W1	825	-49.06	53.67
	CR-10-039-W1	830	-49.03	53.74
	CR-10-039-W1	835	-48.99	53.74
	CR-10-039-W1	840	-48.94	53.83
	CR-10-039-W1	845	-48.98	53.94
	CR-10-039-W1	850	-48.89	54.07
	CR-10-039-W1	855	-48.93	54.12
	CR-10-039-W1	860	-48.91	54.18
	CR-10-039-W1	865	-48.83	54.33
	CR-10-039-W1	870	-48.79	54.38

Hole ID		Station (m)	Dip (Degrees)	Azimuth
	CR-10-039-W1	875	-48.76	54.48
	CR-10-039-W1	880	-48.75	54.54
	CR-10-039-W1	885	-48.68	54.73
	CR-10-039-W1	890	-48.68	54.70
	CR-10-039-W1	895	-48.65	54.82
	CR-10-039-W1	900	-48.65	54.95
	CR-10-039-W1	905	-48.57	55.17
	CR-10-039-W1	910	-48.49	55.18
	CR-10-039-W1	915	-48.49	55.45
	CR-10-039-W1	920	-48.41	55.56
	CR-10-039-W1	925	-48.35	55.75
	CR-10-039-W1	930	-48.30	55.86
	CR-10-039-W1	935	-48.23	56.00
	CR-10-039-W1	940	-48.22	55.98
	CR-10-039-W1	945	-48.29	56.15
	CR-10-039-W1	950	-48.15	56.19
	CR-10-039-W1	955	-48.16	56.32
	CR-10-039-W1	960	-48.12	56.47
	CR-10-039-W1	965	-48.11	56.68
	CR-10-039-W1	970	-48.06	56.83
	CR-10-039-W1	975	-48.00	56.88
	CR-10-039-W1	980	-47.95	56.88
	CR-10-039-W1	985	-47.84	56.89
	CR-10-039-W1	990	-47.80	56.95
	CR-10-039-W1	995	-47.74	56.96
	CR-10-039-W1	1000	-47.76	56.97
	CR-10-039-W1	1005	-47.66	57.19
	CR-10-039-W1	1010	-47.64	57.28
	CR-10-039-W1	1015	-47.54	57.32
	CR-10-039-W1	1020	-47.56	57.49
	CR-10-039-W1	1025	-47.52	57.63
	CR-10-039-W1	1030	-47.59	57.60
	CR-10-039-W1	1035	-47.44	57.75
	CR-10-039-W1	1040	-47.38	57.88
	CR-10-039-W1	1045	-47.31	58.02
	CR-10-039-W1	1050	-47.31	58.05
	CR-10-039-W1	1055	-47.25	57.93

Hole ID	Station (m)	Dip (Degrees)	Azimuth
CR-10-039-W1	1060	-47.17	58.00
CR-10-039-W1	1065	-47.07	58.16
CR-10-039-W1	1070	-46.96	58.33
CR-10-039-W1	1075	-46.90	58.57
CR-10-039-W1	1080	-46.91	58.73
CR-10-039-W1	1085	-46.83	58.89
CR-10-039-W1	1090	-46.80	59.13
CR-10-039-W1	1095	-46.80	59.30
CR-10-039-W1	1100	-46.76	59.53
CR-10-039-W1	1105	-46.61	59.67
CR-10-039-W1	1110	-46.56	59.76
CR-10-039-W1	1115	-46.59	60.04
CR-10-039-W1	1120	-46.51	60.16
CR-10-039-W1	1125	-46.41	60.48
CR-10-039-W1	1130	-46.41	60.46
CR-10-039-W1	1135	-46.36	60.71
CR-10-039-W1	1140	-46.27	61.04
CR-10-039-W1	1145	-46.36	61.32
CR-10-039-W1	1150	-46.29	61.35
CR-10-039-W1	1155	-46.31	61.59
CR-10-039-W1	1160	-46.23	61.76
CR-10-039-W1	1165	-46.07	61.99
CR-10-039-W1	1170	-46.09	62.23
CR-10-039-W1	1175	-46.09	62.40
CR-10-039-W1	1180	-46.03	62.58
CR-10-039-W1	1185	-45.94	62.82
CR-10-039-W1	1190	-45.86	63.03
CR-10-039-W1	1195	-45.76	63.43
CR-10-039-W1	1200	-45.71	63.58
CR-10-039-W1	1205	-45.66	63.73
CR-10-039-W1	1210	-45.61	63.88
CR-10-039-W1	1215	-45.56	64.03
CR-10-039-W1	1220	-45.51	64.18
CR-10-039-W1	1226	-45.46	64.33

Conquest Resources Ltd.

Exploration Diamond Drill Log

CR-10-040

DRILL HOLE #	CR-10-040	LOCATION	Balmertown	, Balmer Township	, Red Lake Dist	rict, Ontario		
PROJECT #	Alexander	REFERENCE	Alexander		GEOLOGIST	Meckert	CLAIM	KRL 20488
GRID/ NAD-ZONE	E	NORTHING		EASTING		ELEVATION		GRID TYPE
GRID	Alexander RL	7+60 S		1 + 93 E		10000		М
UTM	NAD83 / 15U	5655973		449941		380		
COLLAR DIP	-86	GRID DIRECTION		N21W			AZ DIRECTION	008
NTS REF #	052N04	NTS SHEET NAME		Red Lake, Ontario)			
START DATE	13-Jun-10			FINISH DATE	27-Jul-10		-	
DEPTH (EOH)	1745.00	TARGET & Zone D	epth	Shearing in Balmer ba	salts below 500m	and Bruce Channe	el Au follow-up CR-10	-039
PURPOSE	Second deep pa	arent hole in 201) Program tes	sting Balmer	_			
CASING BV	v <u>na</u>		CASING NW	6.00			CASING HW	na
PLUG @	p <mark>na</mark>		PLUG @	na			PLUG @	na
START DTH	0.00		WEDGE @	390.00				
REDUCED @	na		REDUCED @	na				
HOLE STATUS	completed, hol	e maintained for	subsequent v	vedging at 390m d	epth, surveyed	l to 1,630m		
DRILLING CONTR	ACTOR	Boart Longyea	r Inc.					
RIG NO.	LY 55 4154						BXS.	405
	GYRO Su	rvey: Multishot In and	l Out of Hole			1		
DEP	PTH (m)	AZIMU	тн	DIF	0		Comments:	
	0	8.00)	-86.	00	1st Target was	intersected betwe	en 541.27m and
1	100	34.9	6	-84.	10	8/4.51m. In th	e Balmer Basalts so	everal shear and
2	200	30.7	4	-81.	73	elevated Au	values. Two	thicker Quartz
3	300	32.9	7	-80.	53	Monzodiorites d	contained in the Bal	mer Basalts show
4	400	35.2	5	-79.	04	encouraging as	says including 1.76	gr/t Au over 3
5	500	38.3	5	-77.	25	meters. <u>2nd</u>	Target was inter	sected betweer
	5 00	38.7	4	-75.	27	1144.88m and 1	1193.18m. A further	sliver of Balmer
7	700	39.8	3	-72.	20	Basalts was end	countered as expect	ed past the thick
8	800	41.4	8	-70.	69	above backgrou	in. Generally bleach	lisation the unit
9	900	41.8	1	-68.	76	was sampled in	its entirety but di	d not return any
1	000	42.1	4	-67.4	48	significant gold	values. <u>3rd</u> <u>Target</u>	was intersected
1	100	43.0	2	-66.	18	between 1662	.23m and 1725.5	5m. This unit
1	200	43.8	2	-65.	27	informally called	d the Upper Bruce C	hannel Chert was
1	300	44.1	0	-63.	86	sampled in its	entirety, returnin	g 5-30 ppb or
1	400	45.6	1	-61.4	47	average. The he	ole was snut down	as planned after
1	500	46.8	3	-59.4	46	CR-10-039.	aconte pasare also ell	
1	600	48.0	1	-57.	78			
1	630	47.9	D	-57.	64	4		
						4		
						4		

Drill with 6m, double stablilized NQ core barrel Planned hole depth was 1750m (5740') Core stored at Alexander Core Yard at UTM 0449935 5656595 Water source: beaver pond located at 449718 5656178 UTM NAD83 15U

Core stored at Alexander Core Yard Drill type: LY-55

Major Lithologies

Hole Name	From	То	Length	Code	Description	Rep
CR-10-040	0.00	6.00	6.00	CAS	NW Casing into overburden and bedrock	
CR-10-040	6.00	51.80	45.80	S6D	Huston Formation. Dark grey coloured Mudstone with very thin bands of Siltstone. Occasional thin folded quartz veins. One short section of Wacke. Unit is very monotonous and has few distinctive features.	
CR-10-040	51.80	159.00	107.20	S4	Polymictic matrix supported Conglomerate. Clast size ranges from mm to about 20cm. Dominant clasts are Chert and Mudstone, but quartz vein fragments are abundant in some layers as well. On occasion sulphidic clasts may be encountered. Clasts are subangular to rounded. The matrix consists mostly of mud to silt but there has been some sulphide replacememnt. About 7% pyrrhotite and 1-2% pyrite are present. Pyrrhotite in its usual fine grained massive state and pyrite as small idiomorph crystals and spheroidal raplacement. There are a few silty interbeds that show crisscrossing thin quartz veins with remobilized sulphides, but these seem a rather late stage event. Several thin dioritic dykes cross this unit.	
CR-10-040	159.00	211.55	52.55	S6A	Medium grey coloured Siltstones to Quartzite. Infrequent short sections of dark grey mudstones with intermittend bands of pyrrhotite. Mudstones show pyrrhotite filled extension fractures.Siltstones also show pyrrhotite bands and some pyrite replacement of the latter. As the grainsize increases towards Sandstone or even Wacke the bands become diffuse and most of the sulphides are disseminated. Here the sulphide concentration can be high enough to completely displace the original matrix. There are several conglomeratic and brecciated sections where pretty much all the original matrix has been replaced by sulphides as well. Here spheroidal pyrite far outweighs the pyrrhotite.	
CR-10-040	211.55	263.30	51.75	S6D	Dark grey coloured Mudstones with bands and fracture fillings of pyrrhotite. Unit has seen lots of microfolding, shearing and extension fractures. Criss crossing multistage quartz veins have been folded broken dismembered and boudinaged, depending at which stage they were emplaced. The unit contains several sections of Conglomerate. Conglomerates are generally better sorted than before and the matrix has seen a complete sulphide replacement, dominated by spheroidal pyrite.	
CR-10-040	263.30	264.18	0.88	SHR	Carbonaceous shear with sections of solid streaked carbonate and some bands that have seen minor sulphide replacement.	

Hole Name	From	То	Length	Code	Description	Rep
CR-10-040	264.18	280.23	16.05	S4	Polymictic matrix supported Conglomerate. Muddy matrix and carbonate cement alternate with 20cm sections where matrix is pure carbonate. Most of the latter have been completely replaced by pyrite. Replacement is mostly spheroidal and spheroids may reach sizes upwards of 3cm in diameter. In muddy matrix sections some of the clasts have been replaced by pyrite which may indicate the presence of carbonaceous clasts in original conglomerate. Also, this unit has not seen any level of silicification.	
CR-10-040	280.23	280.81	0.58	SHR	Carbonaceous shear as above with one thin band of pyrite replacement.	
CR-10-040	280.81	282.47	1.66	S4	As before the shear but generally not as coarse.	
CR-10-040	282.47	283.59	1.12	SHR	Carbonaceous shear as above. Bottom 27 cmalmost completely replaced by very large pyrite spheroids.	
CR-10-040	283.59	383.92	100.33	S6A	Medium grey coloured muddy Siltstones. Some carbonaceous fractures or minor shears at top but diminishing downward and equally does the carbonate content altogether. Some sections of conglomerate. Sedimentary banding is quite disturbed and is often folded onto itself, on occasion brecciated and generally shows sulphide filled extension fractures. Carbonate and quartzveins are equally jittery and dismembered. Where spheroidal pyrite was the dominating sulphide before, here for the first 40m, the pyrite content decreases to less than 1% very quickly in favour of pyrrhotite that can now be seen in fractures and the matrix of conglomerates. Following the upper 40m zone of PY< <po, dominates="" pyrite="" sulphide<br="">mineralization, PY>PO.</po,>	
CR-10-040	383.92	422.54	38.62	S6D	Dark grey coloured massive Mudstones with light coloured silty bands. The massive sections show significant amounts a of ghosty looking mm size crystals that could be andalusite in a retrograde state. Based on the banding in the siltier sections the sediments are folded and look somewhat compressed. Pyrrhotite is the dominant sulphide in thin bands and fracture fillings. It is also present in milky quartz veins, but most of those veins must be quite late because they are unaffected by folding or foliation.	
CR-10-040	422.54	473.80	51.26	M13	Medium and light grey coloured, banded fine grained Marble. Marble shows undulated banding that looks like a "flow-pattern" associated with recrystallisation. Most of the banding seems due to the different amounts of sulphides present from band to band. Finely disseminated pyrrhotite outweighs pyrite. Some short sections are brecciated and healed indicating that there may have been several phases of recrystallisation. At the center of the unit are some sections of clast supported conglomerates that differ in matrix and sulphide replacement from each other. Past the conglomerates the unit is nicely foliated and the contact to the sediments underneath is sharp at 30DegCA while the upper contact is somewhat diffuse probably due to recrystallisation.	

Conquest Resources Ltd. Diamond Drill Record Major Lithologies

Hole Name	From	То	Length	Code	Description	Rep
CR-10-040	473.80	541.27	67.47	S6D	Dark grey coloured, silty Mudstone. Banding is disturbed and contorted and is defined by grainsize differences and by the distribution of finely disseminated pyrrhotite, which makes up 2% of the rock. Occasional short sections of wacke with carbonaceous cement. Longer section of cobble conglomerate at center. Few dismembered quartz carbonate veins as well as some late stage milky quartz veins that contain remobilized pyrrhotite and on occasion some chlorite.	
CR-10-040	541.27	542.84	1.57	SHR	Moderate shear at upper contact between Huston Formation and Balmer Formation . Unit has seen moderate bleaching and biotite alteration. Last 80cm are brecciated and more strongly bleached. Only minute traces of sulphides are present.	
CR-10-040	542.84	564.93	22.09	V3B	Pillowed Basalt with carbonate and quartz carbonate pillow selvedges. There are some foliated and very short brecciated sections, but these do not show any significant sulphide mineralisation. Sulphides are generally lacking except for one 5cm quartz carbonate vein that contains red sphalerite next to pyrrhotite and pyrite.	
CR-10-040	564.93	576.69	11.76	SHR;brc	Moderately sheared Basalt with brecciated sections that tend to show increased aluminous bleaching around fractures. Except for a short section at 575.38 to 575.94 sulphide mineralisation is weak. Veins are dominated by quartz-carbonate but contain almost no sulphides. There is some biotite alteration is present and associated with bleaching.	
CR-10-040	576.69	609.00	32.31	V3B	Basalt appears more massive than pillowed, foliated and with infrequent quartz carbonate veins. Also present are late stage 2 to 3 cm milky quartz veins. Trace disseminated sulphides throughout.	
CR-10-040	609.00	609.38	0.38	FLT	Black line Fault in foliated, weakly sheared Basalt. Local foliation pattern is bent and dragged along fault, indicating the fault postdating deformation. The actual dense biotitic fracture is about 4 to 5 cm in width. Sulphides are enriched in the wall rock surrounding the fracture and streaks of arsenopyrite can be observed within.	
CR-10-040	609.38	682.68	73.30	V3B	Pillowed to massive, locally variolitic Basalt with narrow minor carbonaceous zones of shearing. Typical green coloured appearance with occasional quartz carbonate veins and strongly foliated intervals. Mineralisation is background level except for a short section where sulphides are enriched in quartz carbonate pillow selveges.	

Hole Name	From	То	Length	Code	Description	Rep
CR-10-040	682.68	683.63	0.95	SHR	Carbonaeceous shear with sulphide and magnetite replacement but virtually no quartz veining. Basalt looks distinctly greyer than surrounding "normal" green tinged basalt when dry. When wet it is rather dark and diffuse looking, probably due to amount of finely disseminated sulphides.	
CR-10-040	683.63	693.14	9.51	V3B	Pillowed basalts have seen some increased biotite alteration in this section, but that seems mostly due to the fact that a number of intrusives cross cut the basalts and cooked the contacts.	
CR-10-040	693.14	693.50	0.36	SHR	Carbonaceous shear with very high carbonate content. Stronger looking than previous shear but sulphide replacement is marginal. Framed by two lamprophyres.	
CR-10-040	693.50	740.84	47.34	V3B	Greenish grey coloured, pillowed Basalts with carbonaceous pillow selveges. Occasional quartz carbonate veins that carry pyrrhotite. Some of the selveges may see some quartz carbonate with pyrrhotite as well but this does not follow any recognizeable pattern. In general, there seems to be more biotite alteration and minor bleaching going on but that is most likely related to the intrusives crossing the Basalt at this level.	
CR-10-040	740.84	741.60	0.76	SHR	Carbonaceous shear with minor quartz carbonate veining, but in general not silicified. Pyrrhotite is the dominant sulphide. At the center of the shear pyrrhotite is observed as streaks and blebs as well as on fractures. Towards the the top and bottom sulphides are mostly finely disseminated and on thin fractures. Chalcopyrite is enriched on these fractures while arsenopyrite appears as small cubic crystals.	
CR-10-040	741.60	758.88	17.28	V3B	As above 693.50 to 740.84	
CR-10-040	758.88	759.59	0.71	SHR	Moderate shear, containing more biotite to the tune of 4% and more quartz carbonate veining. Pyrite is finely disseminated and again chalcopyrite is enriched on thin fractures. Those fractures postdate the shear, as they clearly cross cut the shear planes.	
CR-10-040	759.59	828.00	68.41	V3B	As above 693.50 to 740.84	
CR-10-040	828.00	828.87	0.87	SHR	Moderately sheared Basalt with quartz carbonate veins and biotite alteration. Biotite in streaky aggregates set in pale green coloured Basalt. Most veins are less than1 cm width and run along shear plane. Thicker ones tend to be broken and dismembered. Sulphide mineralisation is very low.	
CR-10-040	828.87	874.51	45.64	V3B	As above 693.50 to 740.84. Showing a couple of interflow sediments, comparatively rich in pyrrhotite and magnetite.	

Hole Name	From	То	Length	Code	Description	Rep
CR-10-040	874.51	1144.88	270.37	I3A	Contact sheared and foliated Gabbro. Fair amount of biotite makes it almost an orthoschist at times. Upper contact to interflow sediments is diffuse because shards of sediment have been worked into the gabbro and have led to a pyrrhotite permineralisation in the the first 50cm. Very few quartz carbonate veins, mostly intact and occasional milky quartz vein with nil sulphides.	
CR-10-040	1144.88	1148.24	3.36	SHR	Sheared and biotite altered Basalt. With Gabbro stringer from 1145.90 to 1147.12. Distinct pale brown-grey colour of shear due to biotite alteration. Contact shear in adjacent Gabbro is rather weak leading to the conclusion that shear in Basalt predates intrusion. Thin bands and streaks of sulphides present, waning downwards. Minor quartz carbonate overprinting, with veins drawn out and folded. Sulphide replacement in the veins is moderate.	
CR-10-040	1148.24	1193.18	44.94	V3B	Pillowed basalts and flow top Breccias. Fractures filled with carbonate and quartz carbonate. Unit in general has been pale grey bleached but the strength varies. Regular 1 to 2cm bands of biotite alteration. Sulphide mineralisation is elevated and between 1174m and 1184 arsenopyrite can be found as well, possibly associated with a biotite alteration zone. Contact to Gabbro below is gradual because both units are contact sheared. The boundary is assumed to be where quartz carbonate veins and fractures disappear.	
CR-10-040	1193.18	1259.05	65.87	I3A	Medium green grey coloured and fine grained Gabbro. Almost no carbonaceous fractures. Occasional milky quartz vein. Last 18m contact sheared.	
CR-10-040	1259.05	1263.96	4.91	FLT	Unconformity to <u>Bruce Channel Formation</u> hosted sediments. Mostly consisting of graphitic dark mudstones. Material has been gound up, folded and brecciated. Core is broken and crumbly and has seen a fair amount of leaching. Last meter of fault is taken up by very weathered looking Diorite dyke.	
CR-10-040	1263.96	1316.14	52.18	S6D	Bruce Channel Formation . Dark grey coloured, silty textured, locally laminated Mudstones. Local folding and shearing present. Bedding indicated by grain size change and bands and streaks of sulphides. Pyrrhotite is clearly dominating but pyrite can be observed as well. Frequent quartz veins are also truncated, boudinaged and folded with sulphides occuring within extension fractures. Core is rather blocky throughout this unit. Contact to unit below is gradual over one meter.	

Major Lithologies

Hole Name	From	То	Length	Code	Description	Rep
CR-10-040	1316.14	1393.00	76.86	S6A	Dark grey coloured muddy Siltstone. Massive and foliated with much reduced sulphide content, and almost none of the quartz veins present in previous unit. Higher metamorphic grade signaled by the present of ubiquitous fine grained andalusite like mineral. This mineral has not been affected by foliation. As of 1346m Wacke interbeds and the occasional short section of pebbly Conglomerate. Conglomerates have different levels of finely disseminated sulphides in matrix. Some chloritic sections may indicate the presence of volcanic material in the sediments.	
CR-10-040	1393.00	1497.00	104.00	S6D	Dense dark grey coloured Mudstones with occasional siltier bands and Wacke. Greenish chloritic sections indicate the presence of more volcanic clasts in the sediments. Foliation is very even for the most part and the sulphide content in general is well below 01%. Minor Wacke and conglomeratic sections.	
CR-10-040	1497.00	1515.83	18.83	S6A	Light to medium grey coloured, well bedded, well graded Siltstone with 01-03% disseminated pyrite throughout and trace pyrrhotite locally. One section (1512.96 to 1513.54m) of well mineralized replacement sulphides within minor monomictic conglomeratic bed where matrix is primarily comprised of 15% replacement sulphide cheifly fine grained pyrite. Sulphide mineralized section is not conductive. Weak foliation is bedding parallel which is generally oriented at 60degCA, however bedding is contorted and irregular in sections ranging from 10degCA to 75degCA. Sediments are well sorted in this unit, grading from medium to fine grained silty sediments to very fine grained muddy sediments at lower contact. Lower contact is sharp at 68degCA.	
CR-10-040	1515.83	1516.16	0.33	S6D	Dark grey Mudstone as above 1393 to 1497.00m.	
CR-10-040	1516.16	1519.40	3.24	FLT	Major Fault. Graphitic. 20cm of Fault material, near gouge, shards of intensely foliated mudstone with up to 25% graphite and less than 05% fine grained pyrite. Carbonaceous minor pyrite bearing Mudstone host. Fault fabric is undulating and planar at 38degCA. Upper contact of fault is well defined over 30cm while the lower contact has been sheared up to 1.5 meters below main fault plane at 1,516.50 to 1,516.70m. Two narrow, 3 to 4cm scale, Near Solid Sulphide bands at lower contact comprised of Pyrite >> Pyrrhotite.	
CR-10-040	1519.40	1529.75	10.35	S6D	Mixed Silt- and Mudstone sediments as 1263.96 to 1316.14m. Variably contorted well defined bedding from 10degcA to 90degCA. Up to 15% Pyrite locally near upper contact. Upper contact is gradational over shear at 65degCA.	

Hole Name	From	То	Length	Code	Description	Rep
CR-10-040	1529.75	1549.52	19.77	V3B	Mixed basaltic interflow volcancics and volcanoclastics within Bruce Channel sediments. Medium Grey green coloured and foliated. Bedding is generally poorly defined with foliation parallel to bedding at 70degCA. Trace pyrite disseminations throughout of little apparent importance. Volcanoclasitic sections are fine grained with corroded, flattened chlorite growth (<04%), 02-03% biotite locally and generally lack sulphides. Several carbonate rich intervals (near vein-like emplacement) less than 0.40m in thickness. Fractures are irregular and planar with carbonate filling/healing. Upper contact is gradational over 1 metre with crude volcanoclastic layering at 75degCA, minor 02% pyrite and generally elevated silica.	
CR-10-040	1549.52	1551.68	2.16	S6D	Mudstone as above 1519.40 to 1529.75m. Foliation flattens from 70degCA to 25degCA into narrow Faulted Section.	
CR-10-040	1551.68	1555.00	3.32	FLT	Narrow Fault with ground black coloured gouge with 05-10% graphite and 02-05% carbonate at 1553.60 to 1554.00m hosted in Mudstone. Wallrock is strongly sheared above gouge and to a lesser extent sheared in the lower wallrock also. Several quartz veins are present within fault rock but are fractured and dismembered with little associated sulphides. Up to 05% pyrite throughout in whispy disseminations.	

CONQUEST Resources Limited

Hole Name	From	То	Length	Code	Description	Rep
CR-10-040	1555.00	1588.80	33.80	V4A; T3	Mixed very dark green coloured Komatitic Basalt with minor narrow medium grey coloured intercollated volcanoclastic, locally tuffaceous sediments having well defined conformable contacts. Massive Komatitiic Basalt flows (1-5m in thickness) are episodic and occasionally suceed narrow (0.15 to 0.50m thickness) tuffaceous sections at the bottom of massive flows. Basalts vary in volcanic texture from very fine grained to medium grained with a strong foliation plane and near shistose fabric at 70-80degCA. These Basalts are poorly altered and are upper greenschist facies in metamorphic grade. Each flow is marked by lighter coloured very fine grained quenched Basalt at bed interface that coarsens in volcanic texture and progressivly becomes more mafic-looking in the up hole direction over 1-2 metres at the base of each flow. Volcanically derived sediments are ash deficent comprised primarily of 50% very fine plagioclase crystals and ground mass with 10-20% chlorite and 20-30% very fine grained mafic groundmass. This sedimentation is common but occurs at irregular frequencies and thicknesses, seldom thicker than 15cm thick with sharp upper and lower contacts. Beds have occasional transposed bedding interfaces which appear interfingered but are likely due to shearing or bedding slippage during deformation. Trace sulphides throughout unit. Upper contact is faulted with minor gouge over narrow interval. Lower contact is interfingered with diffuse contact metamorphism with underlying Gabbro over 1585.40 to 1588.80 metres. (NOTE: Past logging may have idenitified this unit as mafic dyking in combination with some form of sedimentary rock unit; however, these basalts are distintly volcanic on the basis of mineral assemblage, alteration, and textural relationships described above. Contacts, structure, and sulphide affinity are not helpful in classifying this unit.)	1571.64 to 1571.78
CR-10-040	1588.80	1617.90	29.10	I3A	Medium green coloured, medium to coarse grained, massive and locally fractured, sulphide deficient Gabbro. Weakly foliated at 60degCA. Fractures are quartz carbonate healed on 1 to 10 mm scale. Few sections have unhealed irregular planar fractures oriented at 90degCA that create near- "poker-chip" shaped blocks of core. Intrusive texutre fines considerably near lower contact appearing dioritic in 5 metres nearest lower contact. Upper contact is sharp with crudely pervasive silica-carbonate alteration over 1 metre. Lower contact is sharp at 70degCA with no shearing or brecciation.	

CONQUEST Resources Limited

CR-10-040

Rep

Hole Name	From	То	Length	Code	Description
CR-10-040	1617.90	1662.23	44.33	S6; S10	Highly variable, well bedded, poorly sorted, bedding parallel foliated, low angle 60% dark grey coloured Mudstone, 20% light grey and light green coloured, irregularly banded, highly magnetic Chert, 15% light to medium grey Siltstone, and 5% light grey Quartzite in the Bruce Channel Formation. Mudstone is generally well sulphidized with abundant pyrrhotite and pyrite bearing fine beds that clearly distinguish low angle (15-30degCA) bedding. Siltstone is easily marked with scratcher having a distinctly typical "grainy" texture and contains low angle, confomable, narrow 2-5cm thick bands of MT-chl-carb-(ser) altered, very fine grained, silt laden, lithified muddy material. Siltstone and Mudstone both contain dewatering features locally over 30cm intervals with disturbed bedding. Quartzites and cherts are generally massive to poorly foliated due to the strong rhelogical nature of these minor units. Local well healed brecciated intervals of oxidized, rusty coloured Chert with slicken lines on fracture face indicated some brittle deformation has taken place. The depositional environment is episodic and appears to have been preserved in the rock record in this area with minor sheared and brecciated deformation in this unit. Few minor quartz veins and rare quartz-carbonate veins exist in this unit. Upper contact is sharp at 70degCA.
CR-10-040	1662.23	1725.55	63.32	S10	Thick, light grey to dark grey-green coloured, highly siliceous, Chert succession with bedding planar intermediate to mafic undifferentiated fine grained intrusive sills. Colour variations in Chert define changes in sedimentation/precipitation that assist in identifying bedding relationships. Late irregular, cross-cutting, and locally anastomosing fracturing is well healed having seen trace amounts of carbonate bearing fluids which in some cases have introduced minor sulphides (cheifly Pyrite) into Chert beds. Intermediate to mafic fine grained intrusive post-dates fracturing and is largely bedding parallel in orientation at approximately 60degCA. Of particular note are rare cases of sulphide enriched (up to 05% Pyrite) intrusive that may cross-cut cherty horizons characterized by elevated levels of carbonate (01-05% locally) and possible trace biotite, having a washed out, mottled greyish mass appearance -which appear to be the most favorable to host mineralization within this horizon. Both carbonate-sulphide enriched intrusive (dykes?) and intermediate-mafic intrusive (sills) are observed to have hairline fine selvages with chl-carb-(ser) alteration over 1mm thickness. Upper contact is sharp at 50degCA.

Hole Name	From	То	Length	Code	Description	Rep
CR-10-040	1725.55	1726.27	0.72	FLT	Graphitic fault in Mudstone section. Core is blocky to broken into shards with shiny slickensides. Core loss in here. Contacts are slickensided and biotite covered. Upper contact is 64 degCa and lower contact at 69 degCa. Slickensided planes following this general direction can be found above and below the actual fault.	
CR-10-040	1726.27	1735.03	8.76	S10	As above 1662.23 to 1725.55. Lower contact is sharp at 69 degCa.	
CR-10-040	1735.03	1745.83	10.80	V3A	Greenish grey coloured, andesitic Basalt. With episodes of tufaceous deposits characterized by blotchy green (chloritic) and grey look with coarse garnets. Garnets irregularly distributed throughout unit. First meter contains several carbonaceous fractures. Possibly a recrystallized shearzone containing finely disseminated pyrrhotite and some magnetite as well as fractures containing pyrrhotite aggregates, which sometimes show chalcopyrite selvedges. Mineralisation quickly diminishes downwards. The fracture intensity also decreases away from the immediate contact area.	
CR-10-040	1745.83	1745.84	0.01	EOH	End of Hole is in Bruce Channel Formation. Hole ended 11 meters past the the targeted upper chert horizon in the same garnet bearing andesitic Basalt also encountered in hole CR-10-039. End of hole at 1745.83m on July 26, 2010. Hole maintained for subsequent wedging. Gyro surveyed. Core is stored at the Conquest Core Facility on the Alexander Property in 404 NQ trays in racks. 407 samples sent for Au fire assay (50g pulp) at AGAT Labs, Mississauga, ON.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-10-040	50.15	51.02	12J	Medium grey coloured and fine grained Diorite dyke with no special features. Upper contact is interfingered with sedimnts but runs at roughly 60degCA. Lower contact is sharp at 48degCA.	
CR-10-040	84.53	85.43	12J	Medium grey coloured and fine grained Diorite dyke with a triangular small vug containing pyrrhotite and pyrite crystals. Upper and lower contacts are sharp running at 62 and 60degCA respectively.	
CR-10-040	94.50	96.05	12J	Medium grey coloured and fine grained Diorite dyke. One 25cm assimilated block of conglomerate. Upper contact is broken. Lower contact is uneven but roughly perpendicular to core axis.	
CR-10-040	102.27	103.74	130	Medium to dark grey coloured and fine grained Lamprophyre dyke. Contains 01 to 02 % carbonate. Unit shows a fine fracture system with bleached halos. 2cm on upper an lower contacts are bleached as well. Upper and lower contacts are irregular and approximately perpendicular to the core axis.	
CR-10-040	157.67	157.92	12G	Fine grained bleached and yellow-brownish discoloration showing Quartz Monzodiorite with trace sericite and trace pyrite. Contacts are very uneven following clast boundaries and may have replaced a or several former clasts before matrix of conglomerate was replaced by sulphides.	
CR-10-040	160.68	161.85	T1	Light grey coloured felsic Tuff. Fragments are angular to subrounded, up to 0.5cm in size, and consist mostly of light colored silicious fragments and possibly some cordierite. Components tend to be elongate along foliation. Foliation / shear planes are enriched in sulphides with an even pyrrhotite and pyrite content. Sulphides are also finely disseminatedand appear in small aggregates in the matrix in general. As compared to previous conglomeratic units this tuff has a monomictic feel to it. Only very few dark small fragments are present that seem to be of mudstone origin.	
CR-10-040	169.94	171.50	T1	Felsic Tuff, as above 160.68 to 161.85.	
CR-10-040	211.55	212.63	S4	Medium grey coloured silicified Conglomerate. Matrix has been completely replaced by pyrite. Pyrite as grainy masses is oriented along foliation planes, but also appears in dense fine grained spheroidal masses that are later stage and seem unaffected by foliation.	
CR-10-040	225.91	233.77	S4	Conglomerate, as above 211.55 to 212.63	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-10-040	239.90	240.89	12J	Medium grey coloured and fine grained Diorite dyke with assimilated chunk of cooked siltstone. Upper contact uneven but roughly follows the same 68degCA of the sharp lower one.	
CR-10-040	240.20	245.84	130	Very dark grey coloured and very fine grained Lamprophyre. Quite carbonaceous yet silicous, with a fair amount of fine grained pyrite that follows local foliation pattern. Some crossing thin quartz veins. First generation of quartz veins are folded and truncated while late stage veins are unaffected. Some small fractures contain apple green chlorite and possibly fuchsite. One assimilated block of very pyritic conglomerate containing some quartz veining not seen in the surrounding rock. Assimilated blocks like the one described may be responsible for mineralization found in the Lamprophyre. Upper contact is irregular and undulating at low angles to core axis over 50cm. Lower contact is sharp at 45degCA.	
CR-10-040	316.14	320.70	S 4	Polymictic, matrix supported Conglomerate with minor carbonate and partial and uneven pyrrhotite replacement of the matrix. Only traces of pyrite can be observed.	
CR-10-040	332.96	335.29	12J	Medium grey coloured and fine grained Diorite dyke with a minor brownish discoloration at contacts. Upper and lower contacts uneven at 66 and 71degCA respectively	
CR-10-040	343.38	344.52	S4	Matrix supported polymictic Conglomerate with carbonate matrix largely intact. Only a short section at the center has seen some spheroidal pyrite replacement.	
CR-10-040	351.64	352.90	S4	Matrix supported polymictic Conglomerate with carbonate matrix. Clasts are generally less than 1cm in diameter. Irregular pervasive distribution of pyrite mineralization in matrix and minor late quartz carbonate veining. Quartz carbonate veining is minor and appears to be of little consequence.	
CR-10-040	354.57	356.84	S4	as above 351.64 to 352.90	
CR-10-040	357.72	358.79	S4	as above 351.64 to 352.90	
CR-10-040	363.63	367.37	S4	as above 351.64 to 352.90, with 20cm of near solid sulphide replacement at base with some possible associated silicification.	
CR-10-040	368.00	368.45	SS	Conglomerate with small clasts that has seen a complete replacement of the matrix (likely carbonate) by pyrite.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-10-040	369.72	370.02	NSS	Conglomerate with small clasts that has seen a high degree replacement of the carbonate matrix by pyrite.	
CR-10-040	375.77	377.59	WMIN	Conglomerate with section of NSS at top but sulphidisation waning downward. As with most of the Conglomerates since 350m clast size is fining downward. In this case it almost looks as if there is nothing but carbonate left at base.	
CR-10-040	419.36	422.77	WMIN	Pebbly Conglomerate that has seen a high degree of sulphide replacement as well as silicification. Pyrrhotite dominates with the occasional small crystal of pyrite showing here and there.	
CR-10-040	427.10	427.88	I2J	Medium grey coloured and fine grained Diorite dyke. Upper and lower contacts are sharp at 45degCA.	
CR-10-040	434.90	438.35	S4	Medium to light grey coloured, polymictic clast supported Conglomerate. Most clasts are striped cherts and quartz pebbles but marble fragments are present as well. Matrix in upper meter is chiefly carbonate but as clasts get larger and packed more densely carbonate retreats in favour of a muddy matrix. Pyrrhotite and pyrite are present but to a much lesser degree than in the surrounding marble, making up maybe 01% combined.	
CR-10-040	443.42	448.64	S4	Dark grey coloured matrix supported polymictic Conglomerate. Clasts are more varied than in preceding Conglomerate, with silty/muddy clasts showing alongside cherty and carbonaceous pebbles. Clasts are more subangular than rounded. Matrix is dark grey Mudstone and spheroidal pyrite. Likely sections of pyrite enrichments may have had a more carbonaceous matrix before. As compared to the Marble and other conglomerates within it this unit is more obviously foliated and possibly sheared which could explain the higher degree of remobilized sulphides.	
CR-10-040	448.64	462.56	S4	Contact to previous Conglomerate is sharp at 72degCA. Not only do any darker clasts dissapear but the matrix is now carbonate that at times is rather coarse grained. Also while the matrix has seen some minor uneven sulphide replacement, pyrite can only be seen in traces and pyrrhotite is now dominant.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-10-040	504.68	513.72	S 4	Cobble Conglomerate. Pyrrhotite - pyrite matrix with some residual carbonate. Cobbles and smaller clasts are mostly cherty and show internal brecciation healed by quartz. Siltstone, Mudstone and Marble clasts are encountered as well. The upper meter has seen some minor shearing, the remainder shows some vague foliation.	
CR-10-040	529.75	532.52	S4	Pebble Conglomerate with pyrrhotitic matrix replacement. Carbonate still present in traces. As compared to previous Conglomerates several quartz carbonate veins that postdate the sulphide replacement crosscut the unit. No mineralisation seems to be associated with that.	
CR-10-040	537.50	541.27	130	Marginally foliated Lamprophyre with minor biotite. Dyked out contact between Houston and Balmer Formations. Upper contact is broken but likely follows 48degCA while the lower contact is sharp at 53degCA.	
CR-10-040	558.09	558.59	VN	Broken and dismembered quartz carbonate vein. Looks like two or more quartz replacement generations. Sulphides are unevenly distributed hinting at availability during replacement phases.	
CR-10-040	564.93	566.23	SHR	Moderate shear in basalt. Very weak sulphides.	
CR-10-040	566.23	568.20	brec	Modearate shear continues but brecciation and bleaching mask it. Still very weak sulphide mineralisation.	
CR-10-040	568.20	571.89	SHR	as above 564.93 to 566.23	
CR-10-040	571.89	575.38	SHR	Sheared and brecciated with highest level of aluminous bleaching but still very weak sulphide mineralisation.	
CR-10-040	575.38	575.94	SHR	Shearing at top of this short section is masked completely by the alteration but increases gradually downwards. Strongest mineralised part of the shear with a fair amount of disseminated sulphides including arsenopyrite.	
CR-10-040	575.94	576.69	SHR	Shear gradually waning in intensity until all signs of alteration and mineralisation disappear.	
CR-10-040	621.96	622.30	12G	Foliated light grey coloured and fine grained Quartz Monzodiorite. Crosscut by straight, late milky quartz vein that has silicified the intrusive. Contacts are sharp at 50degCA.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-10-040	632.66	639.03	I2G	Foliated Quartz Monzodiorite that has seen a fair amount of alteration after emplacement. In upper third a multitude of milky quartz veins crosscut the unit, alongside which darker dense material is enriched in sulphides, mostly pyrrhotite. Immediately below those veins the intrusive is chloritized. Chloritisation is pervasive but strongest adjacent to some qv and hairline fractures. Subsequent to that sections have seen opening of more thin fractures that are filled with biotite that contains disseminated sulphides. Sulphides in general are finely disseminated throughout the unit. Pyrite dominates except around qv's where more pyrrhotite can be found. Trace arsenopyrite is sprinkled in as well. A bluish tinge in some crystals hints to the presence of cordierite. Upper and lower contacts are sharp at 59 and 56degCA respectively.	
CR-10-040	645.00	647.94	12J	Greenish grey coloured and fine grained marginally chloritized Diorite. Typical grainy look and traces of pyrite. Upper contact too uneven to measure. Lower contact sharp at 71degCA.	
CR-10-040	650.78	650.88	QCV	Unusual quartz-carbonate vein with 500+ mag reading. Pebbly round quartz crystals in rather dark matrix probably due to magnetite and pyrrhotite. Pyrite and chalcopyrite finely disseminated. Adjacent wall rock has also been permineralized. Interestingly a rather thick carbonate pillow selvege only 10 cm away has not been affected.	
CR-10-040	670.79	671.15	12J	Medium grey and fine grained Diorite almost brecciated by thick quartz-carbonate veins that show late stage infill of dense biotite and pyrrhotite. Upper and lower contacts are sharp yet subtle at 27 and 39degCA respectively.	
CR-10-040	675.00	676.11	130	Medium grey coloured, mottled looking Lamprophyre with trace pyrite. Both contacts are uneven at 57degCA.	
CR-10-040	684.46	688.06	12G	Medium grey coloured and fine grained, foliated Quartz Monzodiorite that has seen only marginal alteration after emplacement. Upper and lower contacts sharp at 60 and 56degCA respectively.	
CR-10-040	692.50	693.14	130	Mottled grey coloured and fine to medium grained Lamprophyre. Due to grain size differences and mixed in aggregates of biotite very inhomogeneous looking. Fine trace pyrite throughout. Upper contact at 76degCA. Lower contact at 51degCA.	
CR-10-040	693.50	694.00	130	As above 692.50 to 693.14. Upper contact at 51degCA. Lower contact at 65degCA.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-10-040	696.70	697.99	130	As above 692.50 to 693.14. Upper contact at 74degCA. Lower contact uneven, roughly at 85degCA.	
CR-10-040	698.66	700.80	130	As above 692.50 to 693.14. Sharp upper and lower contacts at 56degCA.	
CR-10-040	704.30	707.41	12G	As above 684.46 to 688.06. Sharp uper and lower contacts at 61 and 65degCA respectively. Lower contact against Lamprophyre.	
CR-10-040	707.41	707.75	130	Dark grey coloured Lamprophyre with quartz veins that carry large flaky biotite aggregates and blebs of pyrrhotite. Lower contact part of such vein, fractured and uneven.	
CR-10-040	709.59	713.73	I2G	Quartz Monzodiorite as before with section of mottled medium grained Lamprophyre between 712.13 and 712.73. Upper contact at 51degCA. Lower contact at 713.73 against further lamprophyre at 45degCA.	
CR-10-040	713.73	715.54	130	Medium grained, grey mottled Lamprophyre as above with section of very fine grained Lamprophyre at center that shows a larger assimilated chunk of of the coarser Lamprophyre. Lower contact against basalt is sharp at 61degCA	
CR-10-040	726.85	728.35	I2G	Medium grey and fine grained foliated Quartz Monzodiorite that has seen only marginal alteration after emplacement. At lower contact a cloudlike mass of Lamprophyre has displaced some of the Quartz Monzodiorite and shows a flowpattern. Upper and lower contacts sharp, both at 48degCA.	
CR-10-040	745.19	747.69	12G	For the most part unfoliated Quartz Monzodiorite with arsenopyrite as the dominant sulphide. Crisscrossing milky quartzveins in the lower part of unit have led to chloritisation and silicification turning the host rock milky green Here the arsenopyrite is gone. Late infill in the quartz veins is flaky biotite with virtually no sulphides at all. Contacts are sharp at 47degCA upper and 51degCA lower.	
CR-10-040	755.57	756.25	130	Dark grey coloured Lamprophyre that is very finegrained at the contacts but carries larger aggregates of biotite / phlogopite at is center. Crystals follow local foliation pattern. Contacts are sharp at 52degCA upper and 75degCA lower.	
CR-10-040	769.37	770.38	S	Undifferentiated Sediments with minor carbonaceous shear planes and low level silicification. Possible 15cm band of volcaniclastic material. Streaky, blebby and disseminated pyrrhotite. Thin fractures show pyrrhotite and chalcopyrite.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-10-040	770.78	772.28	12G	Medium grey coloured and fine grained Quartz Monzodiorite with several milky quartz veins with late stage flakey biotite infill. Only the most minute traces of sulphides present. Upper contact at 50degCA and lower at 40degCA.	
CR-10-040	774.84	776.84	12G	Moderately foliated Quartz Monzodiorite as before. Arsenopyrite is the only identifiable sulphide and its distribution is erratic. Both contacts sharp, 53degCA upper and 47degCA lower.	
CR-10-040	777.90	784.51	I2G	Quartz Monzodiorite that is quite foliated and bleached near the top and to a lesser degree at the base, Center of unit is less foliated and less bleached. First 20cm at top show fractures filled with pyrrhotite, past that sulphides are finely disseminated	
CR-10-040	789.72	792.74	130	Light green grey coloured, slightly mottled looking rather fine grained Lamprophyre. Difference between basalt which looks variolitic in this section and Lamprophyre is very subtle. Contacts are best seen when the rock is dry. Upper contact at 53degCA. Lower contact is at 61degCA.	
CR-10-040	794.45	810.88	12G	Foliated medium grey coloured Quartz Monzodiorite with more biotite / phlogopite than before. Foliation decreasing downwards. Contains a couple of assimilated basaltic blocks one of which has been replaced by biotite. Only minute traces of sulphides are present. Upper contact sharp at 55degCA. Lower contact at 53degCA.	
CR-10-040	833.54	834.77	130	Fine to medium grained, grey mottled looking Lamprophyre with minor foliation and associated biotite alteration. Contacts are sharp, 69degCA upper and 59degCA lower.	
CR-10-040	847.99	849.00	S	Undifferentiated sediments with minor quartz-carbonate shear planes. Lower part cherty bands and high level of silicification. Garnetiferous near upper contact. Fair number of plain quartz veins. Streaky, blebby and disseminated pyrrhotite, but mineralisation is not very strong.	
CR-10-040	860.91	863.11	12G	Medium grey coloured and fine grained Quartz Monzodiorite is weakly foliated. Only minute traces of sulphides present. Contacts are sharp, 60degCA upper and 55degCA lower.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-10-040	872.53	874.13	S	Mixed sediments, mostly cherty at top, banded Ironstone with magnetite bands at center and more muddy sediments at base. Some trace pyrrhotite in ironstone part, but top and bottom show a high degree of pyrrhotite replacement in what used to be either carbonate or quartz-carbonate which can still be seen in selvedges alongside veins. Veins tend to crosscut are folded fractured and dismembered.	
CR-10-040	874.13	874.32	130	Thin Lamprophyre at sediment / Gabbro contact. Both contacts are undulating and uneven but roughly following 39degCA.	
CR-10-040	874.32	874.51	S	Continuation of the sediments before the Lamprophyre but sedimentary structure has been obscured by shearing along the Gabbro contact. Best seen on the core when dry.	
CR-10-040	874.51	875.03	I3A/SHR	Contact shear in Gabbro. Shards of sediment have been worked into the Gabbro in the contact zone. Vague sedimentary ghost structures can be seen, stretched and rolled out. Pyrrhotite contents of those sedimetary bits have been worked into the gabbro. Color is a brownish grey, which turns to green grey as soon as sedimentary influence disappears downward.	
CR-10-040	876.29	877.64	12G	Light grey coloured and fine grained Quartz Monzodiorite with trace biotite and chlorite. Weakly foliated. Trace sulphides finely disseminated but locally uneven, and on hairline fractures. Includes arsenopyrite.	
CR-10-040	909.62	932.23	12G	Medium grey coloured and very fine grained very weakly foliated Quartz Monzodiorite with nil sulphides. Unit is massive with little discerning features. Upper and lower contacts sharp following the local foliation pattern at 50degCA.	
CR-10-040	932.23	932.49	13	Very fine grained dark grey coloured, mafic intrusive. Dense and not many discerning features. Contacts wavy but roughly perpendicular to core axis.	
CR-10-040	957.38	957.78	13	As above 932.23 to 932.49.	
CR-10-040	958.62	964.93	12G	Very weakly foliated Quartz Monzodiorite. With less quartz than before. Pyrite disseminated throughout as well as arsenopyrite in tiny cubic crystals. Upper and lower contacts are sharp at 48 and 81degCA respectively.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-10-040	995.51	996.69	I2H	Dark grey coloured and medium grained Monzodiorite with occasional quartz crystal. Very fine traces of sulphides including arsenopyrite. Upper and lower contacts are sharp, following the local foliation pattern of 50degCA.	
CR-10-040	1019.69	1025.60	13	Very dark grey coloured and fine grained mafic intrusive. Some minor biotite. Looks like Lamprophyre but lacks the carbonate. Possible silicification? Same may apply to previous 13's. Several straight milky quartz veins cross this unit at 45degCA, running counter the local foliation pattern. Contacts are sharp, 66degCA upper and 64degCA lower.	
CR-10-040	1038.05	1043.79	12J	Medium grey coloured and fine to medium grained Diorite. Fairly dense and unaltered near contacts while the center is quite sheared and biotite altered. Two short sections of Monzodiorite at center, no mineralisation. Upper contact sharp at 58degCA and lower contact irregular but around 48degCA.	
CR-10-040	1048.33	1049.53	12J	Greenish grey coloured and fine grained Diorite. One crosscutting 3cm quartz carbonate vein, NIL sulphides. Contacts are sharp, 69degCA upper and 37degCA lower.	
CR-10-040	1054.23	1054.73	I2J	As above 1048.33 to 1049.53. Contacts at 59degCA upper and 49degCA lower.	
CR-10-040	1056.52	1059.56	I2H	Dark grey coloured and fine grained Monzodiorite with small assimilated, biotite altered blocks of Gabbro. Only the most minute traces of sulphides present. Contacts sharp, 51degCA upper and 36degCA lower.	
CR-10-040	1059.56	1059.84	I3A/SHR	Sheared and biotite altered Gabbro between two intrusives.	
CR-10-040	1059.84	1060.20	I2J	Medium grey and fine grained Diorite as before. Contact almost running along core axis, quite uneven.	
CR-10-040	1060.20	1060.77	I3A	Medium green grey coloured and fine grained Gabbro between two intrusives.	
CR-10-040	1060.77	1062.14	12J	Medium grey coloured and fine to medium grained Diorite dyke. Fairly uniform. Contacts are sharp, 38degCA upper and 55degCA lower.	
CR-10-040	1063.30	1063.96	12J	Diorite as before with irregular contacts.	
CR-10-040	1065.39	1066.30	130	Dark grey coloured and fine grained Lamprophyre with fair amount of carbonate. Very uniform and massive. Upper contact sharp at 49degCA. Lower contact very irregular.	
CR-10-040	1090.86	1091.36	12J	Medium grey and fine to medium grained Diorite dyke with thin sheared quartz- carbonate vein at center, no sulphides. Contacts are sharp, 60degCA upper and 56degCA lower.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-10-040	1116.38	1119.00	SHR	Contact shear with carbonate and quartz-carbonate veining. Shear planes flexed and folded like a flow pattern.	
CR-10-040	1119.00	1122.07	I3A	Brown grey coloured and coarse grained Gabbro that intruded when the surrounding rock had already crystallized. Due to the heat the surrounding Gabbro has been biotite altered and contact sheared. The contacts of the coarse gabbro are sharp while the upper and lower contacts of the alteration zone are gradual.	
CR-10-040	1122.07	1123.45	SHR	Contact shear below the coarse Gabbro is straight and planes are unflexed.	
CR-10-040	1136.21	1137.13	13	Very fine grained dark grey coloured mafic intrusive, non carbonaceous with several quartz veins. Upper contact sharp at 43degCA. Lower contact irregular at about 58degCA.	
CR-10-040	1144.88	1145.90	V3B	Assimilated block of Basalt very close to the lower contact of the Gabbro with Balmer Assemblage. 30cm of normal unaltered Basalt followed by strongly sheared and biotite altered basalt. Best visible when dry, offering a pale brown-grey color (not buff). With streaks, bands and elongate flakes of sulphides, cheifly pyrrhotite, but also dusting of chalcopyrite on some shearplanes. Sulphide bands and dark color when wet give it a sedimentary appearance.	
CR-10-040	1145.90	1147.12	I3A	Contact sheared fine grained Gabbro that is fairly unaltered. Contact to sheared Balmer interflow sediments is subtle. Lots of finely disseminated pyrrhotite close to upper and lower contacts.	
CR-10-040	1147.12	1148.24	V3B	As above 1144.88 to 1145.90. Minor quartz-carbonate overprinting. Sulphide content waning somewhat downwards.	
CR-10-040	1160.02	1161.40	I3A	Fine grained, quite dark grey Gabbro with sharp contacts, both at 68degCA.	
CR-10-040	1187.63	1191.23	12G	Foliated medium grey coloured Monzodiorite with 10cm sericite altered shear at center. Sulphides are present in blebs and finely disseminated throughout. Pyrrhotite is most common, but pyrite, chalcopyrite and arsenopyrite are present in traces as well. A grey translucent 10cm quartz vein with quartz carbonate selvedge contains flakes of pyrrhotite and clouds of fine arsenopyrite.	
CR-10-040	1191.23	1193.18	V3B	Contact sheared Basalt with minor biotite alteration and no elevated levels of sulphides. Change to Gabbro underneath is gradual and assumed to coincide with the disappearance of quartz carbonate fractures and veins.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-10-040	1226.50	1231.63	12J	Medium grey coloured and very fine grained Diorite dyke. Recognizeable flowstructures and compositional differences apparent. Contains two biotite coated xenolith of Quartz Monzodiorite. Unit is broken into pokerchips in a couple of places indicating a recent brittle fault. At the contacts Gabbro has been cooked and shows signs of bleaching around hairline fractures and some brecciation. Contacts are irregular, but upper is roughly perpendicular to core axis and lower is at 29degCA.	
CR-10-040	1269.00	1270.94	12J	Medium grey coloured and very fine grained and foliated Diorite dyke. Diorite has been chloritized around a further milky quartz vein close to the base of the unit. Upper contact is obscured by 10cm milky quartz vein. Sharp lower contact at 69degCA.	
CR-10-040	1300.80	1301.76	12J	Medium grey coloured and fine grained Diorite dyke with sharp contacts, upper at 58degCA and lower at 71degCA.	
CR-10-040	1304.37	1312.88	S6D	Dark grey coloured silty Mudstones with several 10cm to 20cm wide carbonate bands. Carbonate very fine grained and marble like. Probably recrystallized fractures and small shears.	
CR-10-040	1324.98	1326.37	12J	Dark grey coloured lamprophyric looking Diorite with no carbonate. Mottled texture. Contacts are sharp at 77degCA upper and 60degCA lower.	
CR-10-040	1341.92	1343.29	130	Dark grey coloured foliated Lamprophyre, mottled look with traces of finely disseminated sulphides. Upper contact is badly broken. Lower contact is sharp at 70degCA.	
CR-10-040	1371.65	1372.12	130	Dark grey coloured and very fine grained Lamprophyre with no special features. Contacts sharp, upper at 21degCA and lower at 61degCA.	
CR-10-040	1383.72	1385.05	I2J	Medium grey coloured and fine to medium grained Diorite dyke with thin quartz vein and mm fracture with biotite and pyrrhotite aggregates. Upper contact sharp at 69degCA. Lower contact irregular.	
CR-10-040	1405.88	1406.37	12J	Medium grey coloured and fine to medium grained, foliated Diorite dyke. Quite dark in color. Both contacts are sharp and more or less perpendicular to core axis.	
CR-10-040	1443.14	1443.62	I2J	Medium grey coloured and medium grained Diorite dyke. Contacts are sharp, 73degCA upper and 57degCA lower.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-10-040	1446.50	1457.00	S6D	Increased amount of sulphide blebs and bands in dark grey muddy sections coincides with small scale folding and increased numbers of thin quartz carbonate veins that are folded and truncated as well.	
CR-10-040	1498.23	1498.49	12J	Medium grey and fine grained Diorite dyke with sharp contacts, perpendicular to core axis.	
CR-10-040	1502.81	1504.31	S4	Pebble to cobble Conglomerate with dismembered quartz veins and carbonate fragments. Equal amount of silicious and muddy components. Matrix has residual carbonate but has been mostly replaces by sulphides, with equal amounts of pyrite and pyrrhotite.	
CR-10-040	1504.31	1504.87	12J	Medium grey coloured and fine grained Diorite dyke. Upper contact is uneven, lower contact is sharp at 40degCA.	
CR-10-040	1507.02	1507.44	I2J	Medium grey coloured and fine grained Diorite dyke with sharp contacts, upper at 60degCA and lower at 71degCA.	
CR-10-040	1512.96	1513.54	S4	Monomictic Conglomerate. Likely to be locally derived since clasts match silty lithology below and above this section. Clasts are subangular to angular, almost like a Breccia. Matrix almost exclusively made of pyrite.	
CR-10-040	1519.40	1523.12	DIS	Disseminated to Well Mineralized, up to 15% Pyrite mineralized, up to 10% carbonate bearing silty Mudstone sediments. Replacive textures remain whispy throughout most of interval much like the other elevated sulphide bearing sections in the Bruce Channel.	
CR-10-040	1550.13	1550.73	12G	Light to medium grey coloured Quartz Monzonite with washed out intrusive texture due to minor silica-sericite bleaching. NIL sulphides. Sharp upper and lower contacts at 80degCA.	
CR-10-040	1617.90	1631.58	S6A	Dominantly siltstone with minor pyrite bearing Mudstone beds less than 0.50 metres in thickness. 02% pyrite-pyrrhotite present within low angle, strongly magnetic MT-chl-carb-ser altered beds as part of Siltstone portion of this minor unit. Upper and lower contacts are sharp at 70degCA and 32degCA respectively.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-10-040	1631.58	1632.52	S6D	Pyrite bearing Mudstone as described in major lithology. Sharp upper contact at 32degCA. Diffuse sheared lower contact at approximately 60degCA	
CR-10-040	1632.52	1632.92	SHR	Narrow minor Shear Zone in sulphidized Mudstone. Shear fabric is weak at approximately 60degCA. Diffuse contacts parallel to shear fabric.	
CR-10-040	1632.92	1635.33	S6D	Pyrite bearing Mudstone as described in major lithology. Diffuse upper contact at 60degCA. Sharp lower contact contains 1cm of solid pyrite sulphide at 40degCA.	
CR-10-040	1635.33	1637.49	S6A; S6D	Mixed 60% Siltstone and 40% Mudstone. Siltstone is highly siliceous (near Chert) with dark green coloured, highly magnetic, lithified muddy sediments in irregular, low angle beds seldom greater than 10cm in thickness with fine pyrite-pyrrhotite-silica hairline thickness selvedges which are light green-grey in colour.	
CR-10-040	1637.49	1638.00	S10A	Redish brown coloured, highly siliceous, oxidized sulphide Chert with sharp upper contact at 42degCA and sharp lower contact at 70degCA which contains steeply raking slicken lines. 05% fine grained pyrite-bearing with assumed 01-05% magnetite contributing to very strong magnetic response to pen magnet, though magnetite is not easily identifyable due to washed out redish brown colouration and locally amorphous texture.	
CR-10-040	1638.00	1638.75	BRE	Narrow brecciated and minor faulted oxidized sulphide Chert. Well healed by silica. Steeply dipping slicken lines present on fractured surfaces.	
CR-10-040	1638.75	1640.86	S6A	Light grey coloured, variably magnetic, highly siliceous Siltstone as above from 1631.58 to 1632.52m. Near Chert in texture. Sharp upper and lower contacts at 48degCA.	
CR-10-040	1640.86	1648.98	S6D	Up to 10% pyrite-bearing Mudstone sediments with sharp upper and lower contacts at 50degCA and 40degCA respectively.	
CR-10-040	1648.98	1651.43	S6A; S6D	Mixed 70% Siltstone and 40% Mudstone similar to above 1635.33 to 1637.49m. Sharp upper contact at 40degCA. Lower contact is sharp and undulating at dyke.	

From

То

Code

Description

HoleID

Conquest Resources Ltd. Diamond Drill Record

Minor Lithologies Record

CR-10-040 REP

CR-10-040	1651.43	1655.17	12J	Medium grey-green coloured, non-magnetic Diorite dyke. Blocky coring. Upper contact is sharp and undulating, not transposed. Lower contact is sharp at50degCA.
CR-10-040	1655.17	1660.86	S6A; S6D	Mixed 70% Siltstone and 40% Mudstone similar to above 1635.33 to 1637.49m with narrow slump structure (possibly dewatering structure) where bedding changes from 60 to 80 degrees at base of slump over approximately 1 metre. Sharp upper contact at 50degCA. Lower contact is diffuse at minor shear.
CR-10-040	1660.86	1661.43	SHR	Narrow poorly developed Shear structure within silt-laden mudstone. Several clasts of mudstone having weak strain shadows with trace carbonate. Poorly mineralized with 01% very fine disseminated pyrite. Shear fabric is undulating to nearly planar at lower contact 10 to 90degCA, respectively. Upper contact is diffuse while lower contact is abrupt at 90degCA.
CR-10-040	1743.64	1744.94	12G	Foliated biotite and sericite altered Quartz Monzodiorite. Color ranges from a blotchy greenish yellow-brown bleached, mostly around fractures, to a rich brown where biotite is present. There are traces of very fine grained sulphides, arsenopyrite amongst them. Near the base fragmented garnets, most likely assimilated from the wall rock can be observed. Upper contact is sharp and slightly undulating perpendicular to core axis. Lower contact is sharp at 64degCA.

Hole Name	From	То	Chlorite	Biotite	Calcite	Dolomite	Ankerite	K-spar	Sericite	Fuchsite	Garnet	Hornblende	Silica	Bleaching	N	dn	dcv	cqv	qtv	Vein Intensity	Description
CR-10-040	211.55	212.63											10								Silicified conglomerate with pyritic matrix.
CR-10-040	225.91	233.77											10								as above.
CR-10-040	240.20	245.84	1		3					tr			6								Silicified very carbonaceous Lamprophyre with apple green chlorite/fuchsite on fractures.
CR-10-040	541.27	542.05		12													2				Moderately sheared and biotite altered Basalt with minor qcv.
CR-10-040	542.05	542.84		10										4							Brecciated Basalt, biotite altered and moderately bleached around thin fractures.
CR-10-040	564.93	575.38		5	2						tr			7			4				Moderately sheared and biotite altered Basalt with minor qcv. Bleaching mostly restricted to brecciated sections
CR-10-040	575.38	575.94			3									60							pale grey to purplish hue. But don't think its intrusive.
CR-10-040	575.94	576.69		1										5							Alteration gradually disappearing
CR-10-040	632.66	639.03	2	3					tr							6	tr				Mostly pervasive chlorite seems associated with quartz veining. Minor biotite alteration, trace sericite
CR-10-040	683.68	683.63	2		8									5							Carbonaceous shear in grey bleached Basalt.
CR-10-040	745.19	747.69	2										5	5							Quartz monzodiorite with bleaching, silicification and chloritisation adjacent to late stage milky quartz veins.
CR-10-040	770.38	770.78		3																	Foliated Basalt between interflow sediments and Quartz Monzodiorite has seen biotite alteration due to the intrusive.
CR-10-040	777.90	780.15		1					tr					10							Creamy light grey bleached and foliated intrusive with minor biotite.

Hole Name	From	То	Chlorite	Biotite	Calcite	Dolomite	Ankerite	K-spar	Sericite	Fuchsite	Garnet	Hornblende	Silica	Bleaching	ЧN	dv	dcv	cdv	qtv	Vein Intensity	Description
CR-10-040	794.45	798.16		3																	Biotite / Phlogopite grown along foliation.
CR-10-040	821.81	822.74		5													1				Moderate biotite alteration in Basalt. Not associated with intrusive contact.
CR-10-040	828.00	828.77		5	2									2			5				Moderate shear with qcv and biotite alteration
CR-10-040	874.51	919.00		5																	Biotite overprinting in strongly foliated Gabbro.
CR-10-040	1144.88	1148.24		15										20			2				Sheared and bleached Basalt with fair amount of biotite alteration.
CR-10-040	1159.70	1160.02		10	2									5			2				Translucent brown to beige dense biotite alteration at intrusive contact.
CR-10-040	1175.61	1178.38		7																	Medium grey-brown moderately sheared Basalt with biotite alteration but no bleaching.
CR-10-040	1187.63	1191.23		1					1							2					Weak sericite alteration in Quartz Monzodiorite.
CR-10-040	1552.50	1553.00														3					few broken up quartz veins in fault zone
CR-10-040	1743.64	1744.94		7					tr					5							Foliated blotchy bleached and biotite altered Quartz Monzodiorite.

Gyro Survey Record

Hole ID	Station (m)	Dip (Degrees)	Azimuth
CR-10-040	0	-87.11	8.00
CR-10-040	5	-87.11	8.00
CR-10-040	10	-86.91	10.97
CR-10-040	15	-86.39	18.10
CR-10-040	20	-85.92	23.77
CR-10-040	25	-85.51	27.62
CR-10-040	30	-85.26	30.49
CR-10-040	35	-84.93	32.49
CR-10-040	40	-84.97	33.55
CR-10-040	45	-84.93	33.53
CR-10-040	50	-84.68	33.72
CR-10-040	55	-84.71	34.20
CR-10-040	60	-84.72	33.80
CR-10-040	65	-84.65	34.22
CR-10-040	70	-84.57	34.48
CR-10-040	75	-84.50	34.79
CR-10-040	80	-84.43	34.19
CR-10-040	85	-84.30	34.39
CR-10-040	90	-84.22	34.83
CR-10-040	95	-84.19	34.84
CR-10-040	100	-84.10	34.96
CR-10-040	105	-84.05	34.68
CR-10-040	110	-83.96	33.74
CR-10-040	115	-83.85	34.19
CR-10-040	120	-83.73	34.13
CR-10-040	125	-83.64	33.84
CR-10-040	130	-83.57	33.57
CR-10-040	135	-83.45	33.86
CR-10-040	140	-83.22	33.83
CR-10-040	145	-82.92	32.77
CR-10-040	150	-82.50	32.02
CR-10-040	155	-82.28	31.84
CR-10-040	160	-82.21	31.76
CR-10-040	165	-82.11	31.57
CR-10-040	170	-82.05	31.39
CR-10-040	175	-81.99	31.65
CR-10-040	180	-81.94	31.27
CR-10-040	185	-81.90	31.29
CR-10-040	190	-81.88	31.36
CR-10-040	195	-81.81	30.92
CR-10-040	200	-81.73	30.74
CR-10-040	205	-81.76	30.62
CR-10-040	210	-81.73	30.25
CR-10-040	215	-81.67	30.22
	220	-81.07 01 F0	30.44
CR-10-040 CD 10 040	220	-01.00 01 <i>1</i> 7	50.74 20.72
CR-10-040 CR-10 040	250	-01.47 _91.40	20.75 21 AE
	200	-01.49 01 DE	51.45 21.17
CR-10-040 CR-10 040	240	-01.00 _01.00	21.1/ 21.50
CR-10-040 CR-10-040	240	-01.00 _21.06	21 02
CR-10-040	250	-01.20 _21 15	21.22 21.07
CP_10_0/0	200	-01.15 _21.06	22 04
CR-10-040 CR-10-040	200	-80 01	52.04 27.72
CR-10-040	205	-00.94 _20.26	21 02
CR-10-040	270	-80.80	27 16
CR-10-040	275	-30.70	22.10
CR-10-040	200	-80.70	21 87
CR-10-040 CR-10-040	200	-00.07 _20.71	27.0/
CR-10-040 CR-10-040	250	-00.71 _20 52	22.20
CR-10-040	300 222	-00.00	22.33
CR-10-040	300	-20.03	22.27
CR-10-040	303	-200.43 _20 22	22 57
CR-10-040	315	-80.33	33.57
CR-10-040	320	-80.18	34.10
	520	00.10	37.10

Gyro Survey Record

Hole ID	Station (m)	Dip (Degrees)	Azimuth
CR-10-040	325	-80.10	34.34
CR-10-040	330	-80.01	34.56
CR-10-040	335	-79.97	34.67
CR-10-040	340	-79.89	34.65
CR-10-040	345	-79.88	34.78
CR-10-040	350	-79.81	34.73
CR-10-040	355	-79.78	34.49
CR-10-040	360	-79.74	34.92
CR-10-040	365	-79.66	34.95
CR-10-040	370	-79.60	34.85
CR-10-040	375	-79.54	35.13
CR-10-040	380	-79.46	34.86
CR-10-040	385	-79.33	34.90
CR-10-040	390	-79.24	34.69
CR-10-040	395	-79.14	34.86
CR-10-040	400	-79.04	35.25
CR-10-040	405	-78.66	35.51
CR-10-040	410	-78.61	35.73
CR-10-040	415	-78.48	36.07
CR-10-040	420	-78.38	36.13
CR-10-040	425	-78.34	36.34
CR-10-040	430	-78.26	37.11
CR-10-040	435	-78.17	36.56
CR-10-040	440	-78.13	36.61
CR-10-040	445	-78.02	36.30
CR-10-040	450	-78.00	35.95
CR-10-040	455	-77.96	36.11
CR-10-040	460	-77.90	36.26
CR-10-040	465	-77.89	36.11
CR-10-040	470	-77.78	36.43
CR-10-040	475	-77.78	36.42
CR-10-040	480	-77.75	36.65
CR-10-040	485	-77.58	36.74
CR-10-040	490	-77.46	37.27
CR-10-040	495	-77.34	37.84
CR-10-040	500	-77.25	38.35
CR-10-040	505	-77.11	38.72
CR-10-040	510	-77.02	38.86
CR-10-040	515	-76.85	38.77
CR-10-040	520	-76.80	38.14
CR-10-040	525	-76.68	38.58
CR-10-040	530	-76.55	38.85
CR-10-040	535	-76.32	39.03
CR-10-040	540	-76.21	38.91
CR-10-040	545	-76.10	38.91
CR-10-040	550	-75.99	39.00
CR-10-040	555	-75.95	38.71
CR-10-040	560	-75.99	38.95
CR-10-040	565	-75.84	39.15
CR-10-040	570	-75.81	38.92
CR-10-040	575	-75.69	38.91
CR-10-040	580	-75.59	38.85
CR-10-040	585	-75.60	38.69
CR-10-040	590	-75.51	38.74
CR-10-040	595	-75.43	38.97
CR-10-040	600	-75.27	38.74
CR-10-040	605	-75.16	38.46
CR-10-040	610	-74.96	38.58
CR-10-040	615	-74.83	38.72
CR-10-040	620	-74.69	38.96
CR-10-040	625	-74.62	38.97
CR-10-040	630	-74.44	38.93
CR-10-040	635	-74 29	39.12
CR-10-040	640	-74.11	39.09
CR-10-040	645	-73.94	39.26
0.1 20 0 10	0.10		00.20

Gyro Survey Record

Hole ID	Station (m)	Dip (Degrees)	Azimuth
CR-10-040	650	-73.86	39.11
CR-10-040	655	-73.70	39.59
CR-10-040	660	-73.63	39.57
CR-10-040	665	-73.52	39.51
CR-10-040	670	-73.38	39.59
CR-10-040	675	-73.26	39.70
CR-10-040	680	-73.07	39.65
CR-10-040	685	-72.95	39.79
CR-10-040	690	-72.74	40.13
CR-10-040	695	-72.49	40.00
CR-10-040	700	-72.20	39.83
CR-10-040	705	-72.16	40.00
CR-10-040	710	-72.14	40.16
CR-10-040	715	-72.09	40.29
CR-10-040	720	-71.96	40.25
CR-10-040	725	-71.90	40.37
CR-10-040	730	-71.87	40.33
CR-10-040	735	-71.80	40.39
CR-10-040	740	-71.70	40.46
CR-10-040	745	-71.66	40.60
CR-10-040	750	-71.59	40.63
CR-10-040	755	-71.59	40.38
CR-10-040	760	-71.59	40.56
CR-10-040	765	-71.51	40.73
CR-10-040	770	-71.42	40.80
CR-10-040	775	-71.36	40.85
CR-10-040	780	-71.29	40.86
CR-10-040	785	-71.19	41.07
CR-10-040	790	-70.96	41.20
CR-10-040	795	-70.79	41.32
CR-10-040	800	-70.69	41.48
CR-10-040	805	-70.59	41.36
CR-10-040	810	-70.38	41.52
CR-10-040	815	-69.99	41.45
CR-10-040	820	-69.73	41.22
CR-10-040	825	-69.52	41.04
CR-10-040	830	-69.67	41.04
CR-10-040	835	-69.55	41.07
CR-10-040	840	-69.49	41.03
CR-10-040	845	-69.47	41.16
CR-10-040	850	-69.41	41.07
CR-10-040	855	-69.35	41.29
CR-10-040	860	-69.28	41.36
CR-10-040	865	-69.21	41.31
CR-10-040	870	-69.19	41.41
CR-10-040	875	-69.11	41.39
CR-10-040	880	-69.00	41.57
CR-10-040	885	-69.03	41.58
CR-10-040	890	-68.91	41.79
CR-10-040	895	-68.84	41.82
CR-10-040	900	-68.76	41.81
CR-10-040	905	-68.65	41.88
CR-10-040	910	-68.56	41.90
CR-10-040	915	-68.50	42.08
CR-10-040	920	-68.45	42.22
CR-10-040	925	-68.38	42.32
CR-10-040	930	-68.27	42.45
CR-10-040	935	-68.23	42.45
CR-10-040	940	-68.17	42.56
CR-10-040	945	-68.10	42.57
CR-10-040	950	-68.05	42.41
CR-10-040	955	-67.98	42.38
CR-10-040	960	-67.90	42.39
CR-10-040	965	-67.86	42.51
CR-10-040	970	-67.83	42.61

Gyro Survey Record

Hole ID	Station (m)	Dip (Degrees)	Azimuth
CR-10-040	975	-67.72	42.50
CR-10-040	980	-67.68	42.44
CR-10-040	985	-67.64	42.22
CR-10-040	990	-67.63	42.18
CR-10-040	995	-67.57	42.15
CR-10-040	1000	-67.48	42.14
CR-10-040	1005	-67.41	42.22
CR-10-040	1010	-67.28	42.20
CR-10-040	1015	-67.17	42.26
CR-10-040	1020	-67.14	42.25
CR-10-040	1025	-67.09	42.49
CR-10-040	1030	-67.05	42.48
CR-10-040	1035	-67.01	42.67
CR-10-040	1040	-66.97	42.73
CR-10-040	1045	-66.93	42.77
CR-10-040	1050	-66.81	42.83
CR-10-040	1055	-66.75	42.92
CR-10-040	1060	-66.69	42.72
CR-10-040	1065		42.82
CR-10-040	1070	-00.57	42.88
CR-10-040	1075	-00.54	42.96
CR-10-040	1080	-00.41	42.92
CR-10-040	1085	-00.30	42.92
CR-10-040	1090	-00.29	42.96
CR-10-040	1095	-00.24	42.91
CR-10-040	1100	-00.18	45.02
CR-10-040	1105	-00.13	45.51
CR-10-040	1110	-66.07	43.10
CR-10-040	1113	-66.03	43.21
CR-10-040	1120	-66.02	43.34
CR-10-040	1125	-65.02	43.42
CR-10-040	1135	-65.89	43.50
CR-10-040	1140	-65.86	43.30
CR-10-040	1145	-65.84	43.47
CR-10-040	1150	-65.80	43 50
CR-10-040	1155	-65.71	43.57
CR-10-040	1160	-65.71	43.53
CR-10-040	1165	-65.62	43.60
CR-10-040	1170	-65.53	43.58
CR-10-040	1175	-65.48	43.78
CR-10-040	1180	-65.45	43.72
CR-10-040	1185	-65.42	43.79
CR-10-040	1190	-65.38	43.91
CR-10-040	1195	-65.34	43.84
CR-10-040	1200	-65.27	43.82
CR-10-040	1205	-65.22	43.91
CR-10-040	1210	-65.13	44.09
CR-10-040	1215	-65.01	44.15
CR-10-040	1220	-65.02	44.15
CR-10-040	1225	-65.01	44.10
CR-10-040	1230	-64.97	44.11
CR-10-040	1235	-64.93	44.19
CR-10-040	1240	-64.88	44.16
CR-10-040	1245	-64.86	44.28
CR-10-040	1250	-64.78	44.28
CR-10-040	1255	-64.82	44.34
CR-10-040	1260	-64.76	44.38
CR-10-040	1265	-64.70	44.33
CR-10-040	1270	-64.56	44.32
CK-10-040	1275	-64.52	44.25
CR-10-040	1280	-64.46	44.06
CK-10-040	1285	-64.29	44.04
CR-10-040	1290	-64.18	44.03
CK-10-040	1295	-64.08	44.02

Gyro Survey Record

Hole ID	Station (m)	Dip (Degrees)	Azimuth
CR-10-040	1300	-63.86	44.10
CR-10-040	1305	-63.63	44.01
CR-10-040	1310	-63.39	43.91
CR-10-040	1315	-63.26	43.95
CR-10-040	1320	-63.11	44.01
CR-10-040	1325	-63.02	44.13
CR-10-040	1330	-62.97	44.07
CR-10-040	1335	-62.86	44.22
CR-10-040	1340	-62.80	44.30
CR-10-040	1345	-62.66	44.39
CR-10-040	1350	-62.55	44.58
CR-10-040	1355	-62.47	44.60
CR-10-040	1360	-62.36	44.67
CR-10-040	1365	-62.17	44.60
CR-10-040	1370	-62.00	44.76
CR-10-040	1375	-62.02	45.09
CR-10-040	1380	-61.93	45.00
CR-10-040	1385	-61.84	45.23
CR-10-040	1390	-61.72	45.31
CR-10-040	1395	-61.59	45.54
CR-10-040	1400	-61.47	45.61
CR-10-040	1405	-61.37	45.62
CR-10-040	1410	-61.33	45.54
CR-10-040	1415	-61.24	45.78
CR-10-040	1420	-61.09	45.84
CR-10-040	1425	-60.94	46.03
CR-10-040	1430	-60.76	46.14
CR-10-040	1435	-60.60	46.33
CR-10-040	1440	-60.48	46.40
CR-10-040	1445	-60.37	46.64
CR-10-040	1450	-60.28	46.66
CR-10-040	1455	-60.19	46.97
CR-10-040	1460	-60.11	47.00
CR-10-040	1465	-59.99	47.05
CR-10-040	1470	-60.24	46.64
CR-10-040	1475	-60.14	46.44
CR-10-040	1480	-60.01	46.44
CR-10-040	1485	-59.84	46.60
CR-10-040	1490	-59.69	46.62
CR-10-040	1495	-59.53	46.69
CR-10-040	1500	-59.46	46.83
CR-10-040	1505	-59.38	46.87
CR-10-040	1510	-59.32	46.88
CR-10-040	1515	-59.16	46.94
CR-10-040	1520	-59.04	47.03
	1525	-28.9U	47.00
	1000	-20.70	47.U0 17 10
	1535	-30.00 E0 E1	47.10 47.20
	1540	-20.24 _50 10	47.35 A7 A7
CR-10-040	1540	-J0.40 _52 22	47.47 A7 51
CR-10-040	1550	-JO.JO _52 21	47.JI 17 50
CR_10_0/0	1560	-20.21 _52.22	47.32 17 51
CR-10-040	1565	-JO.20 _58 10	47.34 17 52
CR-10-040	1505	-50.19	47.56
CR-10-040	1575	-58.12	47.67
CR-10-040	1580	-58.06	47.69
CR-10-040	1585	-58 01	47.05
CR-10-040	1505	-50.01	47.77
CR-10-040	1595	-57 90	47.00
CR-10-040	1600	-57.50	47.55 48.01
CR-10-040	1605	-57 75	48.14
CR-10-040	1610	-57.75	40.14 48 1 <i>4</i>
CR-10-040	1615	-57 62	48 10
CR-10-040	1620	-57 56	48.07
		0	

Gyro Survey Record

CR-10-04	10
----------	----

Hole ID	Station (m)	Dip (Degrees)	Azimuth
CR-10-040	1625	-57.58	48.11
CR-10-040	1630	-57.64	47.90

Conquest Resources Ltd.

Exploration Diamond Drill Log

DRILL HOLE #	CR-10-040-W1	LOCATION	Balmertown,	Balmer Township	o, Red Lake Dist	rict, Ontario		
PROJECT #	Alexander	REFERENCE	Alexander		GEOLOGIST	Meckert	CLAIM	KRL 20488
							_	
GRID/ NAD-ZONE		NORTHING		EASTING		ELEVATION		GRID TYPE
GRID	Alexander RI	na		na		10000		M
	NAD83 / 15U	5656016.9		449969.0		-6.2m AMSI	-	
	-79.24 (290m)	GRID DIRECTION		5 69 E of grid N		0.2111 ANISE		34 69 (390m)
NTC DEF #	-75.24 (55011)			Ded Lake Onteri				34.03 (33011)
NIS KEF #	0521104	NTS SHEET NAIVIE		Red Lake, Ontario	0			
START DATE	31-Jul-10			FINISH DATE	1-Nov-10			
DEPTH (EOH)	2386.00	TARGET & Zone De	pth	Balmer shearing, L	ower Bruce Chan	nel unconformity	on northern fold limb	
PURPOSE	1st wedge hole	in CR-10-040			PIEC	E POINT of Target:	E	mELEV
CASING BW	v <u>na</u>		CASING NW	na			CASING HW	na
PLUG @) na		PLUG @	390m			PLUG @	na
START DTH	na		WEDGE @	Steel Wedge @ 3	89m, Clap. @ 4	05m, Clap @ 420	Om, Steel Wedge @ 9	85m
REDUCED @	na		REDUCED @	na	-	-	-	
HOLE STATUS	complete, hole	maintained for su	ubsequent we	dging				
		Boart Longvea	Inc					
		Doart Longyear	inc.				DVC	471
KIG NO.	LT 33 4134						BX3.	4/1
	GYRO Su	rvey: Multishot In and	Out of Hole			-		
DEP	ΥΤΗ (m)	AZIMU	ГН	DI	Р		Comments:	
3	300	32.97	7	-80.	.53	1st Group of Targe	ets Two carbonate - quartz	carbonate shears
4	100	38.40)	-76.	.90	were encountered	I in the upper part of the	Balmer Basalt, at
5	500	40.70)	-69.	.06	depth of 549.91m	to 560.75m and 787.32m	to 789.79m. Both
6	500	45.83	3	-64.	.69	shears are domina	ited by carbonate with onl	y a minor level of
7	700	48.7	5	-62	.75	silicification, biotit	te alteration or mineralizat	ion. 2nd Group of
	800	49.20)	-61	.70	dominated shears	were encountered in Palm	more carbonate
		50.60	,)	-60	72	are located at 1	152 00m to 1153 18m a	nd 1166 13m to
1	000	50.00 E1.00	-	-00.	572 EA	1170.71m respect	tively. Again the level o	f alteration and
1	100	51.03)	-55	.54	mineralization ass	ociated with the shears is	s only minor. 3rd
1	100	50.3		-57.	.83	Target Between 1	L938.68m and 1947.00m	a brecciated and
1	200	50.75)	-56.	.85	mineralized Chert	horizon was encountered	I that appears to
1	300	51.14	1	-55.	.86	correspond to a m	nineralized Chert horizon i	n hole CR-10-039
1	400	52.50)	-54.	.54	between 2061m a	nd 2066m. The lithology cl	losely matches as
1	500	53.13	3	-53.	.72	does the varied s	sulphide mineralization. G	old values range
1	600	52.99	Ð	-52.	.87	from 0.13gr/t Au o	over 1.32m to 0.62gr/t Au o	over 1m. Past this
1	700	52.09	Ð	-52.	.10	the remaining 4	2m of the chert horiz	on exhibit very
1	800	49.73	3	-50.	.47	consistend double	e digit ppb gold values, v	which is seen as
1	900	49.28	3	-49.	.99	encouraging. An	entirely different set of	targets were no
2	000	50.23	3	-50	.27	mineralization wa	as expected were estat	Bruce Channel
2	100	50.02	2	-49	31	Eormations The	etween Baimer and	Bruce Channel
2	200	18.89	2	_/10	02	1223m and 1233 2	25m Unconformity below	andesitic Basalt
2	200	40.00	,	-40	21	This unconformity	was first described in hole	CR-10-039 and is
2	300	46.23	5	-48.	.31	considered signific	ant and may indicate a for	mational change.
						The main depth o	bjective to locate Balmer	Formation Basalt
						past Bruce Chan	nel sediments as expre	ssed in surface
						mapping. At 2092.	.02m about 50m of variabl	y bleached Basalt
						were drilled. Fr	om 2141.86 to the EO	H at 2389.69m
						alternating Basalt	and sericite Schist section	ons show mostly
						heat induced met	amorphisis. Two moderat	te shear zones in
						Basalt at this dep	th are not mineralized to	any high degree.
						Apart from the	e tested shear zones	various Quartz
						Monzodiorite intr	usions show significant	gold values. The
						most notable one	es are 668.30m to 669.30m	n at 0.86gr/t Au,
						739.44m to 743.50	0m at 0.65 gr/t Au and 770	0.53m to 771.78m
						at 1.32 gr/t Au. R	emobilized gold was also	encountered in a
						Lamprophyre at 4.	U1 gr/t Au over 0.5m betw	een 750.25m and
						750.75m and a	aloritic intrusive betweel	n 2086.80m and
						2087.30m at 1.59g	r/ t Au.	
1								

Drill with 6m, double stablilized NQ core barrel

Planned hole depth is 2000m (6560')

Core stored at Alexander Core Yard at UTM 0449935 5656595

Water source: beaver pond located at 449718 5656178 UTM NAD83 15U

Core stored at Alexander Core Yard Drill type: LY-55

Major Lithologies

Hole Name	From	То	Length	Code	Description	Rep
CR-10-040-W1	287 27	421.00	33.68	560	Huston Formation. Dark grey massive Mudstones with lighter colored silty bands. The massive sections show significant amounts a of ghosty looking mm size crystals that could be andalusite in a retrograde state. Based on the banding in the siltier sections the sediments are folded and look somewhat compressed. Pyrrhotite is the dominant sulphide in thin bands and fracture	
CN-10-040-W1	307.32	421.00	33.08	300	fillings. It is also present in milky quartz veins, but most of those veins must be quite late because they are unaffected by folding or foliation. Boundary to marble unit below falls into reamed part of clappison wedge.	
CR-10-040-W1	421.00	468.23	47.23	M13	Medium and light grey banded fine grained Marble. Marble shows undulated banding that looks like a "flowpattern" associated with recrystallisation. Most of the banding seems due to the different amounts of sulphides present from band to band. Pyrrhotite outweighs pyrite and is mostly finely disseminated. Some short sections are brecciated and healed indicating that there may have been several phases of recrystallisation. At the center of the unit are some sections of clast supported conglomerates that differ in matrix and sulphide replacement from each other. Many of the clasts are cherty in nature. Right at the center is a matrix supported polymictic Conglomerate that is Mudstone dominated and shows blebby and spheroidal pyrite replacement in the matrix and some of the carbonaceous clasts. Past the Conglomerates the unit is more orderly but not as nicely foliated as in the parenthole. The contact to the sediments underneath is sharp at 33 DegCa.	
CR-10-040-W1	468.23	528.30	60.07	S6D	Dark grey silty Mudstone. Banding is disturbed and contorted, often folded onto itself. Banding is defined by grainsize differences and by the distribution of finely disseminated pyrrhotite, which make up 02% of the rock. Occasional short sections of wacke with carbonaceous cement. Longer section of cobble Conglomerate at center. Few dismembered quartz carbonate veins as well as some late stage milky quartz veins that contain remobilized pyrrhotite and on occasion some chlorite. Rocks are a bit more brittle near the contact to the Balmer Formation but don't exhibit any sort of major fault associated textures.	
CR-10-040-W1	528.30	549.91	21.61	V3B	Balmer Formation. First meter of Balmer Basalt is brecciated and biotite altered, containing carbonate veins and fractures but no mineralisation. In general the color is greenish with a brown hue due to a pervasive yet low level biotite alteration. There has been considerable buff bleaching around a multitude of hairline fractures that reaches about 1cm into the wall rock. Two carbonaceous shears are present, one from 532.45 to 533.36 and one from 539.00 to 539.60, but neither show sulphide mineralisation worth speaking of. The unit is well foliated and next to the carbonaceous veins and pillow selvedges also carries some quartz carbonate. The occasional vein will show some sulphides but mineralisation altogether is marginal.	

Major Lithologies

Hole Name	From	То	Length	Code	Description	Rep
CR-10-040-W1	549.91	560.75	10.84	SHR	Mostly carbonaceous shear zone with a fair amount of veining in top half. Center is dominated by section of strong biotite replacement and intense bleaching around a multitude of hairline fractures. Lower part of shear shows less veining but more quartzcarbonate and a mid level biotite alteration. Strength of the shear/alteration zone gradually diminishes downward. Mineralisation hovers around trace level for the most part. Dominant sulphide is pyrite.	
CR-10-040-W1	560.75	787.32	226.57	V3B	Greenish grey hornblende rich Basalt, well foliated and occasionaly moderately sheared. Moderate amount of carbonaceous fractures and quartz carbonate veins and pillow selvedges. A low level biotite alteration is widespread and doesn't follow any particular pattern. The occasional vein will show higher levels of sulphide mineralisation, but that is few and far inbetween. Other wise only minor traces of sulphides present. Between 670m and 698m where the Basalt is crosscut by a number of dykes it has a distinct variolitic look.	
CR-10-040-W1	787.32	789.79	2.47	SHR	Moderate shear structure with carbonate and quartz carbonate veining. Primary veining has been folded and flattened whilst veins along the shearplane tend to be straight. The latter tend to show more fine grained sulphides. In sections where the vein intensity is higher the associated hornblende-chlorite alteration seems to contain the most sulphide mineralisation and most notably grey sulphides.	
CR-10-040-W1	789.79	805.82	16.03	V3B	As above 560.75 tp 787.32	
CR-10-040-W1	805.82	1114.17	308.35	I3A	Dark green grey and mostly fine grained Gabbro. First 14m of Gabbro contain a number of assimilated blocks of sediment. Sediments range from Mudstone to Siltstone and contain thin carbonate bands all of which show a fair amount of pyrrhotite as the only discernable sulphide. These sedimentary blocks are flanked by a Quartz Monzodiorite above and below. Some minor brecciation and foliation can be observed.	
CR-10-040-W1	1114.17	1152.00	37.83	V3B	Light to medium grey fine grained pillowed Balmer Basalt. Thin chloritic bands and occasional quartz carbonate vein, but nothing that could be considered above background level. Fractures and pillow selvedges are dominated by carbonate. First few meters past Gabbro are contact sheared and biotite altered and crosscut by dykes.	
CR-10-040-W1	1152.00	1153.18	1.18	SHR	Narrow planar shear in Balmer Basalts with marginal quartzcarbonate veining and only trace sulphide mineralisation.	
CR-10-040-W1	1153.18	1166.13	12.95	V3B	As above 1114.17 to 1152	
CR-10-040-W1	1166.13	1170.71	4.58	I3A/SHR	Striated with hornblende alteration and elevated mag reading, partially gabbroic in nature. Upper contact is gradual while lower contact against unaffected Basalt is sharp. Sulphides are finely disseminated but the distribution is quite irregular. Next to no veining is present. Lower contact at 63 degCa following the shear direction.	

Major Lithologies

Hole Name	From	То	Length	Code	Description	Rep
CR-10-040-W1	1170.71	1183.22	12.51	V3B	Mostly grey very fine grained Basalt. Verging on Breccia with a myriad of thin carbonate healed fractures and bands of pale green bleaching where brecciation is more prominent. Contact to Gabbro below is sharp but very subtle, at 62 degCa.	
CR-10-040-W1	1183.22	1223.00	39.78	I3A	Very fine to fine grained Gabbro with some contact shearing but no biotite alteration at the top. Massive with little discerning features. Contact sheared with biotite alteration at base.	
CR-10-040-W1	1223.00	1233.25	10.25	FLT	Brecciated, folded and ground up Bruce Channel Mudstones at contact to Gabbro. Mudstones are brittle, broken up in some sections and in a couple of places reduced to graphitic fault gouge. Sedimentary banding and foliation are disturbed and contorted.	
CR-10-040-W1	1233.25	1263.23	29.98	S6D	Bruce Channel Formation. Dark grey banded Mudstone with streaky sulphides. Occasional thin quartz and quartz carbonate veins. Veins tend to be folded and truncated but unit is otherwise fairly orderly in its banding.	
CR-10-040-W1	1263.23	1310.30	47.07	S6A/S4	Medium grey muddy Siltstones with sections of lighter grey wacke and minor pebble Conglomerate. Finer grained sections show very irregular and contorted banding if any. Appears brecciated and refused without addition of matrix. Wacke sections are massive and not subject to described deformation. Fine grained sedimentation are common withsubhedral, mm-scale, retrograde-looking Andalusite crystals.	
CR-10-040-W1	1310.30	1311.40	1.10	BRX	Well healed brecciated, early-stage zone of brecciation within Bruce Channel Sediments. Dark grey coloured, near cherty mudstone matrix comprizes 70% of unit. Upper and lower contacts are diffuse, grading from silty mudstone sediment to angular, crude blocky 15% lithic and 10% quartz fragments with minor (02%) pyrite in matrix.	
CR-10-040-W1	1311.40	1385.00	73.60	S6A	Medium grey coloured, mostly massive muddy Siltstone. Poorly mineralized. Fine, 0.5 to 2 cm scale planar quartz-(carbonate) veins common throughout unit appearing to be late, having little significance mineralogically. One narrow Well Mineralized Breccia Zone, see minor lithology.	
CR-10-040-W1	1385.00	1399.20	14.20	S6A/S4	Poorly sorted, well graded, mixed Siltstone with undifferentiated bottom of beds. Period of episodic sedimentation is well preserved in rock record. Top of beds trend from Siltstone with quartz and lithic clasts (seldom larger than 1cm diam.) to homogeneous poorly mineralized muddy Siltstone. Those sections with clasts and poorly sorted disturbed bedding structure generally contain 01-05% pyrite replacement mineralization. Beds are one to three metres in thickness. Upper contact is gradational and defined in principle by change in sedimentation regime. Lower contact is diffuse.	

Major Lithologies

Hole Name	From	10	Length	Code	Description	кер
CR-10-040-W1	1399.20	1435.08	35.88	S6A	Light grey coloured, nearly homogeneous Siltstone. NIL mineralization. Well bedded. Occasional quartz-(carbonate) veinlets. Lower contact transitions from Siltstone to Mudstone over 15 metres up to lower contact comprised of distinct increase in sulphides, carbonate, and 01 to 10 mm-scale quartz clasts.	
CR-10-040-W1	1435.08	1442.34	7.26	DIS	Pyrite-(pyrrhotite)-(arsenopyrite) Mineralized mixed 70% monomictic quartz clast Conglomerate (S5B) and dirty 05-10% Marble (M13). Up to 20% rich dark yellow coloured, brilliant cubic crystal lustreous, sulphide mineralization dominates cement matrix, replacing carbonate between rounded quartz clasts which are largely barren. Irregular 1-3 cm thick carbonate veins occasionally cut at near orthonormal angles to core axis. Narrow coarse recrystallized silt contaminated Marble contains finely disseminated pyrite and trace arsenopyrite which is very fine grained textured making it difficult to distinguish arsenopyrite from host in a "sea-of-carbonate" having reflective brilliant recrystallized crystal faces that have similar colour and texture. Conglomerate is largely matrix supported, however some narrow (<1m) sections of matrix deficient clast supported Conglomerate are present.	
CR-10-040-W1	1442.34	1460.31	17.97	S6D	Streaky pyrite mineralized Mudstone as above. 02% Pyrite crystallization mineral growth is present within pyrite replace carbonate <i>beads/blebs</i> . 03% Fine pyrite laminations within Mudstone at bed-to-bed contacts on 03-05mm scale frequency. Mudstone is very fine grained near argillaceous in composition. Graphite-bearing minor faulting and close-isoclinal folds in argillaceous Mudstone observed in hanging wall to minor unit Marble. Otherwise, Mudstone is generally well bedded and undisturbed at 70degCA.	
CR-10-040-W1	1460.31	1465.94	5.63	BRX; DIS	Zone of widely spaced, poorly developed, Breccia structures containing several near solid sulphide (pyrite) sections with brecciated quartz veining and slickens on fracture surfaces within Bruce Channel Mudstone sediments. Fracture planes are irregular, generally 30-40degCA with near 90deg rake slicken lineations normal to CA. Upper and lower contacts are irregular, sharp and are well defined by an elevated level of NSS pyrite.	
CR-10-040-W1	1465.94	1468.92	2.98	S6D	Thin wedge of Mudstone as above with 30 cm intervals of strongly fractured core (assumed minor faulting near contact). Sharp upper and lower contacts.	

Res	sources Lim	ited				CK-10-040-W
Hole Name	From	То	Length	Code	Description	Rep
CR-10-040-W1	1468.92	1614.82	145.90	I3A	Fine to coarse grained, mixed medium to dark green coloured Gabbro. Contacts are quenched and have emplacement textures which can be interpreted to be volcanic (Basalt) instead of intrusive. This unit corelates to an interpreted Komatiitic Basalt (BK) in CR-10-040 parent hole, which in retrospect is likely a Gabbro with near-volcanic looking emplacement textures. The upper contact is stongly altered at sediments where Gabbro has very fine grain texture with localized epidote alteration and occasional quartz and quartz carbonate veins. Fine grained, quenched intrusive texture at lower contact.	
CR-10-040-W1	1614.82	1620.00	5.18	S4A	Bruce Channel Formation mixed locally sulphide bearing, well bedded, variably magnetic (MT+- PO), light grey coloured Siltstone. Typical Bruce Channel sediments as above. Sharp upper contact at 64degCA. One narrow, 1-cm thick band of highly magnetic, magnetite-bearing bed of siltstone gives 670 κ on Mag-sus meter of little significance mineralogically. 68degCA planar bedding.	
CR-10-040-W1	1620.00	1722.47	102.47	S10	Medium to light grey Chert. Often translucent and very finegrained giving it a glassy appearance. Long stretches are brecciated and healed by pyrrhotite and to a lesser degree by greenish (epidote) bearing material. Intermittend short sections of seemingly undisturbed banded chert with dull metallic grey magnetite rich bands on a 1 to 5cm scale. The latter also carry a low percentage of carbonate. Occasional short sections of argillitic Mudstone with pyrrhotite bands. Pyrrhotite is the dominating sulphide but chalcopyrite and grey sulphides are not uncommon. One fracture showed some minor red sphalerite. Pyrite only appears in traces. Some minor quartz veining is present but difficult to distinguish from the chert bands. Based on what is visible in argillitic sections there micht be one vein every two meters. Contact to the underlying andesitic Basalt is sharp and conformable at 63 degCa.	
CR-10-040-W1	1722.47	1825.83	103.36	V3A	Dull medium grey fine grained andesitic Basalt. Alternating greenish or brownish hues depending on the presence of chlorite or weak biotite alteration. Unit shows some moderate foliation. Carbonate veinlets are common but only thicker stringers may contain some disseminated sulphide. The latter are few and far inbetween except in the first few meters of the unit. Garnets are present throughout, pale pink to mostly dirty white and corroded looking. Garnets may or may not be affected by the foliation. Garnets also as selvedges on mineralized carbonate stringers. Unit is strongly affected by late brittle faulting. Ground tends to be blocky and stretches are broken in pokerchip fashion. Sulphides are dominated by pyrrhotite but pyrite is usually mixed in in small cubic crystals. Due to water circulating in fractures sulphides show signs of oxydization.	

Major Lithologies

Hole Name	From	То	Length	Code	Description	Rep
CR-10-040-W1	1825.83	1833.00	7.17	FLT	Fault Breccia with cobbles and blocks of andesitic basalt and chert set in an originally carbonaceous matrix that was subsequently replaced by sulphides and silica to a varying degree. Very fine grained dark stringer of a mafic intrusive near the top. A few short sections in this unconformity are intensely sheared giving those an almost felsic intrusive look. Next to matrix replacement sulphides also appear as fracture fillings and drawn out streaks and bands in darker parts within the chert blocks. Fault sets in abruptly (81 degCa) but last few meters of andestic Basalt are low level silicified. The lower contact is gradual.	
CR-10-040-W1	1833.00	1849.50	16.50	S	Undifferentiated sediments. Alternating banded chert to pyrrhotitic argillite to pale green coloured chloritic siltstone. Chertier sections are fairly intact while darker argillitic sections are more prone to small scale folding and rotation of bedding. Pyrrhotite is the most common sulphide followed by chalcopyrite pyrite and arsenopyrite. The interval from 1842.60m to 1845.85m may contain a fair amount of grey sulphides but that is difficult to distinguish from the almost metallic lustre on the cut garnets present in the core.	
CR-10-040-W1	1849.50	1870.45	20.95	I3A	Very fine grained flat grey to pale blueish coloured Gabbro. Frequent carbonate veins and fractures. Due to fine grained nature hard to distinguish from basaltic rock.	
CR-10-040-W1	1870.45	1875.83	5.38	SHR	Intense carbonaceous shear. Shear plane between 80 and 90 degCa. Sulphides are present in minute traces. Occasional small clouds of fine magnetite crystals stand out due to rusty spots on the core.	
CR-10-040-W1	1875.83	1885.55	9.72	I3A	As above 1849.50 to 1870.45	
CR-10-040-W1	1885.55	1887.30	1.75	SHR	As above 1870.45 to 1875.83	
CR-10-040-W1	1887.30	1897.35	10.05	I3A	As above 1849.50 to 1870.45	
CR-10-040-W1	1897.35	1902.32	4.97	SHR	Strong shear with carbonate and quartz carbonate veining. Not as intense as previous two shears. Different look to it due to the presence of silica, but following the same direction of 80 to 90 degCa. Magnetite present in small clouds as before where carbonate dominates. Associated with the quartz is finely disseminated pyrite and chalcopyrite as well as the occasional arsenopyrite crystal. Very noticeable is the presence of sericite throughout the shear.	
CR-10-040-W1	1902.32	1938.68	36.36	I3A	Blueish grey coloured and fine grained Gabbro. Quite dark when wet. Weakly foliated and infrequent carbonate healed fractures. Upper contact is gradual. Lower contact is sharp at 66 degCa.	

CONQUEST Resources Limited

Hole Name	From	То	Length	Code	Description	Rep
CR-10-040-W1	1938.68	1974.65	35.97	S10	Medium grey to dull dark grey coloured, banded Chert. Unit has been brecciated on a small and large scale. Bands are fractured and healed internally, disturbing the banding and contorting it . Frequent hairline rotational planes move blocks on a meter scale against each other. The planes only stand out because of the different banding orientation from block to block. Some of the blocks are also folded. Several generations of veining are present. Due to the amount of silica present most veins only contain residual carbonate. Standout feature are pencil grey veins that are plus minus banding conform and seem to consist next to 2% carbonate of mostly very fine grained (dust) magnetite and sulphides. Only arsenopyrite may show in mm size crystals in here which may be cubic or needle shaped. Dominating sulphide is pyrrhotite followed by arsenopyrite and chalcopyrite. Pyrite was not observed. Sulphides can be found in all veins as well as the host rock and late stage fracture fillings and appears remobilized for the most part. Frequent thin cloritic bands contain medium grained garnets of brownish reddish color giving the unit a busy look.	
CR-10-040-W1	1974.65	1992.72	18.07	S10D	Dark grey coloured to sometimes yellowish discoloured sulphidic to ferroginous Chert. Banded and tendency to brecciation as in previous unit. Sulphides are again dust particle size and blend into the sediment that they don't stand out but may make up 30% of the rock in some sections. Arsenopyrite, common in the previous unit is rare. The unit is also characterized by an increase in tuffaceous layers including chloritic garnetiferous sections where garnets tend to be coarse and clustered together. Towards the base sulphide content decreases and most cherty bands are medium grey and superficially more orderly looking.	
CR-10-040-W1	1992.72	2018.37	25.65	I3A	Green grey coloured and fine to medium grained Gabbro with some contact shearing. Upper contact sharp at 78 degCa. Lower contact sharp, undulating at 56 degCa.	
CR-10-040-W1	2018.37	2027.00	8.63	SHR	Moderate shear zone hosted in banded Siltstone to Quartzite. Quartz veining and to a lesser degree quartz carbonate veining is present with sulphides as selvedges and in interstitial spaces. On the periphery pyrrhotite is dominating with traces of chalcopyrite, while at the center of the shear pyrite is more common. Some of the thin sulphide stringers at center are multi stage because some veins are boudinaged while other are undisturbed. Also at the center within the quartzite are several fine grained carbonate stringers. Residual carbonate is also present in other sections, due to an "incomplete" low level silicification. Lower contact is gradual into finer sediments where sulphides appear to be of primary nature.	

Hole Name	From	То	Length	Code	Description	Rep
					Mixture of undifferentiated sediments including light grey coloured Siltstones, medium grey	
					coloured Quartzite and Wacke, Chert and minor Conglomerate. Lots of lithological changes in	
CR-10-040-W1	2027.00	2092.02	65.02	S	short succession. Towards the base chert more and more dominates the sedimentary pattern.	
	2027.00	2052.02	00.02	•	Chert bands are often alternating with bands that are rich in actinolite and chlorite. These	
					bands don't necessarily follow "bedding" planes but may cut obliquely as well. Assiciated with	
					this is magnetite and pyrrhotite.	
					Greenish grey to dirty brown coloured, invariably bleached Basalt. Foliated to sheared in	
					places. Sections that show less foliation are brownish grey with flakes of biotite and occasional	
					chloritic bands. These sections also exhibit bands of varying thickness with accumulations of	
					garnet. Stronger foliated to sheared sections contain pretty much no garnet. Quartz carbonate	
					veins are few and far inbetween and are mostly folded onto themselves and boudinaged and	
					dismembered. They stand out due to their blueish green color and grainy texture and are often	
CR-10-040-W1	2092.02	2141.86	49.84	V3B	accompanied by a shadow of biotite. Sulphides can be found mostly associated with the guartz	
					carbonate veins and in the garnetiferous hands. The upper contact is dyked out by a diorite and	
					there is no sign of a major unconformity. The lower contact is computed out by a dionic and	
					there is no sign of a major uncomornity. The lower contact is somewhat gradual and was put	
					at a thin lamprophyre past which hole of the above described bleaching is present. An	
					intrusive just above the boundary shows flexed foliation and the core is blocky possibly	
					indicating an unconformity.	
					Medium grey coloured sericite Schist with dark grey streaks. Occasional sections that are brown-	
CR-10-040-W/1	21/1 86	2191 56	49 70	MAZ	green in color and contain garnets may represent volcanic episodes. Unit is fairly uniform with	
CI-10-040-W1	2141.00	2151.50	45.70	14105	few thin dykes that are aplitic and lamprophyric in nature. Lower contact is gradually moving	
					into a darker more garnetiferous biotite schist.	
					Fine grained dark brown coloured biotite Schist with bands and short sections that are	
CR-10-040-W/1	2191 56	2207 35	15 79	V38/M88	dominated by chlorite. Almost 50% of the chloritic bands are made up of garnet. Sulphides are	
	2151.50	2207.55	15.75	100	present in a few places where the foliation is more intense and the biotite Schist has a dense	
					greasy look to it.	
					Medium grey and fine grained Quartz Diorite to Monzodiorite with a green tinge. Unit is well	
					foliated and looks fairly uniform in general. However, color changes to rather dark grey at	
					center to go back to paler shades at the bases. Changes are rather gradual and may point to	
CR-10-040-W1	2207 35	2256 31	48 96	121	compositional changes of the intrusive. For example the quartz content varies quite a hit. Short	
CK-10-040-W1	2207.55	2230.31	10.50		sections may contain fine brown corroded looking garnets. Only a handful of cm thick quartz	
					veins cross cut the unit. Trace of sulphides are present but the distribution does not follow a	
					recognizable nattern. The occasional arcenonyrite crystal can be observed	
CR-10-040-W/1	2256.31	2269.09	12.78	M8S	Sericite Schist is not as strong as before. Softer and slightly bleached and leached looking.	
5.1 10 0 10 WI			12.70		Upper and lower contacts are gradual.	

Major Lithologies

Hole Name	From	То	Length	Code	Description	Rep
CR-10-040-W1	2269.09	2274.93	5.84	12G	Medium grey coloured well foliated Quartz Monzodiorite with dark grey bands. Pervasive silicification giving it a glassy appearance. Minute traces of of sulphides are present. Upper contact to sericite Schist is gradual whilest lower contact against Basalt is defined by a 3cm quartz vein.	
CR-10-040-W1	2274.93	2290.77	15.84	V3B	Grey green coloured hornblende rich Basalt. First 6m contact sheared and weakly biotite altered. Past that the basalt is well foliated and slightly carbonaceous. Quartz and quartz carbonate veins are present. For the most part these are folded onto themselves and anastomosing. Minute traces of sulphides can be found throughout.	
CR-10-040-W1	2290.77	2294.52	3.75	SHR	Intense shear with mostly hornblende, actinolite/tremolite and dolomite. Possibly antigorite? Even though 30% of the shar is made up of veining there is no quartz worth mentioning and no calcite. Veining can be straight and undisturbed to boudinaged and dismembered. Directions from 69 to 85 degCa are present. Minute traces of sulphides are present.	
CR-10-040-W1	2294.52	2303.53	9.01	V3B	Mostly greenish grey coloured and grainy looking Basalt to 2398.69m. Past that the basalt is fairly dark grey coloured with signs of brecciation, recrystallisation and possible plastic flowing. This also coincides with calcite reappearing in traces. From 2301.68m on the basalt is medium to dark grey with only very sparse veining.	
CR-10-040-W1	2303.53	2356.11	52.58	I3A	Light green coloured and fine grained Gabbro with contact shear but no biotite alteration. Infrequent carbonate fractures are mostly straight and undisturbed. Occasional pyrite crystal here and there. Upper contact is subtle but sharp at 63 degCa.	
CR-10-040-W1	2356.11	2359.50	3.39	SHR	Shear with lots of directional changes of the shearplane due to brecciation and rotation. Little straight sheet veining is almost exclusively carbonaceous. There is also a fair amount of pervasive carbonate throughout the rock. Minute traces of sulphides are present. Even though shear looks strong core is in good shape.	
CR-10-040-W1	2359.50	2373.61	14.11	V3B	Well foliated grey green coloured Basalt with fine grained pervasive biotite alteration. Due to the foliation it is difficult to tell whether all the rock present is basaltic because gabbroic texture seems present in places as well. However, the occurence of garnets from 2369m to 2373m makes a basaltic origin more plausible.	
CR-10-040-W1	2373.61	2389.68	16.07	I2G	Well foliated light grey coloured Quartz Monzodiorite with pencil grey coloured bands. Intrusive has been strongly altered and turned into a sericite Schist with abundant quartz eyes. Very few late thin quartz veins cross cut this unit. A cm thick fracture at 2387m contains fuchsite. In the last 4m some greenish bands containing the odd garnet may indicate the presence of assimilated chunks of Basalt. Upper contact is sharp at 79 degCa, following the local foliation pattern.	

		-			Conquest Resources Ltd. Diamond Drill Record			
CONQUEST Resources Limited					Major Lithologies	CR-10-040-W1		
Hole Name	From	То	Length	Code	Description	Rep		
CR-10-040-W1	2389.68	2389.69	0.01	EOH	End of Hole is in highly altered Balmer Formation (?). Hole was terminated 16 meters past an identifiable Basalt horizon in a series of schistose rocks characterized by closed system metamorphosis rather than fluid induced. End of hole at 2389.69m on November 1, 2010. Hole is capped and accessible for further research. Gyro surveyed. Core is stored at the Conquest Core Facility on the Alexander Property in 471 NQ trays in racks. 596 samples sent for Au fire assay (50g pulp) at AGAT Labs. Mississauga, ON			

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-10-040-W1	427.70	428.31	I2J	Medium grey coloured and medium grained Diorite dyke. Both contacts are broken but are roughly at 50 degCa.	
CR-10-040-W1	436.61	447.70	S4	Polymictic Conglomerate with muddy matrix. Clasts are cherty, muddy, silty or carbonaceous and rounded to angular, pebble to cobble sized. Fair amount of spheroidal pyrite in the matrix and replacing some of the carbonaceous clasts. Pyrrhotite also present but only in minor amounts.	
CR-10-040-W1	522.00	524.56	130	Dark grey coloured and medium grained Lamprophyre. Weakly foliated with some biotite. Upper contact is broken. Lower contact is sharp at 47 degCa.	
CR-10-040-W1	549.91	552.93	SHR/V3B	Carbonaceous shear with high vein intensity. Veins mostly along shearplane and dominated by carbonate with some quartz carbonate present. Thickness ranging from mm to 3cm in general. Mixture of buff bleaching, presence of chlorite and brown biotite make for an odd off looking color. Sulphides are present but the mineralisation is spotty and weak.	
CR-10-040-W1	552.93	555.33	ATZ	Strong biotite alteration zone, translucent reddish brown in colour. Cut and crosscut by a myriad of hairline fractures with bleached halos. Quartz carbonate veins are present but intensity is much reduced as compared to previous unit. However, all the veins inspected carry very fine grained disseminated pyrite.	
CR-10-040-W1	555.33	560.75	SHR/V3B	Less intense biotite alteration than before. Greenish grey coloured due to presence of chlorite. Again, much reduced vein intensity, and the veins along with the alteration gradually fizzle out until shear direction disappears and the Basalt looks its typical greenish grey.	
CR-10-040-W1	606.70	610.94	12G	Medium grey coloured medium grained Quartz Monzodiorite. Well foliated to contact sheared at base. Purplish hue hints to the presence of pervasive dumorturite. Minor biotite and fine grained trace sulphides are present.	
CR-10-040-W1	649.00	653.14	12G	Medium grey coloured medium grained Quartz Monzodiorite. Moderately foliated with disseminated and blebby sulphides. Upper contact is jagged at roughly 33 degCa and the lower is sharp at 59 degCa.	
CR-10-040-W1	658.47	659.21	130	Dark grey coloured and medium grained Lamprophyre. Weakly foliated with some biotite and quite carbonaceous. Upper contact is sheared off at 64 degCa. Lower contact is sharp and undulating at 54 degCa.	
CR-10-040-W1	660.28	663.40	130	Lamprophyre looks identical to previous unit but only traces of carbonate are present. Both upper and lower contacts are perpendicular to core axis.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-10-040-W1	666.80	670.15	12G	Medium grey coloured and fine grained Quartz Monzodiorite. Contacts are slightly sheared and show some sericite. Contains chunks of same lithology but smaller grainsize. Several milky quartz veins crosscut this unit. Sulphides are present in small aggregates but only at trace level. Upper contact is sharp at 56 degCa. Lower contact is sharp at 55 degCa.	
CR-10-040-W1	674.00	677.72	130	Dark grey coloured and medium grained Lamprophyre with cm size angular wall rock clasts. Only traces of carbonate are present. Upper and lower contacts sharp and perpendicular to core axis.	
CR-10-040-W1	682.10	684.35	12G	Medium grey coloured and medium grained Quartz Monzodiorite with 30cm Lamprophyre dyke at center. Intrusive is slightly biotite altered and contains some dumorturite above the Lamprophyre. Below, it is "normal" rather unaffected by alteration, even though the lower contact has been dyked out by a further Lamprophyre dyke. Marginal trace sulphides are present. Upper contact is sharp at 58 degCa and the lower contact is sharp at 80 degCa.	
CR-10-040-W1	684.35	684.75	130	Dark grey coloured and fine grained Lamprophyre dyke containing a few quartz carbonate veins with nil sulphides. Lower contact is sharp at 60 degCa.	
CR-10-040-W1	688.61	692.12	130	Dark grey coloured and fine grained Lamprophyre dyke with thin fairly straight quartz carbonate biotite filled fractures that run subparallel to core axis. Carbonate content is minor. Some finely disseminated pyrite. Upper contact is sharp at 68 degCa. Lower contact is sharp, perpendicular to core axis.	
CR-10-040-W1	697.86	698.44	130	Quite carbonaceous fine grained and dark grey coloured Lamprophyre dyke with sharp contacts, upper at 64 degCa and lower at 76 degCa.	
CR-10-040-W1	698.44	698.64	V3B	Lots of broken and dismembered quartz carbonate veins in this short section of chloritic Basalt. Very fine grained trace sulphides.	
CR-10-040-W1	698.64	699.14	Т2	Short section of tuffaceous material with chlorite and garnets. Cherty looking bands and	
CR-10-040-W1	699.14	702.27	V3B	Fine grained chloritic Basalt except in first 20cm where biotite dominates. Quartz carbonate veins have been folded and boudinaged. Fair amount of amygdules are present. Fine grained sulphides go beyond the usual trace level encountered.	
CR-10-040-W1	706.07	708.70	12G	Medium grey coloured and fine grained Quartz Monzodiorite. Center of unit is fractured andfractures are filled with biotite. QMD is white bleached in vicinity of fractures. A few quartzcarbonate veins are present, one of which contains a fair amount of sulphides while the other are devoid of mineralisation. Contacts are sharp, upper at 56 degCa, lower at 48 degCa.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-10-040-W1	731.84	733.53	I2H	Dark grey coloured and fine grained Monzodiorite. Minute trace sulphides prsesent. Contacts are sharp, upper at 48 degCa and lower at 54 degCa.	
CR-10-040-W1	739.44	750.25	12G	Medium grey coloured and fine grained Quartz Monzodiorite. Upper half of unit is well foliated and has seen some sericite alteration. Folded and unfolded quartz carbonate veins are present but contain virtually no mineralisation. A larger sericite aggregate and a small arsenopyrite crystal nearby were observed in one of the veins. Mineralisation is at trace level with higher concentrations in sericite altered upper section but this could be an artifact of internal remobilisation and concentration. Upper contact is sharp at 56 degCa. Lower contact against Lamprophyre is broken up.	
CR-10-040-W1	750.25	755.58	130	Dark grey coloured and very fine grained Lamprophyre. Carbonaceous, massive but containing clasts of wall rock and a short cut of section of above Quartz Monzodiorite. As in the Quartz Monzodiorite a few quartzcarbonate veins are present but contain no mineralisation. Lower contact is sharp at 50 degCa.	
CR-10-040-W1	770.53	771.78	I2G	Medium grey coloured and fine grained Quartz Monzodiorite. First 15cm are dominated by mixed up quartz vein that contains some sulphides. Crosscut by a milky quartz vein at center that shows no mineralisation. Sulphides are otherwise at trace level and mostly in small aggregates. Contacts are sharp, upper at 46 degCa and lower at 53 degCa.	
CR-10-040-W1	780.46	780.88	130	Dark grey coloured, foliated, biotitic Lamprophyre that is quite carbonaceous. Surrounding Basalt is biotite altered at the contact. Contacts are sharp, upper and lower at 64 degCa.	
CR-10-040-W1	803.27	804.37	T2	Intermediate Tuff with coarse retrograde garnets set in chlorite rich bands. Cherty material and quartz carbonate veins ar difficult to distinguish due to a fair amount of silica bleeding and reconstitution. Pyrrhotite is finely disseminated in some layers as well as appearing in thin bands. Chertier parts are magnetic and contain cm thick grey bands that are magnetite rich.	
CR-10-040-W1	804.37	805.82	S6D	Very dark grey coloured graphitic Mudstone. Upper 20cm are cooked due to the Tuff above. Very thin pyrrhotite bands are contorted and folded and show signs of contact shearing but no veining. The unit becomes more and more brittle towards the lower contact but the breaks tend to follow the local foliation pattern of 68 degCa rather than expressing an overly broken fault.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-10-040-W1	807.50	808.63	12G	Light grey coloured and fine grained Quartz Monzodiorite that has seen some fracturing and subsequent healing with biotite. Sulphide is present in small aggregates and finely disseminated. Unit ends with thick broken quartz vein that has likewise experienced thick fracture filling with biotite. Upper contacts to gabbro is sharp at 58 degCa. Lower contact is jagged due to the quartz vein.	
CR-10-040-W1	818.94	819.65	12G	Medium to dark grey coloured and fine grained Quartz Monzodiorite. Non foliated and rather non descript looking, except for some assimilated Gabbro near top. Trace sulphides are present. Contacts are sharp, upper at 69 degCa and lower at 79 degCa.	
CR-10-040-W1	868.72	872.05	I2G	Medium grey coloured Quartz Monzodiorite. Fine grained with only minor quartz and a large volume matrix as compared to recognizeable crystals. Minor quartz veining of no consequence. Trace pyrite and arsenopyrite can be observed, disseminated and in small aggregates. Contacts are sharp, upper at 57 degCa and lower at 67 degCa.	
CR-10-040-W1	902.50	905.40	M26	Low angle pseudomylonitic Breccia in Gabbro with quartz veins and quartz carbonate - biotite veins. Upper and lower contacts are gradational.	
CR-10-040-W1	906.86	913.17	I2G	Weakly foliated medium grey coloured Quartz Monzodiorite. Cut by a low angle fracture system and crosscut by several straight milky quartz veins. Core is blocky and there is some core loss. Sulphides are finely disseminated and sometimes in small aggregates. Contacts are sharp, upper at 66 degCa and lower at67 degCa.	
CR-10-040-W1	947.92	949.12	I2H	Medium grey coloured and fine grained Monzodiorite with subhedral plagioclas and minor biotite. Traces of fine grained pyrite. Contacts are sharp upper at 54 degCa and lower at 60 degCa.	
CR-10-040-W1	1015.03	1019.31	12G	Medium grey coloured and weakly foliated and fine grained Quartz Monzodiorite. Minor flaky biotite and disseminated sulphides. Due to the number of joints the units tends to be blocky. Upper contact is undulating at 54 degCa. Lower contact is sharp at 64 degCa.	
CR-10-040-W1	1033.12	1038.92	12H	Medium to dark grey coloured and fine grained Monzodiorite. Weakly foliated with minor sericite and biotite. Assimilated blocks and chunks of Gabbro. Minute trace sulphides. Unit shows many hairline fractures and tends to be blocky. Contacts are sharp, 68 degCa upper and 58 degCa lower.	
CR-10-040-W1	1088.56	1095.66	12J	Multiple stringers of very fine grained massive Diorite crosscut the gabbro in this section. Nothing special to report about Diorite. Gabbro inbetween stringers is coarse grained and seems recrystallized. Contacts are generally sharp and run between 70 and 90 degCa.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-10-040-W1	1098.39	1103.63	130	Dark grey coloured and fine grained Lamprophyre. Massive with only marginal carbonate content. Contains pebble size chunk of syenite. Small flecks of pyrite sprinkled in. Towards the contacts the unit shows some minor contact shearing with biotite along the foliation plane. Contacts are sharp, 60 degCa upper and 52 degCa lower.	
CR-10-040-W1	1104.10	1110.74	V3B	Medium grey coloured and very fine grained Basalt with no selvedges or veins. Schistoid with lots of pervasive fine grained biotite. Cooked by surrounding Gabbro but not foliated or sheared.	
CR-10-040-W1	1110.74	1114.17	I3A	Contact sheared Gabbro. Starting medium to coarse grained and getting gradually finer and finer. Some biotite as thin layers along shear planes, roughly at 70 degCa.	
CR-10-040-W1	1114.17	1116.54	V3B	Contact sheared and biotite altered Basalt with sulphide enrichment in first 30cm. Some Quartz carbonate veining but infrequent with only trace mineralisation.	
CR-10-040-W1	1116.54	1118.04	12J	Medium grey coloured and medium grained Diorite. Foliated with biotite skirting plagioklas crystals. Mottled look, getting finer grained and more uniform looking downward. Minor veining. Contacts are sharp at 70 degCa upper and 72 degCa lower.	
CR-10-040-W1	1118.04	1119.27	V3B	Contact shear continues, gradually getting weaker and weaker. Mineralisation only at trace level.	
CR-10-040-W1	1143.88	1148.79	I2G	Fine grained foliated Quartz Monzodiorite. Purplish grey in colour due to the presence of dumorturite. Some thin quartz healed fractures and minor quartz carbonate veins. Sulphides are finely disseminated and appear as small aggregates. Higher sulphide content than normally seen in these intrusives. Contacts are sharp, 69 degCa upper and 61 degCa lower.	
CR-10-040-W1	1162.33	1163.37	I2J	Medium grey coloured and medium grained Diorite. Minor foliation and biotite content. Contacts are undulating, upper at 69 degCa and lower at 76 degCa.	
CR-10-040-W1	1178.15	1179.84	I3A	Medium grey coloured and fine grained Gabbro. Very difficult to distinguish from surrounding basalt except for weathered looking light colored feldspars. Both contacts somewhat diffuse, upper at 56 degCa and lower at 59 degCa.	
CR-10-040-W1	1216.37	1223.00	13A/S6D	Mixture of contact sheared Gabbro and Bruce Channel Mudstones. Due to biotite alteration and fusing it is difficult to make out exact contacts. Core is quite solid.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
				Three bands of fine to medium grained medium grey coloured Diorite in this section.	
CR-10-040-W/1	1280 37	1201 07	121	Faint foliation and some bleaching associated with quartz healed fractures in the	
CN-10-040-W1	1205.57	1251.57	125	uppermost band. Contacts are sharp, crosscutting the sediments at angles between 50	
				and 80 degCa.	
				Light mottled grey coloured, medium grained, biotite-bearing Diorite within Bruce	
CR-10-040-W/1	1300.46	1301 78	121	Channel Sediments. Character sample taken from dyke. Non-magnetic. Minor trace	
CN-10-040-W1	1300.40	1501.78	125	disseminated pyrite in trace quantities. Upper and lower contacts are sharp at 90degCA	
				and 65degCA, respectively.	
				Lithic polymictic Conglomerate as described in major lithology, generally less than 1	
				metre in thickness, however this interval is thicker (2.52 metres thick). Trace pyrite in	
CR-10-040-W1	1302.82	1305.34	S4	finely mineralized fragment boundaries in mud matrix. Non-magnetic. Crudely bedded,	
				poorly graded, well sorted Conglomerate. Contacts are sharp. Lower contact at	
				78degCA.	
CR-10-040-W1	1305.77	1309.80	I2J	Mottled Diorite dyke as above. Upper and lower contacts are sharp at 40degCA and	
				70degCA.	
				Well mineralized, well healed, silica-biotite-pyrite, quartz clast Breccia hosted within	
				quartz cobble bearing Bruce Channel Formation Mudstone. Upper contact is	
				gradational over 20 cm with gradual increase in brecciated texture and associated pyrite	
CR-10-040-W1	1347.50	1349.75	WMIN	replacement within fine muddy matrix. Biotite alteration occurs as <02% fine grained	
				whispy textures localized in those areas containing subrounded guartz fragments with	
				strong mineralization. No quartz-carbonate veining present. Lower contact is diffuse	
				into weakly sheared, pyrite-bearing, cross bedded Siltstone.	
				, , , , , , , , , , , , , , , , , , ,	
CP 10 040 W/1	1271 22	1271 75	101	Narrow, bleached, biotite bearing, 01% very fine grain disseminated pyrite mineralized,	
CK-10-040-001	15/1.22	15/1./5	121	Quartz Diorite with irregular upper and lower contacts at approx. 65degCA.	
				Mixed light grey coloured Marble (70%) with fine, well bedded, Mudstone (25%) and cm-	
				scale Chert (05%) sedimentation. One solid sulphide 6cm bleb of hammer textured grey-	
CR-10-040-W1	1453.40	1454.80	M13	brassy coloured pyrite within Marble; otherwise, not a very exciting unit. Marble	
				displays small scale folding structure similar to Mudstones immediately above.	
00 40 040 114	4450.64	4450 45		Medium grey coloured, narrow Gabbro dyke. Upper contact is diffuse with small quartz	
CR-10-040-W1	1458.64	1459.47	I3A	vein fragments. Sharp lower contact at 80degCA.	
CR-10-040-W1	1460.31	1460.50	BRE	Narrow section of brecciated quartz and quartz-carbonate-pyrite veining	
				Very narrow (5cm) grey huff coloured Diorite dyke. Very fine grained texture. Irregular	
CR-10-040-W1	1461.70	1461.75	12J	contacts with fine grey coloured 1 mm-scale sulphide masses	
				contacts with fine grey coloured, I film-scale, sulpinue masses.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-10-040-W1	1462.00	1462.32	BRE	Brecciated Quartz vein with large 6 cm diam. Pyrite <i>blowout</i> within Mudstone.	
CR-10-040-W1	1463.07	1463.39	WMIN	30% Pyrite-cemented (replaces carbonate?), well healed, Mudstone Breccia with rounded Mudstone clasts. No structure. Obliterated.	
CR-10-040-W1	1463.77	1464.00	BRE	Brecciated Quartz vein with up to 15% Pyrite between quartz clasts.	
CR-10-040-W1	1465.70	1465.94	BRE; NSS	Near Solid Sulphide Breccia (70% PY) with fine gravel sized quartz (05%) and lithic (25%) Mudstone clasts.	
CR-10-040-W1	1500.36	1505.86	FLT;S6D	Faulted, poorly mineralized, variably altered (contact metamorphism), well bedded Mudstone. Argillaceous-graphite bearing Faulted sections. Bedding varies from 50 to 85degCA. Slip (unquantifiable magnitude) indicated along bedding plane by slickens. Upper contact is sharp and ground with 5 cm thick pyrite-mineralized quartz vein. Recrystallization of dark mineral in very fine grained argillaceous section at base of sedimentation observed by the occurance of rectangular crystal faces on cut core surface (non-magnetic), likely hornblendes (?) due to contact metamorphism. Lower contact is dyked.	
CR-10-040-W1	1505.86	1507.24	12G	Steel grey coloured Quartz Monzodiorite with trace disseminated pyrite and arsenopyrite locally. Upper and lower contacts are planar and sharp at 65degCA.	
CR-10-040-W1	1626.72	1629.13	12H	Medium to dark grey coloured Monzodiorite with the occasional quartz crystal. Weakly foliated with several thin turmaline bearing quartz veins. Minute traces of sulphides are present. Contacts are sharp. Upper contact is wavy at 77 degCa and lower at 66 degCa.	
CR-10-040-W1	1655.51	1661.00	I2J	Medium grey coloured and medium grained foliated Diorite with minor flaky biotite. Getting brownish in color towards lower contact due to increasing content of fine biotite. Upper contact is broken and lower contact is irregular with small chunk of assimilated wall rock.	
CR-10-040-W1	1722.47	1725.88	V3A	Fine grained andesitic Basalt. Very garnetiferous in places. In this upper part of the unit the garnets tend to be "fresher" looking. Often in clusters or crusts accompanying carbonate stringers. The carbonate stringers, which are very fine grained contain finely disseminated sulphides while the host rock is generally blank. Unmineralized stringers tend to be lighter in colour and are coarser grained.	
CR-10-040-W1	1725.88	1726.95	12H	Medium grey coloured and fine grained and moderately foliated Monzonite to Monzodiorite. Sulphides are finely disseminated with arsenopyrite being the most common. Traces of pyrite are present as well. Contacts are sharp, upper at 66 degCa and lower at 78 degCa.	
CR-10-040-W1	1726.95	1731.00	V3A	As above 1722.47 to 1725.95	

Minor Lithologies Record

CR-10-040-W1 1835.94 1839.37 130 Dark grey coloured and fine to medium grained Lamprophyre. Weakly carbonaceous and monttel looking. Upper S0cm are dark brown with a swirk texture containing CR-10-040-W1 1835.94 1839.37 130 chunks of assimilated and reconstituted chert (?). Remainder of unit is moderately foliated. Upper contact is sharp at 61 degCa. Lower contact is broken but likely follows the same direction. CR-10-040-W1 1982.25 1983.35 130 Dark grey coloured and fine grained Lamprophyre. Uneventful. Both contacts are broken. CR-10-040-W1 2086.80 2092.02 121 pale green coloured. At center it is medium grained and more brownish in colour due to pervsive biotite. The upper contact is surrounding rock. More dismembered quartz contare is sharp at 72 degCa. CR-10-040-W1 2109.00 2114.00 V38/54R rabonate veins than in surrounding rock troughout this unit (2%). Sulphides very finely disseminated in quartz carbonate veins and in the fractures. Upper contact is broken and undulating at 66 degCa. CR-10-040-W1 2120.05 2126.74 130 Dark grey coloured and fine grained Lamprophyre dyke, partially brecciated and bleach darterns. Dark grey coloured and fine grained Lamprophyre dyke, partially threcciated and bleach darterns. Dark grey coloured and fine grained Lamprophyre dyke, partially brecciated and bleach darterns. CR-10-040-W1 2120.05 2126.77 1	HoleID	From	То	Code	Description	REP
CR-10-040-W1 1835.94 1839.37 130 and mottled looking. Upper 50cm are dark brown with a swirht texture containing CR-10-040-W1 1835.94 1839.37 130 chunks of a somilated and reconstituted chert (7). Remainder of unit is moderately foliated. Upper contact is sharp at 61 degCa. Lower contact is broken but likely foliows the same direction. CR-10-040-W1 1982.25 1983.35 130 Dark grey coloured and fine grained Lamprophyre. Uneventful. Both contacts are broken. CR-10-040-W1 2086.80 2092.02 121 Dark grey coloured and fine grained Lamprophyre. Uneventful. Both contacts is fine grained and contains sinuous late milky quartz veins. Around these the Diorite is bleached and often pale green coloured. At center it is medium grained and more brownish in colour due to pervasive biotite. The upper contact is uneven following 85 degCa, while the lower contact is sharp at 72 degCa. CR-10-040-W1 2109.00 2114.00 V38/SHR carbonate veins than in surrounding rock. More dismembered quartz carbonate veins than in surrounding rock. Surge some the bot rock. The latter are not related to bleach patterns. CR-10-040-W1 2126.05 2126.74 130 Dark grey coloured and fine grained Lamprophyre dyke, partially brecciated and dark grey coloured and fine grained Lawprophyre dyke, partially brecciated and the grey coloured and fine grained Lawprophyre dyke, partially brecciated and thark grey coloured and fine grained fine dyke grained cand part grey coloured and fine grained Lawprophyre dyke, partially					Dark grey coloured and fine to medium grained Lamprophyre. Weakly carbonaceous	
CR-10-040-W1 1839.37 130 chunks of assimilated and reconstituted chert (7), Remainder of unit is moderately foliated. Upper contact is sharp at 61 degCa. Lower contact is broken but likely foliows the same direction. CR-10-040-W1 1982.25 1983.35 130 Dark grey coloured and fine grained Lamprophyre. Uneventful. Both contacts are broken. CR-10-040-W1 2086.80 2092.02 121 Dark grey coloured and fine grained Lamprophyre. Uneventful. Both contacts it is fine grained and ocontants is simuous late mitigk quartz veins. Around these the Diorite is bleached and often pale green coloured. At center it is medium grained and more brownish in colour due to pervasive biotite. The upper contact is unreven following 85 degCa, while the lower contact is sharp at 71 degCa. CR-10-040-W1 2109.00 2114.00 V38/SHR Kasting 127 degCa. CR-10-040-W1 2125.05 2126.74 130 V38/SHR Dark grey coloured and fine grained Lamprophyre dyke, partially brecclated and bleached degCa. CR-10-040-W1 2125.05 2126.74 130 Dark grey coloured and fine grained Lamprophyre dyke, partially brecclated and bleached degCa. CR-10-040-W1 2137.78 2140.39 13 Dark grey coloured accept for streky masses of biotite. Unit is foliated to sheared but compared to surrounding units the foliation is undulating and not conform with the foliation pattern in the surrounding rock. Kave, masses of biotite. Unit is foliated to mared the compare					and mottled looking. Upper 50cm are dark brown with a swirly texture containing	
foliated. Upper contact is sharp at 61 degCa. Lower contact is broken but likely follows the same direction.CR-10-040-W1 1982.251983.35130Dark grey coloured and fine grained Lamprophyre. Uneventful. Both contacts are broken.CR-10-040-W1 2086.802092.02121Dark grey coloured and grainsize. Close to the contacts it is fine grained and contains sinuous late milk quartz veins. Around these the Diorite is bleached and often pale green coloured. At center it is medium grained and more brownish in colour due to pervasive biotite. The upper contact is uneven following 85 degCa, while the lower contact is sharp at 77 degCa.CR-10-040-W1 2109.002114.00Y38/SHR carbonate veins tant in surrounding rock. More dismembered quartz disseminated in quartz carbonate veins and in surrounding rock. More dismembered quart carbonate veins and in surrounding rock troughout this unit (2%). Sulphiles very finely disseminated in quartz carbonate veins and in surrounding rock troughout this unit (2%). Sulphiles very finely disseminated in quartz carbonate veins and in surrounding rock troughout this unit (2%). Sulphiles very finely disseminated in quartz carbonate veins and in surrounding rock troughout this unit (2%). Sulphiles very finely disseminated in quartz carbonate veins and in streaky masses in the host rock. The latter are not related to bleach patterns. Dark grey coloured and fine grained Lamprophyre dyke, partially brecciated and bleached around hairline fractures. Upper contact is broken and undulating at 66 degCa. Lower contact is sharp at 62 degCa.CR-10-040-W1 2137.782140.3913CR-10-040-W1 2137.782140.39I3I3CR-10-040-W1 2151.672155.41I2I2CR-10-040-W1 2	CR-10-040-W1 1	.835.94	1839.37	130	chunks of assimilated and reconstituted chert (?). Remainder of unit is moderately	
the same direction.CR-10-040-W1 1982.251983.35130Dark grey coloured and fine grained Lamprophyre. Uneventful. Both contacts are broken.CR-10-040-W1 2086.802092.0212JDark grey coloured and grainsize. Close to the contacts it is fine grained and contains sinuous late milky quartz veins. Around these the Diorite is bleached and often pale green coloured. At center it is medium grained and more brownish in colour due to pervasive biotite. The upper contact is uneven following 85 degCa, while the lower contact is sharp at 77 degCa. Mostly buff to pale green coloured, bleached Basalt. From 2112m to 2113m sheared with stronger biotite alteration than in surrounding rock. More dismembered quartz carbanta veins than in surrounding rock troughout this unit (28). Sulphides very finely disseminated in quartz carbonate veins and in streaky masses in the host rock. The latter are not related to bleach patterns. Dark grey coloured and fine grained Lamprophyre dyke, partially brecciated and bleached around hairing fractures. Upper contact is folken an undulating at 66 degCa. Lamprophyric looking mafic intrusive with no carbonate. Very fine grained and dark grey coloured except for streaky masses of biotite. Unit is foliated to sheared but compared to surrounding rocks. It may go as low as 30 degCa in places. Contacts are gradual and difficult to grasp. Surrounding rock is also blocky to broken likely due to movement pattern described.CR-10-040-W1 2151.672155.4112Lamprophyric looking sericite Schist. Upper contact is bleach and perventional in surrounding rock. It may go as low as 30 degCa in places. Contacts are gradual and difficult to grasp. Surrounding rock is also blocky to broken likely due to movement pattern described.CR-10-040-W1 2151.672155.41					foliated. Upper contact is sharp at 61 degCa. Lower contact is broken but likely follows	
CR-10-040-W1 1982.25 1983.35 190 Dark grey coloured and fine grained Lamprophyre. Uneventful. Both contacts are broken. CR-10-040-W1 2086.80 2092.02 120 121 Dark grey coloured and fine grained lamprophyre. Uneventful. Both contacts is fine grained and contains sinuous late milky quartz veins. Around these the Diorite is bleached and often parateria dan dore brownish in colour due to pervasive biotite. The upper contact is uneven following 85 degCa, while the lower contact is sharp at 77 degCa. CR-10-040-W1 2109.00 2114.00 V38/SHR Washer green coloured. At center it is medium grained and more brownish in colour due to pervasive biotite. The upper contact is uneven following 85 degCa, while the lower contact is sharp at 77 degCa. CR-10-040-W1 2109.00 2114.00 V38/SHR Washer event of the atteration than in surrounding rock. More dismembered quartz carbonate veins and in streaky masses in the host rock. The latter are not related to bleach patterns. CR-10-040-W1 2125.05 2126.74 130 Dark grey coloured and fine grained Lamprophyre dyke, partially brecciated and bleached around hairline fractures. Upper contact is brown and in conform with the foliation pattern in the surrounding rocks. It may go as low as 30 degCa in places. Contacts are gradual and difficult to grasp. Surrounding rock is also blocky to broken likely due to movement pattern described. CR-10-040-W1 2151.67 2155.41 126 Medium grey coloured and fine grained Quartz Monzonite. Foliation is o					the same direction.	
CR-10-040-W1 205.20 150 broken. Diorite dyke of varying colour and grainsize. Close to the contacts it is fine grained and contains sinuous late milky quartz veins. Around these the Diorite is bleached and often pale green coloured. At center it is medium grained and more brownish in colour due to pervasive biotite. The upper contact is uneven following 85 degCa, while the lower contact is sharp at 77 degCa. CR-10-040-W1 2109.00 2114.00 V3B/SHR CR-10-040-W1 2109.00 2114.00 V3B/SHR CR-10-040-W1 2109.00 2114.00 V3B/SHR CR-10-040-W1 2126.05 2126.74 130 CR-10-040-W1 2126.05 2126.74 130 Dark grey coloured and fine grained Lamprophyre dyke, partially breciated and bleached around hainine fractures. Upper contact is broken and undulating at 66 degCa. Lower contact is sharp at 62 degCa. Lamprophyric looking mafic intrusive with no carbonate. Very fine grained and dark grey coloured except for streaky masses of biotite. Unit is foliated to sheared but compared to surrounding units the foliation is undulating and not conform with the foliation pattern in the surrounding rock. It may go as low as 30 degCa in places. Contacts are gradual and difficult to grasp. Surrounding rock is also blocky to broken likely due to movement tattern described. CR-10-040-W1 2151.67 2155.41 12E CR-10-040-W1 2151.67 2155.41 12E	CP 10 040 W/1 1	002 25	1002.25	120	Dark grey coloured and fine grained Lamprophyre. Uneventful. Both contacts are	
CR-10-040-W12086.802092.0212JDiorite dyke of varying colour and grainsize. Close to the contacts it is fine grained and contains sinuous late milky quartz veins. Around these the Diorite is bleached and often pervasive biotite. The upper contact is uneven following 85 degCa, while the lower contact is share at 77 degCa.CR-10-040-W12109.002114.00V3B/SHRAt center it is medium grained and more brownish in colour due to pervasive biotite. The upper contact is uneven following 85 degCa, while the lower contact is share at 77 degCa.CR-10-040-W12109.002114.00V3B/SHRAt center it is medium grained basis. From 2112m to 2113m sheared with stronger biotite alteration than in surrounding rock. More dismembered quartz carbonate veins than in surrounding rock. More dismembered quarts carbonate veins than in surrounding rock. More dismembered quarts carbonate veins than in surrounding rock. More dismembered quarts carbonate veins than in surrounding rock. More dismembered quarts carbonate veins than in surrounding rock. More dismembered quarts carbonate veins than in surrounding rock. More dismembered quarts carbonate veins than in surrounding rock. More dismembered quarts carbonate veins than in surrounding rock. The latter are not related to bleach patterns.CR-10-040-W12126.052126.74130Dark grey coloured and fine grained Lamprophyre dyke, partially brecciated and bleacked gaca. Lower contact is sharp at 52 degCa.CR-10-040-W12137.782140.3913IaCR-10-040-W12151.672155.4112CR-10-040-W12151.672155.4112CR-10-040-W12151.672155.4112CR-10-040-W12151.672155.4112CR-10-040-W1	CR-10-040-001 1	.902.23	1965.55	130	broken.	
contains sinuous late milky quartz veins. Around these the Diorite is bleached and oftenCR-10-040-W1 2086.802092.02121pale green coloured. At center it is medium grained and more brownish in colour due to pervasive biotite. The upper contact is uneven following 85 degCa, while the lower contact is sharp at 77 degCa.CR-10-040-W1 2109.002114.00V3B/SHRcarbonate veins than in surrounding rock troughout this unit (2%). Sulphides very finely disseminated in quartz carbonate veins and in streaky masses in the host rock. The latter are not related to bleach patterns.CR-10-040-W1 2126.052126.74130bleached around hairline fractures. Upper contact is broken and undulating at 66 degCa. Lower contact is sharp at 62 degCa.CR-10-040-W1 2137.782140.39130bleached around hairline fractures. Upper contact is alwayses of biotite. Unit is follated to sheared but compared to surrounding rocks. It may go as low as 30 degCa in places. Contacts are gradual and difficult to graps. Surrounding rocks is also blocky to broken likely due to movement pattern described.CR-10-040-W1 2151.672155.4112EHeiling requered and fine grained Quartz Monzonite. Follation is only modearate compared do surrounding sericite Schist, but unit has seen considerable sericite alternion as well: Upper and lower contact sapper shap to ti appears as if the intrusion was multi episodic with thin much finer grained stringers of same composition in surrounding sericite Schist, Upper contact shap and perpendicular to creaks. Lower contact is uneven but shap from 70 to 90 degCa.CR-10-040-W1 2151.672155.742157.09HECR-10-040-W1 2156.742157.79HECR-10-040-W1 2156.74215					Diorite dyke of varying colour and grainsize. Close to the contacts it is fine grained and	
CR-10-040-W1 2086.80 2092.02 12/ pale green coloured. At center it is medium grained and more brownish in colour due to pervasive biotite. The upper contact is uneven following 85 degCa, while the lower contact is sharp at 77 degCa. CR-10-040-W1 2109.00 2114.00 V3B/SHR Mostly buff to pale green coloured, bleached Basalt. From 2112m to 2113m sheared with stronger biotite alteration than in surrounding rock. More dismembered quartz carbonate veins than in surrounding rock troughout this unit (2%). Sulphides very finely disseminated in quartz carbonate veins and in streaky masses in the host rock. The latter are not related to bleach patterns. Dark grey coloured and fine grained Lamprophyre dyke, partially brecciated and bleached around hairline fractures. Upper contact is broken and undulating at 66 degCa. Lower contact is sharp at 62 degCa. CR-10-040-W1 2137.78 2140.39 13 CR-10-040-W1 2151.67 2155.41 12 CR-10-040-W					contains sinuous late milky quartz veins. Around these the Diorite is bleached and often	
craste biotite. The upper contact is uneven following 85 degCa, while the lower contact is sharp at 77 degCa.CR-10-040-W1 2109.002114.00V3B/SHRMostly buff to pale green coloured, bleached Basalt. From 2112m to 2113m sheared with stronger biotite alteration than in surrounding rock. More dismembered quartz carbonate veins than in surrounding rock. More dismembered quartz carbonate veins and in streaky masses in the host rock. The latter are not related to bleach patterns. Dark grey coloured and fine grained Lamprophyre dyke, partially brecciated and bleached around hairline fractures. Upper contact is broken and undulating at 66 degCa. Lower contact is sharp at 62 degCa. Lower contact is alwarp at 62 degCa. Lower contact is sharp at 62 degCa. Lower contact is neven by go as low as 30 degCa in places. Contacts are gradual and difficult to grasp. Surrounding rock is also blocky to broken likely due to movement pattern described.CR-10-040-W1 2151.672155.4112EMedium grey coloured and fine grained Quartz Anno and perpendicular to core axis. Lower contact is uneven but sharp from 70 to 90 degCa.CR-10-040-W1 2156.742157.0911CThin grainy intrusive looks like Diorite. Blueish overtones indicate presence of cordierite. Mottled with thin quartz vein.Unaffected by follation. Unusually high amount of fine grained sulphides. Contacts are sharp and uneven. Upper at 34 degCa and lower at 53 degCa. </td <td>CR-10-040-W1 2</td> <td>2086.80</td> <td>2092.02</td> <td>12J</td> <td>pale green coloured. At center it is medium grained and more brownish in colour due to</td> <td></td>	CR-10-040-W1 2	2086.80	2092.02	12J	pale green coloured. At center it is medium grained and more brownish in colour due to	
contact is sharp at 77 degCa.CR-10-040-W1 2109.002114.00V3B/SHRMostiy buff to pale green coloured, bleached Basalt. From 2112m to 2113m sheared with stronger biotite alteration than in surrounding rock. More dismembered quartz carbonate veins than in surrounding rock troughout this unit (2%). Sulphides very finely disseminated in quartz carbonate veins and in streaky masses in the host rock. The latter are not related to bleach patterns. Dark grey coloured and fine grained Lamprophyre dyke, partially brecciated and bleached around hairline fractures. Upper contact is broken and undulating at 66 degCa. Lower contact is sharp at 62 degCa. Lamprophyric looking mafic intrusive with no carbonate. Very fine grained and dark grey coloured except for streaky masses of biotite. Unit is foliated to sheared but compared to surrounding units the foliation is undulating and not conform with the foliation pattern in the surrounding rocks. It may go as low as 30 degCa in places. Contacts are gradual and difficult to grasp. Surrounding rock is also blocky to broken likely due to movement pattern described.CR-10-040-W1 2151.672155.4112EI2EI2EMedium grey coloured and fine grained Quartz Monzonite. Foliation is only modearate compared to surrounding sericite Schist, but unit has seen considerable sericite alteration as well. Upper and lower contacts appear sharp but it appears as if the intrusion was multi episodic with thin much fine grained prependicular to core axis. Lower contact is uneven but sharp from 70 to 90 degCa.CR-10-040-W1 2156.742157.7911CCR-10-040-W1 2156.742157.79USHere are and the place contacts are sharp and uneven. Upper at 34 degCa and lower at 53 degCa.					pervasive biotite. The upper contact is uneven following 85 degCa, while the lower	
CR-10-040-W12109.002114.00V3B/SHRMostly buff to pale green coloured, bleached Basalt. From 2112m to 2113m sheared with stronger biotite alteration than in surrounding rock. More dismembered quartz carbonate veins than in surrounding rock troughout this unit (2%). Sulphides very finely disseminated in quartz carbonate veins and in streaky masses in the host rock. The latter are not related to bleach patterns. Dark grey coloured and fine grained Lamprophyre dyke, partially brecciated and bleached around hairline fractures. Upper contact is broken and undulating at 66 degCa. Lower contact is sharp at 62 degCa. Lamprophyric looking mafic intrusive withs on carbonate. Very fine grained and dark grey coloured excet for streaky masses of biotite. Unit is foliated to sheared but compared to surrounding more the foliation is undulating and not conform with the foliation pattern in the surrounding rock. It may go as low as 30 degCa in places. Contacts are gradual and difficult to graps. Surrounding rock is also blocky to broken likely due to movement pattern described.CR-10-040-W12151.672155.41H2EH2EMedium grey coloured and fine grained Quartz Monzonite. Foliation is only modearate compared to surrounding sericite Schist, but unit has seen considerable sericite alteration as well. Upper and lower contacts appear sharp but it appears as if the intrusion was multi episodic with thin much finer grained stringers of same composition in surrounding sericite Schist. Upper contact sharp and perpendicular to core axis. Lower contact is uneven but sharp from 70 to 90 degCa.CR-10-040-W12157.772157.79L1CThin grainy intrusive looks like Diorite. Blueish overtones indicate presence of cordierite. Mottle with thin quartz vein.Unaffected by foliation. Unusually high amount of fine grained su					contact is sharp at 77 degCa.	
CR-10-040-W12109.002114.00V3B/SHRwith stronger biotite alteration than in surrounding rock. More dismembered quartz carbonate veins than in surrounding rock troughout this unit (2%). Sulphides very finely disseminated in quartz carbonate veins and in streaky masses in the host rock. The latter are not related to bleach patterns. Dark grey coloured and fine grained Lamprophyre dyke, partially brecciated and to bleached around hairline fractures. Upper contact is broken and undulating at 66 degCa. Lower contact is sharp at 62 degCa. Lamprophyric looking mafic intrusive with no carbonate. Very fine grained and dark grey coloured except for streaky masses of biotite. Unit is foliated to sheared but compared to surrounding nocks. It may go as low as 30 degCa in places. Contacts are gradual and difficult to grasp. Surrounding rock is also blocky to broken likely due to movement pattern described.CR-10-040-W12151.672155.4112L2L2L2L2CR-10-040-W12156.742155.41L2L2L2CR-10-040-W12156.742157.09L2L3L3CR-10-040-W12156.742157.09L2L3L3CR-10-040-W12156.74L3L3CR-10-040-W12156.74L3L3CR-10-040-W12156.74L3L3CR-10-040-W12156.74L3L3CR-10-040-W12156.74L3L3CR-10-040-W12156.74L3L3CR-10-040-W12156.74L3L3CR-10-040-W12156.74L3 <td></td> <td></td> <td></td> <td></td> <td>Mostly buff to pale green coloured, bleached Basalt. From 2112m to 2113m sheared</td> <td></td>					Mostly buff to pale green coloured, bleached Basalt. From 2112m to 2113m sheared	
CR-10-040-W1 2109.00 2114.00 V3B/SHR carbonate veins than in surrounding rock troughout this unit (2%). Sulphides very finely disseminated in quartz carbonate veins and in streaky masses in the host rock. The latter are not related to bleach patterns. Dark grey coloured and fine grained Lamprophyre dyke, partially brecciated and bleached around hairline fractures. Upper contact is broken and undulating at 66 degCa. Lower contact is sharp at 62 degCa. Lamprophyric looking mafic intrusive with no carbonate. Very fine grained and dark grey coloured except for streaky masses of biotite. Unit is foliated to sheared but compared to surrounding units the foliation is undulating and not conform with the foliation pattern in the surrounding rocks. It may go as low as 30 degCa in places. Contacts are gradual and difficult to graps. Surrounding rock is also blocky to broken likely due to movement pattern described. CR-10-040-W1 2151.67 2155.41 I2 I2 Medium grey coloured and fine grained Quartz Monzonite. Foliation is only modearate compared to surrounding sericite Schist, but unit has seen considerable sericite alteration as well. Upper and lower contact sappear sharp but it appears as if the intrusion was multi episodic with thin much fine grained stringers of same compostion in surrounding sericite Schist. Upper contact sharp and perpendicular to core axis. Lower contact is uneven but sharp from 70 to 90 degCa. CR-10-040-W1 2156.74 2157.09 II Thin grainy intrusive looks like Diorite. Blueish overtones indicate presence of cordierite. Mottled with thin quartz vein.Unaffected by foliation. Unusually high amount of fine grained sulphides. Contacts are sharp and uneven. Upper at 34 degCa and lower at 53 degCa.					with stronger biotite alteration than in surrounding rock. More dismembered quartz	
disseminated in quartz carbonate veins and in streaky masses in the host rock. The latter are not related to bleach patterns. Dark grey coloured and fine grained Lamprophyre dyke, partially brecciated and bleached around hairline fractures. Upper contact is broken and undulating at 66 degCa. Lower contact is sharp at 62 degCa.CR-10-040-W1 2137.78 CR-10-040-W1 2137.782140.39H3Lamprophyric looking mafic intrusive with no carbonate. Very fine grained and dark grey coloured except for streaky masses of biotite. Unit is foliated to sheared but compared to surrounding units the foliation is undulating and not conform with the foliation pattern in the surrounding rocks. It may go as low as 30 degCa in places. Contacts are gradual and difficult to grasp. Surrounding rock is also blocky to broken likely due to movement pattern described.CR-10-040-W1 2151.672155.41H2EMedium grey coloured and fine grained Quartz Monzonite. Foliation is only modearate compared to surrounding sericite Schist, but unit has seen considerable sericite alteration as well. Upper and lower contact sappear sharp but it appears as if the intrusion was mult episodic with thin much fine grained stringers of same composition in surrounding sericite Schist. Upper contact sharp and perpendicular to core axis. Lower contact is uneven but sharp from 70 to 90 degCa.CR-10-040-W1 2156.742157.09H1CThin grainy intrusive looks like Diorite. Blueish overtones indicate presence of cordierite. Mottled with thin quartz vein.Unaffected by foliation. Unusually high amount of fine grained sulphides. Contacts are sharp and uneven. Upper at 34 degCa and lower at 53 degCa.	CR-10-040-W1 2	109.00	2114.00	V3B/SHR	carbonate veins than in surrounding rock troughout this unit (2%). Sulphides very finely	
are not related to bleach patterns. Dark grey coloured and fine grained Lamprophyre dyke, partially brecciated and bleached around hairline fractures. Upper contact is broken and undulating at 66 degCa. Lower contact is sharp at 62 degCa. Lamprophyric looking mafic intrusive with no carbonate. Very fine grained and dark grey coloured except for streaky masses of biotite. Unit is foliated to sheared but compared to surrounding units the foliation is undulating and not conform with the foliation pattern in the surrounding rocks. It may go as low as 30 degCa in places. Contacts are gradual and difficult to grasp. Surrounding rock is also blocky to broken likely due to movement pattern described.CR-10-040-W12151.672155.41I2EMedium grey coloured and fine grained Quartz Monzonite. Foliation is only modearate compared to surrounding sericite Schist, but unit has seen considerable sericite alteration as well. Upper and lower contact sarpe and sharp but it appears as if the intrusion was multi episodic with thin much fine grained stringers of same compostion in surrounding sericite Schist. Upper contact sharp and perpendicular to core axis. Lower contact is uneven but sharp from 70 to 90 degCa.CR-10-040-W12156.742157.09I1CCR-10-040-W12156.742157.09I1C					disseminated in quartz carbonate veins and in streaky masses in the host rock. The latter	
CR-10-040-W1 2126.052126.74I30Dark grey coloured and fine grained Lamprophyre dyke, partially brecciated and bleached around hairline fractures. Upper contact is broken and undulating at 66 degCa. Lower contact is sharp at 62 degCa. Lower contact is sharp at 62 degCa. Lamprophyric looking mafic intrusive with no carbonate. Very fine grained and dark grey coloured except for streaky masses of biotite. Unit is foliated to sheared but compared to surrounding units the foliation is undulating and not conform with the foliation pattern in the surrounding rocks. It may go as low as 30 degCa in places. Contacts are gradual and difficult to grasp. Surrounding rock is also blocky to broken likely due to movement pattern described.CR-10-040-W1 2151.672155.41I2I2I2CR-10-040-W1 2151.672155.41I2CR-10-040-W1 2151.672157.49I2I2I1Thin grainy intrusive looks like Diorite. Blueish overtones indicate presence of cordierite. Mottled with thin quartz vein.Unaffected by foliation. Unusually high amount of fine grained sulphides. Contacts are sharp and uneven. Upper at 34 degCa and lower at 53 degCa.					are not related to bleach patterns.	
CR-10-040-W12126.052126.74I30bleached around hairline fractures. Upper contact is broken and undulating at 66 degCa. Lower contact is sharp at 62 degCa.CR-10-040-W12137.782140.39I3Lamprophyric looking mafic intrusive with no carbonate. Very fine grained and dark grey coloured except for streaky masses of biotite. Unit is foliated to sheared but compared to surrounding units the foliation is undulating and not conform with the foliation pattern in the surrounding rocks. It may go as low as 30 degCa in places. Contacts are gradual and difficult to grasp. Surrounding rock is also blocky to broken likely due to movement pattern described.CR-10-040-W12151.672155.41I2EMedium grey coloured and fine grained Quartz Monzonite. Foliation is only modearate compared to surrounding sericite Schist, but unit has seen considerable sericite alteration as well. Upper and lower contact sharp and perpendicular to core axis. Lower contact is uneven but sharp from 70 to 90 degCa.CR-10-040-W12156.742157.09I1CThin grainy intrusive looks like Diorite. Bluelsh overtones indicate presence of cordierite. Mottled with thin quartz vein.Unaffected by foliation. Unusually high amount of fine grained sulphides. Contacts are sharp and uneven. Upper at 34 degCa and lower at 53 degCa.					Dark grey coloured and fine grained Lamprophyre dyke, partially brecciated and	
CR-10-040-W12137.782140.39I3Lower contact is sharp at 62 degCa. Lamprophyric looking mafic intrusive with no carbonate. Very fine grained and dark grey coloured except for streaky masses of biotite. Unit is foliated to sheared but compared to surrounding units the foliation is undulating and not conform with the foliation pattern in the surrounding rocks. It may go as low as 30 degCa in places. Contacts are gradual and difficult to grasp. Surrounding rock is also blocky to broken likely due to movement pattern described.CR-10-040-W12151.672155.41I2EMedium grey coloured and fine grained Quartz Monzonite. Foliation is only modearate compared to surrounding sericite Schist, but unit has seen considerable sericite alteration as well. Upper and lower contacts appear sharp but it appears as if the intrusion was multi episodic with thin much finer grained stringers of same compostion in surrounding sericite Schist. Upper contact sharp and perpendicular to core axis. Lower contact is uneven but sharp from 70 to 90 degCa.CR-10-040-W12156.742157.09I1CMottled with thin quartz vein.Unaffected by foliation. Unusually high amount of fine grained sulphides. Contacts are sharp and uneven. Upper at 34 degCa and lower at 53 degCa.	CR-10-040-W1 2	126.05	2126.74	130	bleached around hairline fractures. Upper contact is broken and undulating at 66 degCa.	
CR-10-040-W12137.782140.39I3Lamprophyric looking mafic intrusive with no carbonate. Very fine grained and dark grey coloured except for streaky masses of biotite. Unit is foliated to sheared but compared to surrounding units the foliation is undulating and not conform with the foliation pattern in the surrounding rocks. It may go as low as 30 degCa in places. Contacts are gradual and difficult to grasp. Surrounding rock is also blocky to broken likely due to movement pattern described.CR-10-040-W12151.672155.41I2Re-10-040-W12151.672155.41I2Re-10-040-W12156.742157.09I1CR-10-040-W12156.742157.09I1IIMedium grey coloured but sharp from 70 to 90 degCa.Thin grainy intrusive looks like Diorite. Blueish overtones indicate presence of cordierite. Mottled with thin quartz vein.Unaffected by foliation. Unusually high amount of fine grained sulphides. Contacts are sharp and uneven. Upper at 34 degCa and lower at 53 degCa.					Lower contact is sharp at 62 degCa.	
CR-10-040-W12137.782140.39I3coloured except for streaky masses of biotite. Unit is foliated to sheared but compared to surrounding units the foliation is undulating and not conform with the foliation pattern in the surrounding rocks. It may go as low as 30 degCa in places. Contacts are gradual and difficult to grasp. Surrounding rock is also blocky to broken likely due to movement pattern described.CR-10-040-W12151.672155.41I2EMedium grey coloured and fine grained Quartz Monzonite. Foliation is only modearate compared to surrounding sericite Schist, but unit has seen considerable sericite alteration as well. Upper and lower contacts appear sharp but it appears as if the intrusion was multi episodic with thin much finer grained stringers of same composition in surrounding sericite Schist. Upper contact sharp and perpendicular to core axis. Lower contact is uneven but sharp from 70 to 90 degCa.CR-10-040-W12156.742157.09I1CThin grainy intrusive looks like Diorite. Blueish overtones indicate presence of cordierite. Mottled with thin quartz vein.Unaffected by foliation. Unusually high amount of fine grained sulphides. Contacts are sharp and uneven. Upper at 34 degCa and lower at 53 degCa.					Lamprophyric looking mafic intrusive with no carbonate. Very fine grained and dark grey	
CR-10-040-W12137.782140.39I3to surrounding units the foliation is undulating and not conform with the foliation pattern in the surrounding rocks. It may go as low as 30 degCa in places. Contacts are gradual and difficult to grasp. Surrounding rock is also blocky to broken likely due to movement pattern described.CR-10-040-W12151.672155.41Image: Compared to surrounding sericite Schist, but unit has seen considerable sericite alteration as well. Upper and lower contacts appear sharp but it appears as if the intrusion was multi episodic with thin much finer grained stringers of same composition in surrounding sericite Schist. Upper contact sharp and perpendicular to core axis. Lower contact is uneven but sharp from 70 to 90 degCa.CR-10-040-W12156.742157.09Image: Compared to surrounding the place sericite sharp and uneven. Upper at 34 degCa and lower at 53 degCa.					coloured except for streaky masses of biotite. Unit is foliated to sheared but compared	
CR-10-040-W1 2157.782140.39Ispattern in the surrounding rocks. It may go as low as 30 degCa in places. Contacts are gradual and difficult to grasp. Surrounding rock is also blocky to broken likely due to movement pattern described.CR-10-040-W1 2151.672155.41IzeMedium grey coloured and fine grained Quartz Monzonite. Foliation is only modearate compared to surrounding sericite Schist, but unit has seen considerable sericite alteration as well. Upper and lower contacts appear sharp but it appears as if the intrusion was multi episodic with thin much finer grained stringers of same composition in surrounding sericite Schist. Upper contact sharp and perpendicular to core axis. Lower contact is uneven but sharp from 70 to 90 degCa.CR-10-040-W1 2156.742157.09IICThin grainy intrusive looks like Diorite. Blueish overtones indicate presence of cordierite. Mottled with thin quartz vein.Unaffected by foliation. Unusually high amount of fine grained sulphides. Contacts are sharp and uneven. Upper at 34 degCa and lower at 53 degCa.	CR 10 040 W/1 7	127 70	2140.20	12	to surrounding units the foliation is undulating and not conform with the foliation	
CR-10-040-W1 2151.672155.41I2EMedium grey coloured and fine grained Quartz Monzonite. Foliation is only modearate compared to surrounding sericite Schist, but unit has seen considerable sericite alteration as well. Upper and lower contacts appear sharp but it appears as if the intrusion was multi episodic with thin much finer grained stringers of same composition in surrounding sericite Schist. Upper contact sharp and perpendicular to core axis. Lower contact is uneven but sharp from 70 to 90 degCa.CR-10-040-W1 2156.742157.09I1CThin grainy intrusive looks like Diorite. Blueish overtones indicate presence of cordierite. Mottled with thin quartz vein.Unaffected by foliation. Unusually high amount of fine grained sulphides. Contacts are sharp and uneven. Upper at 34 degCa and lower at 53 degCa.	CR-10-040-001 2	157.70	2140.59	15	pattern in the surrounding rocks. It may go as low as 30 degCa in places. Contacts are	
CR-10-040-W1 2155.41 LE Medium grey coloured and fine grained Quartz Monzonite. Foliation is only modearate compared to surrounding sericite Schist, but unit has seen considerable sericite alteration as well. Upper and lower contacts appear sharp but it appears as if the intrusion was multi episodic with thin much finer grained stringers of same composition in surrounding sericite Schist. Upper contact sharp and perpendicular to core axis. Lower contact is uneven but sharp from 70 to 90 degCa. CR-10-040-W1 2156.74 2157.09 HC Thin grainy intrusive looks like Diorite. Blueish overtones indicate presence of cordierite. Mottled with thin quartz vein.Unaffected by foliation. Unusually high amount of fine grained sulphides. Contacts are sharp and uneven. Upper at 34 degCa and lower at 53 degCa.					gradual and difficult to grasp. Surrounding rock is also blocky to broken likely due to	
CR-10-040-W12151.672155.41IPEMedium grey coloured and fine grained Quartz Monzonite. Foliation is only modearate compared to surrounding sericite Schist, but unit has seen considerable sericite alteration as well. Upper and lower contacts appear sharp but it appears as if the intrusion was multi episodic with thin much finer grained stringers of same composition in surrounding sericite Schist. Upper contact sharp and perpendicular to core axis. Lower contact is uneven but sharp from 70 to 90 degCa.CR-10-040-W12156.742157.09IICMedium grey coloured and fine grained sulphides. Contacts are sharp and uneven. Upper at 34 degCa and lower at 53 degCa.					movement pattern described.	
CR-10-040-W1 2151.672155.41I2Ecompared to surrounding sericite Schist, but unit has seen considerable sericite alteration as well. Upper and lower contacts appear sharp but it appears as if the intrusion was multi episodic with thin much finer grained stringers of same compostion in surrounding sericite Schist. Upper contact sharp and perpendicular to core axis. Lower contact is uneven but sharp from 70 to 90 degCa.CR-10-040-W1 2156.742157.09IICThin grainy intrusive looks like Diorite. Blueish overtones indicate presence of cordierite. Mottled with thin quartz vein.Unaffected by foliation. Unusually high amount of fine grained sulphides. Contacts are sharp and uneven. Upper at 34 degCa and lower at 53 degCa.					Medium grey coloured and fine grained Quartz Monzonite. Foliation is only modearate	
CR-10-040-W1 2151.672155.41I2Ealteration as well. Upper and lower contacts appear sharp but it appears as if the intrusion was multi episodic with thin much finer grained stringers of same composition in surrounding sericite Schist. Upper contact sharp and perpendicular to core axis. Lower contact is uneven but sharp from 70 to 90 degCa.CR-10-040-W1 2156.742157.09IICThin grainy intrusive looks like Diorite. Blueish overtones indicate presence of cordierite. Mottled with thin quartz vein.Unaffected by foliation. Unusually high amount of fine grained sulphides. Contacts are sharp and uneven. Upper at 34 degCa and lower at 53 degCa.					compared to surrounding sericite Schist but unit has seen considerable sericite	
CR-10-040-W12151.672155.41I2EIntrusion was multi episodic with thin much finer grained stringers of same compostion in surrounding sericite Schist. Upper contact sharp and perpendicular to core axis. Lower contact is uneven but sharp from 70 to 90 degCa.CR-10-040-W12156.742157.09IICThin grainy intrusive looks like Diorite. Blueish overtones indicate presence of cordierite. Mottled with thin quartz vein.Unaffected by foliation. Unusually high amount of fine grained sulphides. Contacts are sharp and uneven. Upper at 34 degCa and lower at 53 degCa.					alteration as well. Unner and lower contacts annear sharp but it annears as if the	
CR-10-040-W1 2156.742157.09IICThin grainy intrusive looks like Diorite. Blueish overtones indicate presence of cordierite. Mottled with thin quartz vein.Unaffected by foliation. Unusually high amount of fine grained sulphides. Contacts are sharp and uneven. Upper at 34 degCa and lower at 53 degCa.	CR-10-040-W1 2	2151.67	2155.41	12E	intrusion was multi episodic with thin much finer grained stringers of same composition	
CR-10-040-W1 2156.74 2157.09 IIC III surrounding sencice script. Opper contact sharp and perpendicular to core axis. Lower contact is uneven but sharp from 70 to 90 degCa. Thin grainy intrusive looks like Diorite. Blueish overtones indicate presence of cordierite. Mottled with thin quartz vein.Unaffected by foliation. Unusually high amount of fine grained sulphides. Contacts are sharp and uneven. Upper at 34 degCa and lower at 53 degCa.					in surrounding serieite Schist Upper contact sharp and perpendicular to sore avia Lower	
CR-10-040-W1 2156.74 2157.09 IIC Thin grainy intrusive looks like Diorite. Blueish overtones indicate presence of cordierite. Mottled with thin quartz vein.Unaffected by foliation. Unusually high amount of fine grained sulphides. Contacts are sharp and uneven. Upper at 34 degCa and lower at 53 degCa.					in surrounding sencice schist. Opper contact sharp and perpendicular to core axis. Lower	
CR-10-040-W1 2156.74 2157.09 IIC Thin grainy intrusive looks like Diorite. Blueish overtones indicate presence of cordierite. Mottled with thin quartz vein.Unaffected by foliation. Unusually high amount of fine grained sulphides. Contacts are sharp and uneven. Upper at 34 degCa and lower at 53 degCa.					contact is uneven but sharp from 70 to 90 degLa.	
CR-10-040-W1 2156.74 2157.09 IIC Mottled with thin quartz vein.Unaffected by foliation. Unusually high amount of fine grained sulphides. Contacts are sharp and uneven. Upper at 34 degCa and lower at 53 degCa.					Thin grainy intrusive looks like Diorite. Blueish overtones indicate presence of cordierite.	
grained sulphides. Contacts are sharp and uneven. Upper at 34 degCa and lower at 53 degCa.	CR-10-040-W/1 2	156 74	2157 00	110	Mottled with thin quartz vein. Unaffected by foliation. Unusually high amount of fine	
degCa.	CN-10-040-001 2	.1.30.74	2137.03	110	grained sulphides. Contacts are sharp and uneven. Upper at 34 degCa and lower at 53	
					degCa.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-10-040-W1	2166.08	2167.25	130	Very dark grey coloured and fine grained Lamprophyre with no internal structure. Moderately carbonaceous showing a few flecks of pyrite. Upper contact is sharp at 76 degCa. Lower contact is sharp as well but very subtle at 59 degCa.	
CR-10-040-W1	2223.92	2231.76	M8S	Blotchy light brown to grey coloured sericite Schist within intrusive. Uneventful looking with gradual contacts to surrounding Monzodiorite.	
CR-10-040-W1	2241.35	2243.73	VS	Dark green grey coloured and garnet rich volcaniclastic rocks or highly altered assimilated block of Basalt. Matrix is very fine grained. Green color due to chlorite. Garnets are coarse and generally not affected by local foliation pattern. Contacts are gradual.	
CR-10-040-W1	2265.29	2265.90	130	Fine grained, dark grey coloured and well foliated Lamprophyre with no carbonate. One 5cm crosscutting milky quartz vein with sulphide bleb. Contacts are sharp at 68 degCa upper and 64 degCa lower.	
CR-10-040-W1	2354.50	2355.85	130	Brown grey coloured and fine grained and well foliated Lamprophyre. Moderatly carbonaceous except for last 30cm were carbonate is absent. Brown color due to fine grained pervasive biotite alteration. Upper contact is jagged at approximately 60 degCa and the lower contact is undulating at about 69 degCa.	
CR-10-040-W1	2382.34	2385.00	I3A	Light green grey coloured and fine grained Gabbro. Moderately foliated with a milky quartz vein running along core axis. Core is broken in a couple of places due to late brittle faulting. Upper contact is straight at 65 degCa and lower is straight as well at 69 degCa.	

Sampling Record

CONQUEST Resources Limited

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-10-040-W1	E5108560	531.50	532.45	0.95		Wing sample, greenish plain Basalt.	6	10T430287
CR-10-040-W1	E5108561	532.45	533.36	0.91	consecutive	Carbonaceous shear.	3	10T430287
CR-10-040-W1	E5108562	533.36	534.50	1.14	consecutive	Basalt with some biotite and bleaching. Trace sulphides.	2	10T430287
CR-10-040-W1	E5108563	534.50	535.50	1.00	consecutive	As above 562	3	10T430287
CR-10-040-W1	E5108564	535.50	536.60	1.10	consecutive	As above 562	6	10T430287
CR-10-040-W1	E5108565	536.60	537.00	0.40	consecutive	Basalt with quartz carbonate veining and minor sulphides.	5	10T430287
CR-10-040-W1	E5108566	537.00	538.00	1.00	consecutive	As above 562	2	10T430287
CR-10-040-W1	E5108567	538.00	539.00	1.00	consecutive	As above 562	3	10T430287
CR-10-040-W1	E5108568	539.00	540.00	1.00	consecutive	Carbonaceous shear.	4	10T430287
CR-10-040-W1	E5108569	540.00	541.00	1.00	not consecutive	As above 562	4	10T430287
CR-10-040-W1	E5108570	0.00	0.00	0.00	not consecutive	Standard OxK 69 3.583 ppm Au	3470	10T430287
CR-10-040-W1	E5108571	541.00	542.00	1.00	not consecutive	As above 562	6	10T430287
CR-10-040-W1	E5108572	542.00	543.00	1.00	consecutive	As above 562	5	10T430287
CR-10-040-W1	E5108573	543.00	544.00	1.00	consecutive	As above 562	2	10T430287
CR-10-040-W1	E5108574	544.00	545.00	1.00	consecutive	As above 562	4	10T430287
CR-10-040-W1	E5108575	545.00	546.00	1.00	consecutive	As above 562	2	10T430287
CR-10-040-W1	E5108576	546.00	547.00	1.00	consecutive	As above 562	3	10T430287
CR-10-040-W1	E5108577	547.00	548.00	1.00	consecutive	As above 562	4	10T430287
CR-10-040-W1	E5108578	548.00	549.00	1.00	consecutive	As above 562	4	10T430287
CR-10-040-W1	E5108579	549.00	549.91	0.91	consecutive	As above 562	5	10T430287
CR-10-040-W1	E5108580	549.91	551.00	1.09	consecutive	Carbonaceous shear and alteration zone.	4	10T430287
CR-10-040-W1	E5108581	551.00	552.00	1.00	consecutive	As above 580	7	10T430287
CR-10-040-W1	E5108582	552.00	552.93	0.93	consecutive	As above 580	12	10T430287
CR-10-040-W1	E5108583	552.93	554.00	1.07	consecutive	Intense biotite alteration, trace sulphides.	6	10T430287
CR-10-040-W1	E5108584	554.00	554.84	0.84	consecutive	As above 583	4	10T430287
CR-10-040-W1	E5108585	554.84	555.33	0.49	consecutive	Sickly green-buff bleaching.	92	10T430287
CR-10-040-W1	E5108586	555.33	556.00	0.67	consecutive	Chlorite biotite alteration diminishing downwards.	5	10T430287
CR-10-040-W1	E5108587	556.00	557.00	1.00	consecutive	As above 586	3	10T430287
CR-10-040-W1	E5108588	557.00	558.00	1.00	consecutive	As above 586	5	10T430287
CR-10-040-W1	E5108589	558.00	559.00	1.00	not consecutive	As above 586	3	10T430287
CR-10-040-W1	E5108590	0.00	0.00	0.00	not consecutive	Standard Sk 43 4.086 ppm Au	3970	10T430287
CR-10-040-W1	E5108591	559.00	560.00	1.00	not consecutive	As above 586	5	10T430287v2
CR-10-040-W1	E5108592	560.00	560.75	0.75	consecutive	As above 586	8	10T430287v2
CR-10-040-W1	E5108593	560.75	561.25	0.50	not consecutive	Wing sample, greenish plain Basalt.	2	10T430287v2
CR-10-040-W1	E5108594	584.00	584.71	0.71	not consecutive	Wing sample, greenish plain Basalt.	4	10T430287v2
CR-10-040-W1	E5108595	594.00	595.00	1.00	not consecutive	Basalt with multiple qcv's and trace sulphides	7	10T430287v2
CR-10-040-W1	E5108596	584.71	585.43	0.72	not consecutive	Moderate shear with biotite bands, some qcv, trace sulphides.	3	10T430287v2
CR-10-040-W1	E5108597	585.43	586.53	1.10	consecutive	High qcv intensity center of shear with trace sulphides.	3	10T430287v2
CR-10-040-W1	E5108598	586.53	587.73	1.20	consecutive	As above 596	3	10T430287v2
CR-10-040-W1	E5108599	587.73	589.00	1.27	consecutive	Weak shear with qcv sulphides, biotite	3	10T430287v2
CR-10-040-W1	E5108600	589.00	590.00	1.00	consecutive	Weak shear with thick qcv, qcv boudines, trace sulphides.	2	10T430287v2
Prepared by Benjar	min Batson				2010 Drill	Program - Alexander Gold Project		21 of 52

Sampling Record

CR-10-040-W1

CON	QUEST					Sampling Record		CR-10-040-W1
HoleID		From	То	Length	Consecutive	Description	Au ppb	Batch-Number
CR-10-040-W1	E5108601	590.00	591.00	1 00	consecutive	Wing sample greenish plain Basalt	<u>- 70_ppp</u> 3	10T430287v2
CR-10-040-W1	E5108602	602.00	603.00	1.00	not consecutive	Wing sample, well foliated Basalt with minor biotite.	7	10T430287v2
CR-10-040-W1	E5108603	603.00	604.00	1.00	consecutive	As above 602 with 30cm Quartz Monzodiorite.	4	10T430287v2
CR-10-040-W1	E5108604	604.00	605.00	1.00	consecutive	Less foliation, thick pillow selvedges.	6	10T430287v2
CR-10-040-W1	E5108605	605.00	606.00	1.00	consecutive	More foliation and biotite.	9	10T430287v2
CR-10-040-W1	E5108606	606.00	606.70	0.70	consecutive	As above 605	15	10T430287v2
CR-10-040-W1	E5108607	606.70	608.20	1.50	consecutive	Quartz Monzodiorite with trace sulphides.	6	10T430287v2
CR-10-040-W1	E5108608	608.20	609.70	1.50	consecutive	as above 607	1	10T430287v2
CR-10-040-W1	E5108609	609.70	610.94	1.24	not consecutive	As above 607	4	10T430287v2
CR-10-040-W1	E5108610	0.00	0.00	0.00	not consecutive	Standard Si 42 1.761 ppm Au	1500	10T430287v2
CR-10-040-W1	E5108611	610.94	612.00	1.06	not consecutive	Basalt biotite altered at contact.	12	10T430287v2
CR-10-040-W1	E5108612	612.00	613.00	1.00	not consecutive	Wing sample, normal Basalt.	5	10T430287v2
CR-10-040-W1	E5108613	622.00	623.00	1.00	not consecutive	Wing sample. Basalt with little veining.	2	10T430287v2
CR-10-040-W1	E5108614	623.00	624.00	1.00	consecutive	High mag reading, possible magnetite.	3	10T430287v2
CR-10-040-W1	E5108615	624.00	625.00	1.00	consecutive	Normal Basalt.	3	10T430287v2
CR-10-040-W1	E5108616	625.00	626.00	1.00	consecutive	Basalt with thick carbonaceous fractures.	3	10T430287v2
CR-10-040-W1	E5108617	626.00	627.00	1.00	not consecutive	Wing sample, less fractures.	4	10T430287v2
CR-10-040-W1	E5108618	636.00	637.00	1.00	not consecutive	Wing sample with folded dismembered gcv.	3	10T430287v2
CR-10-040-W1	E5108619	637.00	638.00	1.00	consecutive	As above 618	2	10T430287v2
CR-10-040-W1	E5108620	638.00	639.50	1.50	consecutive	Less veins and minor bleaching.	2	10T430287v2
CR-10-040-W1	E5108621	639.50	640.05	0.55	consecutive	Quartz carbonate veining with sulphides.	4	10T430287v2
CR-10-040-W1	E5108622	640.05	641.00	0.95	not consecutive	Wing sample, normal Basalt.	2	10T430287v2
CR-10-040-W1	E5108623	648.50	649.00	0.50	not consecutive	Wing sample, contact altered Basalt.	12	10T430287v2
CR-10-040-W1	E5108624	649.00	650.50	1.50	consecutive	Quartz Monzodiorite with blebby and diss sulphides.	7	10T430287v2
CR-10-040-W1	E5108625	650.50	652.00	1.50	consecutive	As above 624	38	10T430287v2
CR-10-040-W1	E5108626	652.00	653.14	1.14	consecutive	As above 624	21	10T430287v2
CR-10-040-W1	E5108627	653.14	654.00	0.86	consecutive	Contact sheared (?) sulphides in qcv's and streaky in biotite alteration.	61	10T430287v2
CR-10-040-W1	E5108628	654.00	655.00	1.00	consecutive	Sheared and biotite altered, trace sulphides.	2	10T430287v2
CR-10-040-W1	E5108629	655.00	656.00	1.00	consecutive	More shearing with increasing veins downward.	8	10T430287v2
CR-10-040-W1	E5108630	0.00	0.00	0.00	not consecutive	Standard Si 42 1.761 ppm Au	1770	10T430287
CR-10-040-W1	E5108631	656.00	657.00	1.00	not consecutive	Fair number of qcv's.	12	10T430287
CR-10-040-W1	E5108632	657.00	658.47	1.47	consecutive	As above 631	3	10T430287
CR-10-040-W1	E5108633	658.47	659.21	0.74	consecutive	Lamprophyre with fine pyrite.	4	10T430287
CR-10-040-W1	E5108634	659.21	660.28	1.07	consecutive	Basalt between lamprophyres, pyrite enriched.	4	10T430287
CR-10-040-W1	E5108635	660.28	661.00	0.72	not consecutive	Wing sample, Lamprophyre, no carbonate, some pyrite	2	10T430287
CR-10-040-W1	E5108636	664.00	665.00	1.00	not consecutive	Wing sample, Basalt, contact sheared with trace sulphides.	4	10T430287
CR-10-040-W1	E5108637	665.00	666.00	1.00	consecutive	As above 636	7	10T430287
CR-10-040-W1	E5108638	666.00	666.80	0.80	consecutive	Quite green hornblende rich with little biotite.	16	10T430287
CR-10-040-W1	E5108639	666.80	668.30	1.50	consecutive	Quartz Monzodiorite with trace sulphides.	2	10T430287
CR-10-040-W1	E5108640	668.30	669.30	1.00	consecutive	As above 639	864	10T430287
CR-10-040-W1	E5108641	669.30	670.15	0.85	consecutive	As above 639	19	10T430287
Prenared by Benja	min Batson				2010 Drill	Program - Alexander Gold Project		22 of 52

Prepared by Benjamin Batson

2010 Drill Program - Alexander Gold Project

Sampling Record

CONQUEST Resources Limited

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-10-040-W1	E5108642	670.15	670.65	0.50	not consecutive	Wing sample, green variolitic Basalt.	18	10T430287
CR-10-040-W1	E5108643	698.14	698.64	0.50	not consecutive	Wing sample, Lamprophyre and little green Basalt.	8	10T430287
CR-10-040-W1	E5108644	698.64	699.14	0.50	consecutive	Tuff with fair amount of PO	23	10T430287
CR-10-040-W1	E5108645	699.14	700.14	1.00	consecutive	Basalt with PO in veins.	5	10T430287
CR-10-040-W1	E5108646	700.14	701.14	1.00	consecutive	As above 645	4	10T430287
CR-10-040-W1	E5108647	701.14	702.27	1.13	consecutive	As above 645	10	10T430287
CR-10-040-W1	E5108648	702.27	702.77	0.50	not consecutive	Wing sample, green Basalt.	12	10T436660
CR-10-040-W1	E5108649	705.57	706.07	0.50	not consecutive	Wing sample, green Basalt	13	10T436660
CR-10-040-W1	E5108650	0.00	0.00	0.00	not consecutive	Standard Si 42 1.761 ppm Au	1740	10T436660
CR-10-040-W1	E5108651	706.07	707.30	1.23	not consecutive	Leached looking Quartz Monzodiorite with trace sulphides.	4	10T436660
CR-10-040-W1	E5108652	707.30	708.70	1.40	consecutive	Quartz Monzodiorite with biotite in fractures and qcv's.	5	10T436660
CR-10-040-W1	E5108653	708.70	709.20	0.50	not consecutive	Wing sample, green Basalt.	10	10T436660
CR-10-040-W1	E5108654	738.94	739.44	0.50	not consecutive	Wing sample, green Basalt	13	10T436660
CR-10-040-W1	E5108655	779.00	780.00	1.00	not consecutive	Green Basalt with carbonaceous pillow selvedges.	7	10T436660
CR-10-040-W1	E5108656	739.44	740.50	1.06	not consecutive	Quartz Monzodiorite, foliated with sericite and trace sulphides.	742	10T436660
CR-10-040-W1	E5108657	740.50	742.00	1.50	consecutive	As above 656	201	10T436660
CR-10-040-W1	E5108658	742.00	743.50	1.50	consecutive	As above 656	1040	10T436660
CR-10-040-W1	E5108659	743.50	745.00	1.50	consecutive	As above 656	128	10T436660
CR-10-040-W1	E5108660	745.00	746.50	1.50	consecutive	As above 656 with foliation disappearing.	42	10T436660
CR-10-040-W1	E5108661	746.50	748.00	1.50	consecutive	Unfoliated Quartz Monzodiorite.	14	10T436660
CR-10-040-W1	E5108662	748.00	749.50	1.50	consecutive	As above 661	25	10T436660
CR-10-040-W1	E5108663	749.50	750.25	0.75	consecutive	As above 661	27	10T436660
CR-10-040-W1	E5108664	750.25	750.75	0.50	not consecutive	Wing sample, Lamprophyre.	4010	10T436660
CR-10-040-W1	E5108665	770.03	770.53	0.50	not consecutive	Wing sample, biotitic Basalt.	38	10T436660
CR-10-040-W1	E5108666	770.53	771.78	1.25	consecutive	Quartz Monzodiorite with trace sulphides.	1320	10T436660
CR-10-040-W1	E5108667	771.78	772.28	0.50	not consecutive	Wing sample, contact altered biotitic Basalt.	10	10T436660
CR-10-040-W1	E5108668	786.82	787.32	0.50	not consecutive	Wing sample, green Basalt.	11	10T436660
CR-10-040-W1	E5108669	787.32	787.92	0.60	consecutive	Shear with hornblende, chlorite, qcv's and APY.	5	10T436660
CR-10-040-W1	E5108670	0.00	0.00	0.00	not consecutive	Standard OxK 69 3.583 ppm Au	3340	10T436660
CR-10-040-W1	E5108671	787.92	788.95	1.03	not consecutive	Weaker shearing without the hornblende alteration.	7	10T436660
CR-10-040-W1	E5108672	788.95	789.79	0.84	consecutive	Mineralized as 669.	8	10T436660
CR-10-040-W1	E5108673	789.79	790.29	0.50	not consecutive	Wing sample, normal Basalt.	8	10T436660
CR-10-040-W1	E5108674	802.77	803.27	0.50	not consecutive	Wing sample, dark grey Basalt.	7	10T436660
CR-10-040-W1	E5108675	799.00	800.00	1.00	not consecutive	Weak biotite alteration, flow top Breccia healed by carbonate.	6	10T436660
CR-10-040-W1	E5108676	803.27	804.37	1.10	not consecutive	Tuff with garnets, PO and magnetite in cherty bands and qcv's.	9	10T436660
CR-10-040-W1	E5108677	804.37	805.00	0.63	not consecutive	Wing sample, dark grey graphitic Mudstone with thin PO bands.	27	10T436660
CR-10-040-W1	E5108678	807.00	807.50	0.50	not consecutive	Wing sample, fine grained Gabbro.	2	10T436660

Sampling Record

CR-10-040-W1

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-10-040-W1	E5108679	807.50	808.63	1.13	consecutive	Quartz Monzodiorite with thick qv at base containing massive	6	10T436660
CR-10-040-W/1	E5108680	808 63	800 63	1.00	consecutive	Diotite at center.	2	107/36660
CR-10-040-W1	E5108681	800.03	810.68	1.00	consecutive		2	101430000
CR 10 040 W1	E5108081	809.03 910.69	010.00	1.00	consecutive	Panded sodiments with PO and magnetite		101430000
CR 10 040 W1	E5108082	010.00 011.60	011.00 012.76	1.00	consecutive	As above 682 with DO rich veining	71	101430000
CR-10-040-W1	E5108083	912.76	012.70 014.40	1.00	consecutive	Fine grained Cabbro		101430000
CR-10-040-W1	E5108084	812.70	014.40	1.04	consecutive	As above 694	<u> </u>	101430000
CR-10-040-W1	E5108085	814.40 816.00	010.00	1.00	consecutive	As above 004		101430000
CR-10-040-W1	E5108080	810.00 916 77	010.77	0.77	consecutive	PO bearing Mudstone with graphitic fault gauge	<u>/</u> 20	101430000
CR-10-040-W1	E5108087	010.77	017.30	1.26	consecutive	Fine grained Cabbro	1	101430000
CR 10 040 W1	E5108088	017.30	010.94 010.65	0.71	consecutive	Fine grained Gabbio.	2	101430000
CR-10-040-W1	E5108089	0.00	0.00	0.71		Standard Sk 42 4 096 ppm Au	2000	101430000
CR-10-040-W1	E5108090	819.65	820.41	0.00	not consecutive	Wing sample fine grained Gabbro		101430000
CR-10-040-W1	E5108692	868.22	868 72	0.70	not consecutive	Wing sample, fille grained Gabbro.	13	107436660
CR-10-040-W1	E5108693	868 72	870.40	1.68	consecutive	Ouartz Monzodiorite with PV and APV	153	107436660
CR-10-040-W1	E510869/	870.40	872.05	1.00	consecutive		25	107436660
CR-10-040-W1	E5108695	872.05	872.05	0.50		Wing sample Gabbro	20	107436660
CR-10-040-W1	E5108696	906.36	906.86	0.50	not consecutive	Wing sample, Subbio	64	10T436660
CR-10-040-W1	E5108697	906.86	908.36	1 50	consecutive	Ouartz Monzodiorite with sulphide blebs and diss incl APY	72	10T436660
CR-10-040-W1	E5108698	908.36	909.86	1.50	consecutive	As above 697	16	10T436660
CR-10-040-W1	F5108699	909.86	911.00	1 14	consecutive	As above 697	68	10T436660
CR-10-040-W1	E5108700	911.00	912.17	1.17	consecutive	As above 697	42	10T436660
CR-10-040-W1	E5108701	912.17	913.17	1.00	consecutive	As above 697	6	10T436660
CR-10-040-W1	E5108702	913.17	913.67	0.50	not consecutive	Wing sample. Gabbro.	73	10T436660
CR-10-040-W1	E5108703	1113.67	1114.17	0.50	not consecutive	Wing sample, contact sheared Gabbro.	7	10T436660
CR-10-040-W1	E5108704	1114.17	1114.47	0.30	consecutive	First 30cm of contact sheared Basalt that is mineralized.	12	10T436660
CR-10-040-W1	E5108705	1114.47	1114.97	0.50	consecutive	Wing sample, contact sheared Basalt.	6	10T436660
CR-10-040-W1	E5108706	1118.77	1119.27	0.50	not consecutive	Wing sample, contact sheared Basalt.	5	10T436660
CP 10 040 W/1	EE109707	1110.27	1110.67	0.40	concocutivo	Quartz vein along coreaxis, broken up and fractured with sulphides		107426660
CK-10-040-001	E3108/07	1119.27	1119.07	0.40	consecutive	in fractures.	5	101430000
CR-10-040-W1	E5108708	1119.67	1120.17	0.50	consecutive	Wing sample, green grey Basalt.	3	10T436660
CR-10-040-W1	E5108709	1143.38	1143.88	0.50	not consecutive	Wing sample, contact altered Basalt.	5	10T436660
CR-10-040-W1	E5108710	0.00	0.00	0.00	not consecutive	Standard OxK 69 3.583 ppm Au	3460	10T436660
CR-10-040-W1	E5108711	1143.88	1145.10	1.22	not consecutive	Quartz Monzodiorite with fair amount of blebby and diss sulphides.	93	10T436660
CR-10-040-W1	E5108712	1145.10	1146.35	1.25	consecutive	As above 711	300	10T436660
CR-10-040-W1	E5108713	<u>114</u> 6.35	1147.60	1.25	consecutive	As above 711	95	10T436660
CR-10-040-W1	E5108714	1147.60	1148.79	1.19	consecutive	As above 711	66	10T436660
CR-10-040-W1	E5108715	1148.79	1149.29	0.50	not consecutive	Wing sample, grey Basalt.	9	10T436660
CR-10-040-W1	E5108716	1151.50	1152.00	0.50	not consecutive	Wing sample, grey Basalt.	7	10T436660
CR-10-040-W1	E5108717	1152.00	1153.18	1.18	consecutive	Moderate shear with minor qcv's and sulphides.	6	10T436660
Prenared by Renia	min Batson				2010 Drill	Program - Alexander Gold Project		21 of 52

Prepared by Benjamin Batson

2010 Drill Program - Alexander Gold Project

Sampling Record

CON	QUEST ources Limited					Sampling Record		CR-10-040-W1
HoleID	SampleID	From	То	Length	Consecutive	Description	Au ppb	Batch-Number
CR-10-040-W1	E5108718	1153.18	1153.68	0.50	consecutive	Wing sample, brecciated Basalt.	6	10T436660
CR-10-040-W1	E5108719	1165.63	1166.13	0.50	not consecutive	Wing sample, grey Basalt.	7	10T436660
CR-10-040-W1	E5108720	1166.13	1167.63	1.50	consecutive	Gabbroic shear with streaky sulphides.	6	10T436660
CR-10-040-W1	E5108721	1167.63	1169.13	1.50	consecutive	As above 720	5	10T436660
CR-10-040-W1	E5108722	1169.13	1170.71	1.58	consecutive	As above 720	4	10T436660
CR-10-040-W1	E5108723	1170.71	1171.21	0.50	consecutive	Wing sample, Basalt with carbonaceous fractures, almost breccia.	4	10T436660
CR-10-040-W1	E5108724	1299.46	1300.46	1.00	not consecutive	Wing Sample: medium grey coloured Mudstone NIL sulphides	6	10T441571
CR-10-040-W1	E5108725	1300.46	1301.78	1.32	consecutive	Character Sample: light grey coloured, mottled textured, bt-bearing Diorite with trace very fine grained disseminated pyrite	6	10T441571
CR-10-040-W1	E5108726	1301.78	1302.82	1.04	consecutive	Wing Sample: medium grey coloured Mudstone NIL sulphides	11	10T441571
CR-10-040-W1	E5108727	1309.80	1310.30	0.50	not consecutive	Wing Sample: Wacke minor unit, NIL sulphides	4	10T441571
CR-10-040-W1	E5108728	1310.30	1311.40	1.10	consecutive	Character Sample: Brecciated zone within Bruce Channel with 02% pyrite. Early stage breccia.	12	10T441571
CR-10-040-W1	E5108729	1311.40	1312.60	1.20	consecutive	Footwall to breccia zone with <01% pyrite	8	10T441571
CR-10-040-W1	E5108730	0.00	0.00	0.00	not consecutive	Standard Sample: OxK69 3583 ppb Au	3410	10T441571
CR-10-040-W1	E5108731	1312.60	1314.00	1.40	not consecutive	Wing Sample: Medium grey coloured Mudstone and Wackestone NIL sulphides	8	10T441571
CR-10-040-W1	E5108732	1346.50	1347.50	1.00	not consecutive	Wing Sample: Siltstone with trace disseminated andalusite and trace very fine grained disseminated PY mineralization	5	10T441571
CR-10-040-W1	E5108733	1347.50	1348.48	0.98	consecutive	Quartz cobble bearing Siltstone Breccia with up to 20% Pyrite mineralization within matrix.	11	10T441571
CR-10-040-W1	E5108734	1348.48	1349.75	1.27	consecutive	Poorly mneralized <05% pyrite within Siltstone with gravel sized quartz-lithic clasts.	5	10T441571
CR-10-040-W1	E5108735	1349.75	1350.75	1.00	consecutive	Blank and Wing Sample: Siltstone, NIL sulphides	4	10T441571
CR-10-040-W1	E5108736	1384.00	1385.00	1.00	not consecutive	Wing Sample: Siltstone (NIL sulphide)	4	10T441571
CR-10-040-W1	E5108737	1385.00	1385.30	0.30	consecutive	Character Sample: up to 05% PY at base of bed in poorly sorted Siltstone	8	10T441571
CR-10-040-W1	E5108738	1385.30	1386.30	1.00	consecutive	Wing Sample: Siltstone (NIL sulphide)	3	10T441571
CR-10-040-W1	E5108739	1391.85	1392.85	1.00	not consecutive	Wing Sample: Siltstone (NIL sulphide)	2	10T441571
CR-10-040-W1	E5108740	1392.85	1393.85	1.00	consecutive	Character Sample: up to 05% PY (locally net textured) at base of bed	7	10T441571
CR-10-040-W1	E5108741	1393.85	1394.85	1.00	consecutive	Wing Sample: Siltstone (NIL sulphide)	3	10T441571
CR-10-040-W1	E5108742	1434.50	1435.00	0.50	not consecutive	20 cm section of PY-cemented Conglomerate and 10 cm 05% PY- bearing Mudstone	3	10T441571
CR-10-040-W1	E5108743	1435.00	1436.08	1.08	consecutive	02-05% PY-bearing Mudstone	3	10T441571
CR-10-040-W1	E5108744	1436.08	1437.00	0.92	consecutive	80/20 Conglomerate/Mudstone with 15% PY and trace APY	6	10T441571
CR-10-040-W1	E5108745	1437.00	1438.20	1.20	consecutive	PY-bearing Conglomerate with quartz clasts	5	10T441571
CR-10-040-W1	E5108746	1438.20	1439.00	0.80	consecutive	Carbonaceous silty Mudstone with marble locally (20%). Very fine grained disseminated 02% PY and trace APY	3	10T441571

Sampling Record

Res	ources Limited							
HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-10-040-W1	E5108747	1439.00	1439.80	0.80	consecutive	Carbonaceous silty Mudstone with marble locally (20%). Very fine grained disseminated 02% PY and trace APY	3	10T441571
CR-10-040-W1	E5108748	1439.80	1441.00	1.20	consecutive	Carbonaceous silty Mudstone with marble locally (20%). Very fine grained disseminated 02% PY and trace APY	5	10T441571
CR-10-040-W1	E5108749	1441.00	1441.30	0.30	consecutive	Marble mostly NIL sulphides except localized 20% PY in wallrock at lower contact that is grouped in this sample	3	10T441571
CR-10-040-W1	E5108750	0.00	0.00	0.00	not consecutive	Standard Sample: SK43 4086 ppb Au	3840	10T441571
CR-10-040-W1	E5108751	1441.30	1442.34	1.04	not consecutive	PY-bearing Conglomerate with quartz clasts	7	10T441571
CR-10-040-W1	E5108752	1442.34	1443.84	1.50	consecutive	Wing Sample: Mudstone with trace to 02% pyrite	2	10T441571
CR-10-040-W1	E5108753	1443.84	1445.34	1.50	consecutive	Infill Wing Sample: Mudstone with trace to 02% pyrite	6	10T441571
CR-10-040-W1	E5108754	1445.34	1446.84	1.50	consecutive	Mudstone with 05% pyrite laminations and one hammer-textured pyrite blowout	11	10T441571
CR-10-040-W1	E5108755	1446.84	1448.34	1.50	consecutive	Infill Wing Sample (Blank): Mudstone with trace to 02% pyrite	13	10T441571
CR-10-040-W1	E5108756	1448.34	1449.84	1.50	consecutive	Infill Wing Sample: 05% Pyrite in Mudstone	20	10T441571
CR-10-040-W1	E5108757	1449.84	1451.34	1.50	consecutive	folded Mudstone with 02% pyrite and hairline whispy carbonate veinlets	15	10T441571
CR-10-040-W1	E5108758	1451.34	1452.84	1.50	consecutive	folded Mudstone with 02% pyrite and hairline whispy carbonate veinlets	6	10T441571
CR-10-040-W1	E5108759	1452.84	1453.40	0.56	consecutive	folded Mudstone with 02% pyrite and hairline whispy carbonate veinlets	6	10T441571
CR-10-040-W1	E5108760	1453.40	1454.80	1.40	consecutive	light grey Marble and Mudstone with up to 05% Pyrite and three 1 cm thick buff brown coloured chert layers	<1	10T441571
CR-10-040-W1	E5108761	1454.80	1456.00	1.20	consecutive	Wing Sample 03 to 05% pyrite in Mudstone	6	10T441571
CR-10-040-W1	E5108762	1459.31	1460.31	1.00	not consecutive	Wing Sample: poorly mineralized 05% Pyrite in Mudstone	10	10T441571
CR-10-040-W1	E5108763	1460.31	1460.61	0.30	consecutive	Brecciated quartz and quartz-carbonate-PY veins within Mudstone host containing 05% Pyrite	8	10T441571
CR-10-040-W1	E5108764	1460.61	1461.70	1.09	consecutive	Infill Wing Sample: Well bedded Mudstone with fine blebby PY laminations at Bedding interfaces and silty narrow beds 02-03% Pyrite	13	10T441571
CR-10-040-W1	E5108765	1461.70	1462.32	0.62	consecutive	One narrow 5 cm thick grey sulphide bearing Diorite and brecciated quartz vein with solid sulphide PY in hosted in Mudstone with Slickens (10% PY total)	14	10T441571
CR-10-040-W1	E5108766	1462.32	1463.07	0.75	consecutive	Infill Wing Sample: Mudstone with 02 to 03% Pyrite	11	10T441571
CR-10-040-W1	E5108767	1463.07	1463.39	0.32	consecutive	Sulphide cemented brecciated Mudstone with 30% pyrite (NOTE: no planar structure to define breccia fabric)	9	10T441571
CR-10-040-W1	E5108768	1463.39	1464.00	0.61	consecutive	Narrow Breccia 15% pyrite similar to above over 1463.77 to 1464.00 within Mudstone with 1-minor Quartz Vein in breccia	7	10T441571
CR-10-040-W1	E5108769	1464.00	1465.00	1.00	consecutive	Infill Wing Sample: Silty Mudstone trace disseminated Pyrite	9	10T441571
CR-10-040-W1	E5108770	0.00	0.00	0.00	not consecutive	Standard Sample: SK43 4086 ppb Au	3840	10T441571
CR-10-040-W1	E5108771	1465.00	1465.70	0.70	not consecutive	Infill Wing Sample: Silty Mudstone trace disseminated Pyrite	9	10T441571
Prepared by Benjar	min Batson				2010 Drill	Program - Alexander Gold Project		26 of 52

Sampling Record

Rest	Jurces Limited							•••••••••
HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-10-040-W1	E5108772	1465.70	1466.00	0.30	consecutive	Sulphide NSS 70% Pyrite-cement breccia with quartz (05%) clasts and 25% lithic clasts	10	10T441571
CR-10-040-W1	E5108773	1466.00	1467.50	1.50	consecutive	Wing Sample: silty Mudstone Sediments with very finely disseminated 01% pyrite	7	10T441571
CR-10-040-W1	E5108774	1501.00	1502.00	1.00	not consecutive	Wing Sample: Mudstone with 03 to 05% Pyrite	13	10T441571
CR-10-040-W1	E5108775	1502.00	1503.00	1.00	consecutive	Wing Sample: Mudstone with 03 to 05% Pyrite	11	10T441571
CR-10-040-W1	E5108776	1503.00	1504.00	1.00	consecutive	Mudstone with up to 10% pyrite	24	10T441571
CR-10-040-W1	E5108777	1504.00	1505.10	1.10	consecutive	graphite bearing 05% Pyrite Fault Zone with 10cm gouge in Mudstone	37	10T441571
CR-10-040-W1	E5108778	1505.10	1505.86	0.76	consecutive	Footwall Mudstone with 02% Pyrite. Sample taken between FLT and Quartz Monzodiorite below	10	10T441571
CR-10-040-W1	E5108779	1505.86	1507.24	1.38	consecutive	Long sample of Quartz Monzodiorite with trace Pyrite disseminations	4	10T441571
CR-10-040-W1	E5108780	1507.24	1508.24	1.00	not consecutive	Wing Sample: Fine grained Gabbro	2	10T441571
CR-10-040-W1	E5108781	1619.00	1620.00	1.00	not consecutive	Wing sample, dark grey sulphidic Mudstone.	18	10T441571
CR-10-040-W1	E5108782	1620.00	1621.00	1.00	consecutive	Banded cherty Siltstone with magnetite.	31	10T441571
CR-10-040-W1	E5108783	1621.00	1622.00	1.00	consecutive	As above 782	13	10T441571
CR-10-040-W1	E5108784	1622.00	1623.00	1.00	consecutive	Light grey Chert.	7	10T441571
CR-10-040-W1	E5108785	1623.00	1624.00	1.00	consecutive	Light grey Chert going back into magnetite banded chert.	12	10T441571
CR-10-040-W1	E5108786	1624.00	1625.00	1.00	consecutive	Banded Chert with magnetite rich carbonaceous bands.	22	10T441571
CR-10-040-W1	E5108787	1625.00	1626.00	1.00	consecutive	As above 786	38	10T441571
CR-10-040-W1	E5108788	1626.00	1626.72	0.72	consecutive	Banded Chert with 12cm NSS (pyrrhotite).	24	10T441571
CR-10-040-W1	E5108789	1626.72	1628.00	1.28	not consecutive	Monzodiorite with minute trace sulphides.	7	10T441571
CR-10-040-W1	E5108790	0.00	0.00	0.00	not consecutive	Standard OxK 69 3.583 ppm Au	3750	10T441571
CR-10-040-W1	E5108791	1628.00	1629.13	1.13	not consecutive	As above 789	2	10T441571
CR-10-040-W1	E5108792	1629.13	1630.00	0.87	consecutive	Banded Chert and pyrrhotitic Mudstone.	19	10T441571
CR-10-040-W1	E5108793	1630.00	1631.00	1.00	consecutive	Banded Chert with magnetite rich carbonaceous bands.	2	10T441571
CR-10-040-W1	E5108794	1631.00	1632.00	1.00	consecutive	Banded Chert going into Breccia.	17	10T441571
CR-10-040-W1	E5108795	1632.00	1633.00	1.00	consecutive	Brecciated Chert with sulphide healing.	4	10T441571
CR-10-040-W1	E5108796	1633.00	1634.00	1.00	consecutive	Wide banded Chert with pyrrhotite flakes in darker bands.	26	10T441571
CR-10-040-W1	E5108797	1634.00	1635.00	1.00	consecutive	As above 796	27	10T441571
CR-10-040-W1	E5108798	1635.00	1636.00	1.00	consecutive	As above 796	43	10T441571
CR-10-040-W1	E5108799	1636.00	1637.00	1.00	consecutive	Number of darker bands decreasing.	13	10T441571
CR-10-040-W1	E5108800	1637.00	1638.00	1.00	consecutive	More darker bands again and rather Pyrrhotite rich.	12	10T441571
CR-10-040-W1	E5108801	1638.00	1639.00	1.00	consecutive	Brecciated Chert with PO healing and 10cm SS (PO).	14	10T441571
CR-10-040-W1	E5108802	1639.00	1640.00	1.00	consecutive	Brecciated Chert with PO healing.	7	10T441571
CR-10-040-W1	E5108803	1640.00	1641.00	1.00	consecutive	As above 802	19	10T441571
CR-10-040-W1	E5108804	1641.00	1642.00	1.00	consecutive	As above 802	6	10T441571
CR-10-040-W1	E5108805	1642.00	1643.00	1.00	consecutive	As above 802	6	10T441571
CR-10-040-W1	E5108806	1643.00	1644.00	1.00	consecutive	As above 802	13	10T441571
CR-10-040-W1	E5108807	1644.00	1645.00	1.00	consecutive	As above 802	4	10T441571

Sampling Record

CR-10-040-W1

CON	QUEST ources Limited					Sampling Record		CR-10-040-W1
HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-10-040-W1	E5108808	1645.00	1646.00	1.00	consecutive	As above 802 but less PO and more finegrained epidote bearing material in fractures.	4	10T441571
CR-10-040-W1	E5108809	1646.00	1647.00	1.00	not consecutive	As above 808	2	10T441571
CR-10-040-W1	E5108810	0.00	0.00	0.00	not consecutive	Standard Sk 43 4.086 ppm Au	4290	10T441571
CR-10-040-W1	E5108811	1647.00	1648.00	1.00	not consecutive	As above 802	14	10T441571
CR-10-040-W1	E5108812	1648.00	1649.00	1.00	consecutive	As above 802	12	10T441571
CR-10-040-W1	E5108813	1649.00	1650.00	1.00	consecutive	As above 802	11	10T441571
CR-10-040-W1	E5108814	1650.00	1651.00	1.00	consecutive	As above 802	7	10T441571
CR-10-040-W1	E5108815	1651.00	1652.00	1.00	consecutive	As above 802 with thin Lamprophyre.	3	10T441571
CR-10-040-W1	E5108816	1652.00	1653.00	1.00	consecutive	Brecciated Chert with section of tuffaceous material.	13	10T441571
CR-10-040-W1	E5108817	1653.00	1654.00	1.00	consecutive	As above 816	91	10T441571
CR-10-040-W1	E5108818	1654.00	1655.51	1.51	consecutive	As above 802	53	10T441571
CR-10-040-W1	E5108819	1655.51	1656.01	0.50	not consecutive	Wing sample, foliated Diorite.	2	10T441571
CR-10-040-W1	E5108820	1660.50	1661.00	0.50	not consecutive	Wing sample, foliated Diorite with very fine pervasive biotite.	1	10T441571
CR-10-040-W1	E5108821	1661.00	1662.00	1.00	consecutive	Banded Chert with PO rich argillitic sections.	11	10T441571
CR-10-040-W1	E5108822	1662.00	1663.00	1.00	consecutive	Banded and brecciated Chert with PO healing.	13	10T441571
CR-10-040-W1	E5108823	1663.00	1664.00	1.00	consecutive	Going from brecciated Chert into laminated chert.	6	10T441571
CR-10-040-W1	E5108824	1664.00	1665.00	1.00	consecutive	Laminated Chert to Chert with magnetite bands.	11	10T441571
CR-10-040-W1	E5108825	1665.00	1666.00	1.00	consecutive	As above 824	85	10T441571
CR-10-040-W1	E5108826	1666.00	1667.00	1.00	consecutive	Banded Chert with magnetite rich carbonaceous bands.	64	10T441571
CR-10-040-W1	E5108827	1667.00	1668.00	1.00	consecutive	Brecciated Chert with PO healing.	21	10T441571
CR-10-040-W1	E5108828	1668.00	1669.00	1.00	consecutive	Chert Breccia with biotite rich dark bands, with garnets. Looks like skarn.	58	10T441571
CR-10-040-W1	E5108829	1669.00	1669.72	0.72	not consecutive	As above 827	5	10T441571
CR-10-040-W1	E5108830	0.00	0.00	0.00	not consecutive	Standard OxK 69 3.583 ppm Au	3630	10T441571
CR-10-040-W1	E5108831	1669.72	1670.47	0.75	not consecutive	Near solid sulphides, mostly PO but also grey sulphides.	30	10T441571
CR-10-040-W1	E5108832	1670.47	1671.18	0.71	consecutive	As above 828	49	10T441571
CR-10-040-W1	E5108833	1671.18	1672.00	0.82	consecutive	As above 831	45	10T441571
CR-10-040-W1	E5108834	1672.00	1673.00	1.00	consecutive	Brecciated Chert, magnetite and PO healed.	18	10T441571
CR-10-040-W1	E5108835	1673.00	1674.00	1.00	consecutive	As above 834	18	10T441571
CR-10-040-W1	E5108836	1674.00	1675.00	1.00	consecutive	Brecciated Chert with PO healing.	12	10T441571
CR-10-040-W1	E5108837	1675.00	1676.00	1.00	consecutive	As above 836	11	10T441571
CR-10-040-W1	E5108838	1676.00	1677.00	1.00	consecutive	As above 836	12	10T441571
CR-10-040-W1	E5108839	1677.00	1678.00	1.00	consecutive	As above 836	10	10T441571
CR-10-040-W1	E5108840	1678.00	1679.00	1.00	consecutive	As above 836	23	10T441571
CR-10-040-W1	E5108841	1679.00	1680.00	1.00	consecutive	As above 836	10	10T441571
CR-10-040-W1	E5108842	1680.00	1681.00	1.00	consecutive	Laminated Chert to brecciated Chert	3	10T441571
CR-10-040-W1	E5108843	1681.00	1682.43	1.43	consecutive	Brecciated Chert.	8	10T441571
CR-10-040-W1	E5108844	1682.43	1683.28	0.85	consecutive	Weakly carbonaceous well mineralized shear with PO.	4	10T441571
CR-10-040-W1	E5108845	1683.28	1684.00	0.72	consecutive	Predominantly sheared tuffaceous rock with trace sulphides.	4	10T441571
CR-10-040-W1	E5108846	1684.00	1685.00	1.00	consecutive	Brecciated Chert.	47	10T441571
Duenewood by Denie	min Dataon		-		2010 0-11	Dreaman Alexander Cold Dreiset		20 - 4 5 2

Prepared by Benjamin Batson

2010 Drill Program - Alexander Gold Project

Sampling Record

CONQUEST Sampling Record								CR-10-040-W1
HoleID		From	То	Length	Consecutive	Description	Au nnh	Batch-Number
CR-10-040-W1	E5108847	1685.00	1686.00	1.00	consecutive	Wide banded Chert with magnetite and argillitic bands.	4	10T441571
CR-10-040-W1	E5108848	1686.00	1687.00	1.00	consecutive	As above 847	6	10T441571
CR-10-040-W1	E5108849	1687.00	1688.00	1.00	not consecutive	As above 847	22	10T441571
CR-10-040-W1	E5108850	0.00	0.00	0.00	not consecutive	Standard Si 42 1.761 ppm Au	1810	10T441571
CR-10-040-W1	E5108851	1688.00	1689.00	1.00	not consecutive	Banded Chert with magnetite, graphitic fault.	27	10T441571
CR-10-040-W1	E5108852	1689.00	1690.00	1.00	consecutive	Banded Chert with magnetite.	34	10T441571
CR-10-040-W1	E5108853	1690.00	1691.00	1.00	consecutive	As above 852	29	10T441571
0.1 10 0 10 11 1	10100000	2000.000	2002.00	2.00		As above 852 and argillitic Mudstone with PO, trace PY and thinly		201112072
CR-10-040-W1	E5108854	1691.00	1692.00	1.00	consecutive	banded Chert.	36	10T441571
CR-10-040-W1	E5108855	1692.00	1693.00	1.00	consecutive	Thinly banded Chert.	209	10T441571
CR-10-040-W1	E5108856	1693.00	1694.00	1.00	consecutive	Brecciated Chert, PO healed.	46	10T441571
CR-10-040-W1	E5108857	1694.00	1695.00	1.00	consecutive	As above 856	20	10T441571
CR-10-040-W1	E5108858	1695.00	1696.00	1.00	consecutive	As above 856	48	10T441571
CR-10-040-W1	E5108859	1696.00	1697.00	1.00	consecutive	As above 856	15	10T441571
CR-10-040-W1	E5108860	1697.00	1698.00	1.00	consecutive	As above 856	28	10T441571
CR-10-040-W1	E5108861	1698.00	1699.00	1.00	consecutive	As above 856	21	10T441571
CR-10-040-W1	E5108862	1699.00	1700.00	1.00	consecutive	As above 856	10	10T441571
CR-10-040-W1	E5108863	1700.00	1701.00	1.00	consecutive	Unevenly banded Chert with little PO and some brecciation.	6	10T441571
CR-10-040-W1	E5108864	1701.00	1702.00	1.00	consecutive	As above 863	5	10T441571
CR-10-040-W1	E5108865	1702.00	1703.00	1.00	consecutive	Brecciated Chert and tuffaceous material.	4	10T441571
CR-10-040-W1	E5108866	1703.00	1704.00	1.00	consecutive	Banded Chert and minor Argillite.	31	10T441571
CR-10-040-W1	E5108867	1704.00	1705.00	1.00	consecutive	Banded Chert and Breccia.	14	10T441571
CR-10-040-W1	E5108868	1705.00	1706.00	1.00	consecutive	Banded Chert with magnetite rich carbonaceous bands.	13	10T441571
CR-10-040-W1	E5108869	1706.00	1707.00	1.00	not consecutive	Mostly argillitic Mudstone with PO and minor cherty bands.	34	10T441571
CR-10-040-W1	E5108870	0.00	0.00	0.00	not consecutive	Standard OxK 69 3.583 ppm Au	3460	10T441571
CR-10-040-W1	E5108871	1707.00	1708.00	1.00	not consecutive	As above 869	24	10T441571
CR-10-040-W1	E5108872	1708.00	1709.00	1.00	consecutive	Wide banded Chert with magnetite.	3	10T441571
CR-10-040-W1	E5108873	1709.00	1710.00	1.00	consecutive	As above 873	27	10T441571
CR-10-040-W1	E5108874	1710.00	1711.00	1.00	consecutive	Wide banded Chert and Breccia.	7	10T441571
CD 10 040 W/1	FF10007F	1711.00	1712.00	1.00		As above 874 with possible 20cm quartz vein with PO and CPY in	22	107441571
CR-10-040-W1	E2108872	1/11.00	1/12.00	1.00	consecutive	fractures.	22	101441571
CR-10-040-W1	E5108876	1712.00	1713.00	1.00	consecutive	Argillitic Mudstone with PO, CPY and grey sulphides.	114	10T441571
CR-10-040-W1	E5108877	1713.00	1714.00	1.00	consecutive	As above 876	111	10T441571
CR-10-040-W1	E5108878	1714.00	1715.00	1.00	consecutive	As above 876 going into wide banded Chert.	72	10T441571
CR-10-040-W1	E5108879	1715.00	1716.00	1.00	consecutive	Laminated Chert to banded Chert.	43	10T441571
CR-10-040-W1	E5108880	1716.00	1717.00	1.00	consecutive	Banded Chert to Argillite with minor sulphides.	12	10T441571
CR-10-040-W1	E5108881	1717.00	1718.00	1.00	consecutive	As above 880	14	10T441571
CR-10-040-W1	E5108882	1718.00	1719.00	1.00	consecutive	As above 880	119	10T441571
CR-10-040-W1	E5108883	1719.00	1720.00	1.00	consecutive	As above 880	4	10T441571
CR-10-040-W1	E5108884	1720.00	1721.00	1.00	consecutive	As above 880, but more PO in the Argillite.	61	10T441571
CR-10-040-W1	E5108885	1721.00	1722.47	1.47	consecutive	Banded Chert with minor PO.	78	10T441571
CR-10-040-W1	E5108886	1722.47	1723.00	0.53	consecutive	Andesitic Basalt with garnets and minor sulphides.	8	10T441571
Prepared by Benjar	min Batson				2010 Drill	Program - Alexander Gold Project		29 of 52

Sampling Record

CR-1	0-0	40-	W 1	L
-------------	-----	-----	------------	---

r Res	Jurces Limited							
HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-10-040-W1	E5108887	1723.00	1724.00	1.00	consecutive	Andesitic Basalt with streaks and swirls of sulphides (PO - PY). Sulphides also in fractures	11	10T441571
CB-10-040-W/1	E5108888	172/ 00	1725.00	1 00	consecutive	Andesitic Basalt with carbonate stringers with fine grained sulphides	1/	10T//1571
CK-10-040-W1	19100000	1724.00	1725.00	1.00	consecutive	and larger aggregates. Chiefly PO with trace PY.	14	1014415/1
CR-10-040-W1	E5108889	1725.00	1725.88	0.88	consecutive	Plain andesitic Basalt with garnets.	3	10T441571
CR-10-040-W1	E5108890	0.00	0.00	0.00	not consecutive	Standard Si 42 1.761 ppm Au	1880	10T441571
CR-10-040-W1	E5108891	1725.88	1726.95	1.07	not consecutive	Monzodiorite with trace sulphides, chiefly arsenopyrite.	2	10T441571
CR-10-040-W1	E5108892	1726.95	1728.00	1.05	consecutive	Andesitic Basalt with carbonate stringers with finely disseminated sulphides and streaky PO.	4	10T441571
CR-10-040-W1	E5108893	1728.00	1729.00	1.00	consecutive	As above 892 with more stringers.	6	10T441571
CR-10-040-W1	E5108894	1729.00	1730.00	1.00	consecutive	As above 892	3	10T441571
CR-10-040-W1	E5108895	1730.00	1731.00	1.00	consecutive	As above 892	3	10T441571
CR-10-040-W1	E5108896	1731.00	1732.00	1.00	not consecutive	Wing sample, plain andesitic Basalt with garnets.	2	10T441571
CR-10-040-W1	E5108897	1777.00	1778.00	1.00	not consecutive	Andesitic Basalt with some pyrite streaks	2	10T444519
CR-10-040-W1	E5108898	1802.00	1803.00	1.00	not consecutive	Foliated andesitic Basalt with thin carbonaceous fractures.	1	10T444519
CR-10-040-W1	E5108899	1821.25	1821.75	0.50	not consecutive	Wing sample, foliated Gabbro with pervasive carbonate.	<1	10T444519
CR-10-040-W1	E5108900	1821.75	1822.75	1.00	consecutive	Low level silicified gabbro with disseminated sulphides.	2	10T444519
CR-10-040-W1	E5108901	1822.75	1823.75	1.00	consecutive	As above 900	2	10T444519
CR-10-040-W1	E5108902	1823.75	1824.75	1.00	consecutive	As above 900	<1	10T444519
CR-10-040-W1	E5108903	1824.75	1825.83	1.08	consecutive	As above 900	19	10T444519
CR-10-040-W1	E5108904	1825.83	1827.00	1.17	consecutive	Chert with quartz vein, sulphides, intrusive stringer.	70	10T444519
CR-10-040-W1	E5108905	1827.00	1828.00	1.00	consecutive	Quite carbonaceous block of andesitic Basalt with quartz carbonate veins	8	10T444519
CR-10-040-W1	E5108906	1828.00	1829.00	1.00	consecutive	As above 905 going into chert.	34	10T444519
CR-10-040-W1	E5108907	1829.00	1830.00	1.00	consecutive	Sheared muddy material with fair amount of sulphides.	92	10T444519
CR-10-040-W1	E5108908	1830.00	1831.00	1.00	consecutive	Chert chunks and argillitic (?) material.	65	10T444519
CR-10-040-W1	E5108909	1831.00	1832.00	1.00	not consecutive	Chert chunks, argillitic chunks with 5% pyrrhotite.	42	10T444519
CR-10-040-W1	E5108910	0.00	0.00	0.00	not consecutive	Standard Si 42 1.761 ppm Au	1720	10T444519
CR-10-040-W1	E5108911	1832.00	1833.00	1.00	not consecutive	Leached and brecciated Chert.	176	10T444519
CR-10-040-W1	E5108912	1833.00	1834.00	1.00	consecutive	Banded Chert with magnetite.	201	10T444519
CR-10-040-W1	E5108913	1834.00	1835.00	1.00	consecutive	Banded Chert with magnetite and pyrrhotitic Argillite.	84	10T444519
CR-10-040-W1	E5108914	1835.00	1835.50	0.50	consecutive	Wing sample, biotitic lamprophyre.	2	10T444519
CR-10-040-W1	E5108915	1842.00	1842.60	0.60	not consecutive	Wing sample, pyrrhotitic Argillite.	28	10T444519
CR-10-040-W1	E5108916	1842.60	1843.60	1.00	consecutive	Thin banded Chert with garnets in chloritic bands. Pyrrhotite, grey sulphides, chalcopyrite.	7	10T444519
CR-10-040-W1	E5108917	1843.60	1844.60	1.00	consecutive	As above 916	5	10T444519
CR-10-040-W1	E5108918	1844.60	1845.85	1.25	consecutive	As above 916	1	10T444519
CR-10-040-W1	E5108919	1845.85	1846.45	0.60	not consecutive	Wing sample, mostly Siltstone with few thin Chert and PO bands.	3	10T444519
CR-10-040-W1	E5108920	1852.88	1853.38	0.50	not consecutive	Wing sample, very fine grained Gabbro.	<1	10T444519
CR-10-040-W1	E5108921	1853.38	1854.70	1.32	consecutive	Carbonaceous, mottled look possibly Lamprophyre with disseminated sulphides.	2	10T444519
Prepared by Benjar	nin Batson				2010 Drill	Program - Alexander Gold Project		30 of 52

CONQUEST

Sampling Record

Rest	Juices Limited							
HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-10-040-W1	E5108922	1854.70	1855.20	0.50	consecutive	Wing sample, very fine grained Gabbro.	1	10T444519
CR-10-040-W1	E5108923	1869.00	1869.55	0.55	not consecutive	Wing sample, very fine grained Gabbro.	4	10T444519
CR-10-040-W1	E5108924	1869.55	1869.85	0.30	consecutive	Shear with 20cm qv and high kappa. Sulphides difficult to make out.	1	10T444519
CR-10-040-W1	E5108925	1869.85	1870.45	0.60	consecutive	Brecciated Gabbro carbonate healed.	1	10T444519
CR-10-040-W1	E5108926	1870.45	1871.45	1.00	consecutive	Sheared (carbonate) and brecciated Gabbro with trace sulphides.	2	10T444519
CR-10-040-W1	E5108927	1871.45	1872.45	1.00	consecutive	As above 926	<1	10T444519
CR-10-040-W1	E5108928	1872.45	1873.45	1.00	consecutive	As above 926, shear more intensive.	1	10T444519
CR-10-040-W1	E5108929	1873.45	1874.45	1.00	not consecutive	Intense shear with Breccia and trace sulphides.	<1	10T444519
CR-10-040-W1	E5108930	0.00	0.00	0.00	not consecutive	Standard Sk 43 4.086 ppm Au	4090	10T444519
CR-10-040-W1	E5108931	1874.45	1875.17	0.72	not consecutive	As above 929	2	10T444519
CR-10-040-W1	E5108932	1875.17	1875.83	0.66	consecutive	Intense shear with clouds of small magnetite crystals.	1	10T444519
CR-10-040-W1	E5108933	1875.83	1876.33	0.50	consecutive	Wing sample, very fine grained Gabbro.	3	10T444519
CR-10-040-W1	E5108934	1885.00	1885.55	0.55	not consecutive	Wing sample, fine grained Gabbro.	<1	10T444519
CR-10-040-W1	E5108935	1932.00	1933.00	1.00	not consecutive	Biotitic brownish Gabbro.	2	10T444519
CR-10-040-W1	E5108936	1885.55	1886.55	1.00	not consecutive	Sheared (carbonate) and brecciated Gabbro with spotty magnetite.	<1	10T444519
CR-10-040-W1	E5108937	1886.55	1887.30	0.75	consecutive	As above 936	1	10T444519
CR-10-040-W1	E5108938	1887.30	1887.80	0.50	consecutive	Wing sample, fine grained Gabbro.	2	10T444519
CR-10-040-W1	E5108939	1896.85	1897.35	0.50	not consecutive	Wing sample, fine grained Gabbro.	2	10T444519
CR-10-040-W1	E5108940	1897.35	1898.35	1.00	consecutive	Shear in Gabbro with carbonate, quartz carbonate veins, trace sulphides including arsenopyrite. Medium grained sericite.	3	10T444519
CR-10-040-W1	E5108941	1898.35	1899.35	1.00	consecutive	As above 940	2	10T444519
CR-10-040-W1	E5108942	1899.35	1900.35	1.00	consecutive	As above 940	2	10T444519
CR-10-040-W1	E5108943	1900.35	1901.35	1.00	consecutive	As above 940	4	10T444519
CR-10-040-W1	E5108944	1901.35	1902.32	0.97	consecutive	As above 940	3	10T444519
CR-10-040-W1	E5108945	1902.32	1902.82	0.50	consecutive	Wing sample, very fine grained Gabbro.	4	10T444519
CR-10-040-W1	E5108946	1938.00	1938.68	0.68	not consecutive	Wing sample, Gabbro with quartz eyes possibly assimilated Chert.	19	10T444519
						Brecciated Chert with fair amount of sulphides and magnetite.		
CR-10-040-W1	E5108947	1938.68	1940.00	1.32	consecutive	Sulphides in fractures, veins and in sediment. Magnetite-PO-APY-CPY.	130	10T444519
CR-10-040-W1	E5108948	1940.00	1941.00	1.00	consecutive	As above 947	367	10T444519
CR-10-040-W1	E5108949	1941.00	1942.00	1.00	consecutive	As above 947	627	10T444519
CR-10-040-W1	E5108950	0.00	0.00	0.00	not consecutive	Standard Sk 43 4.086 ppm Au	3860	10T444519
CR-10-040-W1	E5108951	1942.00	1943.00	1.00	not consecutive	As above 947	120	10T444519
CR-10-040-W1	E5108952	1943.00	1944.00	1.00	consecutive	As above 947	251	10T444519
CR-10-040-W1	E5108953	1944.00	1945.00	1.00	consecutive	As above 947	139	10T444519
CR-10-040-W1	E5108954	1945.00	1946.00	1.00	not consecutive	As above 947	334	10T444519
CR-10-040-W1	E5108955	1996.00	1997.00	1.00	not consecutive	Medium grained Gabbro	7	10T444519
Prepared by Benjar	nin Batson				2010 Drill	Program - Alexander Gold Project		31 of 52

Sampling Record

CONQUEST Resources Limited Sampling Record					CR-10-040-W1			
HoleID	SampleID	From	То	Length	Consecutive	Description	Au ppb	Batch-Number
CR-10-040-W1	E5108956	1946.00	1947.00	1.00	not consecutive	As above 947	139	10T444519
CR-10-040-W1	E5108957	1947.00	1948.00	1.00	consecutive	As above 947	93	10T444519
CR-10-040-W1	E5108958	1948.00	1949.00	1.00	consecutive	As above 947, with thin Lamprophyre.	44	10T444519
CR-10-040-W1	E5108959	1949.00	1950.00	1.00	consecutive	As above 947	70	10T444519
CR-10-040-W1	E5108960	1950.00	1951.00	1.00	consecutive	As above 947	42	10T444519
CR-10-040-W1	E5108961	1951.00	1952.00	1.00	consecutive	As above 947	48	10T444519
CR-10-040-W1	E5108962	1952.00	1953.00	1.00	consecutive	As above 947	14	10T444519
CR-10-040-W1	E5108963	1953.00	1954.00	1.00	consecutive	As above 947	6	10T444519
CR-10-040-W1	E5108964	1954.00	1955.00	1.00	consecutive	As above 947, with two thin Lamprophyres.	21	10T444519
CR-10-040-W1	E5108965	1955.00	1956.00	1.00	consecutive	As above 947	41	10T444519
CR-10-040-W1	E5108966	1956.00	1957.00	1.00	consecutive	As above 947, with thin Lamprophyre.	14	10T444519
CR-10-040-W1	E5108967	1957.00	1958.00	1.00	consecutive	As above 947	29	10T444519
CR-10-040-W1	E5108968	1958.00	1959.00	1.00	consecutive	As above 947	27	10T444519
CR-10-040-W1	E5108969	1959.00	1960.00	1.00	not consecutive	As above 947	350	10T444519
CR-10-040-W1	E5108970	0.00	0.00	0.00	not consecutive	Standard OxK 69 3.583 ppm Au	3250	10T444519
CR-10-040-W1	E5108971	1960.00	1961.00	1.00	not consecutive	As above 947	14	10T444519
CR-10-040-W1	E5108972	1961.00	1962.00	1.00	consecutive	As above 947, with 5cm vein containing pink carbonate.	19	10T444519
CR-10-040-W1	E5108973	1962.00	1963.00	1.00	consecutive	As above 947	3	10T444519
CR-10-040-W1	E5108974	1963.00	1964.00	1.00	consecutive	As above 947, with ash layer almost like a single pillow.	9	10T444519
CR-10-040-W1	E5108975	1964.00	1965.00	1.00	consecutive	As above 947	14	10T444519
CR-10-040-W1	E5108976	1965.00	1966.00	1.00	consecutive	As above 947	2	10T444519
CR-10-040-W1	E5108977	1966.00	1967.00	1.00	consecutive	As above 947	58	10T444519
CR-10-040-W1	E5108978	1967.00	1968.00	1.00	consecutive	As above 947	17	10T444519
CR-10-040-W1	E5108979	1968.00	1969.00	1.00	consecutive	As above 947	18	10T444519
CR-10-040-W1	E5108980	1969.00	1970.00	1.00	consecutive	As above 947	11	10T444519
CR-10-040-W1	E5108981	1970.00	1971.00	1.00	consecutive	As above 947	19	10T444519
CR-10-040-W1	E5108982	1971.00	1972.00	1.00	consecutive	As above 947	15	10T444519
CR-10-040-W1	E5108983	1972.00	1973.00	1.00	consecutive	As above 947	11	10T444519
CR-10-040-W1	E5108984	1973.00	1974.00	1.00	consecutive	As above 947	37	10T444519
CR-10-040-W1	E5108985	1974.00	1974.65	0.65	consecutive	As above 947	106	10T444519
	55400000	4074.65	4070.00	4.05		Volcaniclastic material with coarse garnet clusters, thin	4.5	40744540
CR-10-040-W1	E5108986	1974.65	1976.00	1.35	consecutive	Granodiorite like band.	15	101444519
CR-10-040-W1	E5108987	1976.00	1977.00	1.00	consecutive	Volcaniclastic material.	44	10T444519
CR-10-040-W1	E5108988	1977.00	1978.00	1.00	consecutive	Sulphidic Chert with thin Lamprophyre	48	10T444519
CR-10-040-W1	E5108989	1978.00	1979.00	1.00	consecutive	As above 988	18	10T444519
CR-10-040-W1	E5108990	0.00	0.00	0.00	not consecutive	Standard Si 42 1.761 ppm Au	1710	10T444519
CR-10-040-W1	E5108991	1979.00	1980.00	1.00	not consecutive	Sulphidic Chert.	40	10T444519
CR-10-040-W1	E5108992	1980.00	1981.00	1.00	consecutive	As above 991	8	10T444519
CR-10-040-W1	E5108993	1981.00	1982.25	1.25	consecutive	As above 991	24	10T444519
CR-10-040-W1	E5108994	1982.25	1983.35	1.10	consecutive	Fine grained Lamprophyre.	5	10T444519
CR-10-040-W1	E5108995	1983.35	1984.00	0.65	consecutive	As above 991	18	10T444519
CR-10-040-W1	E5108996	1984.00	1985.00	1.00	consecutive	Coarse garnet tuff and Chert.	25	10T444519
Prepared by Benjar	min Batson				2010 Drill	Program - Alexander Gold Project		32 of 52

CONQUEST

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au ppb	Batch-Number
CR-10-040-W1	E5108997	1985.00	1986.00	1.00	consecutive	As above 991	58	10T444519
CR-10-040-W1	E5108998	1986.00	1987.00	1.00	consecutive	As above 991	57	10T444519
CR-10-040-W1	E5108999	1987.00	1988.00	1.00	consecutive	Sulphide content of Chert is decreasing.	18	10T444519
CR-10-040-W1	E5109000	1988.00	1989.00	1.00	consecutive	As above 999	6	10T444519
CR-10-040-W1	E5109001	1989.00	1990.00	1.00	consecutive	As above 999	5	10T444519
CR-10-040-W1	E5109002	1990.00	1991.00	1.00	consecutive	As above 999	2	10T444519
CR-10-040-W1	E5109003	1991.00	1992.00	1.00	consecutive	As above 999	3	10T444519
CR-10-040-W1	E5109004	1992.00	1992.72	0.72	consecutive	As above 999	4	10T444519
CR-10-040-W1	E5109005	1992.72	1993.22	0.50	consecutive	Wing sample, contact sheared Gabbro.	1	10T444519
CR-10-040-W1	E5109006	2017.87	2018.37	0.50	not consecutive	Wing sample, fine grained Gabbro.	3	10T454521
CR-10-040-W1	E5109007	2018.37	2019.00	0.63	consecutive	Cherty Siltstone with quartz vein at contact containing PO and CPY.	12	10T454521
CR-10-040-W1	E5109008	2019.00	2020.00	1.00	consecutive	Siltstone with quartz veining / shearing with mostly PO and some PY.	12	10T454521
CR-10-040-W1	E5109009	2020.00	2021.00	1.00	consecutive	As 008 but sulphides dominated by PY	3	10T454521
CR-10-040-W1	E5109010	0.00	0.00	0.00	not consecutive	Standard Si 42 1.761 ppm Au	1660	10T454521
CR-10-040-W1	E5109011	2021.00	2022.00	1.00	not consecutive	Siltstone to Quartzite with less frequent quartz veins but pyrite veins / bands.	36	10T454521
CR-10-040-W1	E5109012	2022.00	2023.00	1.00	consecutive	Quartzite with pyrite veins / bands.	9	10T454521
CR-10-040-W1	E5109013	2023.00	2024.00	1.00	consecutive	Quartzite with several carbonate stringers. Pyrite in quartzite, no sulphides in carbonate.	6	10T454521
CR-10-040-W1	E5109014	2024.00	2025.00	1.00	consecutive	As above 013	12	10T454521
CR-10-040-W1	E5109015	2037.00	2038.00	1.00	not consecutive	Wacke and Conglomerate with sulphidic matrix.	6	10T454521
CR-10-040-W1	E5109016	2025.00	2026.00	1.00	not consecutive	Sediments getting finer again and pyrrhotite increasing.	15	10T454521
CR-10-040-W1	E5109017	2026.00	2027.00	1.00	consecutive	As above 016	7	10T454521
CR-10-040-W1	E5109018	2027.00	2028.00	1.00	consecutive	Wing sample, veining has all but disappeared, Siltstone	8	10T454521
CR-10-040-W1	E5109019	2044.67	2045.17	0.50	not consecutive	Wing sample, silty Mudstone with andalusite (?).	7	10T454521
CR-10-040-W1	E5109020	2045.17	2046.00	0.83	consecutive	Siltstone with quartz carbonate stringers, sulphides in fractures including arsenopyrite.	15	10T454521
CR-10-040-W1	E5109021	2046.00	2047.00	1.00	consecutive	Thicker quartz veins and fractures with pyrrhotite and arsenopyrite.	10	10T454521
CR-10-040-W1	E5109022	2047.00	2047.51	0.51	consecutive	As above 021	20	10T454521
CR-10-040-W1	E5109023	2047.51	2048.01	0.50	not consecutive	Wing sample, Siltstone partially brecciated.	5	10T454521
CR-10-040-W1	E5109024	2050.70	2051.20	0.50	not consecutive	Wing sample, grey Chert mostly massive, internally fractured	7	10T454521
CR-10-040-W1	E5109025	2051.20	2052.14	0.94	consecutive	NSS pebble Conglomerate. Pyrrhotite matrix replacement.	89	10T454521
CR-10-040-W1	E5109026	2052.14	2053.00	0.86	consecutive	Brecciated massive Chert, PO healed	23	10T454521
CR-10-040-W1	E5109027	2053.00	2054.00	1.00	consecutive	Brecciated chert with quartz veins, some pyrrhotite, chlorite- actinolite bands with magnetite.	19	10T454521
CR-10-040-W1	E5109028	2054.00	2055.00	1.00	consecutive	As above 027	12	10T454521
CR-10-040-W1	E5109029	2055.00	2056.00	1.00	not consecutive	As above 027	27	10T454521
CR-10-040-W1	E5109030	0.00	0.00	0.00	not consecutive	Standard Sk 43 4.086 ppm Au	4020	10T454521
CR-10-040-W1	E5109031	2056.00	2057.00	1.00	not consecutive	As above 027	17	10T454521
Prepared by Benjar	min Batson				2010 Drill	Program - Alexander Gold Project		33 of 52

CONQUEST Resources Limited

Conquest Resources Ltd. Diamond Drill Record

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-10-040-W1	E5109032	2057.00	2058.00	1.00	consecutive	As above 027	46	10T454521
CR-10-040-W1	E5109033	2058.00	2058.88	0.88	consecutive	As above 027	27	10T454521
CR-10-040-W1	E5109034	2058.88	2060.00	1.12	consecutive	Wing sample, foliated Wacke with sericite.	7	10T454521
CR-10-040-W1	E5109035	2064.00	2065.00	1.00	not consecutive	Foliated garnet rich volcaniclastic sediment.	4	10T454521
CR-10-040-W1	E5109036	2068.00	2068.50	0.50	not consecutive	Wing sample, foliated Quartzite to Wacke with thin garnetiferous bands.	26	10T454521
CR-10-040-W1	E5109037	2068.50	2069.50	1.00	consecutive	Quartzitic Breccia with pyrrhotite, actinolitic bands and fracture fillings.	50	10T454521
CR-10-040-W1	E5109038	2069.50	2070.50	1.00	consecutive	As above 037	120	10T454521
CR-10-040-W1	E5109039	2070.50	2071.50	1.00	consecutive	Brecciated Chert with actinolite-chlorite bands, pyrrhotite magnetite and trace arsenopyrite.	181	10T454521
CR-10-040-W1	E5109040	2071.50	2072.50	1.00	consecutive	As above 039	32	10T454521
CR-10-040-W1	E5109041	2072.50	2073.50	1.00	consecutive	As above 039	19	10T454521
CR-10-040-W1	E5109042	2073.50	2074.50	1.00	consecutive	As above 039	52	10T454521
CR-10-040-W1	E5109043	2074.50	2075.50	1.00	consecutive	As above 039	63	10T454521
CR-10-040-W1	E5109044	2075.50	2076.50	1.00	consecutive	As above 039	40	10T454521
CR-10-040-W1	E5109045	2076.50	2077.50	1.00	consecutive	As above 039	62	10T454521
CR-10-040-W1	E5109046	2077.50	2079.00	1.50	consecutive	Less and less actinolite, increase in magnetite content.	158	10T454521
CR-10-040-W1	E5109047	2079.00	2080.00	1.00	consecutive	As above 046	30	10T454521
CR-10-040-W1	E5109048	2080.00	2081.00	1.00	consecutive	As above 046	23	10T454521
CR-10-040-W1	E5109049	2081.00	2082.00	1.00	consecutive	As above 046	39	10T454521
CR-10-040-W1	E5109050	0.00	0.00	0.00	not consecutive	Standard Si 42 1.761 ppm Au	1660	10T454521
CR-10-040-W1	E5109051	2082.00	2083.00	1.00	not consecutive	As above 046	69	10T454521
CR-10-040-W1	E5109052	2083.00	2084.00	1.00	consecutive	As above 046	88	10T454521
CR-10-040-W1	E5109053	2084.00	2085.00	1.00	consecutive	As above 046, firts 30cm very chloritic	27	10T454521
CR-10-040-W1	E5109054	2085.00	2086.00	1.00	not consecutive	as above 046	41	10T454521
CR-10-040-W1	E5109055	2097.00	2098.00	1.00	not consecutive	Brown grey Basalt with garnetiferous bands.	4	10T454521
CR-10-040-W1	E5109056	2086.00	2086.80	0.80	not consecutive	As above 046	408	10T454521
CR-10-040-W1	E5109057	2086.80	2087.30	0.50	not consecutive	Wing sample, fine grained Diorite with late quartz veins.	1590	10T454521
CR-10-040-W1	E5109058	2107.00	2108.00	1.00	not consecutive	Wing sample, Dark to medium grey basalt with coarse garnets.	7	10T454521
CR-10-040-W1	E5109059	2108.00	2109.00	1.00	consecutive	Basalt with some buff bleaching and sulphide streaks.	1	10T454521
CR-10-040-W1	E5309060	2109.00	2110.00	1.00	consecutive	Buff to pale green bleaching, sulphide streaks, dismembered quartzcarbonate veins.	2	10T454521
CR-10-040-W1	E5309061	2110.00	2111.00	1.00	consecutive	Many bleached bands in Basalt.	3	10T454521
CR-10-040-W1	E5309062	2111.00	2112.00	1.00	consecutive	As above 061	9	10T454521
CR-10-040-W1	E5309063	2112.00	2113.00	1.00	consecutive	Brown biotite altered Basalt with thin bleached bands, shearing, folded and dismembered quartz carbonate veins.	1	10T454521
CR-10-040-W1	E5309064	2113.00	2114.00	1.00	consecutive	Less biotite and quartz carbonate than before.	<1	10T454521
CR-10-040-W1	E5309065	2114.00	2115.00	1.00	consecutive	Wing sample, no more shearing or quartz carbonate, buff bleaching.	1	10T454521
CR-10-040-W1	E5309066	2126.05	2126.74	0.69	not consecutive	Fine grained Lamprophyre with brown tinge.	3	10T454521
Prepared by Benjar	nin Batson				2010 Drill	Program - Alexander Gold Project		34 of 52

Sampling Record

CR-10-040-W1

Res	ources Limited	_	_			_		
HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-10-040-W1	E5309067	2126.74	2127.45	0.71	consecutive	Buff bleached Basalt with biotitic and chloritic bands.	4	10T454521
CR-10-040-W1	E5309068	2127.45	2128.36	0.91	consecutive	Very dark grey and carbonaceous Basalt with few calcitic fractures.	1	10T454521
CR-10-040-W1	E5309069	2128.36	2128.87	0.51	consecutive	Buff bleaching with leopard pattern due to biotite. Folded and boudinaged quartz carbonate veins. Finely disseminated sulphides.	1	10T454521
CR-10-040-W1	E5309070	0.00	0.00	0.00	not consecutive	Standard OxK 69 3.583 ppm Au	3290	10T454521
CR-10-040-W1	E5309071	2128.87	2130.00	1.13	not consecutive	As above 068 with less quartz carbonate fragments.	2	10T454521
CR-10-040-W1	E5309072	2130.00	2131.00	1.00	consecutive	Some buff bleaching with leopard pattern. Less pronounced than before, with trace sulphides.	<1	10T454521
CR-10-040-W1	E5309073	2131.00	2132.00	1.00	consecutive	Less bleaching but more quartz carbonate veins with trace sulphides.	2	10T454521
CR-10-040-W1	E5309074	2132.00	2133.00	1.00	consecutive	Some bleaching and quartz carbonate veins.	2	10T454521
CR-10-040-W1	E5309075	2145.00	2146.00	1.00	not consecutive	Very fine sericite schist, trace sulphides.	2	10T454521
CR-10-040-W1	E5309076	2133.00	2134.00	1.00	not consecutive	As above 068 with some bleaching.	1	10T454521
CR-10-040-W1	E5309077	2134.00	2135.00	1.00	consecutive	Buff bleaching, biotitic shearing, carbonate veins and boudines.	4	10T454521
CR-10-040-W1	E5309078	2135.00	2136.00	1.00	consecutive	As above 077	1	10T454521
CR-10-040-W1	E5309079	2136.00	2137.00	1.00	consecutive	Boudinaged veins dissappear, more chloritic, no carbonate.	2	10T454521
CR-10-040-W1	E5309080	2137.00	2137.78	0.78	consecutive	As above 079 but increased level of sulphides.	2	10T454521
CR-10-040-W1	E5309081	2137.78	2138.28	0.50	consecutive	Wing sample, dark grey lamprophyric looking intrusive with no carbonate.	<1	10T454521
CR-10-040-W1	E5309082	2149.08	2149.58	0.50	not consecutive	Wing sample, sericite Schist.	5	10T454521
CR-10-040-W1	E5309083	2149.58	2149.88	0.30	consecutive	Sericite Schist with several quartz veins containing biotite and fine trace sulphides.	4	10T454521
CR-10-040-W1	E5309084	2149.88	2150.38	0.50	consecutive	Wing sample, sericite Schist.	4	10T454521
CR-10-040-W1	E5309085	2156.24	2156.74	0.50	not consecutive	Wing sample, sericite Schist.	1	10T454521
CR-10-040-W1	E5309086	2156.74	2157.09	0.35	consecutive	Granodiorite with pyrite and cordierite.	4	10T454521
CR-10-040-W1	E5309087	2157.09	2158.59	1.50	consecutive	Sericite Schist.	4	10T454521
CR-10-040-W1	E5309088	2158.59	2160.00	1.41	consecutive	Less schistose with garnets and trace sulphides.	2	10T454521
CR-10-040-W1	E5309089	2160.00	2161.20	1.20	consecutive	As above 088	3	10T454521
CR-10-040-W1	E5309090	0.00	0.00	0.00	not consecutive	Standard Si 42 1.761 ppm Au	1660	10T454521
CR-10-040-W1	E5309091	2161.20	2161.70	0.50	not consecutive	Wing sample, sericite Schist.	42	10T454521
CR-10-040-W1	E5309092	2193.00	2194.00	1.00	not consecutive	Biotite Schist.	8	10T454521
CR-10-040-W1	E5309093	2199.00	2200.00	1.00	not consecutive	Biotite Schist with chlorite	5	10T454521
CR-10-040-W1	E5309094	2205.00	2206.00	1.00	not consecutive	As above 093	5	10T454521
CR-10-040-W1	E5309095	2211.00	2212.00	1.00	not consecutive	Quartz Diorite.	1	10T454521
CR-10-040-W1	E5309096	2217.00	2218.00	1.00	not consecutive	As above 095	<1	10T454521
CR-10-040-W1	E5309097	2222.00	2223.00	1.00	not consecutive	As above 095	2	10T454521
CR-10-040-W1	E5309098	2236.00	2237.00	1.00	not consecutive	Quartz Diorite with few very thin quartz veins.	28	10T454521
CR-10-040-W1	E5309099	2243.00	2243.73	0.73	not consecutive	Wing sample, mostly dark green volcanosedimentary material with coarse garnets.	2	10T454521
				-			-	

Prepared by Benjamin Batson

CONQUEST

CONQUEST

Sampling Record

Res	ources Limited							
HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-10-040-W1	E5309100	2243.73	2245.23	1.50	consecutive	Blotchy bleached foliated Monzodiorite.	1	10T454521
CR-10-040-W1	E5309101	2245.23	2245.38	0.15	consecutive	Dark grey very fine material (shear?) with 10% pyrrhotite at center and chalcopyrite to 0.25%. 2cm quartzvein seems unrelated.	108	10T454521
CR-10-040-W1	E5309102	2245.38	2246.00	0.62	not consecutive	Wing sample, as above 100 but some darker bands and 3cm quartz vein.	9	10T454521
CR-10-040-W1	E5309103	2254.00	2255.00	1.00	not consecutive	Medium grained blotchy bleaches Monzodiorite.	2	10T454521
CR-10-040-W1	E5309104	2260.00	2261.00	1.00	not consecutive	Sericite schist with diffuse permeating quartz vein containing chlorite and reddish brown biotite.	18	10T454521
CR-10-040-W1	E5309105	2268.00	2269.29	1.29	not consecutive	Wing sample, moderately silicified sericite Schist.	1	10T454521
CR-10-040-W1	E5309106	2269.29	2270.00	0.71	consecutive	Quartz Monzodiorite with pervasive silicification.	1	10T454521
CR-10-040-W1	E5309107	2270.00	2271.00	1.00	consecutive	As above 106	1	10T454521
CR-10-040-W1	E5309108	2271.00	2272.00	1.00	consecutive	As above 106	3	10T454521
CR-10-040-W1	E5309109	2272.00	2273.00	1.00	consecutive	As above 106	<1	10T454521
CR-10-040-W1	E5309110	0.00	0.00	0.00	not consecutive	Standard Si 42 1.761 ppm Au	1660	10T454521
CR-10-040-W1	E5309111	2273.00	2274.00	1.00	not consecutive	As above 106	20	10T454521
CR-10-040-W1	E5309112	2274.00	2274.93	0.93	consecutive	As above 106	4	10T454521
CR-10-040-W1	E5309113	2274.93	2276.00	1.07	consecutive	Contact sheared Basalt with occasional sulphide streaks.	577	10T454521
CR-10-040-W1	E5309114	2276.00	2277.00	1.00	not consecutive	Contact sheared Basalt.	5	10T454521
CR-10-040-W1	E5309115	2285.00	2286.00	1.00	not consecutive	Basalt with hornblende and guartz carbonate veins.	11	10T454521
CR-10-040-W1	E5309116	2277.00	2278.00	1.00	not consecutive	As above 114	4	10T454521
CR-10-040-W1	E5309117	2278.00	2279.00	1.00	not consecutive	As above 114	2	10T454521
CR-10-040-W1	E5309118	2279.00	2280.00	1.00	not consecutive	As above 114	2	10T454521
CR-10-040-W1	E5309119	2280.00	2280.73	0.73	not consecutive	As above 114	7	10T454521
CR-10-040-W1	E5309120	2280.73	2281.23	0.50	consecutive	Wing sample, hornblende Basalt with quartz carbonate veins.	16	10T454521
CR-10-040-W1	E5309121	2290.00	2290.77	0.77	not consecutive	Wing sample, light grey green Basalt with few quartz carbonate veins.	6	10T454521
CR-10-040-W1	E5309122	2290.77	2291.77	1.00	consecutive	Shear with hornblende minerals, dolomite, trace sulphides.	3	10T454521
CR-10-040-W1	E5309123	2291.77	2292.77	1.00	consecutive	As above 122	2	10T454521
CR-10-040-W1	E5309124	2292.77	2293.77	1.00	consecutive	As above 122	4	10T454521
CR-10-040-W1	E5309125	2293.77	2294.52	0.75	consecutive	As above 122	7	10T454521
CR-10-040-W1	E5309126	2294.52	2295.52	1.00	consecutive	Green grey Basalt, few veins, dolomite no calcite.	5	10T454521
CR-10-040-W1	E5309127	2295.52	2296.52	1.00	consecutive	As above 126	4	10T454521
CR-10-040-W1	E5309128	2296.52	2297.52	1.00	consecutive	As above 126	6	10T454521
CR-10-040-W1	E5309129	2297.52	2298.52	1.00	not consecutive	As above 126	2	10T454521
CR-10-040-W1	E5309130	0.00	0.00	0.00	not consecutive	Standard OxK 69 3.583 ppm Au	3890	10T454521
CR-10-040-W1	E5309131	2298.52	2299.52	1.00	not consecutive	Basalt with weak biotite, partially brecciated, some calcite, trace sulphides including arsenopyrite.	4	10T454521
CR-10-040-W1	E5309132	2299.52	2300.52	1.00	consecutive	As above 131 but only minimal traces of sulphides.	1	10T454521
CR-10-040-W1	E5309133	2300.52	2301.52	1.00	consecutive	Veining and alteration diminishing.	<1	10T454521
CR-10-040-W1	E5309134	2301.52	2302.52	1.00	not consecutive	As above 133	3	10T454521
Prepared by Benja	min Batson				2010 Drill	Program - Alexander Gold Project		36 of 52

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-10-040-W1	E5309135	2310.00	2311.00	1.00	not consecutive	Light green contact sheared Gabbro.	5	10T454521
CR-10-040-W1	E5309136	2302.52	2303.53	1.01	not consecutive	As above 133	2	10T454521
CR-10-040-W1	E5309137	2303.53	2304.53	1.00	not consecutive	Wing sample, contact sheared Gabbro.	5	10T454521
CR-10-040-W1	E5309138	2338.83	2339.33	0.50	not consecutive	Wing sample, fine grained Gabbro.	3	10T454521
CR-10-040-W1	E5309139	2339.33	2340.65	1.32	consecutive	Carbonaceous shear in Gabbro.	4	10T454521
CR-10-040-W1	E5309140	2340.65	2341.15	0.50	consecutive	Wing sample, fine grained Gabbro.	4	10T454521
CR-10-040-W1	E5309141	2355.61	2356.11	0.50	not consecutive	Wing sample, half fine grained Gabbro half Lamprophyre.	5	10T454521
CR-10-040-W1	E5309142	2356.11	2356.67	0.56	consecutive	Moderate shear with grey fine material likely gabbroic.	2	10T454521
CR-10-040-W1	F5309143	2356 67	2357 70	1 03	consecutive	Shear with carbonate veins, pervasive carbonate, biotite and trace	7	10T454521
	23303143	sulphides.		,	101 10 1021			
CR-10-040-W1	E5309144	2357.70	2358.69	0.99	consecutive	As above 143	1	10T454521
CR-10-040-W1	E5309145	2358.69	2359.50	0.81	consecutive	Carbonate pretty much gone, more massive looking.	2	10T454521
CR-10-040-W1	E5309146	2359.50	2360.50	1.00	consecutive	Wing sample, foliated weakly biotite altered basaltic rock.	<1	10T454521
CR-10-040-W1	E5309147	2370.00	2371.00	1.00	not consecutive	Wing sample, foliated, garnetiferous Basalt with minor veins.	2	10T454521
CR-10-040-W1	E5309148	2371.00	2371.50	0.50	consecutive	Basalt with folded and boudinaged veins, chloritic.	2	10T454521
CR-10-040-W1	E5309149	2371.50	2372.50	1.00	consecutive	Wing sample, as above 147	<1	10T454521
CR-10-040-W1	E5309150	0.00	0.00	0.00	not consecutive	Standard Sk 43 4.086 ppm Au	3870	10T454521
CR-10-040-W1	E5309151	2374.00	2375.00	1.00	not consecutive	Quartz Monzodiorite turned to sercite Schist.	<1	10T454521
CR-10-040-W1	E5309152	2378.00	2379.00	1.00	not consecutive	As above 151	<1	10T454521
CR-10-040-W1	E5309153	2381.00	2382.00	1.00	not consecutive	As above 151	<1	10T454521
CR-10-040-W1	E5309154	2386.00	2387.00	1.00	not consecutive	More medium grey non schistose bands, fuchsite fractures.	2	10T454521
CR-10-040-W1	E5309155	2387.00	2388.00	1.00	consecutive	Mostly grey grainy with less sericite.	1	10T454521

Hole ID	Station (m)	Dip (Degrees)	Azimuth
CR-10-040	0	-87.11	8.00
CR-10-040	5	-87.11	8.00
CR-10-040	10	-86.91	10.97
CR-10-040	15	-86.39	18.10
CR-10-040	20	-85.92	23.77
CR-10-040	25	-85.51	27.62
CR-10-040	30	-85.26	30.49
CR-10-040	35	-84.93	32.49
CR-10-040	40	-84.97	33.55
CR-10-040	45	-84.93	33.53
CR-10-040	50	-84.68	33.72
CR-10-040	55	-84.71	34.20
CR-10-040	60	-84.72	33.80
CR-10-040	65	-84.65	34.22
CR-10-040	70	-84.57	34.48
CR-10-040	75	-84.50	34.79
CR-10-040	80	-84.43	34.19
CR-10-040	85	-84.30	34.39
CR-10-040	90	-84.22	34.83
CR-10-040	95	-84.19	34.84
CR-10-040	100	-84.10	34.96
CR-10-040	105	-84.05	34.68
CR-10-040	110	-83.96	33.74
CR-10-040	115	-83.85	34.19
CR-10-040	120	-83.73	34.13
CR-10-040	125	-83.64	33.84
CR-10-040	130	-83.57	33.57
CR-10-040	135	-83.45	33.86
CR-10-040	140	-83.22	33.83
CR-10-040	145	-82.92	32.77
CR-10-040	150	-82.50	32.02
CR-10-040	155	-82.28	31.84
CR-10-040	160	-82.21	31.76
CR-10-040	165	-82.11	31.57
CR-10-040	170	-82.05	31.39
CR-10-040	175	-81.99	31.65
CR-10-040	180	-81.94	31.27
CR-10-040	185	-81.90	31.29

Hole ID	Station (m)	Dip (Degrees)	Azimuth
CR-10-040	190	-81.88	31.36
CR-10-040	195	-81.81	30.92
CR-10-040	200	-81.73	30.74
CR-10-040	205	-81.76	30.62
CR-10-040	210	-81.73	30.25
CR-10-040	215	-81.67	30.22
CR-10-040	220	-81.67	30.44
CR-10-040	225	-81.58	30.74
CR-10-040	230	-81.47	30.73
CR-10-040	235	-81.49	31.45
CR-10-040	240	-81.35	31.17
CR-10-040	245	-81.33	31.52
CR-10-040	250	-81.26	31.93
CR-10-040	255	-81.15	31.97
CR-10-040	260	-81.06	32.04
CR-10-040	265	-80.94	32.23
CR-10-040	270	-80.86	31.98
CR-10-040	275	-80.76	32.16
CR-10-040	280	-80.70	32.24
CR-10-040	285	-80.67	31.87
CR-10-040	290	-80.71	32.26
CR-10-040	295	-80.58	32.39
CR-10-040	300	-80.53	32.97
CR-10-040	305	-80.43	33.24
CR-10-040	310	-80.33	33.57
CR-10-040	315	-80.27	34.08
CR-10-040	320	-80.18	34.10
CR-10-040	325	-80.10	34.34
CR-10-040	330	-80.01	34.56
CR-10-040	335	-79.97	34.67
CR-10-040	340	-79.89	34.65
CR-10-040	345	-79.88	34.78
CR-10-040	350	-79.81	34.73
CR-10-040	355	-79.78	34.49
CR-10-040	360	-79.56	34.49
CR-10-040	361	-79.53	34.43
CR-10-040	362	-79.53	34.23
CR-10-040	363	-79.54	34.25

Hole ID	Station (m)	Dip (Degrees)	Azimuth
CR-10-040	364	-79.51	34.22
CR-10-040	365	-79.51	34.17
CR-10-040	366	-79.52	34.00
CR-10-040	367	-79.50	34.26
CR-10-040	368	-79.53	34.21
CR-10-040	369	-79.43	34.20
CR-10-040	370	-79.40	33.90
CR-10-040	371	-79.44	33.75
CR-10-040	372	-79.44	34.04
CR-10-040	373	-79.43	34.12
CR-10-040	374	-79.41	34.10
CR-10-040	375	-79.35	34.29
CR-10-040	376	-79.33	34.20
CR-10-040	377	-79.31	34.35
CR-10-040	378	-79.32	34.20
CR-10-040	379	-79.31	34.39
CR-10-040	380	-79.29	34.23
CR-10-040	381	-79.34	34.14
CR-10-040	382	-79.30	34.21
CR-10-040	383	-79.22	34.19
CR-10-040	384	-79.03	35.16
CR-10-040	385	-79.24	34.25
CR-10-040	386	-79.23	34.19
CR-10-040	387	-79.19	34.39
CR-10-040	388	-79.06	35.30
CR-10-040	389	-78.76	35.55
CR-10-040	390	-78.34	36.11
CR-10-040-W1	391	-77.94	36.68
CR-10-040-W1	392	-77.55	37.27
CR-10-040-W1	393	-77.31	37.58
CR-10-040-W1	394	-77.17	37.84
CR-10-040-W1	395	-77.08	38.22
CR-10-040-W1	396	-77.05	38.39
CR-10-040-W1	397	-77.02	38.47
CR-10-040-W1	398	-77.00	38.48
CR-10-040-W1	399	-76.96	38.54
CR-10-040-W1	400	-76.90	38.40
CR-10-040-W1	401	-76.86	38.40

Hole ID	Station (m)	Dip (Degrees)	Azimuth
CR-10-040-W1	402	-76.86	38.35
CR-10-040-W1	403	-76.82	38.47
CR-10-040-W1	404	-76.79	38.38
CR-10-040-W1	405	-76.72	38.53
CR-10-040-W1	406	-76.65	38.65
CR-10-040-W1	407	-76.55	38.87
CR-10-040-W1	408	-76.33	38.93
CR-10-040-W1	409	-76.03	38.80
CR-10-040-W1	410	-75.69	38.69
CR-10-040-W1	411	-75.35	38.58
CR-10-040-W1	412	-75.03	38.47
CR-10-040-W1	413	-74.80	38.38
CR-10-040-W1	414	-74.64	38.47
CR-10-040-W1	415	-74.53	38.72
CR-10-040-W1	416	-74.38	38.97
CR-10-040-W1	417	-74.19	39.22
CR-10-040-W1	418	-74.08	39.35
CR-10-040-W1	419	-73.97	39.60
CR-10-040-W1	420	-73.83	39.52
CR-10-040-W1	421	-73.69	39.57
CR-10-040-W1	422	-73.58	39.77
CR-10-040-W1	423	-73.45	39.99
CR-10-040-W1	424	-73.30	40.16
CR-10-040-W1	425	-73.20	40.21
CR-10-040-W1	426	-73.12	40.45
CR-10-040-W1	427	-73.03	40.58
CR-10-040-W1	428	-72.97	40.64
CR-10-040-W1	429	-72.96	40.47
CR-10-040-W1	430	-72.96	40.69
CR-10-040-W1	431	-72.88	40.83
CR-10-040-W1	432	-72.86	40.89
CR-10-040-W1	433	-72.79	40.92
CR-10-040-W1	434	-72.77	40.73
CR-10-040-W1	435	-72.78	40.73
CR-10-040-W1	436	-72.75	40.68
CR-10-040-W1	437	-72.72	40.67
CR-10-040-W1	438	-72.65	40.77
CR-10-040-W1	439	-72.67	40.51

Hole ID	Station (m)	Dip (Degrees)	Azimuth
CR-10-040-W1	440	-72.69	40.71
CR-10-040-W1	445	-72.43	41.19
CR-10-040-W1	450	-72.18	41.17
CR-10-040-W1	455	-72.04	41.26
CR-10-040-W1	460	-71.87	41.31
CR-10-040-W1	465	-71.69	40.99
CR-10-040-W1	470	-71.61	40.87
CR-10-040-W1	475	-71.43	41.26
CR-10-040-W1	480	-70.94	41.36
CR-10-040-W1	485	-70.50	40.90
CR-10-040-W1	490	-70.17	40.66
CR-10-040-W1	495	-69.73	40.70
CR-10-040-W1	500	-69.06	40.70
CR-10-040-W1	505	-68.60	41.13
CR-10-040-W1	510	-68.19	41.14
CR-10-040-W1	515	-67.80	41.64
CR-10-040-W1	520	-67.32	41.89
CR-10-040-W1	525	-66.97	41.86
CR-10-040-W1	530	-66.68	42.09
CR-10-040-W1	535	-66.42	42.13
CR-10-040-W1	540	-66.28	42.24
CR-10-040-W1	545	-66.17	42.67
CR-10-040-W1	550	-66.01	43.14
CR-10-040-W1	555	-65.88	43.55
CR-10-040-W1	560	-65.75	43.91
CR-10-040-W1	565	-65.72	44.30
CR-10-040-W1	570	-65.55	44.57
CR-10-040-W1	575	-65.33	44.79
CR-10-040-W1	580	-65.16	44.98
CR-10-040-W1	585	-65.05	45.09
CR-10-040-W1	590	-64.93	45.32
CR-10-040-W1	595	-64.85	45.44
CR-10-040-W1	600	-64.69	45.83
CR-10-040-W1	605	-64.59	46.27
CR-10-040-W1	610	-64.43	46.44
CR-10-040-W1	615	-64.23	46.71
CR-10-040-W1	620	-63.97	46.73
CR-10-040-W1	625	-63.71	46.93

Hole ID	Station (m)	Dip (Degrees)	Azimuth
CR-10-040-W1	630	-63.53	47.11
CR-10-040-W1	635	-63.32	47.45
CR-10-040-W1	640	-63.18	47.42
CR-10-040-W1	645	-63.18	47.49
CR-10-040-W1	650	-63.13	47.57
CR-10-040-W1	655	-63.12	47.71
CR-10-040-W1	660	-63.04	47.78
CR-10-040-W1	665	-62.94	47.97
CR-10-040-W1	670	-62.89	48.05
CR-10-040-W1	675	-62.89	48.01
CR-10-040-W1	680	-62.88	48.20
CR-10-040-W1	685	-62.86	48.27
CR-10-040-W1	690	-62.84	48.52
CR-10-040-W1	695	-62.79	48.58
CR-10-040-W1	700	-62.75	48.75
CR-10-040-W1	705	-62.75	48.75
CR-10-040-W1	710	-62.65	48.80
CR-10-040-W1	715	-62.67	48.96
CR-10-040-W1	720	-62.56	48.94
CR-10-040-W1	725	-62.48	49.06
CR-10-040-W1	730	-62.46	48.80
CR-10-040-W1	735	-62.36	48.99
CR-10-040-W1	740	-62.26	48.87
CR-10-040-W1	745	-62.22	48.87
CR-10-040-W1	750	-62.21	48.74
CR-10-040-W1	755	-62.01	48.74
CR-10-040-W1	760	-61.93	48.68
CR-10-040-W1	765	-61.92	48.89
CR-10-040-W1	770	-61.89	48.92
CR-10-040-W1	775	-61.89	49.02
CR-10-040-W1	780	-61.85	49.23
CR-10-040-W1	785	-61.76	49.17
CR-10-040-W1	790	-61.74	49.18
CR-10-040-W1	795	-61.67	49.27
CR-10-040-W1	800	-61.70	49.20
CR-10-040-W1	805	-61.68	49.30
CR-10-040-W1	810	-61.66	49.49
CR-10-040-W1	815	-61.68	49.58

Hole ID	Station (m)	Dip (Degrees)	Azimuth
CR-10-040-W1	820	-61.60	49.64
CR-10-040-W1	825	-61.48	49.65
CR-10-040-W1	830	-61.47	49.71
CR-10-040-W1	835	-61.35	49.77
CR-10-040-W1	840	-61.27	49.78
CR-10-040-W1	845	-61.26	49.88
CR-10-040-W1	850	-61.22	49.78
CR-10-040-W1	855	-61.19	49.95
CR-10-040-W1	860	-61.17	49.94
CR-10-040-W1	865	-61.17	50.14
CR-10-040-W1	870	-61.14	50.16
CR-10-040-W1	875	-61.11	50.05
CR-10-040-W1	880	-60.99	50.07
CR-10-040-W1	885	-60.83	50.31
CR-10-040-W1	890	-60.71	50.55
CR-10-040-W1	895	-60.60	50.60
CR-10-040-W1	900	-60.72	50.60
CR-10-040-W1	905	-60.62	50.67
CR-10-040-W1	910	-60.57	50.84
CR-10-040-W1	915	-60.55	50.75
CR-10-040-W1	920	-60.55	50.83
CR-10-040-W1	925	-60.50	51.04
CR-10-040-W1	930	-60.47	51.06
CR-10-040-W1	935	-60.47	51.16
CR-10-040-W1	940	-60.49	51.17
CR-10-040-W1	945	-60.45	51.21
CR-10-040-W1	950	-60.43	51.33
CR-10-040-W1	955	-60.33	51.34
CR-10-040-W1	960	-60.32	51.47
CR-10-040-W1	965	-60.30	51.55
CR-10-040-W1	970	-60.26	51.68
CR-10-040-W1	971	-60.25	51.62
CR-10-040-W1	972	-60.24	51.66
CR-10-040-W1	973	-60.22	51.78
CR-10-040-W1	974	-60.22	51.73
CR-10-040-W1	975	-60.23	51.64
CR-10-040-W1	976	-60.22	51.74
CR-10-040-W1	977	-60.19	51.90

Hole ID	Station (m)	Dip (Degrees)	Azimuth
CR-10-040-W1	978	-60.17	51.91
CR-10-040-W1	979	-60.16	51.84
CR-10-040-W1	980	-60.15	51.75
CR-10-040-W1	981	-60.14	51.85
CR-10-040-W1	982	-60.18	51.94
CR-10-040-W1	983	-60.21	51.90
CR-10-040-W1	984	-60.15	51.86
CR-10-040-W1	985	-60.15	51.85
CR-10-040-W1	986	-60.11	52.02
CR-10-040-W1	987	-60.09	52.15
CR-10-040-W1	988	-60.10	52.05
CR-10-040-W1	989	-60.12	52.00
CR-10-040-W1	990	-60.12	51.96
CR-10-040-W1	991	-60.13	51.96
CR-10-040-W1	992	-60.12	52.10
CR-10-040-W1	993	-60.13	52.12
CR-10-040-W1	994	-60.15	52.15
CR-10-040-W1	995	-60.14	52.05
CR-10-040-W1	996	-60.05	51.98
CR-10-040-W1	997	-59.97	51.90
CR-10-040-W1	998	-59.83	51.65
CR-10-040-W1	999	-59.70	51.37
CR-10-040-W1	1000	-59.54	51.05
CR-10-040-W1	1001	-59.38	50.80
CR-10-040-W1	1002	-59.27	50.58
CR-10-040-W1	1003	-59.15	50.45
CR-10-040-W1	1004	-59.09	50.40
CR-10-040-W1	1005	-59.06	50.41
CR-10-040-W1	1006	-59.06	50.46
CR-10-040-W1	1007	-59.07	50.56
CR-10-040-W1	1008	-59.11	50.60
CR-10-040-W1	1009	-59.13	50.48
CR-10-040-W1	1010	-59.11	50.42
CR-10-040-W1	1015	-59.03	50.20
CR-10-040-W1	1020	-58.85	50.13
CR-10-040-W1	1025	-58.79	49.98
CR-10-040-W1	1030	-58.75	50.00
CR-10-040-W1	1035	-58.66	49.86

Hole ID	Station (m)	Dip (Degrees)	Azimuth
CR-10-040-W1	1040	-58.57	49.77
CR-10-040-W1	1045	-58.55	49.85
CR-10-040-W1	1050	-58.47	49.84
CR-10-040-W1	1055	-58.37	49.95
CR-10-040-W1	1060	-58.34	49.85
CR-10-040-W1	1065	-58.25	49.98
CR-10-040-W1	1070	-58.16	50.03
CR-10-040-W1	1075	-58.16	49.97
CR-10-040-W1	1080	-58.11	50.11
CR-10-040-W1	1085	-58.02	50.03
CR-10-040-W1	1090	-57.99	50.24
CR-10-040-W1	1095	-57.90	50.30
CR-10-040-W1	1100	-57.83	50.31
CR-10-040-W1	1105	-57.74	50.30
CR-10-040-W1	1110	-57.74	50.29
CR-10-040-W1	1115	-57.69	50.40
CR-10-040-W1	1120	-57.72	50.39
CR-10-040-W1	1125	-57.70	50.27
CR-10-040-W1	1130	-57.56	50.48
CR-10-040-W1	1135	-57.43	50.37
CR-10-040-W1	1140	-57.36	50.26
CR-10-040-W1	1145	-57.33	50.28
CR-10-040-W1	1150	-57.30	50.37
CR-10-040-W1	1155	-57.25	50.35
CR-10-040-W1	1160	-57.20	50.52
CR-10-040-W1	1165	-57.13	50.38
CR-10-040-W1	1170	-57.12	50.37
CR-10-040-W1	1175	-57.11	50.37
CR-10-040-W1	1180	-57.08	50.52
CR-10-040-W1	1185	-57.05	50.65
CR-10-040-W1	1190	-57.01	50.77
CR-10-040-W1	1195	-56.95	50.75
CR-10-040-W1	1200	-56.85	50.75
CR-10-040-W1	1205	-56.78	50.84
CR-10-040-W1	1210	-56.73	50.72
CR-10-040-W1	1215	-56.68	50.76
CR-10-040-W1	1220	-56.66	50.84
CR-10-040-W1	1225	-56.64	50.95

Hole ID	Station (m)	Dip (Degrees)	Azimuth
CR-10-040-W1	1230	-56.59	50.82
CR-10-040-W1	1235	-56.56	50.90
CR-10-040-W1	1240	-56.49	50.92
CR-10-040-W1	1245	-56.46	50.92
CR-10-040-W1	1250	-56.40	50.94
CR-10-040-W1	1255	-56.37	50.96
CR-10-040-W1	1260	-56.28	51.00
CR-10-040-W1	1265	-56.20	50.85
CR-10-040-W1	1270	-56.11	50.91
CR-10-040-W1	1275	-56.06	50.92
CR-10-040-W1	1280	-56.03	50.91
CR-10-040-W1	1285	-56.00	50.93
CR-10-040-W1	1290	-55.94	51.01
CR-10-040-W1	1295	-55.90	51.14
CR-10-040-W1	1300	-55.86	51.14
CR-10-040-W1	1305	-55.74	51.28
CR-10-040-W1	1310	-55.74	51.52
CR-10-040-W1	1315	-55.65	51.72
CR-10-040-W1	1320	-55.62	51.86
CR-10-040-W1	1325	-55.53	51.93
CR-10-040-W1	1330	-55.48	51.93
CR-10-040-W1	1335	-55.40	51.97
CR-10-040-W1	1340	-55.36	51.94
CR-10-040-W1	1345	-55.30	51.95
CR-10-040-W1	1350	-55.25	51.99
CR-10-040-W1	1355	-55.13	52.03
CR-10-040-W1	1360	-55.08	52.05
CR-10-040-W1	1365	-55.02	52.17
CR-10-040-W1	1370	-54.94	52.20
CR-10-040-W1	1375	-54.87	52.29
CR-10-040-W1	1380	-54.81	52.43
CR-10-040-W1	1385	-54.78	52.46
CR-10-040-W1	1390	-54.66	52.56
CR-10-040-W1	1395	-54.59	52.53
CR-10-040-W1	1400	-54.54	52.50
CR-10-040-W1	1405	-54.48	52.64
CR-10-040-W1	1410	-54.39	52.49
CR-10-040-W1	1415	-54.35	52.60

Hole ID	Station (m)	Dip (Degrees)	Azimuth
CR-10-040-W1	1420	-54.35	52.74
CR-10-040-W1	1425	-54.31	52.75
CR-10-040-W1	1430	-54.22	52.79
CR-10-040-W1	1435	-54.16	52.91
CR-10-040-W1	1440	-54.15	52.87
CR-10-040-W1	1445	-54.08	52.90
CR-10-040-W1	1450	-54.09	52.96
CR-10-040-W1	1455	-54.03	52.92
CR-10-040-W1	1460	-53.97	52.95
CR-10-040-W1	1465	-53.93	52.96
CR-10-040-W1	1470	-53.91	52.92
CR-10-040-W1	1475	-53.87	53.07
CR-10-040-W1	1480	-53.86	52.95
CR-10-040-W1	1485	-53.86	52.94
CR-10-040-W1	1490	-53.81	53.02
CR-10-040-W1	1495	-53.80	53.04
CR-10-040-W1	1500	-53.72	53.13
CR-10-040-W1	1505	-53.61	53.12
CR-10-040-W1	1510	-53.50	53.13
CR-10-040-W1	1515	-53.43	52.95
CR-10-040-W1	1520	-53.32	52.68
CR-10-040-W1	1525	-53.34	52.60
CR-10-040-W1	1530	-53.34	52.46
CR-10-040-W1	1535	-53.31	52.44
CR-10-040-W1	1540	-53.25	52.40
CR-10-040-W1	1545	-53.22	52.45
CR-10-040-W1	1550	-53.20	52.46
CR-10-040-W1	1555	-53.17	52.37
CR-10-040-W1	1560	-53.09	52.49
CR-10-040-W1	1565	-53.02	52.44
CR-10-040-W1	1570	-53.03	52.65
CR-10-040-W1	1575	-53.02	52.59
CR-10-040-W1	1580	-52.95	52.74
CR-10-040-W1	1585	-52.92	52.99
CR-10-040-W1	1590	-52.87	52.93
CR-10-040-W1	1595	-52.87	53.03
CR-10-040-W1	1600	-52.87	52.99
CR-10-040-W1	1605	-52.87	53.14

Hole ID	Station (m)	Dip (Degrees)	Azimuth
CR-10-040-W1	1610	-52.84	53.30
CR-10-040-W1	1615	-52.84	53.27
CR-10-040-W1	1620	-52.80	53.31
CR-10-040-W1	1625	-52.83	53.41
CR-10-040-W1	1630	-52.86	53.34
CR-10-040-W1	1635	-52.78	53.38
CR-10-040-W1	1640	-52.70	53.07
CR-10-040-W1	1645	-52.63	53.04
CR-10-040-W1	1650	-52.58	52.96
CR-10-040-W1	1655	-52.56	52.95
CR-10-040-W1	1660	-52.52	52.77
CR-10-040-W1	1665	-52.41	52.54
CR-10-040-W1	1670	-52.35	52.59
CR-10-040-W1	1675	-52.30	52.45
CR-10-040-W1	1680	-52.21	52.37
CR-10-040-W1	1685	-52.19	52.19
CR-10-040-W1	1690	-52.21	52.22
CR-10-040-W1	1695	-52.10	52.09
CR-10-040-W1	1700	-52.10	52.09
CR-10-040-W1	1705	-52.07	52.08
CR-10-040-W1	1710	-51.97	51.84
CR-10-040-W1	1715	-51.92	51.88
CR-10-040-W1	1720	-51.91	51.79
CR-10-040-W1	1725	-51.77	51.65
CR-10-040-W1	1730	-51.60	51.48
CR-10-040-W1	1735	-51.40	51.29
CR-10-040-W1	1740	-51.27	51.06
CR-10-040-W1	1745	-51.24	50.89
CR-10-040-W1	1750	-51.06	50.46
CR-10-040-W1	1755	-50.83	50.26
CR-10-040-W1	1760	-50.74	50.23
CR-10-040-W1	1765	-50.72	50.05
CR-10-040-W1	1770	-50.56	49.87
CR-10-040-W1	1775	-50.58	49.69
CR-10-040-W1	1780	-50.58	49.73
CR-10-040-W1	1785	-50.51	49.66
CR-10-040-W1	1790	-50.50	49.72
CR-10-040-W1	1795	-50.48	49.68

Hole ID	Station (m)	Dip (Degrees)	Azimuth
CR-10-040-W1	1800	-50.47	49.73
CR-10-040-W1	1805	-50.50	49.74
CR-10-040-W1	1810	-50.43	49.78
CR-10-040-W1	1815	-50.52	49.82
CR-10-040-W1	1820	-50.44	49.81
CR-10-040-W1	1825	-50.45	49.81
CR-10-040-W1	1830	-50.44	49.86
CR-10-040-W1	1835	-50.36	49.83
CR-10-040-W1	1840	-50.27	49.92
CR-10-040-W1	1845	-50.21	49.75
CR-10-040-W1	1850	-50.15	49.89
CR-10-040-W1	1855	-50.11	49.92
CR-10-040-W1	1860	-50.08	49.91
CR-10-040-W1	1865	-50.04	49.93
CR-10-040-W1	1870	-50.12	49.86
CR-10-040-W1	1875	-50.04	49.67
CR-10-040-W1	1880	-50.02	49.32
CR-10-040-W1	1885	-50.03	49.36
CR-10-040-W1	1890	-50.08	49.31
CR-10-040-W1	1895	-50.01	49.30
CR-10-040-W1	1900	-49.99	49.28
CR-10-040-W1	1905	-49.96	49.31
CR-10-040-W1	1910	-49.98	49.23
CR-10-040-W1	1915	-50.02	49.35
CR-10-040-W1	1920	-49.96	49.31
CR-10-040-W1	1925	-50.11	49.45
CR-10-040-W1	1930	-50.27	49.49
CR-10-040-W1	1935	-50.33	49.60
CR-10-040-W1	1940	-50.38	49.59
CR-10-040-W1	1945	-50.39	49.78
CR-10-040-W1	1950	-50.41	49.89
CR-10-040-W1	1955	-50.39	49.87
CR-10-040-W1	1960	-50.40	49.97
CR-10-040-W1	1965	-50.41	50.11
CR-10-040-W1	1970	-50.44	50.08
CR-10-040-W1	1975	-50.42	50.31
CR-10-040-W1	1980	-50.55	50.26
CR-10-040-W1	1985	-50.34	50.35

Hole ID	Station (m)	Dip (Degrees)	Azimuth
CR-10-040-W1	1990	-50.38	50.36
CR-10-040-W1	1995	-50.28	50.23
CR-10-040-W1	2000	-50.27	50.23
CR-10-040-W1	2005	-50.22	50.24
CR-10-040-W1	2010	-50.19	50.20
CR-10-040-W1	2015	-50.12	50.06
CR-10-040-W1	2020	-49.91	50.06
CR-10-040-W1	2025	-49.76	49.75
CR-10-040-W1	2030	-49.55	49.71
CR-10-040-W1	2035	-49.47	49.68
CR-10-040-W1	2040	-49.40	49.79
CR-10-040-W1	2045	-49.43	49.80
CR-10-040-W1	2050	-49.41	50.08
CR-10-040-W1	2055	-49.37	50.04
CR-10-040-W1	2060	-49.32	50.09
CR-10-040-W1	2065	-49.28	50.05
CR-10-040-W1	2070	-49.28	50.08
CR-10-040-W1	2075	-49.29	50.09
CR-10-040-W1	2080	-49.28	50.00
CR-10-040-W1	2085	-49.31	50.14
CR-10-040-W1	2090	-49.38	50.13
CR-10-040-W1	2095	-49.32	50.14
CR-10-040-W1	2100	-49.31	50.08
CR-10-040-W1	2105	-49.27	49.87
CR-10-040-W1	2110	-49.38	49.91
CR-10-040-W1	2115	-49.33	49.87
CR-10-040-W1	2120	-49.15	49.73
CR-10-040-W1	2125	-48.97	49.31
CR-10-040-W1	2130	-48.89	49.04
CR-10-040-W1	2135	-48.75	49.09
CR-10-040-W1	2140	-48.72	49.02
CR-10-040-W1	2145	-48.67	49.00
CR-10-040-W1	2150	-48.65	48.99
CR-10-040-W1	2155	-48.63	49.09
CR-10-040-W1	2160	-48.60	49.12
CR-10-040-W1	2165	-48.60	49.11
CR-10-040-W1	2170	-48.63	49.24
CR-10-040-W1	2175	-48.64	49.33

Hole ID	Station (m)	Dip (Degrees)	Azimuth
CR-10-040-W1	2180	-48.65	49.06
CR-10-040-W1	2185	-48.77	49.02
CR-10-040-W1	2190	-48.75	49.23
CR-10-040-W1	2195	-48.84	49.34
CR-10-040-W1	2200	-48.98	49.22
CR-10-040-W1	2205	-49.03	49.18
CR-10-040-W1	2210	-49.05	49.13
CR-10-040-W1	2215	-48.97	49.04
CR-10-040-W1	2220	-49.02	48.88
CR-10-040-W1	2225	-49.01	48.73
CR-10-040-W1	2230	-48.93	48.49
CR-10-040-W1	2235	-48.92	48.48
CR-10-040-W1	2240	-48.93	48.33
CR-10-040-W1	2245	-48.92	48.31
CR-10-040-W1	2250	-48.97	48.34
CR-10-040-W1	2255	-48.96	47.97
CR-10-040-W1	2260	-49.00	47.23
CR-10-040-W1	2265	-48.83	47.20
CR-10-040-W1	2270	-48.71	47.06
CR-10-040-W1	2275	-48.72	47.14
CR-10-040-W1	2280	-48.78	47.02
CR-10-040-W1	2285	-48.75	47.04
CR-10-040-W1	2290	-48.68	47.03
CR-10-040-W1	2295	-48.43	46.66
CR-10-040-W1	2300	-48.31	46.23

Conquest Resources Ltd.

Exploration Diamond Drill Log

CR-10-040-W2

DRILL HOLE #	CR-10-040-W2	LOCATION Balmertow	vn, Balmer Township	, Red Lake D	District, Ontario		
PROJECT #	Alexander	REFERENCE Alexande	r	GEOLOGIST	Meckert	CLAIM	KRL 20488
		NORTHING	EASTING				
GRID/ NAD-20	ONE	NORTHING	EASTING		ELEVATION		GRIDITPE
GRID	Alexander KL	na	na		9802.2		IVI
UTM	NAD83 / 15U	5655990.8	449952.0		181.2		
COLLAR DIP	<u>81.73 (200m)</u>	GRID DIRECTION	1.74 E of grid N			AZ DIRECTION	30.74 (200m)
NTS REF #	052N04	NTS SHEET NAME	Red Lake, Ontario)			
START DATE	2-Nov-10		FINISH DATE	21-Nov-10			
DEPTH (EOH)	1220.00	TARGET & Zone Depth	Balmer shearing, Lo	ower Bruce Ch	nannel unconformity	/ on northern fold lim	b
PURPOSE	2nd wedge he	ole in <u>CR-10-040</u>		PIEC	E POINT of Target:	E	mELEV
CASING BV	v na	CASING N	ıw na			CASING HW	na
PLUG @	🤉 na	PLUG	@ 200m			PLUG @	na
START DTH	na	WEDGE	@ Steel wedge @ 20	00m, Clappis	on @ 224m, Clapp	oison @ 278m	
REDUCED @	na	REDUCED	@				
HOLE STATUS	complete, wa	shed and capped, availa	ble for further testir	ıg			
DRILLING COP	NTRACTOR	Boart Longyear Inc.					
RIG NO.	LY 55 4154					BXS.	233
	GYRO S	Survey: Multishot In and Out o	of Hole				
DEP	יTH (m)	AZIMUTH	DIP			Comments:	
	5	-87.16	8.00	1	1st Target Shear zor	ne in Balmer Basalt betw	ween 685.87m
1	100	-83.86	19.67	7	to 688.78m with the	ree distinct thin shears	ranging from
7	200	-81.57	17.19	Ð	0.37m at top, 0.44r	n at center to 0.35m a	at bottom. All
-	200	75.30	10 5/	4	three are very s	similar in appearance	a and weak

200	-81.57	17.19	0.37m at top, 0.44m at center to 0.35m at bottom. Al
300	-75.20	19.54	three are very similar in appearance and weak
400	-71.14	25.08	while the other two are in the trace level range 2nd
500	-69.35	26.71	Target A second moderate shear zone was encountered
600	-66.45	27.33	between 794.32m and 803.21m. Unusual amount of rec
700	-64.89	28.79	sphalerite is present in top and bottom branch of shear
800	-63.63	31.05	while absent at center. Gold mineralization is in the
900	-61.95	32.59	double digit ppb range. As in the other drill holes severa
1000	-60.18	33.65	Quartz Monzodiorites show significantly elevated levels of Gold minoralization. Those are 722 86m to 729 12m at
1100	-59.53	35.60	0.87g Au including 1m of 1.52g Au: 736m to 740.39m at
			0.33 g Au including 1m of 0.6g Au; 757.00m to 757.94 at
			0.97g Au and 1131.92m to 1134.55 at 0.29g Au. The hole
			was terminated after crossing the Balmer - Bruce Channe
			Unconformity.

Drill with 6m, double 3m NQ core barrel

Planned hole depth is 1000m (6560')

Core stored at Alexander Core Yard at UTM 0449935 5656595

Water source: beaver pond located at 449718 5656178 UTM NAD83 15U

Core stored at Alexander Core Yard Drill type: LY-55

Major Lithologies

Res	ources Lim	nited				CK-10-040-WZ
Hole Name	From	То	Length	Code	Description	Rep
CR-10-040-W2	200.00	204.00	4.00	ARC	Hole commenced 200m hole depth with steel wedge cut from CR-10-040 parent hole.	
CR-10-040-W2	204.00	259.29	55.29	S6A;S6D	Huston Formation Sediments. Mixed, well bedded, medium grey Siltstone (30% of total unit) and dark grey coloured Mudstone (40% of total unit) with infrequent 0.5 to 2 metre thick sections of sulphide (cheifly PY, with 4:1 PO) mineralization within Mudstone intervals as whispy pyrrhotite/pyrite bedding parallel laminations (15% of total unit) and near net textured Well Mineralized (<05% of total unit) pyrite in locally granular-textured carbonaceous Siltstone. Up to 10% of unit is Near-Solid Sulphide bearing conglomeratic and brecciated sediments where nearly all of the fine grained matrix sediments have been been replaced by fine grained (brilliant cubic) and locally spheroidal pyrite. Bedding interfaces with sharp contacts at oblique low angles. Siltstone and Mudstone are well bedded at variable orientations typical for this unit as described in CR-10-040, ranging from 20degCA to 60 degCA, which is well defined locally by whispy bedding parallel very light grey coloured carbonate veins. Good coring unit.	
CR-10-040-W2	259.29	278.00	18.71	S6;S4	Mixed Mudstone (20%) and polymictic matrix supported Conglomerate (70%) as in CR-10-040 several one-metre interesections of (10%) Near Solid Sulphide (pyrite). Muddy matrix and carbonate cement has been intensively replaced by pyrite. In muddy matrix sections some of the clasts have been replaced by pyrite which may indicate the presence of carbonaceous clasts in original conglomerate. Bedding is crudely oriented parallel to poorly developed foliation near 45degCA. Few mudstone beds are well bedded at low 05 to 15degCA, which abruptly change from 15 to 40degCA near bed to bed interfaces with no discernable evidence of a nonconformity.	
CR-10-040-W2	278.00	280	2.00	ARC	Wedge Cutting (Clappison retrievable wedge)	
CR-10-040-W2	280.00	407.28	127.28	S6	Muddy Siltstone with fine lithic clast supported Agglomerate. Siltstone is generally well bedded, and is poorly graded over 2 metre intervals where fine lithic fragments and rare lithic cobbles are present. Pyrite mineralization diminishes to NIL to 04% pyrite below upper contact.	

Hole Name	From	То	Length	Code	Description	Rep
CR-10-040-W2	407.28	414.30	7.02	M13	Light grey coloured, variably fine to medium textured, quartz-lithic clast bearing, dirty banded Marble and carbonaceous cemented, clast-supported Conglomerate. Bedding parallel foliation is planar from 45 to 70degCA. Conglomeratic portions of this unit are well sorted 5cm diameter sized quartz-lithic clasts with clast bedding irregularly oriented, and conglomerate bedding crudely oriented at 50degCA. Poorly sulphide mineralized with trace pyrite disseminations locally and of little consequence. Few irregular fractures are tightly healed with carbonate. Upper contact is conformable and sharp at 45degCA. Lower contact is non-conformable at 78dgeCA while foliation and bedding is 60degCA at this contact.	
CR-10-040-W2	414.30	438.95	24.65	S4B	Moderately well graded, monogenic, lithic clast supported Conglomerate. Well rounded gravel sized clasts coarsen in downhole direction. Matrix is primarily comprised of very fine grained siliciclastics with up to 30% fine grained carbonate locally. Bedding is oriented approximately 50degCA. As above fractures are healed with carbonate and occasionally quartz-carbonate filling. Upper contact is sharp at 60degCA and contains 3 metres of weakly 05PY mineralized Mudstone which contains several rounded cobble and subrounded gravel sized clasts. Lower contact is sharp at 33degCA and grades from coarse cobble clast supported conglomerate to fine grained angular gravel clasts in a matrix supported bed.	
CR-10-040-W2	438.95	448.20	9.25	M13	As above banded Marble with sharp contacts at 33degCA. NIL mineralization.	
CR-10-040-W2	448.20	485.53	37.33	S6D	Poorly mineralized Huston Mudstone as above. Pyrite is accompanied by pyrrhotite in this unit (03% pyrite and 02% pyrrhotite). One section of mixed mudstone and conglomerate within this unit is poorly sheared (see minor lithology). Lower contact is gradational and based largely upon the change in sedimentation from clean mudstone to mixed silty Mudstone which also contains rounded gravel sized clasts.	
CR-10-040-W2	485.53	508.47	22.94	S6	Medium to dark grey coloured, dirty Siltstone and Mudstone. Bedding is generally irregular at 40degCA and turbidated in those areas with proportionally more silty than mud fraction sediments. 04% Pyrite and 06% Pyrrhotite has replaced carbonate throughout this unit. Possibly sheared sediments, however it is likely that mixed texutre in this unit represents a time of unsettled sedimentation. Few quartz and quartz-carbonate veinlets are oriented bedding parallel. Occasional gravel sixed clasts are oblate and oriented at 40degCA. Upper and lower contacts are gradational over several metres.	

CR-10-040-W2

Rep

Res	ources Limi	lea			
Hole Name	From	То	Length	Code	Description

CR-10-040-W2 508.47 513.23 4.76
ATZ; FLT
Huston-Balmer Unconformity. The unconformity itself is <u>hairline</u> in thickness at 511.53m depth with significant structural hanging and footwall alteration characterized below. The contact is a clean, sharp angular unconformity oriented at 50degCA. The structural hangingwall, Huston Silt- Mudstone has been strongly silica-(carbonate-magnetite-pyrrhotite) altered over several metres; while, the structural footwall, Balmer Basalt, is buff beige coloured and has been strongly carbonate-sericite±biotite±pyrite altered, contains trace pyrite mineralization, is easily scratched and fizzes agressively with acid. A moderate 50degCA foliation fabric when oriented in the up-hole direction has been cut by sinistral/reverse blackline faulting at a low angle to core at 10 to 20degCA in the downhole direction.

Balmer Formation Basalt. Massive to locally pillowed, medium dusty green coloured, upper greenschist facies metamorphosed, mafic volcanic, with guartz-carbonate veining, and where pillowed quartz-carbonate-(pyrite) replacement. Good coring unit, generally competent with moderate hardness. Upper contact contains pervaisve bleaching comprised of carbonatesericite±biotite±Pyrite alteration and trace sulphide mineralization. Low angle small scale blackline sinistral, apparent-reverse faulting is present over 10 metres nearest contact at CR-10-040-W2 513.23 685.89 172.66 V3B 511.53m to 521.00m. Quartz-(carbonate) filled vesicules are common in finely textured portions of the flow. Bedding has been interpreted (with questionable confidence 4 of 10) to be approximately parallel to foliation at 50degCA based on the orientation of clusters of vesicules and fine chlorite bed-to-bed contacts. Fracturing is irregular, tightly healed and generally oriented at 40 to 60degCA at upper contact zone nearest unconformity (Huston-Balmer Unconformity). A small fraction of the <10% quartz-carbonate veins oriented parallel to foliation are boudinaged.

CR-10-040-W2 685.89 691.60 5.71 SHR/V3B Series of three thin shears in short succession. Shears which range from 35 cm to 44 cm in thickness and consist almost exclusively of 2 to 3 cm thick planar sheets of carbonate that contain a moderate amount of diffuse very fine grained pyrrhotite. The Basalt inbetween shows none to very weak level of biotite alteration. Immediatly below the third shear a thin Quartz Monzodiorite exploits this zone of weakness. Its mineralization is well within average range for local Quartz Monzodiorites. A short section of Basalt below the intrusive contains carbonate stringers with 3% pyrrhotite that is very fine grained but concentrated in thin bands locally. The stringers are distinctly not shear oriented and are likely not contemporary.

Major Lithologies

Hole Name	From	То	Length	Code	Description	Rep
CR-10-040-W2	691.60	794.32	102.72	V3B	Typical Balmer Basalt (as before the shear structure), pale grey to chloritic greenish with infrequent quartz carbonate veins and carbonaceous pillow selvedges. Amygdules are increasing with depth and can be more readily recognized as such. The occasional quartz carbonate vein will contain some fine grained pyrrhotite but this does not follow a recognizeable pattern. Biotite alteration were present is not very strong and can mostly be tied to crosscutting intrusives.	
CR-10-040-W2	794.32	795.04	0.72	SHR	Carbonaceous shear (15%) with flexed planes. 8% of tremolite in felted masses. Pyrrhotite and red sphalerite are present in fine grained intermixed masses Chalcopyrite occurs as small flakes at the outer edge of other sulphides.	
CR-10-040-W2	795.04	797.04	2.00	SHR	Carbonaceous shear (20% carbonate) that is moderately silicified. Flexed planes along x and y axis. Containing two short sections of pyrrhotite rich mudstone. Sulphides present are pyrrhotite and chalcopyrite. Red sphalerite is absent and this part of shear looks distinctly different from previous 72 cm of shear.	
CR-10-040-W2	797.04	800.45	3.41	I3A	Fine grained greenish brown Gabbro. Contact sheared and weakly biotite altered. Few thin bands of assimilated mudstone. Both contacts are sharp at 55 degCA.	
CR-10-040-W2	800.45	801.35	0.90	V3B	Contact sheared brownish grey Basalt with weak biotite alteration. Moderate quartz carbonate veining. Streaky amygdules and minor trace sulphides can be observed.	
CR-10-040-W2	801.35	803.21	1.86	SHR	Weakly silicified carbonaceous shear with little Gabbro at center. Shear planes are flexed, running at 55 to 60 degCA. Pyrrhotite, red sphalerite, magnetite and arsenopyrite are present. Even though tremolite is not seen in any noticeable amount this shear looks very much alike 794.32m to 795.04m	
CR-10-040	803.21	1096.82	293.61	I3A	Light green very fine to fine grained Gabbro. More blueish and coarse grained ant center. Occasional marginal shears are dominated by carbonate but may contain quartz carbonate as well. In those interstitial spaces are often filled by pyrite. Veining is otherwise more or less absent. Few carbonaceous fractures.	
CR-10-040	1096.82	1131.19	34.37	V3B	Mostly grey to brownish grey basalt with the occasional chloritic section. Normal background quartz carbonate veining and selvedges. Noticably more amygdules present than in Balmer Basalt intersected before gabbro intrusion. Mineralisation only at trace level.	
CR-10-040	1131.19	1206.00	74.81	I3A	Very fine to fine grained Gabbro. Greenish grey with some contact shearing and foliation. Often only discernible as Gabrro due to the context. Some assimilated blocks of Basalt blend into it and can only be identified based on biotitic alteration at the contacts in both the Gabbro and basalt and that the Basalt contains quartz carbonate veining.	

Major Lithologies

Hole Name	From	То	Length	Code	Description	Rep
CR-10-040	1206.00	1219.84	13.84	S6A	Bruce Channel Formation. Mostly disturbed medium to dark grey siltstones. Bedding contorted and disturbed, brecciated in places and healed with pyrrhotite. Top of Bruce channel sediments with graphitic fault short distance from the contact.	
CR-10-040	1219.84	1219.85	0.01	EOH	End of Hole as planned in top of Bruce Channel Formation. Hole was terminated 14 meters past the last arm of the gabbro intrusion in typical Bruce Channel Mudstones to ensure that no further Balmer Basalt is present between Gabbro intrusion and Bruce Channel Formation. End of hole at 1219.85m on November 1, 2010. Hole is capped and accessible for further research. Gyro surveyed. Core is stored at the Conquest Core Facility on the Alexander Property in 471 NQ trays in racks. 173 samples sent for Au fire assay (50g pulp) at AGAT Labs, Mississauga, ON.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-10-040-W2	210.23	211.75	S4	Conglomeratic, 15% Pyrite and <05% Pyhrrotite bearing, sediment hosed Breccia. Gravel to cobble sized lithic clasts contain bedding which is randomly oriented. Crude bedding and foliation is parallel at approximately 30degCA. Sharp upper and lower contacts at 30degCA.	
CR-10-040-W2	223.94	231.30	WMIN	Well Mineralized to Near-Solid Sulphide bearing conglomeratic and brecciated sediments where nearly all of the fine grained matrix sediments have been been replaced by 20-30% fine grained (brilliant cubic) and 25-35% locally spheroidal pyrite. Bedding interfaces with sharp contacts at oblique low angles.	
CR-10-040-W2	243.53	247.75	120	Light grey coloured, 04% pyrite bearing, Intermediate Lamprophyre. Up to 05% fine carbonate. Upper contact at 45degCA. Lower contact is gradual over 2 metres with many assimilated wall rock fragments.	
CR-10-040-W2	259.29	263.00	S4;WMIN	Mixed Conglomeratic mudstone unit, primarily comprised of pyritic mud-matrix supported lithic conglomerate. Crudely bedded at 10-35degCA. Sharp upper and lower contacts defined in part by abrupt sulphide mineralized to unmineralized sediments.	
CR-10-040-W2	265.15	269.85	S4;NSS	Mixed Conglomeratic mudstone unit as above.	
CR-10-040-W2	271.08	272.00	S4;WMIN	Pyrite mud-matrix supported, lithic conglomerate as above 259.29 to 263.00m.	
CR-10-040-W2	274.45	278.00	M12;WMIN	Pyrite mineralized, weakly brecciated Quartzite. Sharp upper and lower contact are very low angle and conformable to bedding at 15degCA with 25% pyrite at contact over 10-20cm. Very hard and siliceous with spheroidal and disseminated pyrite throughout.	
CR-10-040-W2	288.74	290.40	120	Light grey coloured, 04% pyrite bearing, Intermediate Lamprophyre as above. Upper contact is sharp at 20degCA. Lower contact is sharp at 45degCA.	
CR-10-040-W2	300.40	304.71	S4	Mud matrix supported lithic agglomerated clastic sediments with sharp, conformable, upper and lower contacts. Minor 02% blebby and finely disseminated Pyrite.	
CR-10-040-W2	327.15	331.32	S4	Mud matrix supported lithic agglomerated clastic sediments. Minor 02% blebby and finely disseminated Pyrite. Very poorly sorted with angular clasts. Sharp, conformable, upper and lower contacts 40 and 55degCA.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-10-040-W2	332.78	334.75	12J	Medium pale brownish-grey coloured, fine to medium grained, massive, non-magnetic, trace blebby pyrite bearing, Diorite dyke. This dyke lacks finely pervasive carbonate which would otherwise have been logged as Intermediate Lamprophyre. Sharp, undulating, planar upper contact at 70degCA. Lower contact is sharp at 85degCA with one 1 cm thick, pyrite-carbonate vein of little consequence.	
CR-10-040-W2	335.86	337.40	S4	Mud matrix supported lithic agglomerated clastic sediments. Minor 02% blebby and finely disseminated Pyrite. Very poorly sorted with angular clasts. Sharp, conformable, upper contact at 24degCA. Lower contact is sharp at angular unconformable contact at 18degCA.	
CR-10-040-W2	348.22	355.33	SHR	Minor Shear Zone within Huston Formation Mudstone with moderately well developed 10 to 20degCA shear fabric. Up to 10% Pyrite. Upper and lower contacts are moderately sharp. Upper contact is transposed at low angle.	
CR-10-040-W2	377.00	377.90	NSS	Pyrite Near Solid Sulphide replacement in carbonaceous silty wackestone. Irregular upper and lower contacts perpendicular to core axis.	
CR-10-040-W2	381.25	383.82	WMIN;BRE	Well Mineralized, pyrite-pyrrhotite bearing (10% PY and 10%PO), weakly brecciated, carbonaceous silty Wackestone. Sulphides have replaced carbonate in matrix sediments. Brecciated fabric is crudely parallel to bedding at approximately 35degCA. Pyrrotite is retrogressively replaced by cubic pyrite.	
CR-10-040-W2	383.82	407.28	S6D	Very fine, dark grey coloured, well bedded Mudstone with less than 05% whispy and planar carbonate veins. Abundant very fine <1mm wide tension fractures are tightly healed with carbonate. Bedding is undulating and planar from 30 to 50degCA. Sharp upper contact at 40degCA.	
CR-10-040-W2	421.19	421.84	130	Mafic Lamprophyre Dyke. Soft, medium grey green coloured, very fine grained, finely pervasive carbonate-bearing Intrusive. Sharp upper and lower contacts at 45degCA downhole. Dyke is 90deg to bedding and foliation.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-10-040-W2	466.43	475.60	SHR;S4C	Minor Zone of Shearing within mudstone and matrix-supported conglomerate containing silty beds and 05% pyrite mineralization with some 05% irregular whispy carbonate veining. Shear fabric is defined by mixed beds, attenuated blebby replacement pyrite, and variable moderate to low core angled foliation. Upper and lower contacts are moderately sharp with the abrupt increase/decrease in pyrite replacement at approximately 45degCA.	
CR-10-040-W2	483.98	485.53	130	Mafic Lamprophyre Dyke. Soft, medium grey green coloured, fine grained, finely pervasive carbonate-bearing Intrusive. Up to 02% finely disseminated pyrite. Sharp upper and lower contacts at 45degCA downhole. Dyke is 90deg to bedding and foliation.	
CR-10-040-W2	503.54	507.84	I2H	Massive, medium grey coloured, fine grained, fresh (unaltered) Monzodiorite dyke. This intrusive lacks quartz crystals which are generally present in these dykes nearby. Upper and lower contacts are sharp and quenched at 40 and 50degCA.	
CR-10-040-W2	569.92	571.58	SHR	Very weak sheared horizon in Basalt. Weak zone of shearing with planar fabric oriented parallel to diifuse shear contacts at 55degCA. Veining is locally dismembered and few amygdules are attenuated with elongation subparallel to foliation/shear. Trace pyrite. Alteration is weak silica-chlorite-(bt).	
CR-10-040-W2	581.29	585.07	I2G	Foliated, steel grey coloured, fine to medium grained, trace biotite-bearing, Quartz Monzodiorite. Foliation is planar at 53degCA. One 7cm thick quartz-carbonate vein at 42degCA. Upper contact is undulating at 54degCA with one quartz vein bleb at contact. Lower contact is sharp, planar, and quenched at 60degCA.	
CR-10-040-W2	587.39	588.16	12G	Foliated, steel grey coloured, fine to medium grained, trace biotite-bearing, Quartz Monzodiorite. Foliation is planar at 65degCA. Upper contact is irregular and possibly transposed. Lower contact is sharp at 80degCA.	
CR-10-040-W2	588.54	589.37	12G	Foliated, steel grey coloured, fine to medium grained, trace biotite-bearing, Quartz Monzodiorite. Weak foliation is planar at approximately 60degCA. Upper contact is irregular and transposed at 60degCA. Lower contact is sharp at 60degCA.	
CR-10-040-W2	590.54	595.90	12G	As above, foliated, steel grey coloured, fine to medium grained, trace biotite-bearing, Quartz Monzodiorite with sharp contacts at 45degCA. One low angle quartz-carb-(bt) 3cm vein and a few low angle cross-cutting fractures (20degCA downhole). Foliation is oriented 60degCA.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-10-040-W2	627.75	633.30	12G	As above, foliated, steel grey coloured, fine to medium grained, trace biotite-bearing, Quartz Monzodiorite with sharp contacts at 45degCA. Foliation is planar at 65degCA. Lower contact has assimilated chloritized Basalt wallrock fragment.	
CR-10-040-W2	643.98	646.42	I2H	Foliated medium to dark grey Monzodiorite. Some late quartz veining and only minute traces of sulphides. Contacts are sharp, upper at 45 degCA and lower at 53 degCA.	
CR-10-040-W2	648.90	649.61	I2G	Medium grained medium grey Quartz Monzodiorite. Weakly foliated with blebs of sulphides throughout. Upper contact is obscured by a thick quartz vein. Another thinner vein at center is broken up and contains Scheelite (?). Lower contact is sharp at 60 degCA.	
CR-10-040-W2	655.02	656.06	130	Fine grained dark grey Lamprophyre. Very fine grained at contacts. Center is very carbonaceous and contains a fair amount of pyrite crystals up to 1 mm in size. This also coincides with the highest level of carbonate. Both contacts are sharp, upper at 63 degCA and lower at 61 degCA.	
CR-10-040-W2	657.69	661.18	130	Fine grained dark grey Lamprophyre as before but only with trace carbonate. Both contacts are sharp, 63 degCA upper and 61 degCA lower.	
CR-10-040-W2	665.83	666.54	130	Lamprophyre as in 657.69 to 661.18. Contacts sharp at 75 degCA upper and 52 degCA lower.	
CR-10-040-W2	666.66	669.70	12G	Fine grained slightly bleached Quartz Monzodiorite with fine grained trace sulphides. Upper contact sharp at 52 degCA. Lower contact is uneven but roughly perpendicular to core axis.	
CR-10-040-W2	669.70	672.30	130	Greenish grey fine grained Lamprophyre with no carbonate. Blebby biotite throughout and no foliation. Some very fine trace sulphides. Lower contact is straight at 68 degCA.	
CR-10-040-W2	672.30	676.60	I2G	Well foliated medium grained and medium grey Quartz Monzodiorite. Less quartz than before but slightly more trace sulphides. Lower contact is sharp at 60 degCA.	
CR-10-040-W2	681.04	685.26	130	Fine grained and dark grey, weakly carbonaceous Lamprophyre. Very uniform looking. With few steep carbonate healed fractures. Contacts are sharp, upper at 52 degCA and lower at 78 degCA.	
CR-10-040-W2	685.89	688.78	SHR	Zone with weakly silicified carbonaceous shears that are well mineralized. Pyrrhotite is the dominating sulphide. Basalt between shears shows elevated level of biotite alteration.	
CR-10-040-W2	688.78	691.01	12G	Fine to medium grained brownish grey Quartz Monzodiorite. Some spotty bleaching where thin quartz veins cross. Rounded quartz crystals are larger than surrounding feldspars. Finely disseminated and blebby sulphides are above trace level. Contacts are sharp, upper at 55 degCA and lower at 56 degCA	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-10-040-W/2	691 01	692.25	SHR	As above 685.89 to 688.77, but here thicker mineralized carbonate stringers dominate	
CN-10-040-W2	091.01	092.25	3111	as compared to the thinner lamellae above.	
CR-10-040-\W/2	706 56	707 52	130	Fine grained and dark grey carbonaceous lamprophyre. Massive and uniform looking.	
CR-10-040-WZ 700.	700.50	707.52	130	Contacts are sharp, upper at 78 degCA and lower at 73 degCA.	
				Brown grey Monzodiorite with late milky quartz veins and associated pale green	
CR-10-040-W2	714.72	715.93	12H	bleaching. Intrusive is weakly foliated in places and contains trace sulphides. Contacts	
				are sharp, upper at 50 degCA and lower at 41 degCA.	
				Strongly foliated to sheared Quartz Monzodiorite. Light grey and fine grained.	
CR-10-040-\W/2	723 86	729 13	126	Crosscutting late quartzveins contain larger aggregates of sericite. Pyrrhotite and	
CN-10-040-W2	725.00	725.15	120	arsenopyrite are present. Strong foliation near top runs 45 to 63 degCA. Otherwise	
				foliation is consistent at 55 degCA.	
				Medium grey brownish fine grained Quartz Monzodiorite. First two meters sericite	
				altered and strongly foliated at 52 degCA. Remainder of intrusive is not foliated. Some	
CR-10-040-W2	732.69	740.39	12G	later crosscutting quartz veins with clustersof biotite. Blebby pyrrhotite is paired with	
				fine grained arsenopyrite and traces of pyrite. Contacts are sharp, upper at 58 degCA	
				and lower at 52 degCA.	
CR-10-040-\W/2	742 14	744 24	126	Fine grained Quartz Monzodiorite with inhomogeneous distribution of sericite and	
en 10 040 W2	742.14	/ + + . 2 +	120	blotchy bleaching. Sulphides as in previous unit.	
	756.21			Medium grey brownish fine grained Quartz Monzodiorite. Weakly foliated with blebby	
CR-10-040-W2		757.94	94 I2G	Pyrrhotite and minute traces of arsenopyrite. Contacts are sharp, upper at 54 degCA and	
				lower at 41 degCA.	
				Finegrained and dark grey Lamprophyre. Moderately foliated with elongate biotite	
CR-10-040-W2	773.71	774.27	130	aggregates. Weakly carbonaceous. Upper contact is sharp at 71 degCA. Lower contact is	
				broken.	
CR-10-040-W2	792.39	793.45	130	Lamprophyre as previous unit. Contacts sharp, upper at 61 degCA and lower at 62	
				degCA.	
CR-10-040-W2	803.21	804.96	I3A	Contact sheared greenish brown Gabbro with chunk of Mudstone.	
CR-10-040-W2	804.96	805.95	S6D	Contorted pyrrhotitic Mudstone starting with an 18cm carbonaceous stringer.	
				Medium grey and fine grained Quartz Monzodiorite. Foliated with sericite in certain	
CR-10-040-W2	805.95	807.37	12G	layers. Rounded quartz crystals not very plentyful. Fine grained traces of pyrrhotite and	
				arsenopyrite are present. Contacts are sharp at 59 degCA.	
				Medium brownish fine grained Monzodiorite with the occasional quartz eye. Blebby to	
CR-10-040-W2	856.06	858.99	12H	angular aggregates of pyrrhotite are frequent and traces of chalcopyrite and	
				arsenopyrite can be observed as well. The upper contact is broken. The lower contact is	
				sharp at 63 degCA.	
CD 40 040 14/2	002.05	000 10	1211	Fine grained grey brown Monzodiorite with occasional quartz vein. Minor blebby pyrite	
CK-10-040-W2	892.95	898.10	I2H	is present. Contacts are sharp, upper at 56 degCA and lower at 58 degCA.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-10-040-W2	940.52	942.00	I2H	Medium brown Monzodiorite with few feldspar phenocrysts. Mostly just very fine grained and massive except for blebby pyrrhotite and very fine cubic arsenopyrite. Contacts are sharp, upper at 49 degCA and lower at 52 degCA.	
CR-10-040-W2	989.69	994.23	I2H	Monzodiorite as previous unit, but showing some foliation and an elevated level of arsenopyrite. Upper contact is obscured by a late quartz vein. Lower contact is undulating at 61 degCA	
CR-10-040-W2	1026.07	1028.84	I2H	Fine grained brown greyish Monzodiorite. Occasional small quartz eye and minor trace sulphides. Contacts are sharp, upper at 65 degCA and lower at 60 degCA.	
CR-10-040-W2	1089.89	1094.25	130	Very fine grained dark grey Lamprophyre. Carbonaceous with blebby pyrite at center of intrusive, no special features otherwise. Both contacts are sharp and undulating, upper at 48 degCA and loer at 62 degCA.	
CR-10-040-W2	1096.82	1098.07	S6A	Medium to dark grey silty interflow sediments with pyrrhotite and magnetite.	
CR-10-040-W2	1098.07	1099.80	V3B	Typical grey greenish Basalt with minor quartz carbonate veining and carbonate healed fractures.	
CR-10-040-W2	1099.80	1106.38	12J	Fine to medium grained dense and massive Diorite. Some minor streaky biotite grown along weakly developed foliation planes. Upper contact is jagged at 61 degCA. Lower contact is straight at 59 degCA.	
CR-10-040-W2	1106.38	1108.15	13A	Fine grained green gabbro with no special features.	
CR-10-040-W2	1131.92	1134.55	12G	Fine grained mottled grey Quartz Monzodiorite. Moderate foliation and biotite content picking up downward. Blebby pyrite and pyrrhotite as well as very fine arsenopyrite can be observed. Contacts are sharp, upper at 69 degCA and lower at 53 degCA.	
CR-10-040-W2	1134.55	1145.50	I3A/V3B	Fine grained greenish brown Gabbro with several assimilated chunks of basalt. Due to the biotite alteration in both rocks all changes are gradual and best associated with the presence of quartz carbonate veining in the Basalt as compared to the Gabbro.	
CR-10-040-W2	1152.42	1153.74	130	Dioritic looking Lamprophyre with weak carbonate and weak foliation. Contacts are sharp, upper at 69 degCA and lower at 67 degCA.	
CR-10-040-W2	1171.08	1175.51	130	Lamprophyre as unit before. Upper contact is uneven at around 70 degCA. Lower contact is sharp at 78 degCA.	

Sampling Record

CONQUEST Resources Limited Sampling Record							CR-10-040-W2	
HoleID	SampleID	From	То	Length	Consecutive	Description	Au ppb	Batch-Number
CR-10-040-W2	E5309156	507.84	508.47	0.63		Wing Sample: Huston Mudstone with 10% alteration silica and 02% PY	41	10T458454
CR-10-040-W2	E5309157	508.47	509.47	1.00	consecutive	PO-PY blowout in sil-(carb) altered Huston Mudstone in Hangingwall Huston-Balmer Unconformity	21	10T458454
CR-10-040-W2	E5309158	509.47	510.47	1.00	consecutive	Infill Wing Sample: 10% silica altered Mudstone with 02% PY	32	10T458454
CR-10-040-W2	E5309159	510.47	511.53	1.06	consecutive	sil-(PY-PO-MT) altered Huston Mudstone located immediately above blackline Huston-Balmer Unconformity	10	10T458454
CR-10-040-W2	E5309160	511.53	512.23	0.70	consecutive	Strongly bleached, carb-ser-(bt)-(PY) altered, trace pyrite bearing Contact Unconformity Zone	6	10T458454
CR-10-040-W2	E5309161	512.23	513.23	1.00	consecutive	Strongly bleached, carb-ser-(bt)-(PY) altered, trace pyrite bearing Contact Unconformity Zone with one quartz-(bt-chl) vein	4	10T458454
CR-10-040-W2	E5309162	513.23	514.00	0.77	consecutive	Wing Sample to bleached contact zone. Abundant tightly carbonate healed fractures, moderately bleached, trace pyrite-bearing Basalt.	5	10T458454
CR-10-040-W2	E5309163	514.00	515.00	1.00	consecutive	Infill Wing Sample: 15% quartz-carbonate veined, moderately bleached, Balmer Basalt. NIL pyrite.	4	10T458454
CR-10-040-W2	E5309164	515.00	516.00	1.00	consecutive	Infill Wing Sample: 15% quartz-carbonate veined, moderately bleached, Balmer Basalt. NIL pyrite.	18	10T458454
CR-10-040-W2	E5309165	516.00	517.00	1.00	consecutive	Infill Wing Sample: 15% quartz-carbonate veined, moderately bleached, Balmer Basalt. NIL pyrite.	3	10T458454
CR-10-040-W2	E5309166	517.00	518.00	1.00	consecutive	Infill Wing Sample: Pseudo-brecciated veining due to low angle faulting. 15% finely sheet textured quartz-carbonate veins, moderately bleached, Balmer Basalt. NIL pyrite.	6	10T458454
CR-10-040-W2	E5309167	518.00	519.00	1.00	consecutive	Infill Wing Sample: Pseudo-brecciated veining due to low angle faulting. 15% finely sheet textured quartz-carbonate veins, moderately bleached, Balmer Basalt. NIL pyrite.	3	10T458454
CR-10-040-W2	E5309168	519.00	520.00	1.00	consecutive	Infill Wing Sample: Pseudo-brecciated veining due to low angle faulting. 15% finely sheet textured quartz-carbonate veins, moderately bleached, Balmer Basalt. NIL pyrite.	8	10T458454
CR-10-040-W2	E5309169	520.00	521.00	1.00	consecutive	Character Sample: low angle structures and PO-PY-carb-(qtz) veins and fracture filling in bleached basalt	19	10T458454
CR-10-040-W2	E5309170	0.00	0.00	0.00	not consecutive	Standard Sample: Si42 1,761 ppb Au	1740	10T458454
CR-10-040-W2	E5309171	521.00	522.00	1.00	not consecutive	Lower Wing Sample with few quartz-carbonate veins (03%) Basalt	5	10T458454
CR-10-040-W2	E5309172	525.00	526.00	1.00	not consecutive	Character Sample Wing: 05% quartz-carbonate veins in Basalt with trace Pyrite	4	10T458454
CR-10-040-W2	E5309173	526.00	527.00	1.00	consecutive	Character Sample: Basalt with 10% quartz-carbonate veins with chlorite selveges and 02% vuggy quartz	3	10T458454
CR-10-040-W2	E5309174	533.00	534.00	1.00	not consecutive	Wing Sample: foliated Basalt with quartz-carbonate amygdules and 05% quartz-carbonate veins. NIL pyrite.	3	10T458454

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-10-040-W2	E5309175	537.00	538.00	1.00	not consecutive	Lower Wing Blank Sample: Basalt with minor quartz-carbonate veins. NIL pyrite.	68	10T458454
CR-10-040-W2	E5309176	534.00	535.00	1.00	not consecutive	40% abundant quartz-carbonate selvedge replacement in Basalt. NIL pyrite.	4	10T458454
CR-10-040-W2	E5309177	535.00	536.00	1.00	consecutive	Infill Wing Sample: foliated Basalt with quartz-carbonate amygdules and 05% quartz-carbonate veins. NIL pyrite.	5	10T458454
CR-10-040-W2	E5309178	536.00	537.00	1.00	consecutive	Infill Wing Sample: foliated Basalt with quartz-carbonate amygdules and 05% quartz-carbonate veins. NIL pyrite.	10	10T458454
CR-10-040-W2	E5309179	568.92	569.92	1.00	not consecutive	Wing Sample: Basalt with <05% qtz-cb veining and NIL sulphides	4	10T458454
CR-10-040-W2	E5309180	569.92	571.00	1.08	consecutive	Character Sample: Weak shearing in sil-chl-(bt) Basalt with trace pyrite	5	10T458454
CR-10-040-W2	E5309181	571.00	571.58	0.58	consecutive	Character Sample: Weak shearing in 10sil-05chl-(trace bt) Basalt with trace pyrite	6	10T458454
CR-10-040-W2	E5309182	571.58	572.58	1.00	consecutive	Wing Sample: Basalt with <05% qtz-cb veining and NIL sulphides	2	10T458454
CR-10-040-W2	E5309183	580.29	581.29	1.00	not consecutive	Wing Sample: Basalt. NIL sulphides.	4	10T458454
CR-10-040-W2	E5309184	581.29	582.79	1.50	consecutive	Steel grey-coloured, foliated, Quartz Monzodiorite with 01% disseminated pyrite and trace arsenopyrite locally	3	10T458454
CR-10-040-W2	E5309185	582.79	584.29	1.50	consecutive	Steel grey-coloured, foliated, Quartz Monzodiorite with 01% disseminated pyrite and trace arsenopyrite locally	<1	10T458454
CR-10-040-W2	E5309186	584.29	585.07	0.78	consecutive	Steel grey-coloured, foliated, Quartz Monzodiorite with 01% disseminated pyrite and trace arsenopyrite locally	4	10T458454
CR-10-040-W2	E5309187	585.07	586.15	1.08	consecutive	Infill Wing Sample: foliated Basalt with <05% quartz-carbonate veins. NIL sulphides.	12	10T458454
CR-10-040-W2	E5309188	586.15	587.39	1.24	consecutive	Infill Wing Sample: foliated Basalt with <05% quartz-carbonate veins. NIL sulphides.	5	10T458454
CR-10-040-W2	E5309189	587.39	588.16	0.77	consecutive	Steel grey-coloured, foliated, Quartz Monzodiorite with 01% disseminated pyrite and trace arsenopyrite locally	3	10T458454
CR-10-040-W2	E5309190	0.00	0.00	0.00	not consecutive	Standard Sample: Si42 1,761 ppb Au	1660	10T458454
CR-10-040-W2	E5309191	588.16	589.37	1.21	not consecutive	60% Steel grey-coloured, foliated, Quartz Monzodiorite with 01% disseminated pyrite and trace arsenopyrite locally. 40% Basalt NIL sulphides.	5	10T458454
CR-10-040-W2	E5309192	589.37	590.54	1.17	consecutive	Infill Wing Sample: foliated Basalt with 05-07% quartz-carbonate fracture filling and fine veins. NIL sulphides.	7	10T458454
CR-10-040-W2	E5309193	590.54	592.00	1.46	consecutive	Steel grey-coloured, foliated, Quartz Monzodiorite with 01% disseminated pyrite and trace arsenopyrite locally	<1	10T458454
CR-10-040-W2	E5309194	592.00	593.50	1.50	consecutive	Steel grey-coloured, foliated, Quartz Monzodiorite with 01% disseminated pyrite and trace arsenopyrite locally. One qtz-carb-chl 3cm thick vein.	1	10T458454
CR-10-040-W2	E5309195	595.90	596.90	1.00	not consecutive	Blank Sample: Basalt NIL pyrite	6	10T458454

Sampling Record

CUNC	JUESI ources Limited					Sampling Record		CR-10-040-W
HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-10-040-W2	F5309196	593.50	595.00	1.50	not consecutive	Steel grey-coloured, foliated, Quartz Monzodiorite with 01%	2	10T458454
	23303130	333.30	333.00	1.50	not consecutive	disseminated pyrite and trace arsenopyrite locally		101 100 101
CR-10-040-W2	E5309197	595.00	595.90	0.90	consecutive	Steel grey-coloured, foliated, Quartz Monzodiorite with 01%	2	10T458454
<u></u>	55200400	626 75	627.75	1.00		disseminated pyrite and trace arsenopyrite locally		407450454
CR-10-040-W2	E5309198	626.75	627.75	1.00	not consecutive	Wing Sample: Basalt NIL sulphides	4	10T458454
CR-10-040-W2	E5309199	627.75	629.25	1.50	consecutive	Steel grey-coloured, foliated, Quartz Monzodiofile with 01%	2	10T458454
						Steel grev-coloured, foliated, Quartz Monzodiorite with 01%		
CR-10-040-W2	E5309200	629.25	630.75	1.50	consecutive	disseminated pyrite and trace arsenopyrite locally	3	10T458454
	55200204	C20 75	622.00	4.25		Steel grey-coloured, foliated, Quartz Monzodiorite with 01%	2	107450454
CR-10-040-W2	E5309201	630.75	632.00	1.25	consecutive	disseminated pyrite and trace arsenopyrite locally	2	101458454
CR 10 040 W/2	EE200202	622.00	622.20	1 20	concourtivo	Steel grey-coloured, foliated, Quartz Monzodiorite with 01%	1	107459454
CR-10-040-W2	E5309202	632.00	033.30	1.30	consecutive	disseminated yrite and trace arsenopyrite locally	T	101458454
CR-10-040-\W/2	E2300303	633 30	634 80	1 50	consecutive	Wing Sample: Basalt Wing with >10% carbonate veining and	5	107458454
CI-10-040-WZ	L3309203	033.30	034.80	1.50	consecutive	fracture filling at lower contact of dyke	5	101458454
CR-10-040-W2	E5309204	634.80	636.00	1.20	consecutive	Wing Sample: Basalt with <05% qtz-cb veining and NIL sulphides	2	10T458454
CR 10 040 W/2	FF20020F	640.00	641 10	1 10	not concourtive	Wing Sample: Wing to weakly sheared Basalt. Approx 05% quartz-	F	107459454
CR-10-040-W2	E5309205	640.00	041.18	1.18	not consecutive	carbonate veining, trace pyrite	Э	5 101458454
CR_10_040_\//2	E5200206	6/1 18	612 68	1 50	consocutivo	Weakly sheared Basalt, 10% quartz-carbonate, 02% biotite, 10%	٥	9 10T458454
CN-10-040-W2	23303200	041.10	042.00	1.50	consecutive	chlorite, trace pyrite	9 101438434	
CR-10-040-W2	F5309207	642 68	643 18	0.50	consecutive	Weakly sheared Basalt, 10% quartz-carbonate, 02% biotite, 10%	4	10T458454
en 10 040 W2	23303207	042.00	045.10	0.50	consecutive	chlorite, trace pyrite	7	101450454
CR-10-040-W2	E5309208	648.40	648.90	0.50	not consecutive	Wing sample, marginally contact altered biotitic Basalt.	13	10T458454
CR-10-040-W2	E5309209	648.90	649.61	0.71	consecutive	Quartzmonzodiorite with quartz veins, quartz carbonate veins and	20	10T458454
						blebby pyrrhotite.		
CR-10-040-W2	E5309210	0.00	0.00	0.00	not consecutive	Standard Oxk 69 3.583 ppm Au	3220	10T458454
CR-10-040-W2	E5309211	649.61	650.36	0.75	not consecutive	Basalt with many quartz carbonate veins, later quartz veins and	7	10T458454
CD 40 040 M/2	55200242	650.26	654.00	0.64		trace sulphides.	-	407450454
CR-10-040-W2	E5309212	650.36	651.00	0.64	not consecutive	Wing sample, basalt with few quartz carbonate veins.	5	101458454
CR-10-040-W2	E5309213	654.52	655.02	0.50	not consecutive	Wing sample, normal green Basalt.	3	101458454
CR-10-040-W2	E5309214	659.02	660.00	1.04		Lamprophyre with marginal carbonate	2	101456454
CR-10-040-W2	E5309215	656.06	656 56	0.50	not consecutive	Wing sample, varialitic Pasalt	Z	101456454
CR-10-040-W2	E5309210	666.16	666.66	0.50	not consecutive	Wing sample, variolitic Basalt.	4	101456454
CR-10-040-W2	E5309217	666.66	669.16	1 50		Wing sample, Lampiophyle and 12cm of biotic basait.	2	101456454
CR-10-040-WZ	E2200210	669 16	660 70	1 50	consecutive		3 2	101458454
CR-10-040-WZ	F2200330	660 70	670.20	0 50	consecutive	No above 210	2	101430434
CR-10-040-WZ	E5309220	671 20	672.20	0.50	not consecutive	Wing sample, fine grained Lamprophyre	2	101430434
CIV-TO-040-00Z	LJJUJZZI	071.00	072.30	0.50	not consecutive	Nuartz Monzodiorite with less quartz than before trace subbides	Э	101430434
CR-10-040-W2	E5309222	672.30	673.80	1.50	consecutive	and short section of Lampronhyre	<1	10T458454
CR-10-040-\W/2	F5309223	673 80	675 30	1 50	consecutive	As above 222	<1	10T458454
narod by Poniami	in Patson	075.00	0, 5.50	1.50	2010 Dr	ill Program - Alexander Gold Project	±`	15 of 27

Conquest Resources Ltd. Diamond Drill Record

Sampling Record

CR-10-040-W2

HoleID	SampleID	From	То	Length	Consecutive	Description	Au ppb	Batch-Number
CR-10-040-W2	E5309224	675.30	676.60	1.30	consecutive	As above 222	<1	10T458454
CR-10-040-W2	E5309225	676.60	677.10	0.50	consecutive	Wing sample, normal green Basalt with short section of Lamprophyre.	3	10T458454
CR-10-040-W2	E5309226	685.25	685.89	0.64	not consecutive	Wing sample, normal green Basalt.	39	10T458454
CR-10-040-W2	E5309227	685.89	686.26	0.37	consecutive	Thin carbonaceous shear with sulphides.	1030	10T458454
CR-10-040-W2	E5309228	686.26	686.97	0.71	consecutive	Biotite altered Basalt.	29	10T458454
CR-10-040-W2	E5309229	686.97	687.41	0.44	not consecutive	As above 227	9	10T458454
CR-10-040-W2	E5309230	0.00	0.00	0.00	not consecutive	Standard Sk 43 4.086 ppm Au	4070	10T458454
CR-10-040-W2	E5309231	687.41	688.43	1.02	not consecutive	Normal green Basalt.	6	10T458454
CR-10-040-W2	E5309232	688.43	688.78	0.35	consecutive	As above 227	54	10T458454
CR-10-040-W2	E5309233	688.78	690.00	1.22	consecutive	Quartz Monzodiorite with fine grained and blebby sulphides.	10	10T458454
CR-10-040-W2	E5309234	690.00	691.01	1.01	consecutive	As above 233	3	10T458454
CR-10-040-W2	E5309235	710.00	711.00	1.00	not consecutive	Normal green Basalt.	7	10T458454
CR-10-040-W2	E5309236	691.01	691.60	0.59	not consecutive	Green Basalt with several carbonate stringers containing fair amount of pyrrhotite	16	10T458454
CR-10-040-W2	E5309237	691.60	692.25	0.65	consecutive	Green Basalt with stringers diminishing.	6	10T458454
CR-10-040-W2	E5309238	692.25	692.75	0.50	consecutive	Wing sample, normal green Basalt.	8	10T458454
CR-10-040-W2	E5309239	714.00	714.72	0.72	not consecutive	Wing sample, normal green Basalt.	9	10T458454
CR-10-040-W2	E5309240	714.72	715.93	1.21	consecutive	Monzodiorite, some bleaching, trace sulphides.	20	10T458454
CR-10-040-W2	E5309241	715.93	717.00	1.07	consecutive	Basalt with quartz carbonate veins and fracturs. Sulphides in the latter.	6	10T458454
CR-10-040-W2	E5309242	717.00	718.00	1.00	consecutive	Basalt, minor flow top breccia, some quartz carbonate veins with sulphides.	5	10T458454
CR-10-040-W2	E5309243	718.00	719.00	1.00	consecutive	Wing sample, normal green Basalt.	6	10T458454
CR-10-040-W2	E5309244	722.00	722.50	0.50	not consecutive	Wing sample, normal green Basalt.	18	10T458454
CR-10-040-W2	E5309245	722.50	723.00	0.50	consecutive	Weak carbonaceous shear with trace sulphides.	31	10T458454
CR-10-040-W2	E5309246	723.00	723.86	0.86	consecutive	Normal green Basalt.	34	10T458454
CR-10-040-W2	E5309247	723.86	725.00	1.14	consecutive	Foliated Quartz Monzodiorite with pyrrhotite and arsenopyrite.	609	10T458454
CR-10-040-W2	E5309248	725.00	726.00	1.00	consecutive	As above 247	983	10T458454
CR-10-040-W2	E5309249	726.00	727.00	1.00	consecutive	As above 247	1520	10T458454
CR-10-040-W2	E5309250	0.00	0.00	0.00	not consecutive	Standard Sk 43 4.086 ppm Au	4490	10T458454
CR-10-040-W2	E5309251	727.00	728.00	1.00	not consecutive	As above 247	24	10T458454
CR-10-040-W2	E5309252	728.00	729.13	1.13	consecutive	As above 247	1240	10T458454
CR-10-040-W2	E5309253	729.13	729.63	0.50	consecutive	Wing sample, normal green Basalt	23	10T458454
CR-10-040-W2	E5309254	732.19	732.69	0.50	not consecutive	Wing sample, normal green Basalt.	25	10T458454
CR-10-040-W2	E5309255	781.00	782.00	1.00	not consecutive	Normal green Basalt.	4	10T458454
CR-10-040-W2	E5309256	732.69	733.69	1.00	not consecutive	Quartz Monzodiorite with sericite, pyrrhotite and fine grained arsenopyrite.	72	10T458454
CR-10-040-W2	E5309257	733.69	734.62	0.93	consecutive	As above 256	88	10T458454
CR-10-040-W2	E5309258	734.62	736.00	1.38	consecutive	Quartz Monzodiorite with no sericite but equal amounts of pyrrhotite and arsenopyrite as before	12	10T458454

Prepared by Benjamin Batson

2010 Drill Program - Alexander Gold Project

CONQUEST Resources Limited

Conquest Resources Ltd. Diamond Drill Record

Sampling Record

CR-10-040-W2

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-10-040-W2	E5309259	736.00	737.00	1.00	consecutive	As above 258, with quartz vein with larger biotite aggregates.	515	10T458454
CR-10-040-W2	E5309260	737.00	738.00	1.00	consecutive	As above 259	86	10T458454
CR-10-040-W2	E5309261	738.00	739.00	1.00	consecutive	As above 259	608	10T458454
CR-10-040-W2	E5309262	739.00	740.39	1.39	consecutive	As above 259	173	10T458454
CR-10-040-W2	E5309263	740.39	742.14	1.75	consecutive	Normal green Basalt.	19	10T458454
CR-10-040-W2	E5309264	742.14	743.14	1.00	consecutive	Quartz Monzodiorite, moderate foliation, Sulphides as before.	188	10T458454
CR-10-040-W2	E5309265	743.14	744.24	1.10	consecutive	As above 264	169	10T458454
CR-10-040-W2	E5309266	744.24	744.74	0.50	consecutive	Wing sample, normal green Basalt.	7	10T458454
CR-10-040-W2	E5309267	755.71	756.21	0.50	not consecutive	Wing sample, normal green Basalt.	5	10T458454
CR-10-040-W2	E5309268	756.21	757.00	0.79	consecutive	Quartz Monzodiorite with blebby pyrrhotite and minimal traces of arsenopyrite.	65	10T458454
CR-10-040-W2	E5309269	757.00	757.94	0.94	consecutive	As above 268	976	10T458454
CR-10-040-W2	E5309270	0.00	0.00	0.00	not consecutive	Standard Si 42 1.761 ppm Au	1730	10T458454
CR-10-040-W2	E5309271	757.94	758.44	0.50	not consecutive	Wing sample, normal green Basalt.	9	10T458454
CR-10-040-W2	E5309272	786.00	786.50	0.50	not consecutive	Wing sample, normal green Basalt.	6	10T458454
CR-10-040-W2	E5309273	786.50	787.50	1.00	consecutive	Basalt with more quartz in veins and selvedges with fine pyrrhotite. Increased amount of carbonate stringers.	6	10T458454
CR-10-040-W2	E5309274	787.50	788.50	1.00	consecutive	As above 273	6	10T458454
CR-10-040-W2	E5309275	816.00	817.00	1.00	not consecutive	Contact sheared Gabbro with moderate biotite.	4	10T458454
CR-10-040-W2	E5309276	788.50	789.50	1.00	not consecutive	As above 273	6	10T458454
CR-10-040-W2	E5309277	789.50	790.50	1.00	consecutive	As above 273	8	10T458454
CR-10-040-W2	E5309278	790.50	791.50	1.00	consecutive	Gradually less stringers but more biotite alteration.	4	10T458454
CR-10-040-W2	E5309279	791.50	792.39	0.89	consecutive	Basalt with biotite alteration, some veining, fine grained pyrrhotite is mostly disseminated in the biotite.	4	10T458454
CR-10-040-W2	E5309280	792.39	793.45	1.06	consecutive	Lamprophyre with trace pyrite.	1	10T458454
CR-10-040-W2	E5309281	793.45	794.32	0.87	consecutive	As above 273	6	10T458454
CR-10-040-W2	E5309282	794.32	795.04	0.72	consecutive	Carbonaceous shear with tremolite pyrrhotite, red sphalerite and chalcopyrite.	17	10T458454
CR-10-040-W2	E5309283	795.04	795.97	0.93	consecutive	Carbonaceous shear, magnetite and pyrrhotite.	3	10T458454
CR-10-040-W2	E5309284	795.97	796.29	0.32	consecutive	Pyrrhotitic Mudstone.	28	10T458454
CR-10-040-W2	E5309285	796.29	797.04	0.75	consecutive	As above 283	10	10T458454
CR-10-040-W2	E5309286	797.04	797.54	0.50	consecutive	Wing sample, contact sheared Gabbro with moderate biotite.	3	10T458454
CR-10-040-W2	E5309287	799.95	800.45	0.50	not consecutive	Wing sample, Contact sheared Gabbro.	5	10T458454
CR-10-040-W2	E5309288	800.45	801.35	0.90	consecutive	Assimilated chunk of basalt with trace sulphides.	4	10T458454
CR-10-040-W2	E5309289	801.35	802.13	0.78	consecutive	Half Gabbro and half carbonaceous shear with no sulphides.	15	10T458454
CR-10-040-W2	E5309290	0.00	0.00	0.00	not consecutive	Standard Oxk 69 3.583 ppm Au	3480	10T458454
CR-10-040-W2	E5309291	802.13	803.21	1.08	not consecutive	Carbonaceous shear with magnetite, pyrrhotite, red sphalerite, arsenopyrite.	17	10T458454
CR-10-040-W2	E5309292	803.21	804.96	1.75	consecutive	Gabbro with Mudstone.	15	10T458454
CR-10-040-W2	E5309293	804.96	805.95	0.99	consecutive	Carbonate stringer and pyrrhotitic Mudstone.	34	10T458454
CR-10-040-W2	E5309294	805.95	807.37	1.42	consecutive	Quartz Monzodiorite with pyrrhotite and arsenopyrite.	3	10T458454

Prepared by Benjamin Batson

2010 Drill Program - Alexander Gold Project

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-10-040-W2	E5309295	833.00	834.00	1.00	not consecutive	Green fine grained Gabbro.	1	10T458454
CR-10-040-W2	E5309296	807.37	807.87	0.50	not consecutive	Wing sample, green fine grained Gabbro, contact sheared.	4	10T458454
CR-10-040-W2	E5309297	855.56	856.06	0.50	not consecutive	Wing sample, medium grained Gabbro.	2	10T458454
CR-10-040-W2	E5309298	856.06	857.56	1.50	consecutive	Monzodiorite with blebby pyrrhotite, arsenopyrite / chalcopyrite traces.	7	10T458454
CR-10-040-W2	E5309299	857.56	858.99	1.43	consecutive	As above 298	2	10T458454
CR-10-040-W2	E5309300	858.99	859.49	0.50	consecutive	Wing sample, medium grained Gabbro.	3	10T458454
CR-10-040-W2	E5309301	939.95	940.45	0.50	not consecutive	Wing sample, fine grained Gabbro.	8	10T458454
CR-10-040-W2	E5309302	940.45	942.00	1.55	consecutive	Monzodiorite, brown with blebby pyrrhotite and fine grained arsenopyrite.	7	10T458454
CR-10-040-W2	E5309303	942.00	942.50	0.50	consecutive	Wing sample, fine grained Gabbro.	3	10T458454
CR-10-040-W2	E5309304	989.19	989.69	0.50	not consecutive	Wing sample, fine grained Gabbro, contact sheared at intrusive.	7	10T458454
CR-10-040-W2	E5309305	989.69	991.19	1.50	consecutive	Monzodiorite, brown with blebby pyrrhotite and fine grained arsenopyrite.	19	10T458454
CR-10-040-W2	E5309306	991.19	992.69	1.50	consecutive	As above 305	20	10T458454
CR-10-040-W2	E5309307	992.69	994.23	1.54	consecutive	As above 305	28	10T458454
CR-10-040-W2	E5309308	994.23	994.73	0.50	consecutive	Wing sample, fine grained Gabbro.	5	10T458454
CR-10-040-W2	E5309309	1096.32	1096.82	0.50	not consecutive	Wing sample, fine grained Gabbro.	8	10T458454
CR-10-040-W2	E5309310	0.00	0.00	0.00	not consecutive	Standard Si 42 1.761 ppm Au	1670	10T458454
CR-10-040-W2	E5309311	1096.82	1098.07	1.25	not consecutive	Interflow sediments, silty with pyrrhotite, magnetite and carbonate.	7	10T458454
CR-10-040-W2	E5309312	1098.07	1099.00	0.93	consecutive	Wing sample, normal grey greenish Basalt.	2	10T458454
CR-10-040-W2	E5309313	1107.65	1108.15	0.50	not consecutive	Wing sample, fine grained Gabbro.	9	10T458454
CR-10-040-W2	E5309314	1108.15	1108.80	0.65	consecutive	Basalt, contact biotite altered with pyrrhotite and carbonate.	16	10T458454
CR-10-040-W2	E5309315	1117.00	1118.00	1.00	not consecutive	Basalt with only 1 % veining and minor carbonate healed fractures.	3	10T458454
CR-10-040-W2	E5309316	1108.80	1109.30	0.50	not consecutive	Wing sample, Diorite and short Basalt.	2	10T458454
CR-10-040-W2	E5309317	1127.00	1128.00	1.00	not consecutive	Wing sample, medium grey Basalt with chloritic bands and carbonate healed fractures.	3	10T458454
CR-10-040-W2	E5309318	1128.00	1129.00	1.00	consecutive	Basalt with carbonaceous selvedges and veins, minor brecciation.	3	10T458454
CR-10-040-W2	E5309319	1129.00	1130.00	1.00	consecutive	As above 318	3	10T458454
CR-10-040-W2	E5309320	1130.00	1131.19	1.19	consecutive	As above 318	9	10T458454
CR-10-040-W2	E5309321	1131.19	1131.92	0.73	consecutive	Very fine grained Gabbro with pervasive biotite.	9	10T458454
CR-10-040-W2	E5309322	1131.92	1133.18	1.26	consecutive	Quartz Monzodiorite with blebby pyrite, pyrrhotite and trace arsenopyrite.	257	10T458454
CR-10-040-W2	E5309323	1133.18	1134.55	1.37	consecutive	As above 322	321	10T458454
CR-10-040-W2	E5309324	1134.55	1135.05	0.50	consecutive	Wing sample, very fine grained Gabbro.	7	10T458454
CR-10-040-W2	E5309325	1205.50	1206.00	0.50	not consecutive	Wing sample, fine grained green Gabbro.	8	10T458454
CR-10-040-W2	E5309326	1206.00	1206.52	0.52	consecutive	Siltstone with pervasive silicification and finely disseminated sulphides, chiefly pyrrhotite.	12	10T458454
Prepared by Benjam	in Batson				2010 Dri	ill Program - Alexander Gold Project		18 of 27

Conquest Resources Ltd. Diamond Drill Record Sampling Record						CR-10-040-W2		
HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CP 10 040 W2	EE200227	1206 52	1207.02	0.50	concosutivo	Wing sample, dark grey intensely folded and brecciated pyrrhotitc	20	107459454
CK-10-040-002	E3509527	1200.52 12	1207.02	0.50	consecutive	Mudstone. Fractures healed by pyrrhotite.	50	101458454

Hole ID	Station (m)	Dip (Degrees)	Azimuth
CR-10-040	5	-87.16	8.00
CR-10-040	10	-86.83	7.37
CR-10-040	15	-86.37	11.88
CR-10-040	20	-85.88	15.75
CR-10-040	25	-85.47	17.62
CR-10-040	30	-85.11	19.46
CR-10-040	35	-85.00	19.69
CR-10-040	40	-84.78	19.75
CR-10-040	45	-84.76	20.22
CR-10-040	50	-84.67	19.59
CR-10-040	55	-84.61	19.46
CR-10-040	60	-84.51	18.99
CR-10-040	65	-84.40	19.42
CR-10-040	70	-84.35	19.09
CR-10-040	75	-84.28	19.28
CR-10-040	80	-84.23	19.46
CR-10-040	85	-84.08	19.55
CR-10-040	90	-84.04	19.37
CR-10-040	95	-83.89	20.75
CR-10-040	100	-83.86	19.67
CR-10-040	105	-83.78	19.58
CR-10-040	110	-83.71	19.42
CR-10-040	115	-83.60	18.98
CR-10-040	120	-83.48	18.94
CR-10-040	125	-83.40	19.76
CR-10-040	130	-83.36	19.37
CR-10-040	135	-83.22	18.97
CR-10-040	140	-83.14	18.97
CR-10-040	145	-82.76	18.41
CR-10-040	150	-82.37	17.88
CR-10-040	155	-82.21	17.24
CR-10-040	160	-82.13	17.08
CR-10-040	165	-82.04	17.26
CR-10-040	170	-82.02	17.27
CR-10-040	175	-81.88	17.24
CR-10-040	180	-81.90	17.26
CR-10-040	185	-81.83	17.24
CR-10-040	186	-81.82	17.22

Hole ID	Station (m)	Dip (Degrees)	Azimuth
CR-10-040	187	-81.82	17.25
CR-10-040	188	-81.82	17.22
CR-10-040	189	-81.83	17.88
CR-10-040	190	-81.79	17.44
CR-10-040	191	-81.77	17.29
CR-10-040	192	-81.75	17.48
CR-10-040	193	-81.75	17.70
CR-10-040	194	-81.72	17.48
CR-10-040	195	-81.71	17.25
CR-10-040	196	-81.72	17.14
CR-10-040	197	-81.68	17.13
CR-10-040	198	-81.65	16.96
CR-10-040	199	-81.62	16.94
CR-10-040	200	-81.57	17.19
CR-10-040-W2	201	-81.42	17.48
CR-10-040-W2	202	-81.17	17.52
CR-10-040-W2	203	-80.82	17.79
CR-10-040-W2	204	-80.54	17.86
CR-10-040-W2	205	-80.35	17.80
CR-10-040-W2	206	-80.25	17.88
CR-10-040-W2	207	-80.25	18.14
CR-10-040-W2	208	-80.36	18.30
CR-10-040-W2	209	-80.39	18.16
CR-10-040-W2	210	-80.35	18.39
CR-10-040-W2	211	-80.30	17.82
CR-10-040-W2	212	-80.23	17.80
CR-10-040-W2	213	-80.19	17.60
CR-10-040-W2	214	-80.23	17.68
CR-10-040-W2	215	-80.22	17.83
CR-10-040-W2	216	-80.11	17.94
CR-10-040-W2	217	-79.99	17.86
CR-10-040-W2	218	-79.88	18.07
CR-10-040-W2	219	-79.85	18.47
CR-10-040-W2	220	-79.78	18.64
CR-10-040-W2	221	-79.69	18.41
CR-10-040-W2	222	-79.58	18.13
CR-10-040-W2	223	-79.46	17.85
CR-10-040-W2	224	-79.34	17.41

Hole ID	Station (m)	Dip (Degrees)	Azimuth
CR-10-040-W2	225	-79.22	16.34
CR-10-040-W2	226	-79.03	15.12
CR-10-040-W2	227	-78.88	14.00
CR-10-040-W2	228	-78.85	13.25
CR-10-040-W2	229	-78.77	13.31
CR-10-040-W2	230	-78.74	12.94
CR-10-040-W2	231	-78.74	12.80
CR-10-040-W2	232	-78.71	12.76
CR-10-040-W2	233	-78.76	13.13
CR-10-040-W2	234	-78.75	12.92
CR-10-040-W2	235	-78.71	13.10
CR-10-040-W2	240	-78.65	13.11
CR-10-040-W2	245	-78.48	13.82
CR-10-040-W2	250	-78.20	14.11
CR-10-040-W2	255	-78.12	14.24
CR-10-040-W2	260	-77.94	14.55
CR-10-040-W2	265	-77.94	14.71
CR-10-040-W2	266	-77.87	14.84
CR-10-040-W2	267	-77.83	14.97
CR-10-040-W2	268	-77.81	14.84
CR-10-040-W2	269	-77.82	14.90
CR-10-040-W2	270	-77.80	14.77
CR-10-040-W2	271	-77.79	14.92
CR-10-040-W2	272	-77.78	15.04
CR-10-040-W2	273	-77.78	15.24
CR-10-040-W2	274	-77.79	15.19
CR-10-040-W2	275	-77.76	15.14
CR-10-040-W2	276	-77.75	15.12
CR-10-040-W2	277	-77.71	15.19
CR-10-040-W2	278	-77.49	15.24
CR-10-040-W2	279	-77.11	15.44
CR-10-040-W2	280	-76.66	16.10
CR-10-040-W2	281	-76.22	16.51
CR-10-040-W2	282	-75.90	17.04
CR-10-040-W2	283	-75.74	17.47
CR-10-040-W2	284	-75.73	17.67
CR-10-040-W2	285	-75.72	17.71
CR-10-040-W2	286	-75.71	17.95

Hole ID	Station (m)	Dip (Degrees)	Azimuth
CR-10-040-W2	287	-75.65	18.24
CR-10-040-W2	288	-75.56	18.52
CR-10-040-W2	289	-75.56	18.66
CR-10-040-W2	290	-75.54	18.64
CR-10-040-W2	295	-75.43	19.03
CR-10-040-W2	300	-75.20	19.54
CR-10-040-W2	305	-74.86	20.36
CR-10-040-W2	310	-74.73	20.71
CR-10-040-W2	315	-74.52	21.20
CR-10-040-W2	320	-74.46	21.46
CR-10-040-W2	325	-74.34	21.36
CR-10-040-W2	330	-74.32	21.49
CR-10-040-W2	335	-74.16	21.58
CR-10-040-W2	340	-74.18	21.81
CR-10-040-W2	345	-74.06	21.93
CR-10-040-W2	350	-73.99	21.93
CR-10-040-W2	355	-73.91	22.01
CR-10-040-W2	360	-73.80	22.60
CR-10-040-W2	365	-73.59	22.67
CR-10-040-W2	370	-73.39	22.84
CR-10-040-W2	375	-73.20	23.16
CR-10-040-W2	380	-72.98	23.70
CR-10-040-W2	385	-72.70	23.77
CR-10-040-W2	390	-72.22	24.18
CR-10-040-W2	395	-71.61	24.41
CR-10-040-W2	400	-71.14	25.08
CR-10-040-W2	405	-70.74	25.19
CR-10-040-W2	410	-70.21	25.64
CR-10-040-W2	415	-69.87	25.58
CR-10-040-W2	420	-69.66	25.74
CR-10-040-W2	425	-69.57	25.66
CR-10-040-W2	450	-69.61	25.88
CR-10-040-W2	455	-69.56	25.98
CR-10-040-W2	460	-69.56	26.10
CR-10-040-W2	465	-69.58	25.98
CR-10-040-W2	470	-69.56	25.96
CR-10-040-W2	475	-69.54	26.16
CR-10-040-W2	480	-69.50	26.19

Hole ID	Station (m)	Dip (Degrees)	Azimuth	
CR-10-040-W2	485	-69.47	26.37	
CR-10-040-W2	490	-69.37	26.47	
CR-10-040-W2	495	-69.38	26.57	
CR-10-040-W2	500	-69.35	26.71	
CR-10-040-W2	505	-69.34	26.64	
CR-10-040-W2	510	-69.37	26.90	
CR-10-040-W2	515	-69.29	27.00	
CR-10-040-W2	520	-69.30	27.03	
CR-10-040-W2	525	-69.32	28.28	
CR-10-040-W2	530	-69.31	28.34	
CR-10-040-W2	535	-69.26	28.63	
CR-10-040-W2	540	-69.15	28.48	
CR-10-040-W2	545	-68.95	28.27	
CR-10-040-W2	550	-68.78	28.19	
CR-10-040-W2	555	-68.48	28.18	
CR-10-040-W2	560	-68.22	28.10	
CR-10-040-W2	565	-67.85	28.12	
CR-10-040-W2	570	-67.58	27.78	
CR-10-040-W2	575	-67.25	27.55	
CR-10-040-W2	580	-67.02	27.48	
CR-10-040-W2	585	-66.85	27.30	
CR-10-040-W2	590	-66.70	27.29	
CR-10-040-W2	595	-66.60	27.20	
CR-10-040-W2	600	-66.45	27.33	
CR-10-040-W2	605	-66.37	27.23	
CR-10-040-W2	610	-66.31	27.42	
CR-10-040-W2	615	-66.21	27.41	
CR-10-040-W2	620	-66.11	27.47	
CR-10-040-W2	625	-66.05	27.47	
CR-10-040-W2	630	-65.99	27.55	
CR-10-040-W2	635	-65.88	27.62	
CR-10-040-W2	640	-65.80	27.63	
CR-10-040-W2	645	-65.66	27.73	
CR-10-040-W2	650	-65.55	27.83	
CR-10-040-W2	655	-65.52	27.93	
CR-10-040-W2	660	-65.44	27.80	
CR-10-040-W2	665	-65.33	28.00	
CR-10-040-W2	670	-65.30	28.07	

Hole ID	Station (m)	Dip (Degrees)	Azimuth
CR-10-040-W2	675	-65.25	28.21
CR-10-040-W2	680	-65.11	28.13
CR-10-040-W2	685	-65.06	28.42
CR-10-040-W2	690	-64.98	28.51
CR-10-040-W2	695	-64.93	28.67
CR-10-040-W2	700	-64.89	28.79
CR-10-040-W2	705	-64.86	28.86
CR-10-040-W2	710	-64.80	29.06
CR-10-040-W2	715	-64.71	29.15
CR-10-040-W2	720	-64.66	29.20
CR-10-040-W2	725	-64.63	29.45
CR-10-040-W2	730	-64.52	29.57
CR-10-040-W2	735	-64.50	29.62
CR-10-040-W2	740	-64.40	29.68
CR-10-040-W2	745	-64.31	29.72
CR-10-040-W2	750	-64.19	30.05
CR-10-040-W2	755	-64.21	30.17
CR-10-040-W2	760	-64.12	30.11
CR-10-040-W2	765	-64.07	30.22
CR-10-040-W2	770	-64.03	30.26
CR-10-040-W2	775	-63.91	30.50
CR-10-040-W2	780	-63.86	30.63
CR-10-040-W2	785	-63.78	30.63
CR-10-040-W2	790	-63.76	30.91
CR-10-040-W2	795	-63.68	30.90
CR-10-040-W2	800	-63.63	31.05
CR-10-040-W2	805	-63.53	31.08
CR-10-040-W2	810	-63.45	31.24
CR-10-040-W2	815	-63.39	31.41
CR-10-040-W2	820	-63.32	31.37
CR-10-040-W2	825	-63.24	31.46
CR-10-040-W2	830	-63.14	31.58
CR-10-040-W2	835	-63.05	31.69
CR-10-040-W2	840	-62.95	31.67
CR-10-040-W2	845	-62.88	31.85
CR-10-040-W2	850	-62.81	31.74
CR-10-040-W2	855	-62.84	31.62
CR-10-040-W2	860	-62.81	31.73

Hole ID	Station (m)	Dip (Degrees)	Azimuth
CR-10-040-W2	865	-62.71	31.86
CR-10-040-W2	870	-62.62	31.91
CR-10-040-W2	875	-62.57	31.95
CR-10-040-W2	880	-62.45	31.98
CR-10-040-W2	885	-62.41	32.21
CR-10-040-W2	890	-62.25	32.31
CR-10-040-W2	895	-62.08	32.48
CR-10-040-W2	900	-61.95	32.59
CR-10-040-W2	905	-61.81	32.36
CR-10-040-W2	910	-61.66	32.44
CR-10-040-W2	915	-61.48	32.41
CR-10-040-W2	920	-61.33	32.30
CR-10-040-W2	925	-61.25	32.27
CR-10-040-W2	930	-61.14	32.43
CR-10-040-W2	935	-61.02	32.47
CR-10-040-W2	940	-60.95	32.58
CR-10-040-W2	945	-60.88	32.58
CR-10-040-W2	950	-60.76	32.67
CR-10-040-W2	955	-60.66	32.76
CR-10-040-W2	960	-60.55	32.81
CR-10-040-W2	965	-60.55	32.83
CR-10-040-W2	970	-60.50	33.07
CR-10-040-W2	975	-60.42	33.14
CR-10-040-W2	980	-60.33	33.09
CR-10-040-W2	985	-60.29	33.14
CR-10-040-W2	990	-60.33	33.48
CR-10-040-W2	995	-60.20	33.50
CR-10-040-W2	1000	-60.18	33.65
CR-10-040-W2	1005	-60.13	33.73
CR-10-040-W2	1010	-60.03	33.94
CR-10-040-W2	1015	-60.03	34.11
CR-10-040-W2	1020	-60.00	34.13
CR-10-040-W2	1025	-59.98	34.16
CR-10-040-W2	1030	-59.98	34.24
CR-10-040-W2	1035	-59.95	34.23
CR-10-040-W2	1040	-59.94	34.37
CR-10-040-W2	1045	-59.93	34.77
CR-10-040-W2	1050	-59.89	34.67

Gyro Survey Record

Hole ID	Station (m)	Dip (Degrees)	Azimuth
CR-10-040-W2	1055	-59.84	34.75
CR-10-040-W2	1060	-59.81	34.78
CR-10-040-W2	1065	-59.74	34.83
CR-10-040-W2	1070	-59.74	35.02
CR-10-040-W2	1075	-59.75	35.17
CR-10-040-W2	1080	-59.72	35.39
CR-10-040-W2	1085	-59.67	35.49
CR-10-040-W2	1090	-59.64	35.46
CR-10-040-W2	1095	-59.63	35.48
CR-10-040-W2	1100	-59.53	35.60

Conquest Resources Ltd.

Exploration Diamond Drill Log

CR-10-041

DRILL HOLE #	CR-10-041	LOCATION	Balmertown,	, Balmer Town	ship, Red Lake D	istrict, Ontario	D	
PROJECT #	Alexander	REFERENCE	Alexander		GEOLOGIST	Meckert	CLAIM	KRL 20439
GRID/ NAD-ZO	DNE	NORTHING		EASTING		ELEVATION		GRID TYPE
GRID	Alexander RL	10+24 S		13+06 E		10002		Μ
UTM	NAD83 / 15U	5655644		451081		383	_	
COLLAR DIP	-60	GRID DIRECTIO	N	North			AZ DIRECTION	010
NTS REF #	052N04	NTS SHEET NA	ME	Red Lake, Ont	ario			
START DATE	26-Jul-10			FINISH DATE	5-Aug-10			
DEPTH (EOH)	486.00	TARGET & Zon	e Depth	Sulphide Shea	r Zone at 250m	and Footwall	Shear zone be	low 300m
PURPOSE	Test Sulphide	Zone						
CASING BW	na		CASING NW	13.00			CASING HW	na
PLUG @	na		PLUG @	na			PLUG @	na
START DTH	0.00		WEDGE @	na				
REDUCED @	na		REDUCED @	na				
HOLE STATUS	Completed, c	asing left in g	round, cappe	d.				
	TRACTOR	Landdrill In	ernational It	d				
DRILLING CON		Landarin III	Cillational Et					

	urvey. Wullishot in and Out of the		
DEPTH (m)	AZIMUTH	DIP	Comments:
0	10.00	-60.00	
30	7.64	-57.15	
60	8.93	-56.57	<u>1st Target</u> Sulphide Shear Zone was
90	9.55	-56.37	intersected between 280.78m and 302.16m,
120	10.30	-56.44	comprising of a contact shear, hornsfeld
150	11.23	-56.31	Basalt and a carbonaceous, partially silicified
180	11.99	-56.20	shear with pyrrhotite replacement near upper
210	13.08	-56.19	very fine grained spheroidal pyrite, 2nd Target
240	13.71	-56.26	was intersected between 402.24m and
270	14.24	-56.50	404.42m. A second more moderate shear
300	17.36	-55.33	zone was encountered in the footwall. Biotite
330	18.53	-54.77	alteration of the basaltic host and quartz
360	19.41	-54.45	carbonate veining is mineralized with
390	20.44	-54.25	sulphides. A zone of weakly elevated gold
420	21.79	-53.93	metres thickness) has been identified at 345
450	22.93	-53.82	m hole depth, approximately 45m into the
470	23.83	-53.79	footwall of the targeted Sulphide Shear Zone.
			The hole was terminated within a further
			stringer of the gabbro.

Drilled with 3m stabilized NQ core barrel

Drill type: HTM 2500

Planned hole depth was 500m. Hole completed to 486m (1595').Core stored at Alexander Core Yard at UTM 0449935 5656595Water source: beaver pond located south of property (2,800 ft water line) 450686 5654978 UTM NAD83Drill type: HTM-2500

Major Lithologies

CR-10-041

Hole Name	From	То	Length	Code	Description	Rep
CR-10-041	0.00	13.00	13.00	CAS	NW Casing into overburden and bedrock	
CR-10-041	13.00	280.78	267.78	I3A	Fine to coarse grained gabbro. Greenish where fine to medium grained and with a blueish grey tinge where it is coarse. Gabbro shows some minor foliation in short sections but seems mostly unaffected. Carbonaceous fractures and the occasional milky quartz vein cross in different directions but any form of mineralisation is absent. Gabbro ends in a 10cm section where core has been lost.	
CR-10-041	280.78	288.19	7.41	V3B	First 4m of basalt are contact sheared and biotite altered and hence of brownish color. However the alteration and shearing is not evenly distributed. In a couple of sections where it shows the strongest carbonate and quartzcarbonate veins cross the core in groups and a considerable amount of sulphide replacement has taken place.	
CR-10-041	288.19	302.16	13.97	SHR	Sulphide Shear Zone: Shear zone in grey-brown basalt showing different levels of biotite alteration. The shear is crossed by a multitude of carbonate and quartzcarbonate veins. The veins can be straight, undulating folded and truncated. The width ranges from mm to 10cm. Most of the veins show a highlevel of sulphide replacement. A vague zonation can be observed, starting with a 50cm of magnetite rich bands, then 240 cm where pyrrhotite dominates. The center of the shear is dominated by very fine grained larger pyrite masses. Pyrrhotite if present is usually finely disseminated. The lower 100cm see pyrrhotite gaining on the pyrite. Grey sulphides are present but not very common. Magnetite and pyrrhotite rich veins are quite magnetic. The lower contact of the shear is not as aprupt as the upper one and it wanes rather gradually. Most of the veins cross between 65 and 70 degCA. Some of the thicker ones almost cross perpendicular.	
CR-10-041	302.16	402.24	100.08	V3B	Mostly medium greyish colored basalt except where recrystalized. Here hornblende dominates giving it a green color. Carbonate and quartzcarbonate fractures tend to show some pyrite and pyrrhotite and past 370m red sphalerite shows up as well. Pillow selvedges are present but the pillows are attenuated and the difference between a vein and a selvedge are difficult to make out. The unit is crossed by a set of thick light grey colored intrusives and the occasional thick milky quartz vein.	

Hole Name	From	То	Length	Code	Description	Rep
CR-10-041	402.24	404.42	2.18	SHR	Moderate shear and brecciation zone. Basalt is brownish grey and has seen 3% biotite alteration and quartzcarbonate veining. The veins tend to be drawn out and folded onto themselves and subsequent rotational movement led to truncation and dismemberment. A few thicker carbonate fractures must postdate the shearing as they don't show any sulphidic mineralization as is present in the qcv's around them. Similar carbonate fractures were present in a minor breccia described in minor lithology. Both pyrite and pyrrhotite are present but the latter seems restricted to the qcv's while pyrite is also finely disseminated in the altered host rock. A vague biotite alteration reaches farther up and down than the limits described here but the shearzone is framed by a thin dioritic dyke above and a monzodiorite below that have cooked the surrounding basalt to a degree.	
CR-10-041	404.42	446.52	42.10	V3B	Greenish grey pillowed basalt with a fair amount of flow top breccia. Hence lots of carbonate to quartz carbonate fractures. In intervals some of these fracture systems and additional quartz carbonated veins show the tendency to show very fine grained sulphide replacement and probably fine grained biotite as well giving them a vaguely purplish color. The mineralisation is not obviously tied to intrusions or shearing. Veins in general are truncated and dismembered, sometimes folded and braided.	
CR-10-041	446.52	485.99	39.47	I3A	Light green hornblende rich gabbro with carbonaceous fractures and minor contact shearing and biotite alteration in first 15m. Gradually losing more and more of the hornblende and fractures until gabbro is fine grained blueish grey and very solid looking. Upper contact is dyked out by monzodiorite.	
CR-10-041	485.99	486.00	0.01	ЕОН	End of Hole is in Balmer Formation. Hole ended 174 meters past the the targeted sulphide shear zone at the contact between gabbro and Balmer Formation. End of hole at 486m on August 3, 2010. Hole is capped and accessible for further research. Gyro surveyed. Core is stored at the Conquest Core Facility on the Alexander Property in 110 NQ trays in racks. 115 samples sent for Au fire assay (50g pulp) at AGAT Labs, Mississauga, ON.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-10-041	244.58	249.70	I2G	Light to medium grey Quartz Monzodiorite. Lightest color in center of unit where the intrusive has been strongly foliated and somewhat sericite altered. Here coarse fractured quartz crystals stand out more than in the rest of the unit. Close to the upper contact several cobble sized pieces of gabbro have been assimilated. These are strongly biotite altered. Pyrite is finely disseminated throughout the unit, but it also appears in streaky masses and occasionally as inclusions in the quartz crystals. The upper contact is sharp at 22 degCA. The lower contact is broken but appears much steeper.	
CR-10-041	280.78	281.95	SHR	Contact Shear. Mixture of biotite altered basalt with stringers of quartz carbonate veins and relatively unaffected hornblende rich fine grained sections. The quartzcarbonate veins have been replace by pyrrhotite to quite an extend. Pyrite and arsenopyrite can be found in traces.	
CR-10-041	281.95	282.53	I3A	Unusually brown colored Gabbro with green hornblende. High degree biotite saturation but with hornblende crystals speckled in. Unit is strongly foliated. Upper contact is very uneven. Lower contact is undulating at 67 degCA.	
CR-10-041	282.53	284.06	SHR	Contact shear. As above 280.78 to 281.95	
CR-10-041	284.06	288.19	V3B	Fine grained hornblende rich basalt has lost its original texture. Unit is foliated and feldspars have been drawn out to thin whitish streaks.	
CR-10-041	288.19	289.19	SHR	Upper meter of shear has a multitude of magnetite rich bands. Chloritic bands are very pale green - the paler the color the higher the level of silicification.	
CR-10-041	289.19	291.00	SHR	In this section the shear is dominated by quarztcarbonate veins that can be up to 20cm in thickness. In some cases these veins have been almost complete replaced by sulphides, cheifly pyrrhotite. The veins don't seem to necessarily follow the shear fabric which may be related to later folding (?).	
CR-10-041	291.00	301.11	SHR	Pyrite replacement in quartzcarbonate veins dominates this section, but pyrrhotite and arsenopyrite are present as well. Vein intensity varies from groupings where veins appear every few cm to an almost 1m stretch from 295m to 296m without a vein. Veins are folded and undulating and tend to run into each other where intensity is high, leaving the possibility that the groupings represent one vein with assimilated wall rock fragments that could only be veryfied on a larger scale than the core. If that is the case the section from 298.17m to 300.31 might represent two major veins with 50cm of basalt inbetween. The basaltic hostrock is greyish brown due to a moderate level of biotite alteration. Some chloritic sections have seen silicification as described in row 9.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-10-041	301.11	302.16	SHR	Vein intensity is fair with pyrrhotite starting to dominate again. Veins are thinner and more "orderly" though. The basalt host only shows patches of biotite alteration and is mostly medium grey greenish.	
CR-10-041	302.16	310.24	V3B	Medium grey fine grained basalt with soft pale green chloritic bands. Quartz carbonate veinlets and pillow selvedges in this unit show a midlevel of sulphide replacement with pyrite dominating the pyrrhotite 3:1. Veins tend to be truncated and dismembered.	
CR-10-041	310.24	316.32	V3B	The chloritic bands have disappeared and the vein frequency has gone down considerably as well. Most veins and selvedges only contain traces of sulphides.	
CR-10-041	316.32	317.61	12G	Weakly foliated Quartz Monzodiorite with finely disseminated sulphides. Pyrrhotite and arsenopyrite are most easily recognized. There is some low level biotite alteration and trace sericite as well.	
CR-10-041	325.97	333.63	130	Very dark grey brownish lamprophyre dyke reaching up into very carbonaceous biotite alteration zone, or highly carbonatized and altered basalt? Rock varies between straightforward streaky biotite shearat top to mottled spotty more intrusive looking rock of various intensity and grain size. Changes are subtle and fluid. Only very few thin veinlets cross the unit, but these do contain arsenopyrite. The latter can also be found disseminated along side PY/PO throughout the unit but in varying concentrations. Sulphide content is waning down ward and so is the carbonate.Upper contact sharp at 53 degCA to green chloritic basalt. Lower contact is very subtle and straight at 61 degCA.	
CR-10-041	333.63	334.46	V3B	Fairly ordinary looking chloritic basalt, except for first two cm right at contact to previous unit that contain mmsized crystals and elongate blades of arsenopyrite. Those crystals don't follow any orientation in their growth.	
CR-10-041	334.46	337.70	12G	Partially bleached, foliated and fine grained Quartz Monzodiorite that is accompanied at top by a thick milky quartzvein whose lower contact seems to undulate obliquely to the core axis. QMD is most bleached and sericiticed close to the vein, indicating the vein postdating the intrusive. Vein contains the occasional larger finegrained mass of pyrrhotite between the quartzcrystals. The QMD itself shows fine granular blebs of pyrrhotite and traces of arsenopyrite. Upper contact sharp at 46 degCA. Lower contact sharp at 58 degCA.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-10-041	342.38	353.92	12G	Quartz Monzodiorite. Upper half fairly ordinary looking. Fine grained near contact and getting progressively coarser towards the center of the unit. Foliation is weak to moderate. Frome the center downward the intrusive has been sheared and sericitized giving it a sickly beigy greenish cream color. Sulphides, mostly pyrite and arsenopyrite are finely disseminated throughout and sometimes appear in small aggregates. However especially the arsenopyrite content steadily increases downward reaching its highest level in the last meter. Upper contact is sharp at 45 degCA. Lower contact is irregular at 58 degCA	
CR-10-041	353.92	357.23	V3B	Biotite altered and hornfelsed basalt in contactzone underneath Quartz Monzodiorite. Alteration is moderate and there is some minor streky quartz carbonate veining associated with this. However the basalt in this range has seen an infusion finely disseminated sulphides, including arsenopyrite, A couple of chloritic bands that are still present also contain small flakes of chalcopyrite. The alteration gradually lessens away from the contact.	
CR-10-041	384.00	388.68	V3B/BXR	Minor breccia and biotite alteration zone. With truncated and anastomosing quartz carbonate veins that contain pyrrhotite, pyrite and chalcopyrite. Quartzcarbonate also in what looks like pillow selvedges but those do not contain any mineralization. Must be later stage carbonate fractures. Quartzcarbonate in matrix of brecciated sections may be remobilized. Some rotateted breccia clasts show a distinctly different foliation pattern. Biotite alteration is uneven and most Sulphide mineralization seems to be tied to the more affected sections in this unit. Biotite is accompanied by fair sized hornblende. Unit is best defined by the biotite alteration absent above and below.	
CR-10-041	399.13	400.60	I2J	Medium grained medium grey diorite with minor biotite oriented along weak foliation pattern. Nothing outstanding. Upper and lower contacts are undulating and roughly perpendicular to core axis.	
CR-10-041	404.42	405.74	I2H	Medium grey salted and heterogenous looking monzodiorite. A couple of late straight quartz veins cross the unit but are of no consequence. Traces of disseminted sulphides are present. Contacts are sharp, 58 degCA upper and 67 degCA lower.	
CR-10-041	439.62	446.52	I2H	Medium to dark grey mottled monzodiorite. Contains the occasional quartz crystal. Bleached and some sericite adjacent to a couple of milky quartz veins. Contains traces of finely disseminated sulphides. Contacts are sharp, 51 degCA upper and 58 degCA lower.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-10-041	455.04	457 22	12H	Monzodiorite as in previous unit but with markedly higher sulphide mineralisation.	
		457.22		Upper contact sharp at 70 degCA. Lower contact at 63 degCA.	
CR-10-041	458.64		I2H	Medium grey monzodiorite that is sheared and sericite altered at center. Shows an	
		459.89		increasing amount of quartz downward. Rate of sulphide mineralisation has dropped	
				significantly as compared to previous unit. Upper contact sharp at 59 degCA. Lower	

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-10-041	E5098154	244.08	244.58	0.50	not consecutive	Wing sample. Gabbro, biotite altered at contact.	9	10T427242
CR-10-041	E5098155	269.50	270.00	0.50	not consecutive	Minor shear in Gabbro with trace sulphides.	11	10T427242
CR-10-041	E5098156	244.58	246.00	1.42	not consecutive	Quartzmonzodiorite with sericite and pyrite.	27	10T427242
CR-10-041	E5098157	246.00	247.50	1.50	consecutive	As above 156	54	10T427242
CR-10-041	E5098158	247.50	249.00	1.50	consecutive	As above 156	12	10T427242
CR-10-041	E5098159	249.00	249.70	0.70	consecutive	As above 156	33	10T427242
CR-10-041	E5108060	249.70	250.20	0.50	consecutive	Wing sample. Gabbro.	14	10T427242
CR-10-041	E5108061	280.00	280.88	0.88	not consecutive	Wing sample, foliated gabbro.	37	10T427242
CR-10-041	E5108062	280.88	281.95	1.07	consecutive	Contact sheared basalt with sulphide replacement in places.	67	10T427242
CR-10-041	E5108063	281.95	282.53	0.58	consecutive	Biotite rich gabbro.	5	10T427242
CR-10-041	E5108064	282.53	283.76	1.23	consecutive	Biotite altered to variolitic basalt.	7	10T427242
CR-10-041	E5108065	283.76	284.06	0.30	consecutive	Biotite altered basalt with 10cm PO vein.	20	10T427242
CR-10-041	E5108066	284.06	285.56	1.50	consecutive	Fine grained greenish basalt with streaky feldspars.	13	10T427242
CR-10-041	E5108067	285.56	287.06	1.50	consecutive	As above 067	12	10T427242
CR-10-041	E5108068	287.06	288.19	1.13	consecutive	grey dense basalt.	19	10T427242
CR-10-041	E5108069	288.19	289.19	1.00	not consecutive	Magnetite rich start of shear.	13	10T427242
CR-10-041	E5108070	0.00	0.00	0.00	not consecutive	Standard SK 43 4.086 ppm	3780	10T427242
CR-10-041	E5108071	289.19	290.33	1.14	not consecutive	Chloritic basalt with thick PO rich veins.	28	10T427242
CR-10-041	E5108072	290.33	290.89	0.56	consecutive	Grey brown biotitic basalt with some PO veins.	53	10T427242
CR-10-041	E5108073	290.89	291.89	1.00	consecutive	Going from PO rich veins to pyritic veins.	32	10T427242
CR-10-041	E5108074	291.89	292.92	1.03	not consecutive	Basalt with pyrite rich veins.	20	10T427242
CR-10-041	E5108075	323.00	324.00	1.00	not consecutive	green recrystalized basalt.	4	10T427242
CR-10-041	E5108076	292.92	293.41	0.49	not consecutive	Moderately biotite altered basalt with little pyrite.	10	10T427242
CR-10-041	E5108077	293.41	293.92	0.51	consecutive	Group of pyrite rich veins.	30	10T427242
CR-10-041	E5108078	293.92	295.00	1.08	consecutive	Moderately biotite altered basalt with qcv's but little sulphides.	7	10T427242
CR-10-041	E5108079	295.00	296.17	1.17	consecutive	As above 078 but with less veins.	14	10T427242
CR-10-041	E5108080	296.17	297.17	1.00	consecutive	Biotite altered basalt with sulphides in veins and finely disseminated.	14	10T427242
CR-10-041	E5108081	297.17	298.17	1.00	consecutive	Chloritic basalt with pyrite rich veins.	27	10T427242
CR-10-041	E5108082	298.17	299.34	1.17	consecutive	Intense veining with lots of pyrite.	80	10T427242
CR-10-041	E5108083	299.34	299.89	0.55	consecutive	Basalt with a couple of 5cm pyrite rich veins.	32	10T427242
CR-10-041	E5108084	299.89	300.31	0.42	consecutive	As above 082	71	10T427242
CR-10-041	E5108085	300.31	301.11	0.80	consecutive	Chloritic basalt with reduced vein intensity.	22	10T427242
CR-10-041	E5108086	301.11	302.16	1.05	consecutive	As 85 with PO content increasing and PY decreasing.	16	10T427242
CR-10-041	E5108087	302.16	303.16	1.00	consecutive	Basalt with pale green chloritic bands and sulphidic veins or selveges every 30cm.	21	10T427242

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-10-041	E5108088	303.16	304.16	1.00	consecutive	As above 087	20	10T427242
CR-10-041	E5108089	304.16	305.16	1.00	not consecutive	As above 087	9	10T427242
CR-10-041	E5108090	0.00	0.00	0.00	not consecutive	Standard OxK 69 3.583 ppm	3540	10T427242
CR-10-041	E5108091	305.16	306.16	1.00	not consecutive	As above 087	11	10T427242
CR-10-041	E5108092	306.16	307.16	1.00	consecutive	As above 087	27	10T427242
CR-10-041	E5108093	307.16	308.16	1.00	consecutive	As above 087	21	10T427242
CR-10-041	E5108094	308.16	309.16	1.00	not consecutive	As above 087	6	10T427242
CR-10-041	E5108095	320.00	321.00	1.00	not consecutive	Green recrystalized basalt.	7	10T427242
CR-10-041	E5108096	309.16	310.24	1.08	not consecutive	Grey basalt with last few pyritic veins	21	10T427242
CR-10-041	E5108097	310.24	311.00	0.76	not consecutive	Wing sample, grey basalt with trace sulphides.	5	10T427242
CR-10-041	E5108098	315.82	316.32	0.50	not consecutive	Wing sample, dacitic looking basalt.	4	10T427242
CR-10-041	E5108099	316.32	317.61	1.29	consecutive	Quartzmonzodiorite with pyrite and arsenopyrite.	2	10T427242
CR-10-041	E5108100	317.61	318.11	0.50	not consecutive	Wing sample, coarse greenish grey basalt.	52	10T429213
CR-10-041	E5108101	325.47	325.97	0.50	not consecutive	Wing sample green foliated basalt.	64	10T429213
CR-10-041	E5108102	325.97	327.00	1.03	consecutive	Sheared biotite altered basalt with carbonate and sulphides.	19	10T429213
CR-10-041	E5108103	327.00	328.00	1.00	consecutive	As 102 going into mottled looking lamprophyre (?)	5	10T429213
CR-10-041	E5108104	328.00	329.00	1.00	consecutive	Lamprophyre (?) with diss sulphides.	4	10T429213
CR-10-041	E5108105	329.00	330.00	1.00	consecutive	As above 104	2	10T429213
CR-10-041	E5108106	330.00	331.00	1.00	consecutive	As above 104	2	10T429213
CR-10-041	E5108107	331.00	332.23	1.23	consecutive	As 104, becoming finer grained, less mottled., less mineralisation.	7	10T429213
CR-10-041	E5108108	332.23	333.63	1.40	consecutive	Dense dark and no more carbonate present.	13	10T429213
CR-10-041	E5108109	333.63	334.46	0.83	not consecutive	Grennish chloritic basalt with mm size arsenopyrite crystals within 2cm of upper contact	15	10T429213
CR-10-041	F5108110	0.00	0.00	0.00	not consecutive	Standard Si 42 1 761 npm	1680	10T429213
CR-10-041	E5108111	334.46	335.96	1.50	not consecutive	Milky guartz vein with some pyrrhotite.	4	10T429213
CR-10-041	E5108112	335.96	336.96	1.00	consecutive	As above 111	3	10T429213
CR-10-041	E5108113	336.96	337.70	0.74	consecutive	Ouartzmonzodiorite	11	10T429213
CR-10-041	E5108114	337.70	339.20	1.50	consecutive	Wing sample, normal greenish basalt.	21	10T429213
CR-10-041	E5108115	339.20	340.50	1.30	consecutive	As above 114	6	10T429213
CR-10-041	E5108116	340.50	341.70	1.20	consecutive	Basalt with mineralized pillow selveges.	34	10T429213
CR-10-041	E5108117	341.70	342.38	0.68	consecutive	Biotite altered basalt at contact to intrusive.	7	10T429213
CR-10-041	E5108118	342.38	343.88	1.50	consecutive	Fine grained, foliated quartzmonzodiorite.	3	10T429213
CR-10-041	E5108119	343.88	345.38	1.50	consecutive	Coarser than 118	24	10T429213
CR-10-041	E5108120	345.38	346.88	1.50	consecutive	As above 119	163	10T429213
CR-10-041	E5108121	346.88	348.38	1.50	consecutive	Yet coarser grained.	91	10T429213
CR-10-041	E5108122	348.38	349.88	1.50	consecutive	As above 121	72	10T429213

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-10-041	E5108123	349.88	351.38	1.50	consecutive	Bleached and sericitized quartzmonzodiorite.	156	10T429213
CR-10-041	E5108124	351.38	352.88	1.50	consecutive	More intense bleaching.	130	10T429213
CP 10 041	EE10012E	252.00	252.02	1.04	concocutivo	Bleached and sericitized Quartz Monzodiorite with up to 01%	671	107420212
CK-10-041	E3108123	332.00	333.92	1.04	consecutive	arsenopyrite and 01% pyrrhotite and trace pyrite	0/1	101429215
CR-10-041	E5108126	353.92	355.00	1.08	consecutive	Biotite altered basalt with arsenopyrite in fractures.	12	10T429213
CR-10-041	E5108127	355.00	356.00	1.00	consecutive	As above 126	6	10T429213
CR-10-041	E5108128	356.00	357.23	1.23	consecutive	As above 126, ends with quartz vein.	5	10T429213
CR-10-041	E5108129	357.23	357.73	0.50	not consecutive	Wing sample, normal basalt.	3	10T429213
CR-10-041	E5108130	0.00	0.00	0.00	not consecutive	Standard Si 42 1.761 ppm	1620	10T429213
CP 10 041	FF100121	204.00	205 20	1 20	not concocutivo	Basalt with large hornblende. Dismembered qcv with sulphides,	-	107420212
CR-10-041	E2108131	384.00	385.29	1.29	not consecutive	also diss. within biotite	Э	101429213
CR-10-041	E5108132	385.29	386.26	0.97	consecutive	Basalt with less biotite and only trace sulphides.	7	10T429213
CR-10-0/1	E5108122	386.26	287 00	0.74	consocutivo	Basalt with folded and anastamosing veins, partially brecciated	2	107/20212
CN-10-041	L3108133	380.20	387.00	0.74	consecutive	with diss sulphides and in veins as well.	Э	101429213
CR-10-041	E5108134	387.00	387.76	0.76	not consecutive	As 133 but more brecciation.	5	10T429213
CR-10-041	E5108135	383.50	384.00	0.50	not consecutive	Wing sample, Chloritic basalt	3	10T429213
CR-10-041	E5108136	387.76	388.68	0.92	not consecutive	Qcv's and selveges with biotite and fine sulphides.	4	10T429213
CR-10-041	E5108137	388.68	389.18	0.50	not consecutive	Wing sample, normal basalt.	3	10T429213
CR-10-041	E5108138	401.74	402.24	0.50	not consecutive	Wing sample, weakly biotite altered basalt.	7	10T429213
CR-10-041	E5108139	402.24	403.24	1.00	consecutive	Moderate shear with biotite and sulphides.	3	10T429213
CR-10-041	E5108140	403.24	404.42	1.18	consecutive	As above 139	27	10T429213
CR-10-041	E5108141	404.42	405.74	1.32	consecutive	Monzodiorite with trace sulphides.	11	10T429213
CR-10-041	E5108142	405.74	406.24	0.50	not consecutive	Wing sample, weakly biotite altered basalt.	8	10T429213
CR-10-041	E5108143	420.93	421.43	0.50	not consecutive	Wing sample, normal basalt.	5	10T429213
CR-10-041	E5108144	421.43	422.26	0.83	consecutive	Elevated levels of sulphides in qcv's in basalt.	5	10T429213
CR-10-041	E5108145	422.26	423.17	0.91	consecutive	Thick late milky qv undulating along core axis.	3	10T429213
CR-10-041	E5108146	423.17	424.50	1.33	consecutive	As above 144	3	10T429213
CR-10-041	E5108147	424.50	425.00	0.50	consecutive	Wing sample, normal basalt.	3	10T429213
CR-10-041	E5108148	432.00	432.54	0.54	not consecutive	Wing sample, normal basalt.	8	10T429213
CR-10-041	E5108149	432.54	433.54	1.00	not consecutive	Basalt with fair amount of sulphide replacement in frequent qcv's	7	10T429213
CR-10-041	E5108150	0.00	0.00	0.00	not consecutive	Standard SK 43 4.086 ppm	3890	10T429213
CR-10-041	E5108151	433.54	434.54	1.00	not consecutive	As above 149	9	10T429213
CR-10-041	E5108152	434.54	435.54	1.00	consecutive	As above 149	7	10T429213
CR-10-041	E5108153	435.54	436.54	1.00	consecutive	As above 149	8	10T429213
CR-10-041	E5108154	436.54	437.34	0.80	consecutive	As above 149	6	10T429213
CR-10-041	E5108155	437.34	438.34	1.00	consecutive	Wing sample, unmineralized basalt.	9	10T429213

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-10-041	E5108156	438.34	439.62	1.28	consecutive	Wing sample, unmineralized basalt.	5	10T429213
CR-10-041	E5108157	439.62	441.12	1.50	consecutive	Monzodiorite with trace sulphides.	36	10T429213
CR-10-041	E5108158	441.12	442.62	1.50	consecutive	As above 157	27	10T429213
CR-10-041	E5108159	442.62	444.12	1.50	consecutive	As above 157	59	10T429213
CR-10-041	E5108160	444.12	445.62	1.50	consecutive	As above 157	10	10T429213
CR-10-041	E5108161	445.62	446.52	0.90	consecutive	As above 157	37	10T429213
CR-10-041	E5108162	446.52	447.12	0.60	consecutive	Wing sample, cooked gabbro.	4	10T429213
CR-10-041	E5108163	454.54	455.04	0.50	not consecutive	Wing sample, gabbro	16	10T429213
CR-10-041	E5108164	455.04	456.00	0.96	consecutive	Monzodiorite with trace pyrite, pyrrhotite and arsenopyrite	339	10T429213
CR-10-041	E5108165	456.00	457.22	1.22	consecutive	As above 164	35	10T429213
CR-10-041	E5108166	457.22	458.64	1.42	consecutive	Unmineralized gabbro.	20	10T429213
CR-10-041	E5108167	458.64	459.89	1.25	consecutive	Monzodiorite with shearing, sericite and trace sulphides.	56	10T429213
CR-10-041	E5108168	459.89	460.39	0.50	consecutive	Wing sample, gabbro.	16	10T429213

Gyro Survey Record

Hole ID	Station (m)	Dip (Degrees)	Azimuth
CR-10-041	0	-60.00	10.00
CR-10-041	5	-59.28	10.00
CR-10-041	10	-57.41	8.02
CR-10-041	15	-57.26	7.38
CR-10-041	20	-57.32	7.33
CR-10-041	25	-57.22	7.41
CR-10-041	30	-57.15	7.64
CR-10-041	35	-57.10	7.78
CR-10-041	40	-57.05	7.91
CR-10-041	45	-56.94	8.27
CR-10-041	50	-56.82	8.35
CR-10-041	55	-56.66	8.61
CR-10-041	60	-56.57	8.93
CR-10-041	65	-56.51	9.08
CR-10-041	70	-56.40	9.20
CR-10-041	75	-56.40	9.34
CR-10-041	80	-56.37	9.42
CR-10-041	85	-56.36	9.49
CR-10-041	90	-56.37	9.55
CR-10-041	95	-56.32	9.75
CR-10-041	100	-56.38	9.84
CR-10-041	105	-56.41	10.00
CR-10-041	110	-56.43	10.15
CR-10-041	115	-56.46	10.18
CR-10-041	120	-56.44	10.30
CR-10-041	125	-56.42	10.39
CR-10-041	130	-56.41	10.56
CR-10-041	135	-56.38	10.79
CR-10-041	140	-56.34	10.76
CR-10-041	145	-56.33	10.90
CR-10-041	150	-56.31	11.23
CR-10-041	155	-56.23	11.35
CR-10-041	160	-56.22	11.47
CR-10-041	165	-56.23	11.72
CR-10-041	170	-56.22	11.79
CR-10-041	175	-56.20	11.93
CR-10-041	180	-56.20	11.99
CR-10-041	185	-56.20	12.23

Gyro Survey Record

Hole ID	Station (m)	Dip (Degrees)	Azimuth		
CR-10-041	190	-56.22	12.35		
CR-10-041	195	-56.21	12.74		
CR-10-041	200	-56.16	12.73		
CR-10-041	205	-56.18	12.96		
CR-10-041	210	-56.19	13.08		
CR-10-041	215	-56.17	13.24		
CR-10-041	220	-56.15	13.31		
CR-10-041	225	-56.24	13.51		
CR-10-041	230	-56.23	13.43		
CR-10-041	235	-56.28	13.63		
CR-10-041	240	-56.26	13.71		
CR-10-041	245	-56.29	13.80		
CR-10-041	250	-56.55	13.80		
CR-10-041	255	-56.47	13.90		
CR-10-041	260	-56.47	13.99		
CR-10-041	265	-56.52	14.21		
CR-10-041	270	-56.50	14.24		
CR-10-041	275	-56.52	14.33		
CR-10-041	280	-56.51	14.51		
CR-10-041	285	-56.38	14.73		
CR-10-041	290	-55.96	15.54		
CR-10-041	295	-55.65	16.68		
CR-10-041	300	-55.33	17.36		
CR-10-041	305	-55.26	17.51		
CR-10-041	310	-55.10	17.79		
CR-10-041	315	-54.98	18.20		
CR-10-041	320	-54.89	18.30		
CR-10-041	325	-54.84	18.29		
CR-10-041	330	-54.77	18.53		
CR-10-041	335	-54.68	18.70		
CR-10-041	340	-54.60	18.77		
CR-10-041	345	-54.63	18.93		
CR-10-041	350	-54.59	18.99		
CR-10-041	355	-54.57	19.23		
CR-10-041	360	-54.45	19.41		
CR-10-041	365	-54.42	19.49		
CR-10-041	370	-54.43	19.51		
CR-10-041	375	-54.37	19.71		

Gyro Survey Record

Hole ID	Station (m)	Dip (Degrees)	Azimuth
CR-10-041	380	-54.39	19.93
CR-10-041	385	-54.25	20.11
CR-10-041	390	-54.25	20.44
CR-10-041	395	-54.14	20.66
CR-10-041	400	-54.11	20.90
CR-10-041	405	-54.00	21.15
CR-10-041	410	-53.98	21.41
CR-10-041	415	-53.96	21.65
CR-10-041	420	-53.93	21.79
CR-10-041	425	-53.86	22.11
CR-10-041	430	-53.85	22.24
CR-10-041	435	-53.83	22.57
CR-10-041	440	-53.86	22.72
CR-10-041	445	-53.86	22.80
CR-10-041	450	-53.82	22.93
CR-10-041	455	-53.78	23.10
CR-10-041	460	-53.81	23.35
CR-10-041	465	-53.81	23.55
CR-10-041	470	-53.79	23.83

Conquest Resources Ltd.

Exploration Diamond Drill Log

DRILL HOLE #	CR-10-042	LOCATION	Balmertown,	Balmer Tow	nship, Red Lake D	istrict, Ontari	0	
PROJECT #	Alexander	REFERENCE	Alexander		GEOLOGIST	Meckert	CLAIM	KRL 20439
GRID/ NAD-ZO	DNE	NORTHING		EASTING		ELEVATION		GRID TYPE
GRID	Alexander RL	10+24 S		13+06 E		10002		Μ
UTM	NAD83 / 15U	5655644		451081		383	_	
COLLAR DIP	-64	GRID DIRECTIO	N	North			AZ DIRECTION	030
NTS REF #	052N04	NTS SHEET NAI	ME	Red Lake, Or	ntario			
START DATE	6-Aug-10			FINISH DATE	12-Aug-09			
DEPTH (EOH)	429.00	TARGET & Zon	e Depth	Sulphide She	ear Zone at 300m	and Footwall	Shear zone be	low 350m
PURPOSE	Test Sulphide	Zone						
CASING BW	na		CASING NW	18.00			CASING HW	na
PLUG @	na		PLUG @	na			PLUG @	na
START DTH	0.00		WEDGE @	na				
REDUCED @	na		REDUCED @	na				
HOLE STATUS	Completed, ca	asing left in g	round, cappe	d.				
DRILLING CON	TRACTOR	Landdrill Int	ernational Lt	d				
RIG NO.	HTM2500 #24	<u> </u>					BXS.	95
	-						_	

GYRO	Survey: Multishot In and Out of Ho	ble	
DEPTH (m)	AZIMUTH	DIP	COMMENTS
0	30.00	-65.00	
30	30.32	-64.33	4.64 gpt over 6.0 metres was intersected in
60	30.85	-63.20	Quartz Monzodiorite within the hanging wall
90	32.15	-62.98	of the Sulphide Shear Zone at 253m. The <u>1st</u>
120	32.95	-62.85	Target was intersected between 274.85m and
150	34.07	-62.41	280.88m. The Sulphide Shear Zone at the
180	34.61	-61.91	gabbro - basalt contact has been silicitied prior
210	35.51	-61.92	contact and no additional shearing or biotite
240	36.65	-61.79	alteration. Sulphide replacement in the guartz
270	36.77	-61.38	carbonate veins is dominated by DIS to NSS
300	37.17	-61.01	pyrite. The Sulphide Shear Zone intersection
330	38.00	-60.89	in this hole is interpreted to represent the
360	37.77	-60.16	easternmost extent of sulphide
390	37.28	-58.88	mineralization. <u>2nd Target</u> was intersected
			moderate shear zone shows little quartz
			carbonate veining and some biotite alteration.
			Levels of disseminated sulphides are elevated
			as compared to surrounding greenish grey
			basalt. No further significant alteration zone
			was encountered in the footwall.
			-

Drilled with 3m stabilized NQ core barrel

Planned hole depth is 450m. Hole completed to 429m.

Core stored at Alexander Core Yard at UTM 0449935 5656595

Water source: beaver pond located south of property (2,800 ft water line) 450686 5654978 UTM NAD83

Drill type: HTM-2500

Major Lithologies

Hole Name	From	То	Length	Code	Description	Rep
CR-10-042	0.00	18.00	18.00	CAS	NW Casing into overburden and bedrock	
CR-10-042	18.00	274.85	256.85	I3A	Fine to coarse grained gabbro, generally blueish grey in color. Mostly unaffected by foliation. Contains boulders of basaltic rock. As in hole CR-10-041 gabbro gets coarser towards lower contact and contains a couple of quartzmonzodiorites. Last meter to lower contact is fine grained due to rapid cooling against the basaltic wallrock. Contact is sharp at 63 degCA.	
CR-10-042	274.85	280.88	6.03	SHR	Sulphide Shear Zone: Moderate shearing in highly silicified basalt. Core is very dense and polished due to the silica flooding. Quartz carbonate veins have lost almost all the carbonate. Vein frequency is highest in first 4m. Two generations of veins are present. The first one has been completely silicified and blends in with the basalt, while the later generation that still contains carbonate stands out more and may postdate the initial silicification episode. Veins contain a fair amount of fine grained sulphides, cheifly pyrrhotite but pyrite as well. Sulphides are also finely disseminated in the basalt but the concentration varies. On occasion mm size arsenopyrite crystals show up as well. The upper sharp contact against the gabbro is due to the fact that the silica flooding happened beforte the intrusion of the gabbro and prevented the usual contact biotite alteration.	
CR-10-042	280.88	322.48	41.60	V3B	Medium grey silicified basalt with quartzcarbonate veining. Veins are thin folded, anastomosing. Pillow selvedges are dominated by quartzcarbonate as well. Silicification is gradually retreating downwards. Mineralisation in veins and selvedges is infrequent and does not follow any recognizable pattern. Upper contact to shear is taken up by Quartz Monzodiorite dyke.	
CR-10-042	322.48	323.60	1.12	ATZ	Hornblende-biotite-chlorite alteration that is usually seen around quartzcarbonate veins and considered heat related. However, only minor qc veining in here. Most sulphides in veins as selveges. Otherwise typical pattern of mineralisation for this type of alteration with streaky disseminated sulphides cheifly pyrrhotite and markedly larger crystals of arsenopyrite that tend to be mm in size that are sparsly mixed in.	
CR-10-042	323.60	334.06	10.46	V3B	Grey greenish basalt with disseminated trace sulphides. Distribution of sulphides is erratic and often forms halos around thin quartz carbonate veins whilst the veins themselves are often devoid of of sulphides	
CR-10-042	334.06	336.12	2.06	SHR	Moderate shear and biotite alteration zone with weak carbonate and very little veining of any sort. Doesn't stand out too much except for the finely disseminated sulphides throughout.	

Major Lithologies

Hole Name	From	То	Length	Code	Description	Rep
CR-10-042	336.12	428.99	92.87	V3B	Greenish grey basalt with carbonaceous fractures. Few chloritic bands and quartz carbonate veins and these mostly without sulphides. A couple of very weak alteration zones show elevated levels of sulphides over short stretches. Uneventful.	
CR-10-042	428.99	429.00	0.01	ЕОН	End of Hole is in Balmer Formation. Hole ended 248 meters past the the targeted sulphide shear zone at the contact between gabbro and Balmer Formation. End of hole at 429m on August 12, 2010. Hole is capped and accessible for further research. Gyro surveyed. Core is stored at the Conquest Core Facility on the Alexander Property in 95 NQ trays in racks. 83 samples sent for Au fire assay (50g pulp) at AGAT Labs, Mississauga, ON.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-10-042	247.50	249.34	12G	Medium grey weakly foliated quartzmonzodiorite with trace sulphides.	
CR-10-042	252.15	261.81	12G	Medium grey well foliated fine grained quartzmonzodiorite with moderate sericite alteration. Trace sulphides are finely disseminated throughout with arsenopyrite levels rising downward. Both contacts are sharp, upper at 48degCA and lower at 45degCA.	
CR-10-042	280.88	286.48	12G	Medium grey partially foliated and sheared quartzmonzodiorite. Coarse quartz crystals in sheared part alongside considerable sericite. Thick milky quartzvein with NIL sulphides crossing the dyke. Fair amount of disseminated sulphides as well as small aggregates and blebs, cheifly pyrite. The upper contact is jagged and uneven, the lower contact is sharp at 52degCA.	
CR-10-042	349.19	349.71	I2H	Medium grey fine grained monzodiorite with trace sulphides. Contacts sharp, both at 59degCA.	
CR-10-042	378.16	382.30	I2G	Medium grey medium grained weakly foliated quartzmonzodiorite. Trace sulphides are finely disseminated. Some blebby pyrite. Upper contact is jagged, roughly at 68degCA. Lower contact is sharp at 69degCA.	

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-10-042	E5108169	247.00	247.50	0.50		Wing sample, contact sheared gabbro.	53	10T432078
CR-10-042	E5108170	0.00	0.00	0.00	not consecutive	Standard OxK 69 3.583 ppm Au	3380	10T432078
CR-10-042	E5108171	247.50	248.50	1.00	not consecutive	Quartzmonzodiorite with trace sulphides.	11	10T432078
CR-10-042	E5108172	248.50	249.34	0.84	consecutive	As above 171	3	10T432078
CR-10-042	E5108173	249.34	249.84	0.50	consecutive	Wing sample, gabbro.	3	10T432078
CR-10-042	E5108174	251.65	252.15	0.50	not consecutive	Wing sample, gabbro.	41	10T432078
CR-10-042	E5108175	312.00	313.50	1.50	not consecutive	Grey basalt.	6	10T432078
CR-10-042	E5108176	252.15	253.65	1.50	not consecutive	Quartzmonzodiorite with trace PY	24	10T432078
CR-10-042	E5108177	253.65	255.15	1.50	consecutive	Quartzmonzodiorite with trace PY and APY	571	10T432078
CR-10-042	E5108178	255.15	256.65	1.50	consecutive	Quartzmonzodiorite with trace PY and APY	1830	10T432078
CR-10-042	E5108179	256.65	258.15	1.50	consecutive	Quartzmonzodiorite with trace PY and APY	3470	10T432078
CR-10-042	E5108180	258.15	259.65	1.50	consecutive	Quartzmonzodiorite with trace PY and APY	12670	10T432078
CR-10-042	E5108181	259.65	260.45	0.80	consecutive	Quartzmonzodiorite with trace PY and APY	232	10T432078
CR-10-042	E5108182	260.45	261.81	1.36	consecutive	Quartzmonzodiorite with trace PY and APY	602	10T432078
CR-10-042	E5108183	261.81	262.31	0.50	consecutive	Wing sample, gabbro.	563	10T432078
CR-10-042	E5108184	274.35	274.85	0.50	not consecutive	Wing sample, fine grained gabbro. Chloritic near contact.	250	10T432078
CR-10-042	E5108185	274.85	276.00	1.15	consecutive	Silicious shear zone, sulphides mostly PO, some PY and APY	48	10T432078
CR-10-042	E5108186	276.00	277.00	1.00	consecutive	As above 185	25	10T432078
CR-10-042	E5108187	277.00	278.00	1.00	consecutive	As above 185	273	10T432078
CR-10-042	E5108188	278.00	279.00	1.00	consecutive	As above 185	32	10T432078
CR-10-042	E5108189	279.00	280.00	1.00	not consecutive	As above 185, but much reduced vein intensity	21	10T432078
CR-10-042	E5108190	0.00	0.00	0.00	not consecutive	Standard OxK 69 3.583 ppm Au	3520	10T432078
CR-10-042	E5108191	280.00	280.88	0.88	not consecutive	As above 189	17	10T432078
CR-10-042	E5108192	280.88	282.38	1.50	consecutive	Quartzmonzodiorite with PY and APY	7	10T432078
CR-10-042	E5108193	282.38	283.88	1.50	consecutive	As above 192	14	10T432078
CR-10-042	E5108194	283.88	285.38	1.50	not consecutive	As above 192, with thick milky quartz vein.	11	10T432078
CR-10-042	E5108195	292.00	293.00	1.00	not consecutive	Basalt with qcv's and trace sulphides.	9	10T432078
CR-10-042	E5108196	285.38	286.48	1.10	not consecutive	As above 192 with sericite and coarse quartz crystals.	18	10T432078
CR-10-042	E5108197	286.48	287.00	0.52	consecutive	Wing sample silicified basalt.	11	10T432078
CR-10-042	E5108198	294.30	294.80	0.50	not consecutive	Wing sample, grey basalt.	5	10T432078
CD 10 042	FF109100	204.90	206.00	1 20	concosutivo	Silicious basalt, sulphidic vein every 30cm. Fine diss sulphides in	4	107422070
CR-10-042	E2108199	294.80	296.00	1.20	consecutive	basalt, fair APY in here.	4	101432078
CR-10-042	E5108200	296.00	297.00	1.00	consecutive	As above 199	13	10T432078
CR-10-042	E5108201	297.00	298.00	1.00	consecutive	As above 199	5	10T432078
CR-10-042	E5108202	298.00	299.00	1.00	consecutive	As above 199	9	10T432078
CR-10-042	E5108203	299.00	300.00	1.00	consecutive	As above 199	8	10T432078
CR-10-042	E5108204	300.00	301.00	1.00	consecutive	As above 199	6	10T432078
CR-10-042	E5108205	301.00	302.00	1.00	consecutive	As above 199	4	10T432078
CR-10-042	E5108206	302.00	303.00	1.00	consecutive	As above 199	3	10T432078

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-10-042	E5108207	303.00	304.00	1.00	consecutive	As above 199	3	10T432078
CR-10-042	E5108208	304.00	305.00	1.00	consecutive	As above 199	4	10T432078
CR-10-042	E5108209	305.00	306.00	1.00	not consecutive	As above 199	3	10T432078
CR-10-042	E5108210	0.00	0.00	0.00	not consecutive	Standard Sk 43 4.086 ppm Au	3730	10T432078
CR-10-042	E5108211	306.00	306.65	0.65	not consecutive	As above 199	11	10T432078
CR-10-042	E5108212	306.65	307.05	0.40	consecutive	Thick and thinner qcv's with fair PO and APY traces.	19	10T432078
CR-10-042	E5108213	307.05	308.00	0.95	consecutive	Less veins and mineralisation fizzing out.	5	10T432078
CR-10-042	E5108214	308.00	309.00	1.00	consecutive	As above 213	9	10T432078
CR-10-042	E5108215	309.00	310.00	1.00	consecutive	As above 213	13	10T432078
CR-10-042	E5108216	310.00	311.21	1.21	consecutive	As above 213	4	10T432078
CR-10-042	E5108217	311.21	312.00	0.79	not consecutive	Grey basalt.	8	10T432078
CR-10-042	E5108218	313.50	314.50	1.00	not consecutive	Three 10cm qcv with sulphides in this section.	6	10T432078
CR-10-042	E5108219	314.50	315.60	1.10	consecutive	Some disseminated sulphides and little veining in grey basalt.	30	10T432078
CR-10-042	E5108220	315.60	316.60	1.00	consecutive	As above 219	43	10T432078
CR-10-042	E5108221	316.60	318.00	1.40	consecutive	As above 219	11	10T432078
CR-10-042	E5108222	318.00	319.50	1.50	consecutive	As above 219	10	10T432078
CR-10-042	E5108223	319.50	321.00	1.50	consecutive	As above 219	13	10T432078
CR-10-042	E5108224	321.00	322.48	1.48	consecutive	As above 219	6	10T432078
CR-10-042	E5108225	322.48	323.60	1.12	consecutive	Green hornblende and chloritic replacement, Boudinaged and dismembered qcv's. Sulphides in streaks and diss and vein replacement. APY present.	6	10T432078
CR-10-042	E5108226	323.60	325.00	1.40	consecutive	Basalt, sulphidic veins have disappeared. Most sulphides are disseminated adjacent to veins.	4	10T432078
CR-10-042	E5108227	325.00	326.50	1.50	consecutive	As above 226	4	10T432078
CR-10-042	E5108228	326.50	328.00	1.50	consecutive	As above 226	7	10T432078
CR-10-042	E5108229	328.00	329.50	1.50	consecutive	As above 226	4	10T432078
CR-10-042	E5108230	0.00	0.00	0.00	not consecutive	Standard Si 42 1.761 ppm Au	1690	10T432078
CR-10-042	E5108231	329.50	331.00	1.50	not consecutive	As above 226	4	10T432078
CR-10-042	E5108232	331.00	332.00	1.00	consecutive	As above 226	39	10T432078
CR-10-042	E5108233	332.00	333.00	1.00	consecutive	Grey basalt	5	10T432078
CR-10-042	E5108234	333.00	334.06	1.06	not consecutive	Mottled variolitic ooking basalt with disseminated sulphides	4	10T432078
CR-10-042	E5108235	345.00	346.00	1.00	not consecutive	Grey basalt	2	10T432078
CR-10-042	E5108236	334.06	335.00	0.94	not consecutive	Moderate shear with some biotite, disseminated sulphides. Few gcv with no sulphides.	19	10T432078
CR-10-042	E5108237	335.00	336.12	1.12	consecutive	As above 236	8	10T432078
CR-10-042	E5108238	336.12	337.00	0.88	consecutive	Wing sample, grey green basalt.	11	10T432078
CR-10-042	E5108239	351.50	352.00	0.50	not consecutive	Wing sample, grey basalt.	7	10T432078
CR-10-042	E5108240	352.00	353.00	1.00	consecutive	Weak biotite alteration with disseminated PY	2	10T432078

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-10-042	E5108241	353.00	354.00	1.00	consecutive	Weak biotite alteration with disseminated PY	4	10T432078
CR-10-042	E5108242	354.00	355.00	1.00	consecutive	Weak biotite alteration with disseminated PY	4	10T432078
CR-10-042	E5108243	355.00	356.00	1.00	consecutive	Weak biotite alteration with disseminated PY	3	10T432078
CR-10-042	E5108244	356.00	357.00	1.00	consecutive	Weak biotite alteration with trace to NIL disseminated PY	415	10T432078
CR-10-042	E5108245	357.00	357.50	0.50	not consecutive	Wing sample, grey basalt.	14	10T432078
CR-10-042	E5108246	377.66	378.16	0.50	not consecutive	Wing sample, grey basalt.	4	10T432078
CR-10-042	E5108247	378.16	379.66	1.50	consecutive	Foliated quartzmonzodiorite with trace sulphide.	73	10T432078
CR-10-042	E5108248	379.66	381.16	1.50	consecutive	Foliated quartzmonzodiorite with trace sulphide.	86	10T432078
CR-10-042	E5108249	381.16	382.30	1.14	consecutive	Foliated quartzmonzodiorite with trace sulphide.	49	10T432078
CR-10-042	E5108250	0.00	0.00	0.00	not consecutive	Standard Si 42 1.761 ppm Au	1660	10T432078
CR-10-042	E5108251	382.30	382.80	0.50	not consecutive	Contact sheared biotite altered basalt	5	10T432078

Gyro Survey Record

Hole ID	Station (m)	Dip (Degrees)	Azimuth
CR-10-042	0	-65.00	30.00
CR-10-042	5	-65.16	30.00
CR-10-042	10	-64.97	29.83
CR-10-042	15	-65.00	30.32
CR-10-042	20	-64.85	30.31
CR-10-042	25	-64.62	30.15
CR-10-042	30	-64.33	30.32
CR-10-042	35	-64.06	30.51
CR-10-042	40	-63.91	30.63
CR-10-042	45	-63.76	30.51
CR-10-042	50	-63.58	30.68
CR-10-042	55	-63.36	30.75
CR-10-042	60	-63.20	30.85
CR-10-042	65	-63.08	31.14
CR-10-042	70	-63.04	31.36
CR-10-042	75	-63.01	31.42
CR-10-042	80	-63.04	31.64
CR-10-042	85	-63.00	32.05
CR-10-042	90	-62.98	32.15
CR-10-042	95	-62.88	32.51
CR-10-042	100	-62.88	32.38
CR-10-042	105	-62.74	32.30
CR-10-042	110	-62.76	32.45
CR-10-042	115	-62.78	32.48
CR-10-042	120	-62.85	32.95
CR-10-042	125	-62.78	33.15
CR-10-042	130	-62.69	33.23
CR-10-042	135	-62.63	33.34
CR-10-042	140	-62.55	33.51
CR-10-042	145	-62.49	33.72
CR-10-042	150	-62.41	34.07
CR-10-042	155	-62.35	34.14
CR-10-042	160	-62.30	34.14
CR-10-042	165	-62.16	34.37
CR-10-042	170	-62.00	34.36
CR-10-042	175	-61.96	34.48
CR-10-042	180	-61.91	34.61
CR-10-042	185	-61.92	34.85
CR-10-042	190	-61.91	34.93
CR-10-042	195	-61.97	35.01
CR-10-042	200	-61.97	35.13
CR-10-042	205	-61.93	35.30
CR-10-042	210	-61.92	35.51
CR-10-042	215	-61.90	35.76
CR-10-042	220	-61.95	35.95
CR-10-042	225	-61.92	36.21
CR-10-042	230	-61.84	36.24
CR-10-042	235	-61.84	36.44
CR-10-042	240	-61.79	36.65
CR-10-042	245	-61.78	36.84
CR-10-042	250	-61.74	36.80
CR-10-042	255	-61.67	36.62
CR-10-042	260	-61.58	36.57
CR-10-042	265	-61.46	36.57
CR-10-042	270	-01.38	30.77
	2/5	-01.34	30.74
	280	-01.29	30.92 37.01
CR-10-042	285	-61.3U	37.UI
CR 10-042	290	-01.22	37.1b
CR-10-042	295	-51.01	37.07
	300	-01.01	37.17
	305	-01.UU	37.50
CR-10-042	31U 31E	-01.10	37.50 27.64
	515	-01.00	37.04 27.66
CK-10-042	320	-00.90	37.00

Gyro Survey Record

Hole ID	Station (m)	Dip (Degrees)	Azimuth
CR-10-042	325	-60.94	37.85
CR-10-042	330	-60.89	38.00
CR-10-042	335	-60.85	37.85
CR-10-042	340	-60.80	38.06
CR-10-042	345	-60.63	38.03
CR-10-042	350	-60.52	37.86
CR-10-042	355	-60.28	37.64
CR-10-042	360	-60.16	37.77
CR-10-042	365	-59.92	37.71
CR-10-042	370	-59.64	37.62
CR-10-042	375	-59.43	37.48
CR-10-042	380	-59.27	37.37
CR-10-042	385	-59.14	37.42
CR-10-042	390	-58.88	37.28
CR-10-042	395	-58.82	37.26
CR-10-042	400	-58.78	37.39

Conquest Resources Ltd.

Exploration Diamond Drill Log

CR-10-043

DRILL HOLE #	CR-10-043	LOCATION	Balmertown, Balmer Township, Red Lake District, Ontario					
PROJECT #	Alexander	REFERENCE	Alexander		GEOLOGIST	Meckert	CLAIM	KRL 20488
GRID/ NAD-ZO	ONE	NORTHING		EASTING		ELEVATION		GRID TYPE
GRID	Alexander RL	2+40 S		11+18 E		10007		Μ
UTM	NAD83 / 15U	5655991		451014		388		
COLLAR DIP	-60	GRID DIRECTIO	N	North			AZ DIRECTION	026
NTS REF #	052N04	NTS SHEET NA	ME	Red Lake, O	ntario		_	
START DATE	15-Aug-10			FINISH DATE	19-Aug-10			
DEPTH (EOH)	360.00	TARGET & Zon	e Depth	Sulphide Shea	ar Zone @ 88m			
PURPOSE	Test the Sulph	nide Zone und	ler CR-TR-001					
CASING BW	na na		CASING NW	12.00			CASING HW	na
PLUG @	na		PLUG @	na			PLUG @	na
START DTH	0.00		WEDGE @	na				
REDUCED @	na		REDUCED @	na				
HOLE STATUS	Completed, ca	asing left in g	ound, capped	d				
DRILLING CON	ITRACTOR	Landdrill Int	ernational					
RIG NO.	HTM2500 #24						BXS.	82
							-	

GYRO	Survey: Multishot In and Out of Hol	e	
DEPTH (m)	AZIMUTH	DIP	Comments:
0	26.00	-60.00	
30	25.50	-60.70	1st Target was intersected between 87.84m
60	26.30	-60.30	and 99.69m. The sulphide shear zone at the
90	32.20	-59.70	gabbro - basalt contact shows no obvious sign
120	27.30	-59.60	Sulphide replacement in the quartzcarbonate
150	29.40	-58.80	veins is dominated by fine grained pyrite.
180	29.60	-58.60	Pyrrhotite plays only a minor role as do traces
210	30.40	-58.40	of arsenopyrite. Assays pending. 2nd Target
240	30.90	-57.80	was intersected between 127.35m and
270	30.40	-57.60	152.50m. This is rather an alteration than a
300	31.40	-57.50	snear zone with little quartzcarbonate veining.
320	32.40	-57.10	alteration. Levels of disseminated subbides
360	32.80	-57.10	are elevated as compared to surrounding
			greenish grey basalt. It is difficult to
			distinguish whether this zone predates the
			two quartzmonzodiorite dykes in center but
			alteration reaches comparatively far into the
			wall rock. Intrusives may have exploited a
			ZONE OF WEAKNESS. NO TURTNER Significant
			footwall.
L I			

Drilled with 3m stabilized NQ core barrel Planned hole depth is 400m (1310'). Hole completed to 360m. Water source: sump at drill 451014 5655991 UTM NAD83 15U

Core stored at Alexander Core Yard at UTM 0449935 5656595 Drill type: HTM 2500

Hole Name	From	То	Length	Code	Description	Rep
CR-10-043	0.00	12.00	12.00	CAS	NW Casing into overburden and bedrock. One 3cm piece of tonalite boulder in first box from till overburden.	
CR-10-043	12.00	87.83	75.83	I3A	Medium green coloured, variably crystalized textured Gabbro grading from fine to crudely coarse grained intrusive texture. Trace disseminated pyrite is common throughout, however, not enough pyrite is present to generate IP targets in this unit. Massive unit with some 15m-scale foliated intervals at 50degCA. Very few quartz veins and even fewer narrow quartz carbonate veinlets. Occasional tightly healed, ambiguous, fractures obverved in localized clusters of little assumed significance mineralogically. Less than 10% of fractures are open and contain chlorite and talcy minerals. Generally monotonous intrusive as seen in other holes. Upper contact is not observed. Lower contact is rather subtle based on a colorvariation where contact shearing turns fom blueish grey greenish to a brown grey and veining kicks in.	
CR-10-043	87.84	99.69	11.85	SHR	Brownish grey fine grained host rock considered to be basaltic rock with a low level of biotite alteration. Quartz carbonate veins show a fair level of sulphide replacement. Dominating sulphide is pyrite which occurs in very fine grained dense masses that looks blobby - spheroidal. Pyrite makes up about 5% whilest there is 1 % pyrrhotite. Pyrrhotite is grainier and contains carbonate, quartz and biotite. Pyrrhotite dominated veins also tend to show chalcopyrite and arsenopyrite not seen in the pyrite. Veins generally are straight and undulating to a degree following mostly 47degCA. As of 92.30m where more and more pyrrhotite is showing up but the vein intensity is starting to go down planes running 67degCA start to show up as well and pyrrhotite may be associated more with this direction. Lower contact is easier to distinguish where the biotite alteration disappears and foliated gabbro shows up. Contact is sharp at 54degCA.	
CR-10-043	99.69	103.86	4.17	I3A	Contact sheared and foliated gabbro. Greenish to blueish grey and fine grained.	
CR-10-043	103.86	119.00	15.14	V3B/ATZ	Biotite altered and carbonatized basalt. Rock is dark grey to blackish with lighter colored carbonaceous uneven spots, giving the rock a mottled look. In some short sections the carnbonate replacement is almost total. Quartzcarbonate veins with pyrrhotite mineralisation are present but losely spaced. Sulphides are also finely disseminated in the host rock. A number of crosscutting milky quartz veins also contain blebs of pyrrhotite. At about 119m the pervasive carbonate disappears and so does most of the disseminated mineralization, retreating to the occasional quartz carbonate veins.	

Hole Name	From	То	Length	Code	Description	Rep
CR-10-043	119.00	360.00	241.00	V3B	Grey green mostly fine grained basalt. To 212m the basalt is characterized by frequent flowtop breccias and hairline to very thin extension fractures. These fractures are more or less exclusively filled with white carbonate and show no signs of mineralisation. Past that the basalt shows the normal characterisics expected from Balmer basalts. From 320m to 335 the basalt shows frequent 10cm bleached bands (light green not buff colored) but this alteration is not spatially associated with any mineralisation. In general there is not a high frequency of quartz carbonate veins and any mineralisation above background levels gets less and less towards the bottom of the hole.	
CR-10-043	360.00	360.01	0.01	EOH	End of Hole is in Balmer Formation. Hole ended 241 meters past the the targeted sulphide shear zone at the contact between gabbro and Balmer Formation. End of hole at 360m on August 19, 2010. Hole is capped and accessible for further research. Gyro surveyed. Core is stored at the Conquest Core Facility on the Alexander Property in 82 NQ trays in racks. 104 samples sent for Au fire assay (50g pulp) at AGAT Labs, Mississauga, ON.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-10-043	22.70	22.90	FLT	Minor Fault with vuggy porosity. Strongly altered and weakly oxidized. 08 % sericite, 07% chlorite, 03% ankerite, trace dolomite healed. Less than 05% Pyrite.	
CR-10-043	26.00	43.00	I3A	Zone of very coarse grained, massive, Gabbro.	
CR-10-043	127.35	130.52	SHR	Likely contact shear on top of Quartz Monzodiorite. Fair amount of carbonate with very fine grained sulphide replacement and biotite alteration.	
CR-10-043	130.52	137.46	12G	Fine grained medium grey Quartz Monzodiorite. Contact sheared in upper 3m with associated sericite alteration. Blebby and disseminated sulphides can be found throughout. Contacts are sharp, upper at 51degCA and lower at 62degCA.	
CR-10-043	137.46	143.50	SHR/ATZ	Contact sheared and cooked basalt between two quartzmonzodirite dykes. Pervasive low percentage biotite alteration and quartzcarbonate veining. Veins are folded and dismembered. Mineralisation can range from nil sulphides in the veins to a high degree of very fine grained pyrrhotite often alonside some biotite in others. There is also some finely disseminated pyrrhotite in the biotite.	
CR-10-043	143.50	147.97	I2G	Medium grey fine grained Quartz Monzodiorite with medium grained quartz crystals. Minor mottled bleaching and some pale green alteration adjacent to milky quartz veins in lower meter of intrusion. Contacts are sharp at 47degCA each.	
CR-10-043	147.97	152.50	SHR/ATZ	Alteration zone continues past the intrusive. Alteration and mineralisation slowly retreating to background levels.	
CR-10-043	157.30	158.10	12G	Medium grey Quartz Monzodiorite with milky quartzveins and fractures that are filled with soft fine grained biotite. Trace sulphides disseminated throughout. Upper contact obstructed by quartz vein. Lower contact is sharp at 62degCA	
CR-10-043	172.55	173.55	130	Very fine grained dark grey lamprophyre with only minor carbonate. Contacts are sharp and very subtle. Upper contact at 59degCA and lower at 62degCA.	
CR-10-043	175.60	176.46	12J	Medium grey fine grained and moderately foliated diorite. Upper contact sharp at 34degCA. Lower contact is jagged.	
CR-10-043	188.82	189.60	I2J	Medium grey fine grained diorite. Cutting core at low angle with jagged irregular contacts.	
CR-10-043	222.95	230.40	I2G	Foliated fine grained Quartz Monzodiorite with flaky biotite. Sulphides concentrated alongside biotite but also some fine disseminated. Contacts are sharp, 60degCA upper and 67degCA lower.	

CR-10-043

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-10-043	233.05	233.61	12G	Quartz Monzodiorite as before with thick quartz vein at top with biotite filled center. Also biotite filled fractures in footwall of vein. Contacts are sharp, 61degCA upper and 65degCA lower.	
CR-10-043	278.30	299.00	I3A	Very dark grey fine grained gabbro. Very subtle contact at top undulating at 67degCA. Getting coarser downward to an even medium grain of slightly blueish color. Bottom contact is sheared and ther is no clear distinction as to where the gabbro ends and the basalt comes back in.	
CR-10-043	318.39	318.80	12G	Dumorturite bearing purplish grey Quartz Monzodiorite. Fine grained with some flaky biotite and trace sulphides. Upper contact sharp at 51degCA. Lower contact is rough hovering around 49degCA.	
CR-10-043	323.32	324.31	I2H	Dark brown-grey monzodiorite with few penocrystals. Minute trace sulphides are present. Both contacts are sharp, upper at 74degCA and lower at 72degCA.	
CR-10-043	335.04	342.90	I2G	Fine grained medium grey Quartz Monzodiorite. A bit fractured and locally foliated. Crosscut by a few thin sulphide bearing quartzcarbonate veins. Otherwise sulphides, including APY, finely disseminated. Upper contact is sharp at 65degCA. Lower contact is undulating at 61degCA.	

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-10-043	E5108252	85.83	86.33	0.50		Wing sample, fine grained gabbro.	5	10T434825
CR-10-043	E5108253	86.33	87.00	0.67	consecutive	High Kappa gabbro.	5	10T434825
CR-10-043	E5108254	87.00	87.84	0.84	consecutive	High kappa foliated gabbro.	3	10T434825
CR-10-043	E5108255	193.00	194.00	1.00	not consecutive	Basalt with qcv's, plain	3	10T434825
CR-10-043	E5108256	87.84	88.84	1.00	not consecutive	Shear with PY rich veins to 10cm thick.	10	10T434825
CR-10-043	E5108257	88.84	89.84	1.00	consecutive	As above 256	9	10T434825
CR-10-043	E5108258	89.84	90.84	1.00	consecutive	As above 256	5	10T434825
CR-10-043	E5108259	90.84	91.84	1.00	consecutive	As above 256	3	10T434825
CR-10-043	E5108260	91.84	92.84	1.00	consecutive	Less mineralized but higher PO content.	4	10T434825
CR-10-043	E5108261	92.84	93.69	0.85	consecutive	More PY again.	2	10T434825
CR-10-043	E5108262	93.69	95.10	1.41	consecutive	Chloritic reduced vein intensity, visible magnetite.	10	10T434825
CR-10-043	E5108263	95.10	95.50	0.40	consecutive	With 26cm vein NSS. PY in center with PO at margin.	12	10T434825
CR-10-043	E5108264	95.50	96.50	1.00	consecutive	PY starting to look more grainy, more PO.	11	10T434825
CR-10-043	E5108265	96.50	97.50	1.00	consecutive	Less veins, more PO pervasive carbonate.	6	10T434825
CR-10-043	E5108266	97.50	98.50	1.00	consecutive	As above 265	2	10T434825
CR-10-043	E5108267	98.50	99.10	0.60	consecutive	As above 265	2	10T434825
CR-10-043	E5108268	99.10	99.69	0.59	consecutive	Almost no veining left just thin fractures.	<1	10T434825
CR-10-043	E5108269	99.69	100.69	1.00	not consecutive	Foliated contact sheared gabbro.	1	10T434825
CR-10-043	E5108270	0.00	0.00	0.00	not consecutive	Standard Sk 43 4.086 ppm Au	4090	10T434825
CR-10-043	E5108271	100.69	101.69	1.00	not consecutive	As above 269	3	10T434825
CR-10-043	E5108272	101.69	103.00	1.31	consecutive	As above 269	3	10T434825
CR-10-043	E5108273	103.00	103.86	0.86	consecutive	As above 269	2	10T434825
CR-10-043	E5108274	103.86	104.75	0.89	not consecutive	Several PO stringers in basalt.	4	10T434825
CR-10-043	E5108275	170.00	171.00	1.00	not consecutive	Basalt with biotite, extension fractures filled with carbonate, trace mineralisation.	2	10T434825
CR-10-043	E5108276	104.75	105.75	1.00	not consecutive	Diss sulphides, milky qv, carbonaceous and biotitic, few qcv.	2	10T434825
CR-10-043	E5108277	105.75	106.75	1.00	consecutive	As above 276	1	10T434825
CR-10-043	E5108278	106.75	107.75	1.00	consecutive	As above 276	4	10T434825
CR-10-043	E5108279	107.75	108.75	1.00	consecutive	As above 276	1	10T434825
CR-10-043	E5108280	108.75	109.75	1.00	consecutive	As above 276 with 30cm of almost solid carbonate replacement.	1	10T434825
CR-10-043	E5108281	109.75	110.75	1.00	consecutive	As above 276	1	10T434825
CR-10-043	E5108282	110.75	111.75	1.00	consecutive	As above 276	2	10T434825
CR-10-043	E5108283	111.75	112.75	1.00	consecutive	As above 276	1	10T434825
CR-10-043	E5108284	112.75	113.75	1.00	consecutive	As above 276	1	10T434825
CR-10-043	E5108285	113.75	114.75	1.00	consecutive	As above 276	2	10T434825
CR-10-043	E5108286	114.75	115.75	1.00	consecutive	As above 276	4	10T434825
CR-10-043	E5108287	115.75	116.75	1.00	consecutive	As above 276, waning alteration and mineralisation.	3	10T434825
CR-10-043	E5108288	116.75	117.75	1.00	consecutive	As above 287	1	10T434825

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-10-043	E5108289	117.75	119.00	1.25	not consecutive	As above 287	1	10T434825
CR-10-043	E5108290	0.00	0.00	0.00	not consecutive	Standard OxK 69 3.583	3529	10T434825
CR-10-043	E5108291	119.00	120.50	1.50	not consecutive	Basalt with some veining, trace mineralisation	2	10T434825
CR-10-043	E5108292	120.50	122.00	1.50	consecutive	As above 291	2	10T434825
CR-10-043	E5108293	122.00	123.50	1.50	consecutive	As above 291	<1	10T434825
CR-10-043	E5108294	123.50	125.00	1.50	consecutive	As above 291	3	10T434825
CR-10-043	E5108295	125.00	126.50	1.50	consecutive	As above 291	7	10T434825
CR-10-043	E5108296	126.50	127.35	0.85	consecutive	As above 291	2	10T434825
CR-10-043	E5108297	127.35	128.35	1.00	consecutive	Moderately sheared, qcv's sulphides and biotite.	6	10T434825
CR-10-043	E5108298	128.35	129.35	1.00	consecutive	As above 297	5	10T434825
CR-10-043	E5108299	129.35	130.52	1.17	consecutive	As above 297	8	10T434825
CR-10-043	E5108300	130.52	132.00	1.48	consecutive	Quartzmonzodiorite, contact sheared.	313	10T434825
CR-10-043	E5108301	132.00	133.50	1.50	consecutive	As above 300	157	10T434825
CR-10-043	E5108302	133.50	135.00	1.50	consecutive	No more shearing, normal weak foliation.	27	10T434825
CR-10-043	E5108303	135.00	136.50	1.50	consecutive	As above 302	12	10T434825
CR-10-043	E5108304	136.50	137.46	0.96	consecutive	As above 302	16	10T434825
CR-10-043	E5108305	137.46	138.46	1.00	consecutive	Contact cooked basalt with sulphides.	4	10T434825
CR-10-043	E5108306	138.46	139.46	1.00	consecutive	As above 305	3	10T434825
CR-10-043	E5108307	139.46	140.46	1.00	consecutive	As above 305	4	10T434825
CR-10-043	E5108308	140.46	141.46	1.00	consecutive	As above 305	9	10T434825
CR-10-043	E5108309	141.46	142.46	1.00	not consecutive	As above 305	9	10T434825
CR-10-043	E5108310	0.00	0.00	0.00	not consecutive	Standard Si 42 1.761 ppm Au	1720	10T434825
CR-10-043	E5108311	142.46	143.50	1.04	not consecutive	As above 305	29	10T434825
CR-10-043	E5108312	143.50	145.00	1.50	consecutive	Quartzmonzodiorite with finely disseminated sulphides.	12	10T434825
CR-10-043	E5108313	145.00	146.50	1.50	consecutive	As above 312	2	10T434825
CR-10-043	E5108314	146.50	147.97	1.47	consecutive	As above 312	2	10T434825
CR-10-043	E5108315	162.69	163.19	0.50	not consecutive	Wing sample, normal basalt.	2	10T434825
CR-10-043	E5108316	147.97	149.50	1.53	not consecutive	Contact cooked basalt with sulphides.	18	10T434825
CR-10-043	E5108317	149.50	151.00	1.50	consecutive	As above 316	20	10T434825
CR-10-043	E5108318	151.00	152.50	1.50	consecutive	as above 316	6	10T434825
CR-10-043	E5108319	152.50	153.00	0.50	not consecutive	Wing sample, grey brown basalt.	4	10T434825
CR-10-043	E5108320	163.19	163.49	0.30	not consecutive	Green basalt with fair clorite, hornblende, PY-PO-APY.	3	10T434825
CR-10-043	E5108321	163.49	163.99	0.50	not consecutive	Wing sample, normal basalt.	4	10T434825
CR-10-043	E5108322	222.45	222.95	0.50	not consecutive	Wing sample, normal basalt.	6	10T434825
CR-10-043	E5108323	222.95	224.45	1.50	consecutive	Quartzmonzodiorite with trace sulphides.	59	10T434825
CR-10-043	E5108324	224.45	225.95	1.50	consecutive	As above 323	19	10T434825
CR-10-043	E5108325	225.95	227.45	1.50	consecutive	As above 323	347	10T434825
CR-10-043	E5108326	227.45	228.45	1.00	consecutive	As above 323	23	10T434825
CR-10-043	E5108327	228.95	230.40	1.45	not consecutive	As above 323	34	10T434825

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-10-043	E5108328	230.40	231.90	1.50	consecutive	Grey basalt.	7	10T434825
CR-10-043	E5108329	231.90	233.05	1.15	not consecutive	As above 328	8	10T434825
CR-10-043	E5108330	0.00	0.00	0.00	not consecutive	Standard Si 42 1.761 ppm Au	1700	10T434825
CR-10-043	E5108331	233.05	233.61	0.56	not consecutive	Quartzmonzodiorite with milky qv and thick biotite fractures.	4	10T434825
CR-10-043	E5108332	233.61	234.11	0.50	not consecutive	Wing sample, grey basalt.	9	10T434825
CR-10-043	E5108333	270.00	271.00	1.00	not consecutive	Wing sample, grey fine grained basalt, few fractures and qcv's, minute trace sulphides.	5	10T434825
CR-10-043	E5108334	271.00	272.00	1.00	consecutive	Carbonaceous basalt with qcv and trace sulphides.	2	10T434825
CR-10-043	E5108335	272.00	273.00	1.00	not consecutive	Wing sample, very few qcv going into massive dark fine grained basalt.	3	10T434825
CR-10-043	E5108336	298.50	299.00	0.50	not consecutive	Wing sample, gabbro.	3	10T434825
CR-10-043	E5108337	299.00	300.00	1.00	consecutive	Biotitic contact shear with sulphides in some fractures and veins.	2	10T434825
CR-10-043	E5108338	300.00	301.00	1.00	consecutive	As above 337	3	10T434825
CR-10-043	E5108339	301.00	302.00	1.00	consecutive	As above 337	2	10T434825
CR-10-043	E5108340	302.00	303.00	1.00	consecutive	As above 337	2	10T434825
CR-10-043	E5108341	303.00	304.00	1.00	consecutive	Contact shear gone, no mineralisation.	7	10T434825
CR-10-043	E5108342	304.00	305.00	1.00	consecutive	Lots of broken and dismembered qcv's with trace mineralisation.	3	10T434825
CR-10-043	E5108343	305.00	305.95	0.95	consecutive	Fairly plain basalt.	7	10T434825
CR-10-043	E5108344	305.95	306.26	0.31	consecutive	Fractured and 10cm qcv with fair sulphides in flakes and small aggregates.	4	10T434825
CR-10-043	E5108345	306.26	306.76	0.50	not consecutive	Wing sample, grey massive basalt.	6	10T434825
CR-10-043	E5108346	334.54	335.04	0.50	not consecutive	Wing sampl,e grey basalt.	8	10T434825
CR-10-043	E5108347	335.04	336.54	1.50	consecutive	Quartzmonzodiorite with PO and APY.	16	10T434825
CR-10-043	E5108348	336.54	338.04	1.50	consecutive	As above 347	33	10T434825
CR-10-043	E5108349	338.04	339.54	1.50	not consecutive	As above 347	38	10T434825
CR-10-043	E5108350	0.00	0.00	0.00	not consecutive	Standard Si 42 1.761 ppm Au	1630	10T434825
CR-10-043	E5108351	339.54	341.04	1.50	not consecutive	As above 347	20	10T434825
CR-10-043	E5108352	341.04	342.00	0.96	consecutive	As above 347	28	10T434825
CR-10-043	E5108353	342.00	342.90	0.90	consecutive	As above 347	10	10T434825
CR-10-043	E5108354	342.90	343.40	0.50	consecutive	Wing sample, Basalt with some biotite.	2	10T434825
CR-10-043	E5108355	356.00	357.00	1.00	not consecutive	Grey basalt with trace mineralisation in folded and anastomosing qcv's.	4	10T434825

Gyro Survey Record

Hole ID	Station (m)	Dip (Degrees)	Azimuth
CR-10-043	0	-61.00	26.00
CR-10-043	5	-60.78	26.00
CR-10-043	10	-60.97	26.55
CR-10-043	15	-60.97	26.58
CR-10-043	20	-61.02	26.46
CR-10-043	25	-61.00	26.40
CR-10-043	30	-61.00	26.56
CR-10-043	35	-61.01	26.60
CR-10-043	40	-60.99	26.59
CR-10-043	45	-60.91	26.65
CR-10-043	50	-60.79	26.75
CR-10-043	55	-60.63	26.87
CR-10-043	60	-60.47	27.01
CR-10-043	65	-60.41	27.06
CR-10-043	70	-60.33	27.15
CR-10-043	75	-60.22	27.05
CR-10-043	80	-60.16	27.26
CR-10-043	85	-60.03	27.16
CR-10-043	90	-60.08	27.18
CR-10-043	95	-60.01	27.23
CR-10-043	100	-59.97	27.26
CR-10-043	105	-59.91	27.34
CR-10-043	110	-59.88	27.42
CR-10-043	115	-59.84	27.36
CR-10-043	120	-59.80	27.48
CR-10-043	125	-59.74	27.42
CR-10-043	130	-59.69	27.71
CR-10-043	135	-59.61	27.76
CR-10-043	140	-59.53	28.00
CR-10-043	145	-59.49	27.99
CR-10-043	150	-59.39	28.17
CR-10-043	155	-59.33	28.28
CR-10-043	160	-59.24	28.34
CR-10-043	165	-59.19	28.32
CR-10-043	170	-59.09	28.58
CR-10-043	175	-59.03	28.63
CR-10-043	180	-59.00	28.70

Gyro Survey Record

Hole ID	Station (m)	Dip (Degrees)	Azimuth
CR-10-043	185	-58.96	28.85
CR-10-043	190	-58.95	28.86
CR-10-043	195	-58.85	29.06
CR-10-043	200	-58.79	29.09
CR-10-043	205	-58.71	29.41
CR-10-043	210	-58.73	29.40
CR-10-043	215	-58.68	29.52
CR-10-043	220	-58.65	29.64
CR-10-043	225	-58.60	29.76
CR-10-043	230	-58.43	30.14
CR-10-043	235	-58.25	30.28
CR-10-043	240	-58.13	30.35
CR-10-043	245	-58.11	30.42
CR-10-043	250	-58.04	30.57
CR-10-043	255	-58.04	30.65
CR-10-043	260	-58.04	30.68
CR-10-043	265	-57.95	30.64
CR-10-043	270	-57.93	30.69
CR-10-043	275	-57.96	30.79
CR-10-043	280	-57.81	30.95
CR-10-043	285	-57.80	31.02
CR-10-043	290	-57.83	31.16
CR-10-043	295	-57.87	31.08
CR-10-043	300	-57.82	31.22
CR-10-043	305	-57.75	31.29
CR-10-043	310	-57.70	31.34
CR-10-043	315	-57.63	31.61
CR-10-043	320	-57.56	31.58
CR-10-043	325	-57.46	31.72
CR-10-043	330	-57.52	31.78
CR-10-043	335	-57.53	31.99
CR-10-043	340	-57.58	31.95
CR-10-043	345	-57.54	31.87
CR-10-043	350	-57.46	31.75

Conquest Resources Ltd.

Exploration Diamond Drill Log

CR-11-044

DRILL HOLE #	CR-11-044	LOCATION Balmertown,	, Balmer Tow	nship, Red Lake I	District, Ontario	0	
PROJECT #	Alexander	REFERENCE Alexander		GEOLOGIST	Meckert	CLAIM	KRL 20520
GRID/ NAD-Z	ONE	NORTHING	EASTING		ELEVATION		GRID TYPE
GRID	Alexander RL	6+76 S	9+62 E		9999		Μ
UTM	NAD83 / 15U	5655691	450649		380	_	
COLLAR DIP	-86	GRID DIRECTION	12° W of gridN	l		AZ DIRECTION	008
NTS REF #	052N04	NTS SHEET NAME	Red Lake, O	Intario		-	
START DATE	21-Jan-11		FINISH DATE	26-Feb-11			
DEPTH (EOH)	1365.00	TARGET & Zone Depth	Target 1: Sulpl	nide Shear Zone (SSZ)	at 925m hole dept	th. T2: BCF at 1,	310m
PURPOSE	Planned hole	tests SSZ at down dip ext	ension	PIEC	E POINT of Target:	E	mELEV
CASING BW	na	CASING NW	12.00			CASING HW	na
PLUG @	na	PLUG @	na			PLUG @	na
START DTH	na	WEDGE @	na			-	
REDUCED @	na	REDUCED @	na				
HOLE STATUS	Completed, o	apped, casing left in hole.	Geologist r	ecommends a Bo	rehole Pulse E	M survey 900	0-1350
DRILLING COM	TRACTOR	Boart Longyear Inc.					
RIG NO.	LY 50 4102					BXS.	312
						· · · · ·	
			Reflex EZ-Sh	ot Surveys			
DEPT	ſH (m)	AZIMUTH		DIP		Comments:	
	0	8.00		-86.00			
	13	18 10		-84 70			

0	8.00	-80.00	
93	18.10	-84.70	
120	23.80	-84.60	Five targets in the form of shear / alteration
153	16.00	-84.30	zones were intersected in the Balmer Basalt.
249	26.10	-82.90	<u>1st</u> <u>Target</u> A group of shears between
303	30.70	-81.70	302.38m and 318.54m; <u>2nd Target</u> 373.65m
393	30.10	-81.20	to 382.27m; <u>3rd Target</u> 461.72m to 492.59m;
453	34.50	-79.90	4 <u>th Target</u> 1246.85m to 1254.00m; <u>5th Target</u>
513	36.90	-79.20	and veining pattern were favourable only
603	35.70	-77.80	target #3 returned significant elevated gold
693	39.30	-77.20	levels. 0.72gr/t Au between 461.72m and
753	41.50	-76.70	462.69m at the very top of a moderate
813	42.10	-76.20	biotite alteration zone and 1.55gr/t Au
843	42.10	-75.90	between 470.00m and 471.00m within
903	42.10	-74.60	Several Quartz Monzodiorite and
963	42.00	-73.80	Monzodiorites vielded elevated gold assays.
992	42.50	-73.70	Most notably 1.49gr/t Au between 490.00m
1053	43.70	-73.50	to 491.17m, which falls within the target #3
1143	44.20	-71.60	alteration zone.
1203	44.90	-71.30	7
1293	46.90	-70.40	7

Drill with 6m, double stablilized NQ core barrel

Planned hole depth is 1,350m (4,425')

Core stored at Alexander Core Yard at UTM 0449935 5656595 UTM NAD83 15U

Water source: Clean water pond located above Goldcorp Tailings at 0451472 5656606 UTM NAD83 15U

Core stored at Alexander Core Yard Drill type: LY-50

Major Lithologies

Hole Name	From	То	Length	Code	Description	Rep
CR-11-044	0.00	12.00	12.00	CAS	NW Casing into overburden and bedrock	
					Buff coloured Balmer Basalt, bleached to about 40%. Partially brecciated and garnetiferous.	
CR-11-044	12.00	23.85	11.85	ATZ	Contains fragments of larger quartz vein that is brecciated as well. Unbleached parts are	
0.112 0 1 1	12.00	20100	11.00		brownish from insipid biotite. Garnets are present in spots. Traces of sulphides are very fine	
					grained and can be observed locally.	
					Greenish grey coloured, mostly fine grained Balmer Basalt. Some minor preculation in places	
					healed by a chloritic matrix. Infrequent thin quartz carbonate veins tend to be dismembered.	
					Same counts for pillow selvedges. Some irregular bands with elevated chlorite levels and	
CR-11-044	23.85	302.38	278.53	V3B	corroded garnets may indicate interflow pyroclastic deposits. Minor trace sulphides are	
					present. Some thin "late" looking fractures contain small flakes of chalcopyrite in first 30m.	
					Veining in general does not exceed 2% to about 250m after which carbonate and	
					quartzcarbonate veining picks up.	
					Moderate shear and brecciation structure. Shearing is planar in only a few narrow places.	
CD 11 044	202.20	205 90	2 5 1	CUD	Mostly it is characterized by dismembered and boudinaged carbonate veins. However, where it	
CR-11-044	302.38	305.89	3.51	энк	is planar some anastomosing quartz veins are present as well. Most of the trace sulphides occur	
					whith the planar veins and in a few crosscutting late fractures.	
					Greenish grey coloured Balmer Basalt with background level veining and fracturing. Some	
CR-11-044	305.89	314.40	8.51	V3B	bands show a brown hue due to low level biotite alteration.	
					This shear is characterized by a strong carbonate overprinting and fine brecciation, where the	
					pebble sized clasts are oriented along the shear plane. Quartz carbonate veining plays no role,	
CP 11 044	211 10	210 E <i>1</i>	1 1 1	СПD	giving this shear a very different look as compared to the previous one. The core is very solid	
CK-11-044	514.40	510.54	4.14	ЭПК	but silicification is marginal. Carbonate contains some bands that are brown coloured due to	
					the presence of biotite. Very fine grained magnetite is unevenly distributed. Sulphides are	
					present in minute traces.	
					Green grey coloured Balmer Basalt. Varying from massive with few carbonaceous fractures to	
					well foliated with quartz carbonate pillow selvedges and several generations of quartz	
CR-11-044	318.54	373.65	55.11	V3B	carbonate veining. Veins may be unaffected by deformation to extreme dismemberment and	
					boudines. Traces of fine grained sulphides can be encountered on occasion.	
					Upper and lower sections of the shear are dominated by biotite on undulating planes and	
CR-11-044	373.65	382.27	8.62	SHR	ground up quartz carbonate veining. Pyrrhotite is the dominating sulphide. In the center the	
					shear is more vein dominated and planar. Here quartz and quartz carbonate veins are frequent.	
					Next to some very fine grained pyrrhotite magnetite is present as well.	
CR-11-044	382.27	461.72	79.45	V3B	As above 318.54m to 373.65m	

Hole Name	From	То	Length	Code	Description	Rep
CR-11-044	461.72	464.33	2.61	ATZ	Moderate biotite alteration zone. Strongest alteration in first meter where biotite may reach 5% and quartz carbonate veining 2%. Associated with both is finely disseminated pyrrhotite and very fine grained arsenopyrite. The next 130cm are only marginally altered and don't contain any sulphide levels worth talking of. The last 33cm show an increase in biotite again and disseminated fine pyrrhotite and smaller masses as well but no arsenopyrite.	
CR-11-044	464.33	492.59	28.26	ATZ/SHR	Immediately beneath the moderate biotite alteration zone the Basalt is very green coloured from the presence of hornblende and chlorite. 10 to 15% of the rock is made up of boudinaged and dismembered quartz carbonate veins in places. Pyrrhotite is finely disseminated but the distribution is very uneven. It may also be concentrated in some of the veins and vein fragments. Next to pyrrhotite chalcopyrite can be frequently found on the periphery of smallish pyrrhotite massees. The whole unit has also seen a low level pervasive silicification.	
CR-11-044	492.59	927.45	434.86	I3A	Blueish green grey coloured Gabbro is fine grained and moderately foliated at the contact to the Balmer Basalts. Over the course of the first 30 meters this fine grained expression alternates with sections that show contact shearing and are rather green, medium grained with flaky biotite along the shear/foliation planes. The contact zone is also exploited by three Quartz Monzodiorites that have intruded along the shear planes. Past the first 30m the Gabbro settles into a fine to medium grained massive texture. Quartz carbonate veins are few and far inbetween. Upper contact is sharp at 45 degCa.	
CR-11-044	927.45	943.92	16.47	V3B	Very fine grained pale green grey coloured Basalt. Up to 2% quartz carbonate veins tend to be folded in first few meters but with increasing depth they are braided anastomosing and dismembered. Basalt is weakly to not at all foliated with ahigh level of variation between 40 and 60 degCa. Sulphides are present only at the trace level. Contact between Gabbro and Basalt is dyked out by Quartz Monzodiorite and subsequent Lamprophyre.	
CR-11-044	943.92	944.45	0.53	ATZ	Weakly banded carbonate overprinting with about 6% carbonate present. Apart from the carbonate the section is quite dark grey colouredbut it does not look very biotitic. About 1% of the alteration zone is made up of quartz carbonate veining. About 1,5 % pyrrhotite is present in streaks and very thin bands. It can also be found in very grains in the carbonate and quartz carbonate. Chalcopyrite occurs in traces. The surrounding Basalt is not affected and the contacts are rather sharp. Both running at 50 degCa.	
CR-11-044	944.45	989.98	45.53	V3B	Medium grey to pale gree coloured and fine grained Basalt. Massive for the most part with weak foliation in places. Quartz carbonate veining is at the 2 % level and most veins are dismembered and frayed. Sulphides if present are at minimum trace level.	

Hole Name	From	То	Length	Code	Description	Rep
CR-11-044	989.98	1007.88	17.90	V3B/SHR	Contact sheared grey brown coloured Basalt. Several younger intrusions crossing the Basalt at this level (Quartz Monzodiorite, Diorite, Lamprophyre) possibly exploiting a preexisting shear or fault zone. Foliation direction changing from 50 to 60 degCa within Quartz Monzodiorite. When in contact with the intrusions the Basalt shows a moderate biotite alteration to the tune of 3% and thin sheeted quartz carbonate veining. As of 999m the intensity wanes quickly into a well defined foliation with less than 1% veining before it disappears.	
CR-11-044	1007.88	1020.35	12.47	V3B	Fine grained medium grey coloured Basalt. Gritty looking with little discerning features. Thin carbonaceous fractures but almost no veining present.	
CR-11-044	1020.35	1021.85	1.50	SHR	Weak shear with marginal biotite and quartz carbonate veining. At center several milky quartz veins cross that have replaced quartz carbonate veins fragments of which can be seen amongst the quartz. Larger pyrrhotite masses and some disseminated pyrrhotite is present in the veins.	
CR-11-044	1021.85	1112.13	90.28	V3B	Fine grained medium grey sometimes pale greenish coloured Basalt. Basalt is mostly massive with occasional weak foliation that varies up to 15 degrees over short distances. Veining is below 2% and pillow selvedges are few and far inbetween. Sulphides when present are at minimum trace level. Closer to the contact with the Gabbro below several Quartz Monzodiorites and dioritic intrusions cross. Baslt is not contact sheared but rather appears recrystalized with only thin low angle fractures but no veining or sulphides.	
CR-11-044	1112.13	1148.64	36.51	I3A	Fine to medium grained Gabbro. First short section before Quartz Monzodiorite is very homogeneous and massive. Past the younger intrusive the Gabbro is more medium grained and greenish grey in colour, exhibiting the normal local texture, mostly massive with occasional section of ductile deformation. Moderately biotite altered at lower contact of Quartz Monzodiorite.	
CR-11-044	1148.64	1153.07	4.43	SHR	Shear in Gabbro with 1 % biotite and 3 % quartz carbonate veining. Two thick (23cm and 44cm) milky quartz veins with biotite crossing in center, as well as thin Monzodiorite. Trace sulphides locally. Shear direction runs between 60 and 70 degCa. Contacts are gradual over 10cm.	
CR-11-044	1153.07	1234.69	81.62	I3A	Gabbro as before the shear. Very homogeneous. Lower contact is sharp.	
CR-11-044	1234.69	1246.85	12.16	V3B	Medium grey-green coloured, fine grained, irregular fractured variably pillowed, Balmer Basalt with abundant (05-10%) quartz-carbonate fracture filling and to a lesser extent (05%) quartz carbonate veining throughout. Select, widely spaced, poorly developed pillow-top breccia sections contain locally disseminated and well mineralized, mm-scale quartz carbonate veins of little apparent consequence. Foliation is weak at 70degCA. Upper contact is sharp.	

Hole Name	From	То	Length	Code	Description	Rep
CR-11-044	1246.85	1250.90	4.05	SHR	<u>Sulphide Stringer bearing qtz-cb-PO-(PY-gt-bt)</u> Shear Zone in Balmer Basalt. Locally Near- Solid Sulphide (up to 15%) pseudo net textured replacement stringers of 05-15% Pyrrhotite and trace Pyrite. Alteration is characterized primarily by weakly pervasive carbonate with abundant grey coloured irregular planar and dismembered quartz carbonate veins as seen in "Sulphide Shear Zone" in hole CR-10-041, -042, and -043, nearer to surface. Few narrow (10cm wide) sections of whispy Biotite replacement with PO. Sulphide mineralization cheifly PO with trace PY finely disseminated locally, and no APY visible. Structure is irregular and crudely oriented at 40 to 60degCA. Upper Contact is diffuse and Lower Contact is sharp at Gabbro, while still sheared (described below).	
CR-11-044	1250.90	1254.00	3.10	SHR	Sheared Gabbro Contact. Sulphides (5-10% PO, NIL PY) quickly diminish into footwall sheared gabbro as diffuse disseminations and whispy stringers from sharp upper contact at 1250.90 to 1252.00m. Shearing at 60degCA. Chlorite with associated fine grained quartz-carbonate partially replaces hornblende fine grained matrix. Local epidote green coloured bleaching in wall rock to fractures, NIL sulphides. Replacement textures not as strong as in sheared Basalt above. Lower contact is abrupt over 10cm.	
CR-11-044	1254.00	1336.54	82.54	I3A	Medium grained, green coloured, homogenous Gabbro as above. 1 to 5m intervals of fine grained Gabbro. Trace disseminated sulphide common throughout. Local alteration silica to ser-cb-bt-(gt)-(qtz-cb) in foliated sections. Lower contact is fine grained, planar and sharp at 55degCA at foliated Basalt.	
CR-11-044	1336.54	1337.45	0.91	V3B	Fine grained, pale medium blueish-green coloured, quartz-carbonate amygdular, foliated, weakly chlorite-carbonate altered Balmer Basalt. Upper contact is sharp at 55degCA.	
CR-11-044	1337.45	1338.10	0.65	SHR	Low angle, 03% disseminated Pyrite bearing Shear Zone in Balmer Basalt. Well defined envelope of low angle shearing at 30degCA with rotated quartz carbonate vein fragments. 30Qtz-Cb-(05sil)-(01bt) altered. Quartz-carbonate over printing is associated with the emplacement of fine grained disseminated and blebby Pyrite. Silica is pervasive throughout. Biotite very fine grained in the selvage areas of veining and sheared groundmass. Upper contact is conformable to regional foliation and abrupt at 52degCA while shear fabric is clearly oriented at 30degCA. Lower contact is also abrupt at 50degCA.	

Major Lithologies

Hole Name	From	10	Length	Code	Description	кер
CR-11-044	1338.10	1359.11	21.01	ATZ	Pale grey-green coloured, 08ser-07chl-05cb altered, bleached Balmer Basalt. Protolith Basalt is as described above Shear. Increased bleaching in downhole direction aproaching unconformity lower contact. One weakly foliated Quartz Monzodiorite dyke described as minor lithology. Planar foliation is pervasive throughout unit at 55degCA.	
CR-11-044	1359.11	1360.78	1.67	S6	Mixed Unconformity area comprised of 60% well foliated, bleached Balmer Basalt (as above) and 40% Pyrite mineralized Argillite sediments. Balmer and Bruce Channel beds interfaces are remarkably conformable. Contact is clearly above Major Fault described below. Sharp upper and lower contacts at 60degCA.	
CR-11-044	1360.78	1362.49	1.71	NSS	Bruce Channel Formation. Pyrite and Pyrrhotite Near Solid Sulphide replacement within BCF. 65% semi massive pyrite retrograde blebs within 25% replacement Pyrrhotite occurs in carbonaceous argillitic beds. One 49cm thick section of Solid Sulphide 4:1 Pyrite/Pyrrhotite at lower contact. Upper and lower contacts are sharp and irregular.	
CR-11-044	1362.49	1364.99	2.50	FLT	Major Fault just below Bruce Channel Formation Unconformity above. Fault ground, fine gouge and coarse chip, poor core recovery. Abundant graphite and minor carbonate within Agillaceous Sedimentary precursor rock. Approximately 10% sulphides (PY>PO) finely ground. >10% graphite.	
CR-11-044	1364.99	1365.00	0.01	EOH	Hole CR-11-044 terminated after intersecting Bruce Channel Formation - Balmer Unconformity. Fault poses a significant risk to drilling due to a high probability of "sticking" the rods in the poor rock quality within the Major Fault. No water was lost in the hole, nor in the fault through the course of drilling. Casing has been left in the hole. Geologist strongly recommends performing a Borehole Pulse -EM survey from 900 to 1355 metres hole depth to determine if "Sulphide Shear Zone", which was expected to lie immediately below the Main Gabbro Intrusive at approximately 930 metres hole depth can be detected west of the hole. It is expected that the Bruce Channel Formation will skew target results of the Pulse-EM survey. Hole CR-11-044 was completed in 36 days of diamond drilling. Water for drilling is scarce in this portion of the property for future drilling in the winter months. The core has been logged, sampled and stored in 312 NQ core trays at Conquest's Core Facility on the Alexander Property.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-11-044	77.46	78.00	12J	Medium grey coloured and fine grained Diorite. Upper and lower contacts are somewhat uneven and characterized by thin quartz carbonate veins. Upper cntact at 19 degCa and lower at 23 degCa.	
CR-11-044	130.61	133.37	I2H	Medium grey coloured and fine grained Monzodiorite. A bit leached looking, with fractures undulating along the core axis. Moderate foliation follows local pattern. Contains nil sulphides. Upper contact undulating at 30 degCa, lower at 33 degCa. Basalt in footwall shows biotite alteration over the next 30cm.	
CR-11-044	141.00	143.43	V3B	As of this depth pillow selvedges and amygdules become more frequent and easier to identify. Chlorite content of Basalt is slightly elevated and layers of finely brecciated basalt healed by carbonate become frequent. The occasional pillow selvedge will show pyrrhotite and magnetite.	
CR-11-044	143.43	145.11	130	Brownish grey coloured, dirty looking Lamprophyre. Rounded clasts of autobrecciation have accumulated at upper and lower contacts showing reaction halos. Unit is carbonaceous and soft. Upper contact is undulating at 56 degCa and lower at 49 degCa.	
CR-11-044	145.11	153.60	V3B	As above 141m to 143.43m.	
CR-11-044	153.60	155.31	12J	Medium grey coloured and fine grained massive Diorite. Minor flaky phlogopite at center follows local foliation pattern in its growth. Upper contact is rough and jagged running along the core axis for almost a meter. Lower contact is jagged as well but more or less perpendicular to core axis.	
CR-11-044	153.60	175.00	V3B	As above 141m to 143.43m.	
CR-11-044	245.18	249.69	I2H	Medium grained grey yellow coloured Monzodiorite. Unit is well foliated following the local pattern of 41 degCa. Weak sericite alteration is consistent throughout. Monzodiorite is brittle and core is fairly broken up. There is no veining and only the most minute traces of sulphides can be observed.	
CR-11-044	249.69	250.63	130	A fine grained dark brownish coloured Lamprophyre cuts the Monzodiorite at its center. Carbonate is weak. No other qualifiers present. Upper contact is roughly perpendicular to core axis. Lower contact is 45 degCa.	
CR-11-044	250.63	252.82	12H	Continuation of Monzodiorite encountered before the Lamprophyre. Lower contact at 36 degCa.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-11-044	323.25	325.95	12J	Fine to medium grained medium greycoloured Diorite. Weakly foliated with thin masses of phlogopite. Upper contact is sharp and perpendicular to core axis. Lower contact is sharp at 64 degCa.	
CR-11-044	334.86	336.08	I2H	Blotchy brown to dirty grey coloured Monzodiorite. Intrusive has seen a fair amount of biotite alteration which appears as if it follows a flow pattern Traces of sericite are present as well. Minute finely disseminated traces of sulphides are associated with the biotite and absent in lighter colored areas. Upper and lower contacts are sharp at 41 degCa, following the local foliation pattern.	
CR-11-044	416.20	419.71	I2H	Blotchy brown to purplish grey coloured Monzodiorite. Fine grained and nicely foliated with a weak sericite alteration. Minor bleaching around some thin fractures. Few thin quartz carbonate veins. Minute traces of sulphides are present. Basalt at upper contact is strongly biotite altered over 30cm; lower contact not so much which is a eversal of the usual situation. Upper contact is broken. Lower contact is straight at 34 degCa.	
CR-11-044	485.95	491.17	12G	Medium grey to dark grey coloured and fine grained Quartz Monzodiorite. Well foliated with sericite alteration along the foliation planes. Occasional thin biotite richer planes. Some minor quartz carbonate veining tends to be truncated and tends to run perpendicular to the foliation. Pyrrhotite is distributed in small masses for the most part whilest very fine arsenopyrite is disseminated throughout the unit. Both contacts are sharp and straight and run at 39 degCa.	
CR-11-044	502.05	509.45	12G	Brownish grey medium grained Quartz Monzodiorite. In short sections well foliated and slightly sericitized. Otherwise showing blebby masses of biotite that contain fine grained sulphides. About 1% quartz carbonate veining also contains sulphides. Apart from that sulphides can be found disseminated throughout the intrusive. Pyrrhotite is dominating but pyrite can be found as well as arsenopyrite in small aggregates. Contacts are sharp, upper at 38 degCa. Lower contact is very uneven but approximately runs at 28 degCa.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-11-044	547.00	553.44	I3A	As of 547m the gabbro is starting to show more of a variety of textures in short succession. This ranges from greenishgrey coloured fine grained foliated to blueish grey coloured very fine grained and massive to bands of a few cm width where the Gabbro seems recrystalized along planes of movement. The latter also show concentrations of pyrrhotite and chalcopyrite and to a lesser degree pyrite. Veining is minor and mostly seems to postdate deformation. This zone was also exploited by a number of Lamprophyres and dioritic dykes.	
CR-11-044	553.44	554.68	130	Fine grained dark grey coloured weakly carbonaceous Lamprophyre. Several chunks of assimilated Gabbro. Unit is massive otherwise showing a few carbonate filled hairline fractures. Upper cntact is sharp at 70degCa. The lower contact is uneven and interfingered with the surrounding Gabbro.	
CR-11-044	554.68	567.46	I3A	Gabbro as in 547m to 553.44m	
CR-11-044	567.46	577.79	130	Succession of three Lamprophyre dykes, separated by short sections of green medium grained Gabbro. Lamprophyres are fine to medium grained and contain small wall rock fragments which adds some green to the otherwise dark grey brownish colour. Even though the dykes look very similar the carbonate content decreases downwards. Contacts run between 50 to 70 degCa.	
CR-11-044	577.79	581.33	12J	Medium to dark grey fine grained Diorite. Intrusive is foliated with phlogopite aggregates on foliation planes. Aggregates have seen chloritization which adds a green sheen to the unit when dry. At 578m about 25cm contain mm sized cubic pyrite crystals. At 578.60m 20cm of Monzodiorite with uneven contacts show up. Upper and lower contacts of Diorite are sharp, upper at 58 degCa and lower at 73 degCa.	
CR-11-044	727.30	730.45	I2H	Medium to dark grey coloured fine grained Monzodiorite with very few idiomorph quartz crystals. Intrusive is fairly uniform throughout and crossed by multiple fractures, leading to badly broken core and core loss. Sulphides are disseminated and associated with very minor biotite alteration in streaky masses. Upper contact is undulating at 20 degCA. Lower contact is straight at 30 degCa.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-11-044	736.07	737.55	12G	Medium brown grey coloured and fine grained Quartz Monzodiorite. Contains coarse idiomorph quartz crystals. Pyrite is the dominating sulphide. Traces of arsenopyrite can be found throughout. Both contacts are straight, upper at 58 degCa and lower at 36 degCa.	
CR-11-044	738.25	738.88	130	Very fine grained green grey coloured Lamprophyre. Massive with little discerning features. Upper and lower contacts are straight at 42 degCa upper and 72 degCa lower.	
CR-11-044	777.95	778.52	130	Lamprophyre as previous unit. Upper contact at 43 degCa and lower contact at 51 degCa.	
CR-11-044	789.77	794.29	12G	Medium grey brown coloured and fine grained Quartz Monzodiorite. Mostly massive but showing weak foliation and sericite in a few places. Pyrite can be seen in streaks parallel to biotite crystals but the alteration is only marginal. Other dissemiated sulphides are pyrrhotite and arsenopyrite. The upper contact is quite uneven running at about 33 degCa. The Lower contact is straight at 44 degCa.	
CR-11-044	803.93	804.83	I2G	Medium grey coloured and fine grained Quartz Monzodiorite. Mostly massive with fine grained disseminated trace pyrite. Both contacts are straight, upper at 49 degCa and lower at 53 degCa.	
CR-11-044	838.94	849.10	12G	Medium to light grey coloured and fine grained Quartz Monzodiorite. The intrusive is well foliated throughout and contains several sections with strong sericite alteration, most of which are in the lower half. The sections tend to be quite broken. Pyrite is again the dominating sulphide but a dusting of arsenopyrite can be seen throughout the unit. Both contacts are straight at 45 degCa, same as the foliation pattern of the intrusive.	
CR-11-044	885.73	886.70	12J	Dark grey coloured and very fine grained massive Diorite with a lamprophyric look. Small cubic pyrite sprinkled in. Both contacts are straight, upper at 40 degCa and lower at 81 degCa.	
CR-11-044	906.11	918.66	I3A	Green grey coloured and very fine grained Gabbro. Massive with little internal structure. Thin straight quartz carbonate veins cross about every 40cm	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-11-044	918.66	919.80	I2G	Brown grey coloured and fine grained Quartz Monzodiorite. The intrusive is weakly foliated and contains minor sulphides including traces of arsenopyrite. Upper contact is straight at 42 degCa. Lower contact against Lamprophyre is straight as well at 64 degCa.	
CR-11-044	919.80	921.83	130	Dark grey coloured and fine grained dark grey Lamprophyre with 2 to 3% carbonate. Contains cubic pyrite up to millimeter size. Lower contact to Quartz Monzodiorite is straight at 74 degCa.	
CR-11-044	921.83	927.45	12G	Continuation of Quartz Monzodiorite encountered before the Lamprophyre. In contrast this part of the intrusion is well foliated at 51 degCa and contains streaky aggregates of sericite. Intrusion is crossed by several rather fine grained quartz carbonate veins. a 20 cm thick quartz vein at 925m is broken up and subsequently healed by similar quartz carbonate. Sulphides are very fine grained in general and barely above trace level.	
CR-11-044	935.07	938.52	V3B	Fine grained and moderately foliated Basalt with a fair amount of hornblende. Quartz carbonate veining is at 1% and no sulphides are present.	
CR-11-044	938.52	940.65	I2G	Medium brown grey coloured and fine grained Quartz Monzodiorite. Intrusive is moderately foliated and contains a few biotite flakes. Sulphides are very fine grained, with pyrrhotite dominating over pyrite as compared to previous Quartz Monzodiorites. Contacts are sharp, upper at 56 degCa and lower at 60 degCa.	
CR-11-044	990.75	995.41	12G	Medium brown grey coloured and fine grained Quartz Monzodiorite. Intrusive is well foliated for the most part but has some very fine grained translucent bands that may inticate some remobilization planes. At 994.80m foliation abruptly changes from 50 to 60 degCa. Contains an unusual amount of cubic pyrite, with crystals reaching up to 3mm in size. Contacts are straight, 56 degCa upper and 60 degCa lower.	
CR-11-044	995.41	996.99	12J	Dark grey coloured and fine grained Diorite. Intrusive is massive and granular looking, not unlike a Lamprophyre. Some medium grained feldspars and fine cubic pyrite sprinkled in. Lower contact is perpendicular to core axis.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-11-044	996.99	998.00	V3B/ATZ	Mixture of bleached Basalt, biotitic Basalt and blobs of Quartz Monzodiorite. Alteration is related to a thick meandering quartz vein. Rock has lots of stress fractures. Sulphides are at minimum trace level.	
CR-11-044	998.00	998.83	SHR	Sheared Basalt with low level quartz carbonate sheet veining. Mixed in are thin stringers of Quartz Monzodiorite and Diorite. Sulphides at trace level.	
CR-11-044	998.83	1007.88	V3B	Shear is waning quickly and for the remaining 9m the Basalt is well foliated and hornblende altered. No sulphides can be observed.	
CR-11-044	1025.62	1026.14	I2G	Medium grey brown coloured Quartz Monzodiorite. Fine grained and moderately foliated. Both pyrite and pyrrhotite are present but barely above trace level. Upper contact is sharp at 65 degCa. Lower contact is undulating at 78 degCa.	
CR-11-044	1026.14	1027.42	130	Medium grey coloured and fine to medium grained Diorite. Intrusive is partially foliated and contains phlogopite aggregates in those sections. Traces of cubic pyrite can be found locally. Lower contact is sharp at 73 degCa.	
CR-11-044	1027.42	1028.97	12J/V3B	Alternating mixture of dioritic bands paired with biotitic Basalt. Contains a few quartz veins but is not mineralized.	
CR-11-044	1028.97	1032.49	130	Dark grey coloured and fine grained Lamprophyre. The intrusive is masive and contains marginal carbonate. Some greenish almost translucent streaks are likely hornblende, and tend to be oriented parallel to the upper and lower contacts. Fine cubic pyrite can be observed thoughout.	
CR-11-044	1095.32	1099.28	12J	Dark grey coloured and very fine grained Diorite. Massive with no internal structure. Immediately follows a short carbonatized section surrounding a 3cm low angle quartz carbonate vein that is straight and undeformed. At about 1097m streaky phlogopite aggregates start to appear that give the Diorite a blobby look. Upper contact is undulating but roughly perpendicular to core axis. The lower contact is broken but appears perpendicular as well.	
CR-11-044	1099.28	1099.63	V3B	Short section of Basalt between two intrusives is marginally biotite altered and contains a few thin quartz carbonate veins but no sulphides.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-11-044	1099.63	1105.89	12G	Medium brown grey coloured Quartz Monzodiorite. Intrusive is moderately foliated and is quite inhomogeneous when it comes to grainsize. It reaches from fine grained to very fine grained sections. Composition appears the same but may indicate several different phases of intrusion. In some places higher levels of biotite and sericite can be observed but this stays well below 0.5% in general. Pyrrhotite and pyrite appear in blebs and finely disseminated. Very fine grained arsenopyrite can reach 0.15% locally and also appears alongside some of the pyrite blebs. Contacts are sharp, yet somewhat uneven. Upper contact at 58 degCa and lower at 60 degCa.	
CR-11-044	1105.89	1112.13	V3B	Medium grey coloured and very fine grained Basalt. Massive with some foliation in places. Veining is at less than 1 %. Few low angle fractures as in following unit. Marginal contact alteration to Quartz Monzodiorite above. Pervasive hornblende throughout.	
CR-11-044	1112.13	1114.58	I3A	Dark grey colouredand fine grained Gabbro. Very subtle change from Basalt mostly distinguishable by grain size change and uniformity of massive look. Increased amount of carbonaceous low angle fractures and few clear thin quartz veins following the same 20 to 25 degCa.	
CR-11-044	1114.58	1122.48	12G	Quartz Monzodiorite very much like 1099.63m to 1105.84m. However arsenopyrite levels are much higher throughout this unit, reaching 0.2%. Upper and lower contacts are straight, upper at 62 degCa and lower at 52 degCa.	
CR-11-044	1150.93	1151.83	I2H	Light to medium grey coloured and fine grained Monzodiorite. Crossed by several quartz carbonate veins that contain thick, late biotite infilling. Pyrite is present at trace level. Upper contact is undulating at 64 degCa. Lower contact is taken up by thick milky quartz vein which may be related to the intrusion or postdate it.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-11-044	1316.02	1317.62	12G	Fine grained, massive, steel-grey coloured, quartz phyric, up to 01% very finely disseminated lath Arsenopyrite bearing, Quartz Monzodiorite with trace disseminated Pyrite. Few cross-cutting irregular quartz-(carbonate) veins with no visible association to the presence of sulphides. Occasional fine garnets disseminated throughout. Non magnetic. Sharp upper and lower contacts at 68 and 48deg respectively. Lower contact is clearly cross-cutting foliation in down hole direction with regional foliation oriented up hole.	
CR-11-044	1340.42	1341.96	BRE	Pillow-top breccia Basalt with abundant carbonate-(quartz) cement between volcanic fragments. Fresh, unaltered, narrow, sulphide-barren breccia. Diffuse irregular contacts.	
CR-11-044	1347.00	1349.62	I2G	Steel-grey coloured, plagioclase feldspar phyric, quartz-eye bearing Quartz Monzodiorite with trace Arsenopyrite disseminated throughout. Planar foliation is weak at 58degCA. Weakly pervasive sil-ser alteration present. Upper contact is sharp cross-cutting at 77degCA. Lower contact is sharp at 45degCA. Non-Magnetic.	

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-11-044	E5309360	21.63	22.13	0.50		Wing sample, Partially bleached Basalt with hairline fractures.	3	11T472814
CR-11-044	E5309361	22.13	23.00	0.87	consecutive	Brecciated and remobilized quartz veining with trace sulphides	2	11T472814
CR-11-044	E5309362	23.00	23.85	0.85	consecutive	Brecciated and remobilized quartz veining with trace sulphides	2	11T472814
CR-11-044	E5309363	23.85	24.35	0.50	consecutive	Wing sample, dark grey fine grained Basalt	<1	11T472814
CR-11-044	E5309364	34.66	35.16	0.50	not consecutive	Wing sample, grey massive basalt with no veining	2	11T472814
CR-11-044	E5309365	35.16	35.78	0.62	consecutive	Green tuff/pyroclastic with garnets and fine grained sulphides	2	11T472814
CR-11-044	E5309366	35.78	36.60	0.82	consecutive	Less tuff and more grey grainy sections with fine disseminated sulphides and magnetite	1	11T472814
CR-11-044	E5309367	36.60	37.60	1.00	consecutive	As above 366	<1	11T472814
CR-11-044	E5309368	37.60	38.69	1.09	consecutive	Quartz carbonate healed fine Breccia with disseminated sulphides and magnetite	<1	11T472814
CR-11-044	E5309369	38.69	39.20	0.51	consecutive	Magnetite rich, chloritic and garnet bearing	<1	11T472814
CR-11-044	E5309370	0.00	0.00	0.00	not consecutive	Standard OxK 69 3.583 ppm Au	3450	11T472814
CR-11-044	E5309371	39.20	40.00	0.80	not consecutive	Wing sample, medium grey Basalt with amygdules and vein fragments	1	11T472814
CR-11-044	E5309372	87.99	88.49	0.50	not consecutive	Wing sample, green Basalt with minor bleaching	3	11T472814
CR-11-044	E5309373	88.49	89.12	0.63	consecutive	Series of carbonate stringers with rounded wall rock fragments and fine pyrrhotite and pyrite	2	11T472814
CR-11-044	E5309374	89.12	89.62	0.50	consecutive	Wing sample, green Basalt	<1	11T472814
CR-11-044	E5309375	99.00	100.00	1.00	not consecutive	Massive grey Basalt with less than 1% veining	1	11T472814
CR-11-044	E5309376	120.00	121.00	1.00	not consecutive	Wing sample, massive grey basalt	1	11T472814
CR-11-044	E5309377	121.00	122.00	1.00	consecutive	Mostly massive grey Basalt with one carbonate Stringer containing magnetite and pyrrhotite	<1	11T472814
CR-11-044	E5309378	122.00	123.00	1.00	consecutive	Wing sample, grey green Basalt with amygdules and 1.5% veining	<1	11T472814
CR-11-044	E5309379	136.54	137.04	0.50	not consecutive	Wing sample, green Basalt with quartz carbonate vein fragments	<1	11T472814
CR-11-044	E5309380	137.04	137.65	0.61	consecutive	Carbonate - magnetite overprinting with minor fine grained pyrrhotite	4	11T472814
CR-11-044	E5309381	137.65	138.15	0.50	consecutive	Wing sample, green Basalt with quartz carbonate vein fragments	2	11T472814
CR-11-044	E5309382	162.00	163.00	1.00	not consecutive	Wing sample, massive grey Basalt to increased amount of hornblende showing	5	11T472814
CR-11-044	E5309383	163.00	164.00	1.00	consecutive	Chlorite - hornblende dominated Breccia, carbonate healed	4	11T472814

Sampling Record

CR-11-044

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-11-044	E5309384	164.00	165.00	1.00	consecutive	Breccia as in previous meter and carbonate stringers that contain magnetite	4	11T472814
CR-11-044	E5309385	165.00	166.00	1.00	consecutive	As above 384	3	11T472814
CR-11-044	E5309386	166.00	167.00	1.00	consecutive	Wing sample, brecciation is subsiding	3	11T472814
CR-11-044	E5309387	170.69	171.19	0.50	not consecutive	Green hornblende Basalt with carbonaceous pillow selvedges	4	11T472814
CR-11-044	E5309388	171.19	171.56	0.37	consecutive	Thick carbonate stringer with magnetite	4	11T472814
CR-11-044	E5309389	171.56	172.06	0.50	consecutive	Wing sample, green hornblende Basalt with carbonaceous pillow selvedges	4	11T472814
CR-11-044	E5309390	0.00	0.00	0.00	not consecutive	Standard Si 42 1.761 ppm Au	1710	11T472814
CR-11-044	E5309391	200.00	201.00	1.00	not consecutive	Wing sample, green grey Basalt with 2% veining	4	11T472814
CR-11-044	E5309392	201.00	202.00	1.00	consecutive	As above 391	3	11T472814
CR-11-044	E5309393	202.00	203.00	1.00	consecutive	Wing sample, as above 391	5	11T472814
CR-11-044	E5309394	224.35	224.85	0.50	not consecutive	Wing sample, dark grey fine grained Basalt	4	11T472814
CR-11-044	E5309395	260.00	261.00	1.00	not consecutive	Fine grained moderately foliated Basalt	8	11T472814
CR-11-044	E5309396	224.85	225.42	0.57	not consecutive	Basalt with quartz carbonte veining, containing disseminated pyrrhotite	4	11T472814
CR-11-044	E5309397	225.42	226.65	1.23	consecutive	As above 394	4	11T472814
CR-11-044	E5309398	226.65	228.15	1.50	consecutive	As above 394	4	11T472814
CR-11-044	E5309399	228.15	229.00	0.85	consecutive	Basalt with dismembered quartz carbonate veining containing disseminated pyrrhotite	6	11T472814
CR-11-044	E5309400	229.00	229.50	0.50	consecutive	Wing sample, dark grey fine grained Basalt	4	11T472814
CR-11-044	E5309401	295.00	296.00	1.00	not consecutive	Wing sample, grey Basalt with 3% veining	5	11T472814
CR-11-044	E5309402	296.00	297.00	1.00	consecutive	Minor Breccia with carbonate overprinting	8	11T472814
CR-11-044	E5309403	297.00	298.00	1.00	consecutive	As above 401	6	11T472814
CR-11-044	E5309404	298.00	299.00	1.00	consecutive	Veining increased to 5%	6	11T472814
CR-11-044	E5309405	299.00	300.00	1.00	consecutive	As above 404	8	11T472814
CR-11-044	E5309406	300.00	301.00	1.00	consecutive	Stronger foliation in places	9	11T472814
CR-11-044	E5309407	301.00	302.38	1.38	consecutive	Basalt with bands of weak biotite alteration	11	11T472814
CR-11-044	E5309408	302.38	303.00	0.62	consecutive	Shear with quartz carbonate veins and trace sulphides	8	11T472814
CR-11-044	E5309409	303.00	304.00	1.00	consecutive	As above 408	18	11T472814
CR-11-044	E5309410	0.00	0.00	0.00	not consecutive	Standard Si 42 1.761 ppm Au	1680	11T472814
CR-11-044	E5309411	304.00	305.00	1.00	not consecutive	More minor Breccia than shear, trace sulphides	7	11T472814
CR-11-044	E5309412	305.00	305.89	0.89	consecutive	Shear gradually disappearing, trace sulphides	8	11T472814
CR-11-044	E5309413	305.89	307.00	1.11	consecutive	Only minor shear planes left	8	11T472814
CR-11-044	E5309414	307.00	308.00	1.00	consecutive	3% dismembered veining	7	11T472814
CR-11-044	E5309415	308.00	309.00	1.00	consecutive	As above 414 with 10cm planar quartz vein	6	11T472814
CR-11-044	E5309416	309.00	310.00	1.00	consecutive	Green grey Basalt	6	11T472814
CR-11-044	E5309417	310.00	311.00	1.00	consecutive	As above 416	6	11T472814
0 11 0								16 (00

Prepared by Benjamin Batson

2011 Drill Program - Alexander Gold Project

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-11-044	E5309418	311.00	312.00	1.00	consecutive	As above 416	9	11T472814
CR-11-044	E5309419	312.00	313.00	1.00	consecutive	As above 416	8	11T472814
CR-11-044	E5309420	313.00	314.40	1.40	consecutive	As above 416	9	11T472814
CP 11 044	EE200421	21/ /0	215.00	0.60	concocutivo	Shear/Breccia zone with strong carbonate overprinting, minor trace	0	117/7201/
CK-11-044	25509421	514.40	515.00	0.60	consecutive	sulphides	9	111472014
CR-11-044	E5309422	315.00	316.00	1.00	consecutive	As above 421	5	11T472814
CR-11-044	E5309423	316.00	317.00	1.00	consecutive	As above 421	7	11T472814
CR-11-044	E5309424	317.00	318.00	1.00	consecutive	As above 421	5	11T472814
CR-11-044	E5309425	318.00	318.54	0.54	consecutive	As above 421	5	11T472814
CR-11-044	E5309426	318.54	319.54	1.00	consecutive	Wing sample, green grey Basalt with 3% veining	7	11T472814
CR-11-044	E5309427	349.25	349.75	0.50	not consecutive	Wing sample, green Basalt	7	11T472814
CD 11 044	FF200428	240 75	251 10	1 1 1	concosutivo	Series of quartz carbonate veins with trace sulphides, weak shear	G	117472014
CK-11-044	E5309428	349.75	351.19	1.44	consecutive	structure	0	1114/2814
CR-11-044	E5309429	351.19	351.69	0.50	consecutive	Wing sample, green Basalt	8	11T472814
CR-11-044	E5309430	0.00	0.00	0.00	not consecutive	Standard OxK 69 3.583 ppm Au	3340	11T472814
CR-11-044	E5309431	373.00	373.65	0.65	not consecutive	Wing sample massive green Basalt	6	11T472814
CD 11 044	FF200422	272.65	274.40	0.75	concognitivo	Shear with sulphides, minor veining but quartz carbonate	11	117472014
CR-11-044	E5309432	373.05	374.40	0.75	consecutive	overprinting	11	111472814
CR-11-044	E5309433	374.40	375.16	0.76	consecutive	More diffuse quartz carbonate with finely disseminated sulphides	19	11T472814
CP 11 044	EE200424	275 16	276.00	0.94	consocutivo	Basalt with quartz carbonate stringers containing sulphides and	0	117/7201/
CK-11-044	LJJUJ454	575.10	570.00	0.84	consecutive	magnetite	9	111472014
CR-11-044	E5309435	430.00	431.00	1.00	not consecutive	Green grey Basalt	6	11T472814
CR-11-044	E5309436	376.00	377.00	1.00	not consecutive	As above 434	8	11T472814
CR-11-044	E5309437	377.00	377.55	0.55	consecutive	Green fine grained basalt with marginal biotite alteration	8	11T472814
CR-11-044	E5309438	377.55	378.55	1.00	consecutive	Silicious planar shear with magnetite, quartz carbonate veining	11	11T472814
CR-11-044	E5309439	378.55	379.40	0.85	consecutive	As above 438	23	11T472814
CR-11-044	E5309440	379.40	380.15	0.75	consecutive	More diffuse quartz carbonate with finely disseminated sulphides	196	11T472814
CR-11-044	E5309441	380.15	381.15	1.00	consecutive	Less quartz carbonate and sulphides, shear waning	8	11T472814
CR-11-044	E5309442	381.15	382.27	1.12	consecutive	As above 441	9	11T472814
CR-11-044	E5309443	382.27	382.77	0.50	consecutive	Wing sample, green Basalt	20	11T472814
		400.00	400.00	4.00		Basalt with minor veining but pillow selvedges have seen some	10	
CR-11-044	£5309444	438.00	439.00	1.00	not consecutive	quartz replacement	10	111472814
	55200445	454.00	452.00	1.00		Basalt with coarser hornblende and flaky biotite, minor trace	0	447472044
CR-11-044	£5309445	451.00	452.00	1.00	not consecutive	sulphides	9	111472814
CR-11-044	E5309446	460.00	461.00	1.00	not consecutive	Wing sample, Basalt with weak biotite alteration	15	11T472814

Sampling Record

CONQUEST Resources Limited

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-11-044	E5309447	461.00	461.72	0.72	consecutive	As previous but with two quartz carbonate stringers with biotite and sulphides	30	11T472814
CR-11-044	E5309448	461.72	462.69	0.97	consecutive	Moderate biotite alteration with disseminated pyrrhotite and arsenopyrite	724	11T472814
CR-11-044	E5309449	462.69	464.00	1.31	consecutive	Weak biotite alteration with minor traces of sulphides	28	11T472814
CR-11-044	E5309450	0.00	0.00	0.00	not consecutive	Standard Si 42 1.761 ppm Au	1640	11T472814
CR-11-044	E5309451	464.00	464.33	0.33	not consecutive	Biotite - chlorite with 1% fine grained pyrrhotite	110	11T472814
CR-11-044	E5309452	464.33	465.00	0.67	consecutive	hb-chl Basalt, well foliated to sheared with garnets, pyrrhotite, chalcopyrite and pyrite in matrix, veining and fractures	40	11T472814
CR-11-044	E5309453	465.00	466.00	1.00	consecutive	hb-chl Basalt, well foliated to sheared with garnets, pyrrhotite, chalcopyrite and pyrite in matrix, veining and fractures	16	11T472814
CR-11-044	E5309454	466.00	466.91	0.91	consecutive	hb-chl Basalt, well foliated to sheared with garnets, pyrrhotite, chalcopyrite and pyrite in matrix, veining and fractures	8	11T472814
CR-11-044	E5309455	466.91	467.91	1.00	consecutive	Dark brown grey Lamprophyre	26	11T472814
CR-11-044	E5309456	467.91	469.00	1.09	consecutive	hb-chl Basalt, well foliated to sheared with garnets, pyrrhotite, chalcopyrite and pyrite in matrix, veining and fractures	17	11T472814
CR-11-044	E5309457	469.00	470.00	1.00	consecutive	hb-chl Basalt, well foliated to sheared with garnets, pyrrhotite, chalcopyrite and pyrite in matrix, veining and fractures	9	11T472814
CR-11-044	E5309458	470.00	471.00	1.00	consecutive	hb-chl Basalt, well foliated to sheared with garnets, pyrrhotite, chalcopyrite and pyrite in matrix, veining and fractures	1550	11T472814
CR-11-044	E5309459	471.00	472.00	1.00	consecutive	hb-chl Basalt, well foliated to sheared with garnets, pyrrhotite, chalcopyrite and pyrite in matrix, veining and fractures	11	11T472814
CR-11-044	E5309460	472.00	473.00	1.00	consecutive	hb-chl Basalt, well foliated to sheared with garnets, pyrrhotite, chalcopyrite and pyrite in matrix, veining and fractures	9	11T472814
CR-11-044	E5309461	473.00	474.00	1.00	consecutive	hb-chl Basalt, well foliated to sheared with garnets, pyrrhotite, chalcopyrite and pyrite in matrix, veining and fractures	8	11T472814
CR-11-044	E5309462	474.00	475.00	1.00	consecutive	hb-chl Basalt, well foliated to sheared with garnets, pyrrhotite, chalcopyrite and pyrite in matrix, veining and fractures	8	11T472814

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-11-044	E5309463	475.00	476.00	1.00	consecutive	hb-chl Basalt, well foliated to sheared with garnets, pyrrhotite, chalcopyrite and pyrite in matrix, veining and fractures	27	11T472814
CR-11-044	E5309464	476.00	477.00	1.00	consecutive	hb-chl Basalt, well foliated to sheared with garnets, pyrrhotite, chalcopyrite and pyrite in matrix, veining and fractures	8	11T472814
CR-11-044	E5309465	477.00	478.00	1.00	consecutive	hb-chl Basalt, well foliated to sheared with garnets, pyrrhotite, chalcopyrite and pyrite in matrix, veining and fractures	39	11T472814
CR-11-044	E5309466	478.00	479.00	1.00	consecutive	hb-chl Basalt, well foliated to sheared with garnets, pyrrhotite, chalcopyrite and pyrite in matrix, veining and fractures	7	11T472814
CR-11-044	E5309467	479.00	480.00	1.00	consecutive	hb-chl Basalt, well foliated to sheared with garnets, pyrrhotite, chalcopyrite and pyrite in matrix, veining and fractures	9	11T472814
CR-11-044	E5309468	480.00	481.00	1.00	consecutive	hb-chl Basalt, well foliated to sheared with garnets, pyrrhotite, chalcopyrite and pyrite in matrix, veining and fractures	32	11T472814
CR-11-044	E5309469	481.00	482.00	1.00	consecutive	hb-chl Basalt, well foliated to sheared with garnets, pyrrhotite, chalcopyrite and pyrite in matrix, veining and fractures	19	11T472814
CR-11-044	E5309470	0.00	0.00	0.00	not consecutive	Standard Si 42 1.761 ppm Au	1720	11T472814
CR-11-044	E5309471	482.00	483.00	1.00	not consecutive	hb-chl Basalt, well foliated to sheared with garnets, pyrrhotite, chalcopyrite and pyrite in matrix, veining and fractures	7	11T472814
CR-11-044	E5309472	483.00	484.00	1.00	consecutive	hb-chl Basalt, well foliated to sheared with garnets, pyrrhotite, chalcopyrite and pyrite in matrix, veining and fractures	8	11T472814
CR-11-044	E5309473	484.00	485.00	1.00	consecutive	hb-chl Basalt, well foliated to sheared with garnets, pyrrhotite, chalcopyrite and pyrite in matrix, veining and fractures	8	11T472814
CR-11-044	E5309474	485.00	485.95	0.95	consecutive	hb-chl Basalt, well foliated to sheared with garnets, pyrrhotite, chalcopyrite and pyrite in matrix, veining and fractures	34	11T472814
CR-11-044	E5309475	485.95	487.40	1.45	consecutive	Quartz Monzodiorite with pyrrhotite and arsenopyrite	319	11T472814
CR-11-044	E5309476	487.40	488.90	1.50	consecutive	Quartz Monzodiorite with pyrrhotite and arsenopyrite	80	11T472814
CR-11-044	E5309477	488.90	490.00	1.10	consecutive	Quartz Monzodiorite with pyrrhotite and arsenopyrite	62	11T472814
CR-11-044	E5309478	490.00	491.17	1.17	consecutive	Quartz Monzodiorite with pyrrhotite and arsenopyrite	1490	11T472814
CR-11-044	E5309479	491.17	492.59	1.42	consecutive	As above 452	73	11T472814
Prepared by B	enjamin Batso	n			2011 [Drill Program - Alexander Gold Project		19 of 28

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-11-044	E5309480	492.59	493.09	0.50	consecutive	Wing sample, blueish grey fine grained Gabbro	8	11T475794
CR-11-044	E5309481	501.55	502.05	0.50	not consecutive	Wing sample, fine grained Gabbro, contact sheared.	23	11T475794
CR-11-044	E5309482	502.05	503.55	1.50	consecutive	Quartz Monzodiorite with pyrrhotite, pyrite and arsenopyrite	113	11T475794
CR-11-044	E5309483	503.55	505.05	1.50	consecutive	As above 482	295	11T475794
CR-11-044	E5309484	505.05	506.55	1.50	consecutive	As above 482	16	11T475794
CR-11-044	E5309485	506.55	508.05	1.50	consecutive	As above 482	7	11T475794
CR-11-044	E5309486	508.05	509.45	1.40	consecutive	As above 482	56	11T475794
CR-11-044	E5309487	509.45	509.95	0.50	consecutive	Wing sample, fine grained Gabbro, contact sheared.	57	11T475794
CR-11-044	E5309488	551.00	551.50	0.50	not consecutive	Wing sample, fine grained foliated Gabbro	6	11T475794
CP 11 044	EE200490		552.00	0.50	concocutivo	Gabbro with remobilization plane containing pyrrhotite and	6	117475704
CK-11-044	L3309489	551.50	552.00	0.30	consecutive	chalcopyrite.	0	111475794
CR-11-044	E5309490	0.00	0.00	0.00	not consecutive	Standard Si 42 1.761 ppm Au	1770	11T475794
CR-11-044	E5309491	552.00	552.50	0.50	not consecutive	Wing sample, fine grained foliated Gabbro	4	11T475794
CR-11-044	E5309492	559.61	560.11	0.50	not consecutive	Wing sample, foliated Gabbro and Lamprophyre	5	11T475794
CR-11-044	F2300/03	560 11	561.00	0 80	consecutive	Foliated gabbro with high mag reading containing pyrrhotite and	38	117/7579/
CK-11-044	L3309493	500.11	501.00	0.89	consecutive	chalcopyrite	38	111475794
CR-11-044	E5309494	561.00	562.00	1.00	consecutive	As above 493	11	11T475794
CR-11-044	E5309495	726.80	727.30	0.50	not consecutive	Wing sample, medium grained Gabbro	15	11T475794
CR-11-044	E5309496	562.00	563.00	1.00	not consecutive	As above 493	11	11T475794
CR-11-044	E5309497	563.00	564.00	1.00	consecutive	As above 493	12	11T475794
CR-11-044	E5309498	564.00	565.00	1.00	consecutive	As above 493	28	11T475794
CR-11-044	E5309499	565.00	566.00	1.00	consecutive	As above 493	6	11T475794
CR-11-044	E5309500	566.00	567.46	1.46	consecutive	Mag reading declining to normal levels. Less sulphides present.	130	11T475794
CR-11-044	E5309501	567.46	568.00	0.54	consecutive	Wing sample, fine grained Lamprophyre	15	11T475794
CR-11-044	E5309502	727.30	728.50	1.20	not consecutive	Monzodiorite with pyrite and minor biotite	509	11T475794
CR-11-044	E5309503	728.50	729.50	1.00	consecutive	As above 502	342	11T475794
CR-11-044	E5309504	729.50	730.45	0.95	consecutive	As above 502	356	11T475794
CR-11-044	E5309505	730.45	730.95	0.50	consecutive	Wing sample, medium grained Gabbro	9	11T475794
CR-11-044	E5309506	735.57	736.07	0.50	not consecutive	Wing sample, medium grained Gabbro	6	11T475794
CR-11-044	E5309507	736.07	737.55	1.48	consecutive	Quartz Monzodiorite with pyrite and arsenopyrite	188	11T475794
CR-11-044	E5309508	737.55	738.05	0.50	consecutive	Wing sample, medium grained Gabbro	3	11T475794
CR-11-044	E5309509	789.27	789.77	0.50	not consecutive	Wing sample, fine grained Gabbro with blob of Quartz Monzodiorite	6	11T475794
CR-11-044	E5309510	0.00	0.00	0.00	not consecutive	Standard Sk 43 4.086 ppm Au	4150	11T475794
CR-11-044	E5309511	789.77	791.27	1.50	not consecutive	Quartz Monzodiorite with pyrite, pyrrhotite and arsenopyrite	21	11T475794
CR-11-044	E5309512	791.27	792.77	1.50	consecutive	As above 511	38	11T475794
CR-11-044	E5309513	792.77	794.29	1.52	consecutive	As above 511	161	11T475794
CR-11-044	E5309514	794.29	794.79	0.50	consecutive	Wing sample, medium grained Gabbro	13	11T475794
Prepared by B	Benjamin Batso	n			2011 [Drill Program - Alexander Gold Project		20 of 28

Sampling Record

CR-11-044

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-11-044	E5309515	838.44	838.94	0.50	not consecutive	Wing sample, contact sheared Gabbro	7	11T475794
CR-11-044	E5309516	838.94	840.44	1.50	consecutive	Foliated Quartz Monzodiorite with pyrite, pyrrhotite and arsenopyrite	99	11T475794
CR-11-044	E5309517	840.44	841.94	1.50	consecutive	As above 516	57	11T475794
CR-11-044	E5309518	841.94	843.44	1.50	consecutive	As above 516	82	11T475794
CR-11-044	E5309519	843.44	844.94	1.50	consecutive	As above 516	73	11T475794
CR-11-044	E5309520	844.94	846.44	1.50	consecutive	As above 516 with more sericite	295	11T475794
CR-11-044	E5309521	846.44	847.94	1.50	consecutive	As above 516 with more sericite	143	11T475794
CR-11-044	E5309522	847.94	849.10	1.16	consecutive	As above 516	123	11T475794
CR-11-044	E5309523	849.10	849.60	0.50	consecutive	Wing sample, contact sheared Gabbro	8	11T475794
CR-11-044	E5309524	918.16	918.66	0.50	not consecutive	Wing sample, fine grained foliated Gabbro	46	11T475794
CR-11-044	E5309525	918.66	919.80	1.14	consecutive	Quartz Monzodiorite with pyrite, pyrrhotite and arsenopyrite	243	11T475794
CR-11-044	E5309526	919.80	920.80	1.00	consecutive	Fine grained Lamprophyre with cubic pyrite	7	11T475794
CR-11-044	E5309527	920.80	921.83	1.03	consecutive	As above 526	10	11T475794
CR-11-044	E5309528	921.83	923.33	1.50	consecutive	Quartz Monzodiorite with minimum trace sulphides	172	11T475794
CR-11-044	E5309529	923.33	924.83	1.50	consecutive	Quartz Monzodiorite with minimum trace sulphides	30	11T475794
CR-11-044	E5309530	0.00	0.00	0.00	not consecutive	Standard Si 42 1.761 ppm Au	1860	11T475794
CR-11-044	E5309531	924.83	926.33	1.50	not consecutive	Quartz Monzodiorite with minimum trace sulphides	57	11T475794
CR-11-044	E5309532	926.33	927.45	1.12	consecutive	Quartz Monzodiorite with minimum trace sulphides	568	11T475794
CR-11-044	E5309533	927.45	928.00	0.55	consecutive	Wing sample, foliated green grey Basalt	13	11T475794
CR-11-044	E5309534	938.02	938.52	0.50	not consecutive	Wing sample, foliated hornblende Basalt	8	11T475794
CR-11-044	E5309535	960.00	961.00	1.00	not consecutive	Basalt, with fine carbonate healed fractures and low angle quartz carbonate vein	3	11T475794
CR-11-044	E5309536	938.52	939.52	1.00	not consecutive	Quartz Monzodiorite with pyrrhotite, pyrite and trace arsenopyrite	51	11T475794
CR-11-044	E5309537	939.52	940.65	1.13	consecutive	As above 536	5	11T475794
CR-11-044	E5309538	940.65	941.15	0.50	consecutive	Wing sample, foliated hornblende Basalt	6	11T475794
CR-11-044	E5309539	943.42	943.92	0.50	not consecutive	Wing sample, Basalt with carbonate healed fractures	6	11T475794
CR-11-044	E5309540	943.92	944.45	0.53	consecutive	Basalt with carbonate overprinting and pyrrhotite - chalcopyrite mineralization	14	11T475794
CR-11-044	E5309541	944.45	945.00	0.55	consecutive	Wing sample, basalt with 3% quartz carbonate veining	11	11T475794
CR-11-044	E5309542	989.48	989.98	0.50	not consecutive	Wing sample, pale green grey Basalt	4	11T475794
CR-11-044	E5309543	989.98	990.75	0.77	consecutive	Weak shear with minor biotite alteration and trace sulphides	5	11T475794
CR-11-044	E5309544	990.75	992.25	1.50	consecutive	Quartz Monzodiorite with cubic pyrite	4	11T475794
CR-11-044	E5309545	992.25	993.50	1.25	consecutive	As above 544	10	11T475794
CR-11-044	E5309546	993.50	994.50	1.00	consecutive	As above 544	45	11T475794
CR-11-044	E5309547	994.50	995.41	0.91	consecutive	As above 544	32	11T475794
Drongrad by D) and a main Datas				2011	Drill Dreamanne Alexander Cold Dreiset		21 - f 20

Prepared by Benjamin Batson

2011 Drill Program - Alexander Gold Project

21 of 28

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-11-044	E5309548	995.41	996.99	1.58	consecutive	Fine grained massive diorite with trace pyrite	4	11T475794
CR-11-044	E5309549	996.99	998.00	1.01	consecutive	Basalt with bleaching mixed with Quartz Monzodiorite and asociated thick guartz vein. Trace sulphides	3	11T475794
CR-11-044	E5309550	0.00	0.00	0.00	not consecutive	Standard Si 42 1.761 ppm Au	1840	11T475794
CR-11-044	E5309551	998.00	998.83	0.83	not consecutive	Sheared basalt with Diorite, Quartz Monzodiorite, sheet veining, trace sulphides	20	11T475794
CR-11-044	E5309552	998.83	999.33	0.50	consecutive	Wing sample, foliated green grey Basalt	8	11T475794
CR-11-044	E5309553	1019.85	1020.35	0.50	not consecutive	Wing sample, fine grained grey Basalt	2	11T475794
CR-11-044	E5309554	1020.35	1020.91	0.56	consecutive	Weak shear with flaky biotite and no sulphides	4	11T475794
CR-11-044	E5309555	1057.00	1058.00	1.00	not consecutive	Green grey Basalt with 3% veining	5	11T475794
CR-11-044	E5309556	1020.91	1021.35	0.44	not consecutive	Shear with quartz dominated veining. Trace pyrrhotite	58	11T475794
CR-11-044	E5309557	1021.35	1021.85	0.50	consecutive	Weak shear with flaky biotite and no sulphides	16	11T475794
CR-11-044	E5309558	1021.85	1022.85	1.00	consecutive	Wing sample, massive Basalt with carbonate healed fractures	8	11T475794
CR-11-044	E5309559	1083.00	1084.00	1.00	not consecutive	Wing sample, green grey Basalt with 2% veining	2	11T475794
CR-11-044	E5309560	1084.00	1085.00	1.00	consecutive	Basalt with low angle quartz carbonate veins	10	11T475794
CR-11-044	E5309561	1085.00	1086.00	1.00	consecutive	As above 560	5	11T475794
CR-11-044	E5309562	1086.00	1087.00	1.00	consecutive	Wing sample, fine grained massive Basalt	4	11T475794
CR-11-044	E5309563	1099.13	1099.63	0.50	not consecutive	Wing sample, Diorite and Basalt	2	11T475794
CR-11-044	E5309564	1099.63	1101.00	1.37	consecutive	Fine grained Quartz Monzodiorite with pyrrhotite, pyrite and very fine arsenopyrite	100	11T475794
CR-11-044	E5309565	1101.00	1102.40	1.40	consecutive	As above 564	28	11T475794
CR-11-044	E5309566	1102.40	1103.80	1.40	consecutive	As above 564	183	11T475794
CR-11-044	E5309567	1103.80	1105.00	1.20	consecutive	As above 564	179	11T475794
CR-11-044	E5309568	1105.00	1105.89	0.89	consecutive	As above 564	125	11T475794
CR-11-044	E5309569	1105.89	1106.39	0.50	consecutive	Wing sample, marginally biotite altered Basalt at contact	17	11T475794
CR-11-044	E5309570	0.00	0.00	0.00	not consecutive	Standard Sk 43 4.086 ppm Au	4170	11T475794
CR-11-044	E5309571	1114.08	1114.58	0.50	not consecutive	Wing sample, fine grained Gabbro with biotite	7	11T475794
CR-11-044	E5309572	1114.58	1115.80	1.22	consecutive	Quartz Monzodiorite with 0.2% arsenopyrite, pyrrhotite and pyrite	288	11T475794
CR-11-044	E5309573	1115.80	1117.20	1.40	consecutive	As above 572	207	11T475794
CR-11-044	E5309574	1117.20	1118.60	1.40	consecutive	As above 572	154	11T475794
CR-11-044	E5309575	1178.00	1179.00	1.00	not consecutive	Fine grained massive Gabbro	7	11T475794
CR-11-044	E5309576	1118.60	1120.00	1.40	not consecutive	As above 572	225	11T475794
CR-11-044	E5309577	1120.00	1121.20	1.20	consecutive	As above 572	231	11T475794
CR-11-044	E5309578	1121.20	1122.48	1.28	consecutive	As above 572	341	11T475794
CR-11-044	E5309579	1122.48	1123.00	0.52	consecutive	Wing sample, fine grained Gabbro	5	11T475794
CR-11-044	E5309580	1148.14	1148.64	0.50	not consecutive	Wing sample, fine grained Gabbro	22	11T478280

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-11-044	E5309581	1148.64	1149.90	1.26	consecutive	Sheared gabbro with quartz carbonate veins and thick quartz vein	10	11T478280
CR-11-044	E5309582	1149.90	1150.93	1.03	consecutive	Sheared gabbro with 1% biotite and 1% veining. Trace sulphides	13	11T478280
CR-11-044	E5309583	1150.93	1151.83	0.90	consecutive	Monzodiorite with thick quartz vein at base. Quartz carbonate biotite veins. Trace sulphides	8	11T478280
CR-11-044	E5309584	1151.83	1153.07	1.24	consecutive	Shear with straight and folded/dismembered quartz carbonate veins. Trace sulphides	12	11T478280
CR-11-044	E5309585	1153.07	1153.57	0.50	consecutive	Wing sample, fine grained Gabbro	13	11T478280
CR-11-044	E5309586	1240.60	1241.60	1.00	not consecutive	Wing Sample: quartz carbonate fracture filled and veined Basalt	7	11T478280
CR-11-044	E5309587	1241.60	1241.90	0.30	consecutive	Character Sample: narrow 10% pyrrhotite mineralized quartz carbonate replaced 4cm thick shear (probable slip plane along pillow selvage)	3	11T478280
CR-11-044	E5309588	1241.90	1242.90	1.00	consecutive	Wing Sample: quartz carbonate fracture filled and veined Basalt	3	11T478280
CR-11-044	E5309589	1242.90	1244.00	1.10	consecutive	Infill Wing Sample: Hangingwall to Sulphide Bearing Shear Zone. Sample is comprised of pillowed Basalt with quartz-carbonate veins and trace pyrite.	6	11T478280
CR-11-044	E5309590	0.00	0.00	0.00	not consecutive	Standard Sample: SK43 4086 ppb Au	4250	11T478280
CR-11-044	E5309591	1244.00	1245.00	1.00	not consecutive	Infill Wing Sample: Hangingwall to Sulphide Bearing Shear Zone. Sample is comprised of pillowed Basalt with quartz-carbonate veins and trace pyrite.	5	11T478280
CR-11-044	E5309592	1245.00	1246.00	1.00	consecutive	Infill Wing Sample: Hangingwall to Sulphide Bearing Shear Zone. Sample is comprised of pillowed Basalt with quartz-carbonate veins and trace pyrite.	2	11T478280
CR-11-044	E5309593	1246.00	1246.85	0.85	consecutive	Wing Sample: Hangingwall to Sulphide Bearing Shear Zone. Sample is comprised of pillowed Basalt with 05% quartz-carbonate veins and trace pyrite. Generally unsheared and foliated.	6	11T478280
CR-11-044	E5309594	1246.85	1247.50	0.65	consecutive	<u>Sulphide-bearing Shear Zone</u> - locally NSS Bands appoximately 5cm thick in qtz-cb-(gt-bt) altered, sheared Basalt. This zone is similar to the SSZ as seen in CR-10-041, -042, and -043.	6	11T478280
CR-11-044	E5309595	1256.00	1256.50	0.50	not consecutive	Blank Sample: medium grained Gabbro. NIL sulphides.	3	11T478280
CR-11-044	E5309596	1247.50	1248.50	1.00	not consecutive	Sulphide-bearing Shear Zone - locally NSS Bands appoximately 5cm thick in qtz-cb-(gt-bt) altered, sheared Basalt. 15% PO in local NSS.	22	11T478280

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-11-044	E5309597	1248.50	1249.50	1.00	consecutive	Sulphide-bearing Shear Zone - locally NSS Bands appoximately 5cm thick in qtz-cb-(gt-bt) altered, sheared Basalt. 10% PO in local NSS.	9	11T478280
CR-11-044	E5309598	1249.50	1250.50	1.00	consecutive	<u>Sulphide-bearing Shear Zone</u> - locally NSS Bands appoximately 5cm thick in qtz-cb-(gt-bt) altered, sheared Basalt. Up to 15% PO in local NSS. Several irregular 3 to 5 cm thick quartz-carbonate veins in sheared Basalt.	4	11T478280
CR-11-044	E5309599	1250.50	1250.90	0.40	consecutive	<u>Sulphide-bearing Shear Zone</u> - locally NSS Bands appoximately 5cm thick in qtz-cb-(gt-bt) altered, sheared Basalt. Final sample in shear zone interval with 10% PO in whispy stringers with quartz-carbonate veins and pervasive alteration.	4	11T478280
CR-11-044	E5309600	1250.90	1252.00	1.10	consecutive	Wing (Double Split) Sample: Sheared Gabbro contact to above sulphide-bearing shear zone. Sample contains 02% very fine grain disseminated Pyrite and Pyrrhotite.	3	11T478280
CR-11-044	E5309601	1252.00	1253.00	1.00	consecutive	Gabbro with well developed shear fabric 05% quartz-carbonate veined. 05% PO. Trace PY.	3	11T478280
CR-11-044	E5309602	1253.00	1254.00	1.00	consecutive	Last Sheared Gabbro sample containing 03-05% PO and trace PY.	5	11T478280
CR-11-044	E5309603	1254.00	1255.22	1.22	consecutive	Wing Sample: Medium grained, foliated Gabbro. 01% fine, planar, quartz-carbonate veins.	3	11T478280
CR-11-044	E5309604	1315.02	1316.02	1.00	not consecutive	Wing Sample: Medium grained, foliated Gabbro at contact to I2G. 01% fine, planar, quartz-carbonate veins.	6	11T478280
CR-11-044	E5309605	1316.02	1316.80	0.78	consecutive	Character Sample: Quartz Monzodiorite 01% very fine grained Arsenopyrite and trace Pyrite.	106	11T478280
CR-11-044	E5309606	1316.80	1317.62	0.82	consecutive	Character Sample: Quartz Monzodiorite 01% very fine grained Arsenopyrite and trace Pyrite.	37	11T478280
CR-11-044	E5309607	1317.62	1318.62	1.00	consecutive	Wing Sample: Gabbro. NIL sulphides.	11	11T478280
CR-11-044	E5309608	1335.54	1336.54	1.00	not consecutive	Wing Sample: Massive Gabbro. NIL sulphides.	3	11T478280
CR-11-044	E5309609	1336.54	1337.45	0.91	consecutive	Infill Wing Sample: 02% Quartz-carbonate amygdular foliated Basalt	4	11T478280
CR-11-044	E5309610	0.00	0.00	0.00	not consecutive	Standard Sample: SK43 4086 ppb Au	4060	11T478280
CR-11-044	E5309611	1337.45	1338.10	0.65	not consecutive	Low-angle quartz-carbonate overprinted Shear Zone in Balmer Basalt. 03% finely disseminated and blebby Pyrite.	6	11T478280
CR-11-044	E5309612	1338.10	1339.30	1.20	consecutive	Infill Wing Sample: Barren massive qtz-cb amygdular Basalt flow interval. NIL sulphides.	2	11T478280
CR-11-044	E5309613	1339.30	1340.42	1.12	consecutive	Infill Wing Sample: Barren massive qtz-cb amygdular Basalt flow interval. NIL sulphides.	18	11T478280

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-11-044	E5309614	1340.42	1341.22	0.80	consecutive	Pillow-top Breccia Basalt with up to 30% quartz-carbonate cement. NIL sulphides.	1	11T478280
CR-11-044	E5309615	1341.96	1342.96	1.00	not consecutive	Blank Sample: Fresh amygdular Basalt. NIL sulphides. Wing Sample for end of sample interval.	2	11T478280
CR-11-044	E5309616	1341.22	1341.96	0.74	not consecutive	Pillow-top Breccia Basalt with up to 30% quartz-carbonate cement. NIL sulphides.	4	11T478280
CR-11-044	E5309617	1341.96	1347.00	5.04	consecutive	Wing Sample: Fresh massive Basalt. NIL sulphides.	12	11T478280
CR-11-044	E5309618	1347.00	1348.50	1.50	consecutive	Bleached, plagioclase phyric, Quartz Monzodiorite with up to 01% Arsenopyrite lath-morphology "flecks" throughout and 02% blebby Pyrite.	30	11T478280
CR-11-044	E5309619	1348.50	1349.62	1.12	consecutive	Bleached, plagioclase phyric, Quartz Monzodiorite with up to trace Arsenopyrite lath-morphology "flecks" throughout and 02% blebby Pyrite.	53	11T478280
CR-11-044	E5309620	1349.62	1350.62	1.00	consecutive	Infill Wing (Double Split) Sample: foliated and bleached Basalt at lower contact to I2G dyke above. NIL sulphides.	4	11T478280
CR-11-044	E5309621	1350.62	1352.00	1.38	consecutive	Infill Wing Sample: Well planar foliated ser-chl0-qtz-cb-(PY) Basalt. Trace very fine grained disseminations of Pyrite.	2	11T478280
CR-11-044	E5309622	1352.00	1353.50	1.50	consecutive	Infill Wing Sample: Well planar foliated ser-chl0-qtz-cb-(PY) Basalt. Trace very fine grained disseminations of Pyrite.	14	11T478280
CR-11-044	E5309623	1353.50	1355.00	1.50	consecutive	Infill Wing Sample: Well planar foliated ser-chl0-qtz-cb-(PY) Basalt. Trace very fine grained disseminations of Pyrite.	10	11T478280
CR-11-044	E5309624	1355.00	1356.50	1.50	consecutive	Infill Wing Sample: Well planar foliated ser-chl0-qtz-cb-(PY) Basalt. Trace very fine grained disseminations of Pyrite.	4	11T478280
CR-11-044	E5309625	1356.50	1358.00	1.50	consecutive	Infill Wing Sample: Well planar foliated ser-chl0-qtz-cb-(PY) Basalt. Trace very fine grained disseminations of Pyrite.	2	11T478280
CR-11-044	E5309626	1358.00	1359.11	1.11	consecutive	Balmer Basalt as above with fine quartz-carbonate veins along foliation plane at lower contact to Bruce Channel Formation.	41	11T478280
CR-11-044	E5309627	1359.11	1360.11	1.00	consecutive	Bruce Channel Formation : Mixed volcanic and sediments. 60% strongly foliated and bleached Balmer Basalt. 49% Argillite Bruce Channel Formation sediments containing up to 03% Pyrite in whispy threads and blebs within black seds.	9	11T478280
CR-11-044	E5309628	1360.11	1360.78	0.67	consecutive	Bruce Channel Formation: Mixed volcanic and sediments. 60% strongly foliated and bleached Balmer Basalt. 49% Argillite Bruce Channel Formation sediments containing up to 03% Pyrite in whispy threads and blebs within black seds.	5	11T478280
CR-11-044	E5309629	1360.78	1362.00	1.22	consecutive	70% mixed sediments (argillite and siltstone) with 30% replacement NSS 15%PY 25%PO within Bruce Channel Formation	171	11T478280

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-11-044	E5309630	0.00	0.00	0.00	not consecutive	Standard Sample: SI42 1761 ppb Au	1780	11T478280
CR-11-044	E5309631	1362.00	1362.49	0.49	not consecutive	Bruce Channel Formation replacement <u>Solid Sulphide</u> hosted within black argillite. 65% Pyrite, 25% Pyrrhotite, and 10% sediments.	185	11T478280
CR-11-044	E5309632	1362.49	1363.32	0.83	consecutive	Mixed sediments and volcanic: 90% Argillite (with <05% Pyrite) and 10% Balmer Basalt (NIL sulphides).	31	11T478280
CR-11-044	E5309633	1363.32	1365.00	1.68	consecutive	MAJOR FAULT UNCONFORMITY. Fault gouge contains up to 20% graphite. Argillaceous gouge and ground wallrock fragments contain approximately 05% Pyrite.	22	11T478280

Reflex Survey Record

Hole ID	Station (m)	Dip (Degrees)	Azimuth
CR-11-044	27	-85.3	10.70
CR-11-044	63	-84.9	8.00
CR-11-044	93	-84.70	18.10
CR-11-044	120	-84.60	23.80
CR-11-044	153	-84.30	16.00
CR-11-044	183	-84.30	20.20
CR-11-044	213	-83.40	24.00
CR-11-044	249	-82.90	26.10
CR-11-044	273	-82.10	27.30
CR-11-044	303	-81.70	30.70
CR-11-044	339	-81.70	29.60
CR-11-044	360	-81.40	31.70
CR-11-044	393	-81.20	30.10
CR-11-044	423	-81.20	32.80
CR-11-044	453	-79.90	34.50
CR-11-044	483	-79.30	34.90
CR-11-044	513	-79.20	36.90
CR-11-044	543	-79.00	37.80
CR-11-044	573	-78.40	36.70
CR-11-044	603	-77.80	35.70
CR-11-044	633	-77.60	39.20
CR-11-044	663	-77.20	39.10
CR-11-044	693	-77.20	39.30
CR-11-044	723	-76.80	40.10
CR-11-044	753	-76.70	41.50
CR-11-044	783	-76.40	40.40
CR-11-044	813	-76.20	42.10
CR-11-044	843	-75.90	42.10
CR-11-044	873	-75.80	41.80
CR-11-044	903	-74.60	42.10
CR-11-044	933	-74.90	42.60
CR-11-044	963	-73.80	42.00
CR-11-044	992	-73.70	42.50
CR-11-044	1023	-74.00	42.40
CR-11-044	1053	-73.50	43.70
CR-11-044	1083	-72.70	44.10
CR-11-044	1143	-71.60	44.20

Reflex Survey Record

Hole ID	Station (m)	Dip (Degrees)	Azimuth
CR-11-044	1203	-71.30	44.90
CR-11-044	1233	-70.50	48.10
CR-11-044	1293	-70.40	46.90
CR-11-044	1323	-70.00	46.80
CR-11-044	1353	-70.10	46.50

Conquest Resources Ltd.

Exploration Diamond Drill Log

CR-11-045

DRILL HOLE # CR-11-045	LOCATION B	almertown, Balmer Town	nship, Red Lake Dist	rict, Ontario		
PROJECT # Alexander	REFERENCE	Alexander	GEOLOGIST	Meckert	CLAIM K	(RL 20304
GRID/ NAD-ZONE	NORTHING	EASTING		ELEVATION		GRID TYPE
GRID Alexander	RL 3+95 S	8+22 E		10003		М
UTM NAD83 / 1	5U 5655987	450690		384		
COLLAR DIP -75	GRID DIRECTION	22° W of gridN			AZ DIRECTION	008
NTS REF # 052N04	NTS SHEET NAME	Red Lake, Or	tario			
START DATE 27-Feb-1	<u>1</u>	FINISH DATE	16-Mar-11			and the Darkson
DEPTH (EOH) 909.00	TARGET & Zone Dep	th <u>11:4/0m Pro</u>	Diection of LC dyke a	and SSZ, 12: 700	J-890 Lower Sne	ar in Baimer
PURPOSE Test lower	Baimer below I3A-SHR	contact. End noie in BCF	PIEC	E POINT of Target:	E	MELEV
CASING BW ha	CASING NW	<u>/m</u>	_		CASING HW	na
PLUG @ ha	PLUG @	na	_		PLUG @	na
START DTH na	WEDGE @	na	_			
REDUCED @ na		REDUCED @ na	_			
HOLE STATUS Completed	, capped, left casing.					
DRILLING CONTRACTOR	Boart Longyear I	nc.				
RIG NO. LY 50 410	12				BXS.	208
	A 71841 ITU	Keflex EZ-Sho			Commonto	
	A211/1011		-75.00		comments.	
30	14.40		-73.40	-		
60	18.10		-72.60	-		
90	21.10		-71.80	4		
120	22.90		-70.30	-		
150	23.70		-70.20	-		
180	24.90		-70.00	1		
216	23.70		-69.90	This diamond	drill hole did not	t intersect any
240	25.10		-69.80	significant shear,	brecciation or alte	ration structures
270	25.40		-69.70	within the Balm	er Basalts. Several	minor structures
300	26.10		-69.60	were tested but	did not return signi	ficantly elevated
360	26.50		-69.30	levels of gold m	ineralisation. A str	ongly sericitised
396	27.50		-68.30	0.49gr/t Au ov	er 5.45m betweer	314.40m and
450	28.00		-68.00	319.85m.		
520	28.50		-67.40	1		
570	28.30		-66.50	1		
630	29.30		-65.50	1		
690	29.80		-65.10	1		
756	30.60		-67.40	1		
840	33.00		-63.50	1		
				-		

Drilled with 6m, double stablilized NQ core barrel

Planned hole depth is 900m (2950')

Core stored at Alexander Core Yard at UTM 0449935 5656595 UTM NAD83 15U

Water source: Clean water pond located above Goldcorp Tailings at 0451472 5656606 UTM NAD83 15U

Drill type: LY-50

Major Lithologies

Hole Name	From	То	Length	Code	Description	Rep
CR-11-045	0.00	6.65	6.65	CAS	NW Casing into overburden and bedrock	
CR-11-045	6.65	19.56	12.91	V3B	Balmer Assemblage. Medium grey-green coloured, fine grained, variably pillowed and locally sheared, trace disseminated sulphide bearing Basalt. Fractures are commonly irregular and quartz-carbonate filled. Well foliated at 50degCA. Background greenschist facies metamorphic grade. Lower contact with sheared Balmer Assemblage Iron Formation is sharp at 47degCA.	
CR-11-045	19.56	20.06	0.50	SHR	Very strongly sheared, highly magnetic, sil-MT-(PO-PY)-qtz-ser-(bt)-(ep?) altered volcanic- hosted replacement Iron Formation. Very fine grained to locally amorphous. Silica is not more than 10% of total composition. One irregular 2cm-sized, quartz-PY vein at low angle (20degCA) interpreted to be early, since crudely laminated shear "beds" of alternating MT-sil and sil-ser-(ep?) become oriented vein parallel in the immediate 5 cm around vein. MT-silica beds are finely featured with fine planar laminae oriented bed-parallel at 50degCA. Several thin, minor quartz-carbonate veins and vein fragments locally. Upper contact is strongly sheared, planar, and sharp at 50degCA. Upper contact is apprupt compositionally from replacement Iron Formation to Sheared Basalt footwall.	
CR-11-045	20.06	22.72	2.66	SHR	Weak to moderately sheared (50degCA) Basalt. Blocks of less sheared Basalt are generally fresh, while selvages and fine grained groundmass are 05chl-03bt-10quartz-cabonate altered. Many dismembered quartz-carbonate vein fragments occur throughout this sheared unit. Trace disseminated Pyrrhotite > Pyrite throughout. Locally magnetic due to PO. Lower contact is diffuse with qtz-bt-carb-PY vein (3cm) at 52degCA.	
CR-11-045	22.72	89.04	66.32	V3B	Balmer Assemblage Basalt similar to above. Generally well foliated at 45 to 55degCA. Quartz Monzodiorite dyking over 1 to 3m-scale intervals with contacts cross-cutting dominant foliation. Pervasive carbonate alteration locally near amygdular pillow selvages locally. Locally variolitic plagioclase microphyric textured, as described in minor lithologies.	
CR-11-045	89.04	95.86	6.82	I2G	Low angle, light grey coloured, 02% very fine grained Pyrite and trace disseminated Arsenopyrite bearing, sil-ser bleached Quartz Monzodiorite Dyke. Strongly foliated at 35degCA. Upper and lower contacts are sharp at 30degCA.	
CR-11-045	95.86	103.40	7.54	V3B	Basalt as above. Sharp, irregular, lower contact at Gabbro.	
CR-11-045	103.40	264.53	161.13	I3A	Green-coloured, variably fine to coarse grained Gabbro. Intrusive textures are generally massive with intervals of well defined planar foliation at 50 to 60degCA. Lower contact is sharp at 50degCA.	

Hole Name	From	То	Length	Code	Description	Rep
CR-11-045	264.53	305.43	40.90	V3B	Medium grey coloured and fine grained Basalt. Fairly well foliated over longer sections. In the immediate contact range below the Gabbro moderate mineralization and an increased level of quartz carbonate is present. This wanes quickly and beyond 270m the Basalt becomes massive with few signs of pillow selvedges. Here veining is rather in the low range with 2 to 3 % and carbonaceous fractures are less common as well. Sulphides at minimum trace level can be observed locally.	
CR-11-045	305.43	319.85	14.42	I2G	Brown grey coloured and fine to medium grained Quartz Monzodiorite. Intrusive is very inhomogeneous from unaffected medium grained texture to sections that are strongly foliated to sheared with a significant amount of sericite where only quartz eyes and sulphide grains can be made out. Sericite in general increasing downwards. Several low angle straight quartz carbonate veins cross, one of which carries 50% sulphides including arsenopyrite. Sulphides are disseminated and appear in tiny streaky masses with pyrite outweighing pyrrhotite (combined 1%). Arsenopyrite where present mostly occurs in small granular aggregates. Contacts are sharp, upper at 44 degCa and lower at 52 degCa.	
CR-11-045	319.85	360.87	41.02	V3B	Pale green grey coloured and fine grained Basalt. Basalt between two Quartz Monzodiorites is moderately chloritized and fractured in bands. Fractures are healed by carbonate. There is also an increased amount of bands of hornblende - chlorite alteration with associated quartz carbonate veining. Intact quartz carbonate veins can contain more than 30% pyrrhotite, while pre hornblende vein fragments assimilated by the alteration fronts are sulphide free. In the center of the unit the alteration bands are 10 to 15cm apart and mineralized to 3 % by pyrrhotite with traces of pyrite and chalcopyrite showing as well. Veining generally is at 3 % but may reach 5% locally.	
CR-11-045	360.87	371.89	11.02	I2G	Medium brown grey coloured and fine grained Quartz Monzodiorite. As compared to the previous Quartz Monzodiorite this unit is very uniform, generally massive and showing only a weak foliation. Mineralization is weak as well and the distribution is uneven, with only minor pyrrhotite and the occasional arsenopyrite crystal. Contacts are sharp, 56 degCa upper and 51 degCa lower.	
CR-11-045	371.89	485.12	113.23	V3B	Grey greenish coloured and fine grained Basalt. Basalt is mostly massive with sections that show lots of carbonaceous hairline frasctures. Weak foliation doesn't follow any clear direction and may in part be an expression of ductile deformation. About every 0.5m a 2 to 3 cm wide band of hornblende - chlorite alteration crosses. This is often accompanied by quartz carbonate or has reworked quartz carbonate veining. These bands generally contain pyrrhotite and to a lesser degree chalcopyrite. Veining on average runs between 4 and 5 %. Apart from the sulphides associated with the hornblende there are only minimal traces in the Basalt itself.	

Hole Name	From	То	Length	Code	Description	Rep
CR-11-045	485.12	504.35	19.23	130	Highly variable very fine grained dark grey coloured to fine grained green grey coloured Lamprophyre. Very fine grained sections are at the top, base and center and have intruded after the fine grained sections were emplaced. Fine grained sections have seen foliation and ductile deformation as well as hornblende alteration and in some cases where the deformation was more intense biotite is present The very fine grained sections in contrast are massive with little internal texture. There are also signs that some of the first generation intrusive was brecciated, partially assimilated and caked back together by the finer grained material. Between 493.50m and 494m a fine grained medium grey intrusion is most likely dioritic, being the only section that is not carbonaceous. There are also two secions of Basalt that are bleached in one case and chloritized in the other. Contacts are sharp, upper at 74 degCa and lower at 73 degCa.	
CR-11-045	504.35	545.39	41.04	V3B	Medium grey coloured and fine grained Basalt. Mostly massive with network of carbonaceous hairline fractures. Occasionally weakly foliated around 60 degCa. Veining is at about 3% but veins contain only minimum traces of sulphides if any. Some thin hornblende - chlorite bands following no clear pattern. Normal Basalt with typical background values.	
CR-11-045	545.39	553.95	8.56	I2G	Dark brown grey coloured and fine grained Quartz Monzodiorite. Less free quartz than in usual Quartz Monzodiorites encountered. Unit is moderately foliated and crossed by two 20 cm milky quartz veins near the top that contain late biotite and pyrrhotite infilling. Wall rock around the veins is silicified and light grey colored. Dominating sulphide in upper two thirds of unit is arsenopyrite which can be seen in elongated crystals grown along certain foliation planes. The two thick quartz veins have remobilized some of the arsenopyrite and led to larger crystal growth around the veins. There is no arsenopyrite in the veins themselves, making it unlikely that they would be the source. Past 550m the arsenopyrite retreats to 0.1% and pyrrhotite rebounds to about 1%. Also, between 550m and 551m the unit is brecciated and healed by milky quartz but this has not led to a concentration of arsenopyrite in the wall rock. Upper contact sharp at 57 degCa. Lower contact a bit uneven at 55 degCa.	
CR-11-045	553.95	577.54	23.59	V3B	As before, Basalt between two intrusives has the tendency to show more hornblende - chlorite alteration bands. These bands in general follow the local foliation pattern of 60 degCa. As compared to the "normal" unaffected Basalt between the bands, hornblende - chlorite alteration tends to carry 0.25 % to 0.5% sulphides. Usually pyrrhotite and traces of chalcopyrite. The level of mineralization is much lower than in the previous example though. The lower contact against the Gabbro is gradual and very difficult to grasp.	

Hole Name	From	То	Length	Code	Description	Rep
CR-11-045	577.54	594.43	16.89	I3A	Very pale green coloured and fine to medium grained Gabbro. Medium grained sections are massive while the finer sections are well foliated, which is in contrast to the surrounding Basalt that is only weakly foliated. Foliation, the quality of the "green" colour and the absence of mineralization is what makes it standout from the Basalt. The lower contact is better defined than the upper contact and runs at 54 degCa.	
CR-11-045	594.43	817.20	222.77	V3B	Medium grey green coloured and fine grained Basalt. Normal background level Basalt with 3% veining, pillow selvedges and carbonaceous fracture fillings. Veining is folded and sometimes contorted but in comparison quite intact. Locally the veining may be at 5 to 6 % but does not follow a pattern. With depth the degree to which the Basalt is foliated rises and becomes more readily definable. Mineralization where present is at minimum trace level.	
CR-11-045	817.20	828.28	11.08	I2G	Medium grey brown coloured and fine grained Quartz Monzodiorite. Unit is well foliated throughout and shows signs of autobrecciation in parts. Three generations of quartz / quartz carbonate veins cross, one of which predates the foliation. Neither generation shows significant mineralization. Altogether veining is about 2 %. Mineralization is not very strong with flaky pyrite and pyrrhotite running at 0.2 % each. At center of intrusive a short section of Basalt is contact sheared and shows a biotite alteration of less than 1 % and no sulphides. All contacts are sharp. Upper contact at 51 degCa and lower contact at 67 degCa.	
CR-11-045	828.28	845.90	17.62	V3B	Basalt as above from 594.43m to 817.20m. Foliation getting more pronounced from 842.48m downwards.	
CR-11-045	845.90	851.95	6.05	12G	Medium grey coloured and fine grained Quartz Monzodiorite with few quartz eyes. 1 % quartz veining with bleached and silicified halos. Intrusive is moderately foliated and contains traces of sericite. Sulphides appear in small flakes in the 0.5 % range. In bleached sections arsenopyrite is easy to spot. Upper contact is straight at 67 DegCa. Lower contact is folded into the Basalt. Resulting fractures are filled with biotite and Large pyrrhotite fragments.	
CR-11-045	851.95	854.92	2.97	V3B	Strongly foliated moderately chloritic Basalt between two Quartz Monzodiorites is not mineralized.	
CR-11-045	854.92	862.97	8.05	I2G	Medium to light grey coloured and fine to medium grained Quartz Monzodiorite. Quite sericitized in short sections but mostly unaltered. Mineralized as previous Quartz Monzodiorite.	
CR-11-045	862.97	898.52	35.55	V3B	Green grey coloured chloritic Basalt with minor hornblende. Basalt is strongly foliated to contact sheared. Quartz carbonate veining runs at 3 %, with veins being thin and draen out. ! % biotite and minimal trace sulphides are present.	

Hole Name	From	То	Length	Code	Description	Rep
CR-11-045	898.52	908.99	10.47	S6D	Contact between Balmer Basalt and Bruce Channel Sediments is sharp. To 901.50m the dark grey Mudstones are intensly folded and contorted but very solid. Past that the Mudstone is nicely banded and looks very orderly. The sediment contains about 3 % pyrrhotite	
CR-11-045	908.99	909.00	0.01	ЕОН	EOH in <u>Bruce Channel Formation</u> . Hole ended 10.5m past Balmer / Bruce Channel unconformity. EOH at 909.00m on March 16, 2011. Hole maintained for further investigation. Easy-Shot surveyed. Core is stored at the Conquest Core Facility on the Alexander Property in 208 NQ trays in racks. 135 samples sent for Au fire assay (50g pulp) at AGAT Labs, Mississauga, ON.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-11-045	37.19	38.84	I2G	Light grey coloured, 02% very fine grained Pyrite and trace disseminated Arsenopyrite bearing, Quartz Monzodiorite dyke with sharp upper and lower contacts at 50degCA and 28degCA respectively. Foliation 50degCA. Lower contact has abundant grey sulphides in wallrock Basalt.	
CR-11-045	40.00	40.70	SHR	Minor Sheared Basalt horizon with up to 08% pyrite and 02% pyrrhotite disseminated sulphide mineralization. Upper and lower contacts are diffuse and largely defined by the increase in foliation/shear fabric with the presence of disseminated sulphides. Pervasive carbonate alteration (03-05%) with up to 05% irregular quartz-carbonate veining.	
CR-11-045	40.7	45.00	SHR	Poorly developed zone of shearing with trace pyrite in Balmer Basalt. Upper contact is gradational. Lower contact is gradational and cheifly defined by presence of quartz carbonate veins. Poorly developed fabric likely indicitive of poor degree of shearing, possibly formational as subsequent slip between non-variolitic beds above and plagioclase microphyric variolitic textured Basalt below.	
CR-11-045	67.50	68.74	V3B	Textural variation of parent Basalt with plagioclase microphyric (salt-and-pepper) variolitic texture. Upper and lower bed contacts are subparallel to foliation at 40degCA and 50degCA respectively.	
CR-11-045	72.00	75.50	V3B	Textural variation of parent Basalt with plagioclase microphyric (salt-and-pepper) variolitic texture. Upper and lower bed contacts are diffuse.	
CR-11-045	211.41	212.57	SHR	Minor Sheared chl-hb-bt-(cal)-PY-(PO) Gabbro. Medium grained crystal textures are attenuated along weak shear at 60degCA. Fractures are very tightly healed with calcite micro-crystalline laths along fractures with minor associated trace Pyrite. Zone of shearing has "bit-burn" on much of the core face from drilling process. 01PY and trace PY sulphide mineralization. Shear zone is of little consequence mineralogically with respect to potential.	
CR-11-045	390.86	392.26	I2G	Dark brown grey coloured and fine grained Quartz Monzodiorite. Well foliated with trace sericite and about 1 to 2 % biotite and 1 % dismembered quartz veins. 3 cm cross cutting quartz vein led to silicification of wall rock. Low level pyrrhotite mineralization with traces of arsenopyrite. Upper contact is obscured by quartz carbonate vein. Lower contact sharp at 55 degCa.	
CR-11-045	405.29	406.01	I2H	Medium brown coloured and fine grained Monzodiorite. 30 % dense very fine matrix with off white feldspars sprinkled in. Massive with no foliation and only minimum trace sulphides. Contacts are sharp, 70 degCa upper and 61 degCa lower.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-11-045	512.95	514.00	I2J	Very fine grained lamprophyric looking dioritic intrusive. With trace sulphides. Contacts are straight, upper at 69 degCa and lower at 71 degCa.	
CR-11-045	582.53	585.96	I2H	Medium brown grey coloured blotchy looking Monzodiorite with occasinal quartz crystal. Partially foliated and from very fine to almost medium grained. Auto brecciated and reconstituted, hence the blotchy appearance. Upper folited section is weakly sericitized. Mineralization is weak with pyrite running around 0.25 %. Upper contact is diffuse but seems close to local foliation pattern at 59 degCa. Lower contact is uneven at 64 degCa.	
CR-11-045	642.59	643.92	12H	Medium brown grey coloured and fine grained Monzodiorite. Massive with marginal foliation if any. Minimal trace sulphides are present. Contacts are sharp, Upper at 66 degCa, lower at 57 degCa.	
CR-11-045	750.50	753.04	12H	Medium grey coloured and fine grained Monzodiorite. Well foliated with traces of sericite. No veining or alteration. Pyrite is the only discernable sulphide running about 0.2 %. Contacts are sharp, upper at 71 degCa, lower at 63 degCa.	
CR-11-045	894.50	895.61	12G	Medium grey coloured and fine grained Quartz Monzodiorite. Intrusive is well foliated like surrounding Balmer Basalt close to the contact with the Bruce Channel Sediments. The intrusive contains about 0.5 % sulphides including the occasional trace of arsenopyrite. Contacts are sharp, upper at 62 degCa and lower at 66 degCa.	

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-11-045	E5309634	18.06	19.56	1.50		Wing Sample: Basalt NIL sulphides.	8	11T480993
CR-11-045	E5309635	23.55	24.05	0.50	not consecutive	Blank Sample: Foliated Basalt approx. 05% quartz-carbonate, bleached Basalt.	4	11T480993
CR-11-045	E5309636	19.56	20.06	0.50	not consecutive	sil-MT-(PO-PY)-qtz-bt-(ep?) altered, very strongly sheared Replacement Iron Formation within Balmer Formation. 10% Magnetite, 05% PO, 04% PY.	8	11T480993
CR-11-045	E5309637	20.06	21.06	1.00	consecutive	Sheared footwall to SHR-IF. Irregular dissmembered quartz- carbonate vein fragments. 05% PO>PY.	8	11T480993
CR-11-045	E5309638	21.06	22.72	1.66	consecutive	Sheared footwall to SHR-IF. Irregular dissmembered quartz- carbonate vein fragments. 05% PO>PY.	34	11T480993
CR-11-045	E5309639	22.72	23.72	1.00	consecutive	Wing Sample: Well foliated Basalt with few fine PO blebs.	12	11T480993
CR-11-045	E5309640	36.19	37.19	1.00	not consecutive	Double Split Wing Sample of Basalt with 02% qtz-cb amygdules and minor veining. Trace Pyrite.	50	11T480993
CR-11-045	E5309641	37.19	37.74	0.55	consecutive	Quartz Monzodiorite foliated 60degCA with minor trace very fine grained and disseminated Pyrite	2	11T480993
CR-11-045	E5309642	37.74	38.84	1.10	consecutive	Quartz Monzodiorite foliated 60degCA with minor trace very fine grained and disseminated Pyrite. 9cm vein with no pyrite. Grey sulphides at contact to Basalt.	42	11T480993
CR-11-045	E5309643	38.84	40.00	1.16	consecutive	Foliated Basalt, amygdular with 5% quartz carbonate biotite veins.	28	11T480993
CR-11-045	E5309644	40.00	40.70	0.70	consecutive	Weakly sheared Basalt with very fine grained sulphides disseminated throughout.	23	11T480993
CR-11-045	E5309645	40.70	41.70	1.00	consecutive	Weakly sheared Basalt with 5% quartz carbonate biotite veining.	36	11T480993
CR-11-045	E5309646	41.70	43.00	1.30	consecutive	Weakly sheared Basalt with 5% quartz carbonate biotite veining. Trace pyrite	43	11T480993
CR-11-045	E5309647	43.00	44.00	1.00	consecutive	Weakly sheared Basalt with 10% quartz carbonate biotite veining. Trace pyrite.	7	11T480993
CR-11-045	E5309648	44.00	45.00	1.00	consecutive	Wing sample, weakly sheared Basalt with 10% quartz carbonate biotite veining. Trace pyrite.	8	11T480993
CR-11-045	E5309649	88.64	89.64	1.00	not consecutive	Wing sample, Basalt with nil sulphides.	10	11T480993
CR-11-045	E5309650	0.00	0.00	0.00	not consecutive	Standard SK 43 4.086 ppm Au	4210	11T480993
CR-11-045	E5309651	89.64	91.14	1.50	not consecutive	Quartz Monzodiorite, quartz eye bearing. 1 % disseminated sulphides, arsenopyrite bearing.	21	11T480993
CR-11-045	E5309652	91.14	92.14	1.00	consecutive	Quartz Monzodiorite, quartz eye bearing. 1 % disseminated sulphides, arsenopyrite bearing.	213	11T480993
CR-11-045	E5309653	92.14	93.14	1.00	consecutive	Quartz Monzodiorite, quartz eye bearing. 1 % disseminated sulphides, arsenopyrite bearing.	25	11T480993

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-11-045	E5309654	93.14	94.13	0.99	consecutive	Quartz Monzodiorite, quartz eye bearing. 1 % disseminated sulphides arsenonyrite bearing	180	11T480993
CR-11-045	E5309655	96.86	97.86	1.00	not consecutive	Wing sample, Basalt with nil sulphides.	105	11T480993
<u></u>	55200656		05.4.4	4.04		Quartz Monzodiorite, quartz eye bearing. 1 % disseminated	200	447400000
CR-11-045	E5309656	94.13	95.14	1.01	not consecutive	sulphides, arsenopyrite bearing.	288	111480993
CR-11-045	E5309657	95.14	95.86	0.72	consecutive	Quartz Monzodiorite, quartz eye bearing. 1 % disseminated sulphides, arsenopyrite bearing.	333	11T480993
CR-11-045	E5309658	95.86	96.86	1.00	consecutive	Basalt with 5% veining and nil sulphides.	66	11T480993
CR-11-045	E5309659	210.91	211.41	0.50	not consecutive	Wing sample, fine grained Gabbro with section of Lamprophyre.	33	11T480993
CR-11-045	E5309660	211.41	212.57	1.16	consecutive	Moderately sheared Gabbro with trace pyrite.	49	11T480993
CR-11-045	E5309661	212.57	213.12	0.55	consecutive	Wing sample, weakly sheared Gabbro with nil sulphides.	70	11T480993
CR-11-045	E5309662	266.00	267.00	1.00	not consecutive	Character sample, Basalt with fractured pillow margin. Albite - sericite and quartz carbonate. Pyrrhotite dominating sulphide with chalcopyrite and arsenopyrite in traces.	39	11T480993
CR-11-045	E5309663	267.00	268.00	1.00	consecutive	Character sample, Basalt with fractured pillow margin. Albite - sericite and quartz carbonate. Locally mineralized with pyrrhotite as dominating sulphide with chalcopyrite and arsenopyrite in traces. 15 % quartz carbonate	3	11T480993
CR-11-045	E5309664	268.00	269.00	1.00	consecutive	Character sample, Basalt with fractured pillow margin. Albite - sericite and quartz carbonate. Locally mineralized with pyrrhotite as dominating sulphide with chalcopyrite and arsenopyrite in traces. 15 % quartz carbonate	4	11T480993
CR-11-045	E5309665	269.00	270.00	1.00	consecutive	Character sample, Basalt with fractured pillow margin. Albite - sericite and quartz carbonate. Locally mineralized with pyrrhotite as dominating sulphide with chalcopyrite and arsenopyrite in traces. 15 % quartz carbonate	4	11T480993
CR-11-045	E5309666	270.00	271.00	1.00	consecutive	Wing sample, dark grey Basalt with nil sulphides and 5 % quartz carbonate veining.	3	11T480993
CR-11-045	E5309667	304.93	305.43	0.50	not consecutive	Wing sample, Basalt with marginal biotite alteration at contact	6	11T480993
CR-11-045	E5309668	305.43	306.90	1.47	consecutive	Quartz Monzodiorite with pyrite, pyrrhotite and trace arsenopyrite.	16	11T480993
CR-11-045	E5309669	306.90	308.40	1.50	consecutive	Quartz Monzodiorite with pyrite, pyrrhotite and trace arsenopyrite.	33	11T480993
CR-11-045	E5309670	0.00	0.00	0.00	not consecutive	Standard Si 42 1.761 ppm Au	1920	11T480993
CR-11-045	E5309671	308.40	309.90	1.50	not consecutive	Quartz Monzodiorite with pyrite, pyrrhotite and trace arsenopyrite.	10	11T480993

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-11-045	E5309672	309.90	311.40	1.50	consecutive	Quartz Monzodiorite with pyrite, pyrrhotite and trace arsenopyrite.	7	11T480993
CR-11-045	E5309673	311.40	312.90	1.50	consecutive	Quartz Monzodiorite with pyrite, pyrrhotite and trace arsenopyrite. Increasing amount of sericite.	31	11T480993
CR-11-045	E5309674	312.90	314.40	1.50	consecutive	Quartz Monzodiorite with pyrite, pyrrhotite and trace arsenopyrite. Increasing amount of sericite. Low angle pyrrhotite filled fracture.	66	11T480993
CR-11-045	E5309675	319.85	320.45	0.60	not consecutive	Wing sample, Fine grained hornblende Basalt.	16	11T480993
CR-11-045	E5309676	314.40	315.90	1.50	not consecutive	Sericitized Quartz Monzodiorite with sulphides as before	505	11T480993
CR-11-045	E5309677	315.90	317.40	1.50	consecutive	Sericitized Quartz Monzodiorite with sulphides as before	54	11T480993
CR-11-045	E5309678	317.40	318.90	1.50	consecutive	Strongly sericitized Quartz Monzodiorite with sulphides as before	546	11T480993
CR-11-045	E5309679	318.90	319.85	0.95	consecutive	Strongly sericitized Quartz Monzodiorite with sulphides as before	1090	11T480993
CR-11-045	E5309680	335.00	335.70	0.70	not consecutive	Wing sample, medium grey Basalt with little hornblende	5	11T480993
CR-11-045	E5309681	335.70	337.24	1.54	consecutive	Basalt with bands of hornblende alteration carrying pyrrhotite, fragments of quartz carbonate veins.	5	11T480993
CR-11-045	E5309682	337.24	338.49	1.25	consecutive	Massive Basalt with thin carbonaceous fractures.	4	11T480993
CR-11-045	E5309683	338.49	339.53	1.04	consecutive	Basalt with more intense hornblende bands. Pyrrhotite in flakes, and as fine grained masses in quartz carbonate veins.	5	11T480993
CR-11-045	E5309684	339.53	340.79	1.26	consecutive	Hornblende not as intense, low angle fracture filled with pyrrhotite.	5	11T480993
CR-11-045	E5309685	340.79	341.29	0.50	consecutive	Wing sample, basalt with chloritization and thin carbonaceous fractures. Minimal trace sulphides.	3	11T480993
CR-11-045	E5309686	360.37	360.87	0.50	not consecutive	Wing sample, Basalt foliated with 5 % veining.	3	11T480993
CR-11-045	E5309687	360.87	362.37	1.50	consecutive	Quartz Monzodiorite, marginal sericite and low level sulphides. Mostly pyrrhotite at 0.2 % in irregular distribution.	80	11T480993
CR-11-045	E5309688	362.37	363.87	1.50	consecutive	Quartz Monzodiorite, marginal sericite and low level sulphides. Mostly pyrrhotite at 0.2 % in irregular distribution.	245	11T480993
CR-11-045	E5309689	363.87	365.37	1.50	consecutive	Quartz Monzodiorite, marginal sericite and low level sulphides. Mostly pyrrhotite at 0.2 % in irregular distribution.	17	11T480993
CR-11-045	E5309690	0.00	0.00	0.00	not consecutive	Standard Si 42 1.761 ppm Au	1910	11T480993
CR-11-045	E5309691	365.37	366.87	1.50	not consecutive	Quartz Monzodiorite, marginal sericite and low level sulphides. Mostly pyrrhotite at 0.2 % in irregular distribution.	24	11T480993

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-11-045	E5309692	366.87	368.37	1.50	consecutive	Quartz Monzodiorite, marginal sericite and low level sulphides. Mostly pyrrhotite at 0.2 % in irregular distribution.	7	11T480993
CR-11-045	E5309693	368.37	369.87	1.50	consecutive	Quartz Monzodiorite, marginal sericite and low level sulphides. Mostly pyrrhotite at 0.2 % in irregular distribution.	39	11T480993
CR-11-045	E5309694	369.87	370.87	1.00	consecutive	Quartz Monzodiorite, marginal sericite and low level sulphides. Mostly pyrrhotite at 0.2 % in irregular distribution.	25	11T480993
CR-11-045	E5309695	382.00	383.00	1.00	not consecutive	Basalt with 4 % veining, 5cm hornblende band with pyrrhotite, adjacent hairline fracture filled with chalcopyrite.	2	11T480993
CR-11-045	E5309696	370.87	371.89	1.02	not consecutive	Quartz Monzodiorite, marginal sericite and low level sulphides. Mostly pyrrhotite at 0.2 % in irregular distribution.	23	11T480993
CR-11-045	E5309697	371.89	372.39	0.50	consecutive	Wing sample, Basalt with marginal biotite alteration at contact	19	11T480993
CR-11-045	E5309698	390.00	390.86	0.86	not consecutive	Wing sample, biotitic Basalt and very dark, fine Lamprophyre.	3	11T480993
CR-11-045	E5309699	390.86	392.26	1.40	consecutive	Foliated Quartz Monzodiorite with biotite and trace pyrrhotite.	2	11T480993
CR-11-045	E5309700	392.26	393.00	0.74	consecutive	Wing sample, biotitic Basalt.	9	11T480993
CR-11-045	E5309701	489.00	490.00	1.00	not consecutive	Character sample, Fine grained foliated Lamprophyre with high kappa.	8	11T480993
CR-11-045	E5309702	490.00	491.00	1.00	consecutive	Finer grained Lamprophyre, not foliated with high Kappa.	6	11T480993
CR-11-045	E5309703	491.00	492.00	1.00	consecutive	"Coarser" Lamprophyre again with normal kappa.	4	11T480993
CR-11-045	E5309704	544.89	545.39	0.50	not consecutive	Wing sample, grey Basalt, moderately biotite altered at contact.	8	11T480993
CR-11-045	E5309705	545.39	546.50	1.11	consecutive	Quartz Monzodiorite with low free quartz, arsenopyrite dominating sulphide at 1%, 20cm milky quartz vein.	46	11T480993
CR-11-045	E5309706	546.50	547.50	1.00	consecutive	Quartz Monzodiorite with low free quartz, arsenopyrite dominating sulphide at 1%, 20cm milky quartz vein.	35	11T480993
CR-11-045	E5309707	547.50	548.50	1.00	consecutive	Foliated Quartz Monzodiorite with assimilated chunk of Basalt. Arsenopyrite at 0.5%.	10	11T480993
CR-11-045	E5309708	548.50	549.50	1.00	consecutive	Foliated Quartz Monzodiorite with assimilated chunk of Basalt. Arsenopyrite at 0.5%.	26	11T480993
CR-11-045	E5309709	549.50	550.50	1.00	consecutive	Foliated Quartz Monzodiorite with arsenopyrite at 0.5%. With 20cm of guartz healed Breccia.	25	11T480993
CR-11-045	E5309710	0.00	0.00	0.00	not consecutive	Standard SK 43 4.086 ppm Au	4270	11T480993

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-11-045	E5309711	550.50	551.50	1.00	not consecutive	Mostly quartz healed Quartz Monzodiorite Breccia with 0.1 % arsenopyrite and 1 % pyrrhotite.	44	11T480993
CR-11-045	E5309712	551.50	552.50	1.00	consecutive	Moderately foliated Quartz Monzodiorite with 0.1 % arsenopyrite and 1 % pyrrhotite.	25	11T480993
CR-11-045	E5309713	552.50	553.95	1.45	consecutive	Moderately foliated Quartz Monzodiorite with 0.1 % arsenopyrite and 1 % pyrrhotite.	149	11T480993
CR-11-045	E5309714	553.95	554.45	0.50	consecutive	Wing sample, green grey Basalt	15	11T480993
CR-11-045	E5309715	582.03	582.53	0.50	not consecutive	Wing sample, pale green Gabbro.	6	11T480993
CR-11-045	E5309716	564.00	565.00	1.00	not consecutive	Character sample, Basalt with 30 % hornblende - chlorite bands with pyrrhotite and trace chalcopyrite.	5	11T480993
CR-11-045	E5309717	565.00	566.00	1.00	consecutive	Character sample, Basalt with 30 % hornblende - chlorite bands with pyrrhotite and trace chalcopyrite.	3	11T480993
CR-11-045	E5309718	566.00	567.00	1.00	consecutive	Character sample, Basalt with 60 % hornblende - chlorite bands with pyrrhotite and trace chalcopyrite.	4	11T480993
CR-11-045	E5309719	567.00	568.00	1.00	consecutive	Basalt with 5 % veining and no hornblende alteration.	3	11T480993
CR-11-045	E5309720	582.53	584.00	1.47	not consecutive	Monzodiorite with sericite and 0.25 % pyrite.	2	11T480993
CR-11-045	E5309721	584.00	585.00	1.00	consecutive	Monzodiorite not as foliated, autobrecciated, alternating finer and coarser sections, still 0.25 % pyrite.	5	11T480993
CR-11-045	E5309722	585.00	585.96	0.96	consecutive	Monzodiorite not as foliated, autobrecciated, alternating finer and coarser sections, still 0.25 % pyrite.	6	11T480993
CR-11-045	E5309723	585.96	586.46	0.50	consecutive	Wing sample, Gabbro with biotite and hornblende, trace sulphides.	10	11T480993
CR-11-045	E5309724	702.00	703.00	1.00	not consecutive	Character sample, Basalt with hairline fractures, minor bleaching and minimum trace sulphides.	9	11T480993
CR-11-045	E5309725	703.00	704.00	1.00	consecutive	Fine grained grey Basalt with 4 % veining.	5	11T480993
CR-11-045	E5309726	704.00	705.00	1.00	consecutive	Fine grained grey Basalt with 4 % veining.	4	11T480993
CR-11-045	E5309727	705.00	706.00	1.00	consecutive	Fine grained grey Basalt with 4 % veining.	3	11T480993
CR-11-045	E5309728	729.00	730.00	1.00	not consecutive	Character sample, Basalt with 5 % veining, trace sulphides and 5cm band of bleached Microbreccia.	3	11T480993
CR-11-045	E5309729	730.00	731.00	1.00	consecutive	Foliated Basalt with 3 % veining and trace sulphides.	3	11T480993
CR-11-045	E5309730	0.00	0.00	0.00	not consecutive	Standard OxK 69 3.583 ppm Au	3810	11T480993
CR-11-045	E5309731	731.00	732.00	1.00	not consecutive	Basalt with 5 % veining and several thin bands of bleached Microbreccia.	4	11T480993
CR-11-045	E5309732	732.00	733.00	1.00	consecutive	Grey green Basalt with nil sulphides.	5	11T480993
CR-11-045	E5309733	765.00	766.00	1.00	not consecutive	Character sample, Basalt with 5 % veining and blotchy buff bleaching, minimum trace sulphides.	7	11T480993
CR-11-045	E5309734	766.00	767.00	1.00	consecutive	Basalt with 5 % veining and blotchy buff bleaching, minimum trace sulphides.	17	11T480993

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-11-045	E5309735	767.00	768.00	1.00	consecutive	Basalt with 1 % veining and blotchy buff bleaching, minimum trace sulphides.	5	11T480993
CR-11-045	E5309736	768.00	769.00	1.00	consecutive	Basalt with 10cm quartz carbonate stringer, no bleaching, minimum trace sulphides.	5	11T480993
CR-11-045	E5309737	816.70	817.20	0.50	not consecutive	Wing sample, Green contact sheared Basalt.	8	11T480993
CR-11-045	E5309738	817.20	818.70	1.50	consecutive	Quartz Monzodiorite with 10cm quartz carbonate vein. Sulphides around 0.5 % combined.	32	11T480993
CR-11-045	E5309739	818.70	819.80	1.10	consecutive	Quartz Monzodiorite with 10cm quartz carbonate vein. Sulphides around 0.5 % combined.	50	11T480993
CR-11-045	E5309740	819.80	821.00	1.20	consecutive	Contact sheared Basalt with weak biotite alteration.	14	11T480993
CR-11-045	E5309741	821.00	822.38	1.38	consecutive	Contact sheared Basalt with weak biotite alteration.	7	11T480993
CR-11-045	E5309742	822.38	823.88	1.50	consecutive	Quartz Monzodiorite with quartz and quartz carbonate veins and low level sulphides as before.	23	11T480993
CR-11-045	E5309743	823.88	825.38	1.50	consecutive	Quartz Monzodiorite with quartz and quartz carbonate veins and low level sulphides as before.	6	11T480993
CR-11-045	E5309744	825.38	826.88	1.50	consecutive	Quartz Monzodiorite with quartz and quartz carbonate veins and low level sulphides as before.	9	11T480993
CR-11-045	E5309745	826.88	828.28	1.40	consecutive	Quartz Monzodiorite with quartz and quartz carbonate veins and low level sulphides as before.	17	11T480993
CR-11-045	E5309746	828.28	828.78	0.50	consecutive	Wing sample, grey contact sheared Basalt.	10	11T480993
CR-11-045	E5309747	845.00	845.90	0.90	not consecutive	Wing sample, well foliated green Basalt.	17	11T480993
CR-11-045	E5309748	845.90	847.40	1.50	consecutive	Quartz Monzodiorite, again around 0.5 % sulphides, trace arsenopyrite.	23	11T480993
CR-11-045	E5309749	847.40	848.90	1.50	consecutive	Quartz Monzodiorite, again around 0.5 % sulphides, trace arsenopyrite.	35	11T480993
CR-11-045	E5309750	0.00	0.00	0.00	not consecutive	Standard SK 43 4.086 ppm Au	4430	11T480993
CR-11-045	E5309751	848.90	850.40	1.50	not consecutive	Quartz Monzodiorite, again around 0.5 % sulphides, trace arsenopyrite.	36	11T480993
CR-11-045	E5309752	850.40	851.95	1.55	consecutive	Quartz Monzodiorite, again around 0.5 % sulphides, trace arsenopyrite.	17	11T480993
CR-11-045	E5309753	851.95	853.45	1.50	consecutive	Green foliated Basalt.	7	11T480993
CR-11-045	E5309754	853.45	854.92	1.47	consecutive	Green foliated Basalt.	22	11T480993
CR-11-045	E5309755	905.00	906.00	1.00	not consecutive	Banded and sulphidic Bruce Channel Mudstone.	11	11T480993
CR-11-045	E5309756	854.92	856.45	1.53	not consecutive	Foliated Quartz Monzodiorite, around 0.5 % sulphides, trace arsenopyrite.	39	11T480993
CR-11-045	E5309757	856.45	857.95	1.50	consecutive	Quartz Monzodiorite, 4 % sericite, around 0.5 % sulphides, trace arsenopyrite.	76	11T480993
CR-11-045	E5309758	857.95	859.45	1.50	consecutive	Quartz Monzodiorite with 1 % sericite, 15cm quartz vein with late biotite and pyrrhotite infill.	31	11T480993

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-11-045	E5309759	859.45	860.95	1.50	consecutive	Quartz Monzodiorite, fine to medium grained, trace sulphides.	15	11T480993
CR-11-045	E5309760	860.95	862.00	1.05	consecutive	Quartz Monzodiorite, foliated, no veins, around 0.5 % sulphides, trace arsenopyrite.	8	11T480993
CR-11-045	E5309761	862.00	862.97	0.97	consecutive	Quartz Monzodiorite, foliated, no veins, around 0.5 % sulphides, trace arsenopyrite.	130	11T480993
CR-11-045	E5309762	862.97	863.47	0.50	consecutive	Wing sample, foliated green Basalt.	9	11T480993
CR-11-045	E5309763	879.00	880.00	1.00	not consecutive	Character sample, foliated to contact sheared Basalt with 2 % biotite and 4 % veining, minimum trace sulphides.	4	11T480993
CR-11-045	E5309764	880.00	881.00	1.00	consecutive	Foliated to contact sheared Basalt with 2 % biotite and 4 % veining, minimum trace sulphides.	5	11T480993
CR-11-045	E5309765	881.00	882.00	1.00	consecutive	Foliated to contact sheared Basalt with trace biotite and veining.	11	11T480993
CR-11-045	E5309766	894.00	894.50	0.50	not consecutive	Wing sample, foliated to contact sheared green Basalt.	8	11T480993
CR-11-045	E5309767	894.50	895.61	1.11	consecutive	Foliated Quartz Monzodiorite, around 0.5 % sulphides, trace arsenopyrite.	89	11T480993
CR-11-045	E5309768	895.61	896.11	0.50	consecutive	Wing sample, foliated to contact sheared green Basalt with minor biotite.	7	11T480993

Reflex EZ-Shot Survey Record

Hole ID	Station (m)	Azimuth	Dip (Degrees)	Mag
CR-11-045	0	8.00	-75.00	na
CR-11-045	30	14.40	-73.40	5835
CR-11-045	60	18.10	-72.60	5842
CR-11-045	90	21.10	-71.80	5821
CR-11-045	120	22.90	-70.90	5816
CR-11-045	150	23.00	-70.20	5823
CR-11-045	180	24.90	-70.00	5830
CR-11-045	216	23.70	-69.90	5824
CR-11-045	240	25.10	-69.80	5808
CR-11-045	270	25.40	-69.70	5810
CR-11-045	300	26.10	-69.50	5821
CR-11-045	330	26.30	-69.40	5818
CR-11-045	360	26.50	-69.30	5829
CR-11-045	396	27.50	-68.30	5792
CR-11-045	420	28.00	-68.20	5807
CR-11-045	450	28.30	-68.00	5812
CR-11-045	480	28.10	-67.80	5832
CR-11-045	520	28.50	-67.40	5809
CR-11-045	540	28.80	-67.20	5812
CR-11-045	570	28.30	-66.50	5799
CR-11-045	600	28.70	-66.20	5818
CR-11-045	630	29.30	-65.50	5794
CR-11-045	660	29.60	-65.50	5807
CR-11-045	690	29.80	-65.10	5798
CR-11-045	720	30.80	-65.00	5777
CR-11-045	756	30.60	-67.40	5797
CR-11-045	810	30.80	-64.30	5781
CR-11-045	840	33.00	-63.50	5789
CR-11-045	870	32.00	-63.20	5791
CR-11-045	900	31.60	-64.80	5849

Conquest Resources Ltd.

Exploration Diamond Drill Log

CR-11-046

DRILL HOLE #	CR-11-046	LOCATION Balmer	town, Balmer Township	, Red Lake Dist	rict, Ontario		
PROJECT #	Alexander	REFERENCE Alexa	nder	GEOLOGIST	Meckert		(RL 20520
				_			
GRID/ NAD-ZON	IE	NORTHING	EASTING		ELEVATION		GRID TYPE
GRID	Alexander RL	6+08 S	8+27 E		10012		Μ
UTM	NAD83 / 15U	5655805	450584		392		
COLLAR DIP	-75	GRID DIRECTION	16° W of gridN			AZ DIRECTION	014
NTS REF #	052N04	NTS SHEET NAME	Red Lake, Ontario				
START DATE	19-Mar-11		FINISH DATE	18-Apr-11			
DEPTH (EOH)	1017.00	TARGET & Zone Depth					
PURPOSE	To test for mu	tiple/stacked zones of sh	earing into SSZ	PIEC	E POINT of Target:	E	mELEV
CASING B	w <u>na</u>	CASING NW	<u>9m</u>			CASING HW	na
PLUG (@ <u>na</u>	PLUG @	na			PLUG @	na
START DTH	na	WEDGE @	na				
REDUCED @	na	REDU	ICED @ na				
HOLE STATUS	Hole terminated	I due to unrecoverable rod s	tring. Lower 800m of rod	string left in hole	e. Casing cap inst	alled.	
DRILLING CONT	RACTOR	Boart Longyear Inc.					
RIG NO.	LY 50 4102					BXS.	232
			Reflex EZ-Shot Surv	eys			
DE	PTH (m)	AZIMUTH	DIF)		Comments:	
	0	14.00	-75.	00			
	90	17.90	-74.4	40			
	120	19.70	-74.	30			
	150	24.00	-72.0	00			
	273	26.40	-70.	00			
	309	26.90	-69.	50			
	375	28.30	-68.	70	Three shear/alter	ation zone targets	were intersected
	405	30.50	-67.	50	in the Balmer Bas	alts. <u>1st</u> <u>Target</u> 93.4	42m to 109.39m
	435	30.90	-66.	90	2nd Target 19	5.07m to 201.35	m; <u>3rd</u> <u>Target</u>
	495	31.60	-66.	6 0	1003.80m to 100	5.61m. While the all	did not viola
	525	32.90	-66.3	10	significant gold va	alues. Several Ouar	tz Monzodiorites
	555	33.60	-65.	70	show elevated g	old levels. Most n	otably 1.25m of
	615	34.30	-65.	10	1.63gr/t Au betw	een 391.25m and 3	92.50m. The hole
	645	35.10	-64.	70	had to be aban	doned before rea	ching the Bruce
	675	35.40	-64.	50	Channel Formatio	n due to driller erro	or.
	759	37.50	-63.2	20	_		
	789	37.70	-63.	10			
	843	38.80	-62.	00	_		
	873	39.90	-61.	00			
	963	41.50	-59.	60			
	993	41.70	-58.4	40			

Collared with 6m, stabilized core barrel and changed to standard NQ CB at a depth of 183m

Planned hole depth is 1,100m (3,600')

Core stored at Alexander Core Yard at UTM 0449935 5656595 UTM NAD83 15U

Water source: Clean water pond located above Goldcorp Tailings at 0451472 5656606 UTM NAD83 15U

Drill type: LY-50

Major Lithologies

Hole Name	From	То	Length	Code	Description	Rep
CR-11-046	0.00	9.00	9.00	CAS	NW Casing into overburden and bedrock	
CR-11-046	9.00	15.85	6.85	V3B/BRC	Brecciated Basalt, healed by carbonate and quartz carbonate. No bleaching or mineralization. Since the Breccia is not in context with rocks above it is difficult to decide but it appears that it is flow top Breccia.	
CR-11-046	15.85	19.40	3.55	V3B/VEIN	Medium grey coloured Basalt containing abundant irregularly oriented very thin carbonaceous fractures. Quartz carbonate veining is folded and dismembered and partially boudinaged. However several late stage quite undeformed carbonate stringers are crossing this interval. These can be up to 20cm wide but are spaced losely. Inside these stringers pyrite is finely disseminated and magnetite is present in most of them. The thickest stringers contain about 25 % of magnetite.	
CR-11-046	19.40	69.28	49.88	V3B	Medium grey coloured and fine grained Balmer Basalt. The unit is moderately foliated und contains 3 % veining. No special qualifying features present in the majority of this intersection. Two shorter sections show some mninor bleaching, increased veining and associated mineralization. Otherwise sulphides are at minimum trace level.	
CR-11-046	69.28	84.35	15.07	12G	Medium grey coloured and fine to medium grained Quartz Monzodiorite. Unit is foliated and shows some minor sericite. Core tends to be broken along foliation planes. Two larger, moderately biotite altered assimilated bocks of Basalt. Less than 1% late quartz veining is of no consequence. Finely disseminated sulphides are in the trace to 0.1 % range. Contacts are sharp, upper at 61 degCa and lower at 50 degCa.	
CR-11-046	84.35	93.42	9.07	V3B	Medium grey coloured Basalt with 3 to 5 % veining. Unit is moderately foliated and shows some minor hornblende in places. Minimum trace sulphides are present.	
CR-11-046	93.42	109.39	15.97	ATZ	Zone is characterized by a mixture of brecciated and buff bleached Basalt and quartz carbonate veining. Brecciated sections alternate with Basalt that shows normal background levels of chlorite and minimum trace level mineralisation. In the brecciated sections the matrix and Basalt fragments are blending with each other due to the bleaching. These sections have also been carbonate overprinted and silicified to a varying degree while the wall rock has not experienced this. Fine grained pyrrhotite and magnetite is present. Quartz carbonate veining in this unit seems to exploit the same zone of weakness but does not appear directly related to the bleaching and silicification of the breccias encountered. However, the veins also carry pyrrhotite and fine grained magnetite.	

Major Lithologies

Hole Name	From	То	Length	Code	Description	Rep
CR-11-046	109.39	127.45	18.06	V3B	Medium grey coloured and fine grained Basalt. Well foliated with pillow selvedges and only 3 % thin quartz carbonate veining. Very uniform looking throughout. Only minimal traces of sulphides locally.	
CR-11-046	127.45	134.04	6.59	12G	Well foliated fine grained and medium grey coloured Quartz Monzodiorite. Fair amount of quartz present but not showing up as quartz-eyes as is common when sericite is present. Sericite at 1 % throughout, accumulated on certain foliation planes. Core tends to be quite broken along these. Sulphides are very fine and blend into the foliation. Pyrrhotite is running at 0.2 % and traces of arsenopyrite can be seen locally. Contacts are sharp, 48 degCa upper and 42 degCa lower.	
CR-11-046	134.04	195.07	61.03	V3B	Green grey coloured and fine grained Basalt. Moderately foliated with generally 3 % veining, which can reach 6 % locally. Veins tend to be folded and elongate but are not too strongly dismembered. Green coloration from ubiquitos fine hornblende and chlorite. The occasional vein will contain higher levels of sulphides but the Basalt itself only contains minimal traces.	
CR-11-046	195.07	201.35	6.28	SHR	Shear Zone with carbonate overprinting and some brecciation where the clasts have been elongated along shear planes. Veining is present but only to a minor recognizable degree of about 5%. Those veins are planar only near the centre of the shear and undulating in general. Carbonate is pervasive and along with it goes the mineralisation. Pyrrhotite is present here and there but dominating is pyrite which is dispersed in very fine grained cloudy masses. The core is quite solid and there seems to have been a low level of silicification. At the centre of the shear is a short section that could be a very altered Quartz Monzodiorite or strongly altered basaltic section that has seen a strong silicification and mineralisation. Here pyrite is present in blebs and aggregates to a concentration of 2 %. It also contains spheroids of chlorite not seen in local intrusives before.	
CR-11-046	201.35	282.69	81.34	V3B	Medium grey green coloured Basalt that shows varying degrees of hornblende alteration throughout. Some hornblende crystals reach 0.5cm in size. Veining is drawn out and boudinaged in some instances due to the foliation. Vein intensity is not very high, generally at 3 to 4 %. On occasion extension fractures within the veins may be filled with pyrrhotite. Otherwise mineralization is nil to minimum trace levels.	

Major Lithologies

Hole Name	From	То	Length	Code	Description	Rep
CR-11-046	282.69	293.10	10.41	I2G	Medium grey coloured and fine to medium grained Quartz Monzodiorite. Upper part to 287.80m is well foliated and about 5 % sericite. Here arsenopyrite reaches 0.2 % while there are only traces of pyrite visible. Past 287.80m the foliation almost disappears and there is no more sercite alteration. Instead flaky black biotite starts showing up more and more. Arsenopyrite, very visible in the upper part is almost gone and instead pyrite shows up, reaching concentrations of more than 1 % locally. Contacts are sharp, 52 deCa upper and 49 degCa lower.	
CR-11-046	293.10	356.50	63.40	V3B	Green grey coloured and fine to medium grained Basalt. Increasing hornblende content downwards with hornblende - chlorite halos around some of the carbonaceous veins. Unit is weakly to moderately foliated. Where foliation is stronger the Basalt takes on a variolitic look. A short section is buff bleached but not showing any signs of mineralisation. Veining is not very pronounced at 4 % and mostly devoid of sulphides. Near the base of the unit some muddy and pyrrhotitic interflow sediments show up. The boundary to the unit below is gradual and cannot be pinned down with accuracy, except for the dissappearing of almost all veining with increasing foliation intensity.	
CR-11-046	356.50	390.00	33.50	I3A	Greenish grey coloured and fine grained Gabbro with brownish hue due to minor biotite alteration. Unit is well foliated except for two short massive sections. Very uniform looking without any important qualifiers.	
CR-11-046	390.00	392.50	2.50	12G	Foliated fine grained and medium grey oloured Quartz Monzodiorite. Large number of medium to coarse quartz eyes. Even though the intrusive is well foliated the sericite alteration is opnly marginal. Pyrrhotite the dominating sulphide appears as small grainy streaks along the foliation planes. On the periphery of these streaks the occasional crystal of arsenopyrite can be found. Contacts are sharp, upper at 38 degCa and lower at 42 degCa.	
CR-11-046	392.50	539.63	147.13	I3A	Gabbro as before the Quartz Monzodiorite. Evenly foliated to about 420m where the foliation vanishes. From here on downwards the Gabbro is very evenly fine grained and massive with no variation. Very few quartz veins and monotonous to look at. This only changes a few meters above the following intrusive where the Gabbro starts showing foliation / contact shearing again.	

Hole Name	From	То	Length	Code	Description	Rep
CR-11-046	539.63	555.30	15.67	12G	Dark grey coloured and fine grained Quartz Monzodiorite. Weak foliation picks up downwards and so does the sericite content. Some clear blueish crystals attest to the presence of cordierite. Pyrite and Pyrrhotite are running at 0.25 % respectively with traces of arsenopyrite. Only the last 30cm show a marked increase in mineralisation with pyrrhotite reaching 1.5 % and pyrite 0.5 %. Arsenopyrite may reach 0.1 %. Both contacts are sharp, 64 degCa upper and 47 degCa lower.	
CR-11-046	555.30	559.04	3.74	I3A	Strongly green coloured foliated Gabbro with about 50cm of lamprophyric intrusive at 557m. Only two crossing thin quartz veins and no mineralisation. Marginaly biotite altered at lower contact.	
CR-11-046	559.04	562.50	3.46	130	Lamprophyric to dioritic intrusive with a variety of appearances but similar composition. Almost no carbonate present. Signs of plastic deformation indicate several episodes of intrusion. Hence the differences in appearance grain size and varying presence of hornblende and biotite. Pyrite is the only sulphide observed and its distribution is very irregular. Some stretches contain almost none while it may reach 1 % locally with cubic crystals of mm size. Upper contact is undulating at 61 degCa. Lower contact is straight at 61 degCa.	
CR-11-046	562.50	566.68	4.18	ATZ	Host rock is biotite overprinted to 7 %. Based on the almost complete absence of veining and carbonate the parent is most likely Gabbro. The section is mineralised with finely disseminated pyrrhotite and streaky aggregates of pyrrhotite and pyrite. Sulphides did not come from surrounding lamprophyric intrusive where pyrite is the only sulphide showing up in significant amounts. Lower contact is gradual over 30cm.	
CR-11-046	566.68	578.44	11.76	130	Continuation of Lamprophyric intrusive. With several more assimilated wall rock fragments. With depth these are more obviously basaltic in origin. These show no significant mineralisation. Lower contact is very subtle and diffuse, running at about 71 degCa.	
CR-11-046	578.44	619.50	41.06	V3B	Green grey coloured and very fine grained Basalt. Regular pillow selvedges but rather low level of veining in the 3 % range. First few meters show a small number of widely spaced veins that are mineralized with Pyrrhotite. Pyrrhotite appears as selvedge of vein or very finely disseminated. Those veins are quite straight and undisturbed and postdate the folded and dismmembered quartz carbonate veins observed otherwise. Mineralisation in the Basalt itself is at minimum trace level.	

Hole Name	From	То	Length	Code	Description	Rep
CR-11-046	619.50	628.26	8.76	I2G	Medium grey coloured and fine grained Quartz Monzodiorite. Some cordierite and flaky phlogopite. Intrusive is well foliated and shows a 1 % sercite alteration. At center it is crossed by a very thick milky quartz vein which has led to wall rock silicification and remobilisation and concentration of sulphides. While the Quartz Monzodiorite is dominated by pyrrhotite the vein contains pyrite. Next to that there is chlorite and fracture fillings of fine grained biotite. Sulphide in the intrusive are disseminated and sometimes in flakes. Adjacent to the vein larger fine grained pyrrhotite aggregates can be observed that have arsenopyrite selvedges in many cases. Contacts are sharp, 51 degCa upper and 46 degCa lower.	
CR-11-046	628.26	631.86	3.60	V3B	Green coloured and foliated Basalt. Basalt between two intrusives is chloritized and shows some hornblende alteration with minor biotite. Mineralisation is only at minor trace level.	
CR-11-046	631.86	634.20	2.34	I2G	Medium grey coloured and fine grained Quartz Monzodiorite with a blueish tinge due to the presence of cordierite. Intrusive looks macroscopically similar to previous Quartz Monzodiorite without the even foliation. It is mineralised to a much lesser degree and pyrrhotite and pyrite ar at par with 0.25 %, while arsenopyrite was only observed in a couple of instances. Upper contact is well defined but totally uneven and interfingered. Lower contact is straight at 47 degCa.	
CR-11-046	634.20	734.36	100.16	V3B	Greenish grey coloured and fine grained Basalt. Unit is massive to moderately foliated and may show minor biotite in the foliated sections. Low level chlorite alteration and occasional bands of hornblende - chlorite alteration with trace mineralisation. Presence of minor flow top breccia which in some cases is associated with minor buff bleaching. Dismembered and rotated vein fragments do not contain any mineralisation. Altogether veining is not very strong at 3 % but may reach 5 to 6 % in places.	
CR-11-046	734.36	745.63	11.27	I3A	Green grey and fine to medium grained Gabbro. Intrusive is massive except for the last 3m where it is moderately contact sheared. There is no veining or mineralisation of any significance. Contacts are conformable with local foliation pattern of 57 degCa.	

Hole Name	From	То	Length	Code	Description	Rep
CR-11-046	745.63	753.42	7.79	V3B	Greenish grey coloured and fine grained Basalt. Unit is massive to moderately foliated and may show minor biotite in the foliated sections. Low level chlorite alteration and occasional bands of hornblende - chlorite alteration with trace mineralisation. Presence of minor flow top breccia which in some cases is associated with minor buff bleaching. Dismembered and rotated vein fragments do not contain any mineralisation. Altogether veining is not very strong at 3 % but may reach 5 to 6 % in places.	
CR-11-046	753.42	756.35	2.93	12G	Medium grey coloured fine grained Quartz Monzodiorite. Intrusive is weakly foliated and shows a coarse network of biotite lined fractures. About 2 % dismembered quartz carbonate veins contain minor sulphides. Quartz veins, also at 2 % are less broken up and post date the quartz carbonate veins. Sulphides are dominated by pyrite which appears as small angular masses. Next to 1 % pyrite about 0.3 % pyrrhotite and 0.05 % arsenopyrite are present. Contacts are sharp, 62 degCa upper and 51 degCa lower.	
CR-11-046	756.35	760.57	4.22	V3B	Greenish grey coloured and fine grained Basalt. Unit is massive to moderately foliated and may show minor biotite in the foliated sections. Low level chlorite alteration and occasional bands of hornblende - chlorite alteration with trace mineralisation. Presence of minor flow top breccia which in some cases is associated with minor buff bleaching. Dismembered and rotated vein fragments do not contain any mineralisation. Altogether veining is not very strong at 3 % but may reach 5 to 6 % in places.	
CR-11-046	760.57	765.99	5.42	12G	Medium grey coloured and fine grained Quartz Monzodiorite. Intrusive is weakly foliated and shows a coarse network of biotite lined fractures. About 2 % dismembered quartz carbonate veins contain minor sulphides. Quartz veins, also at 2 % are less broken up and post date the quartz carbonate veins. Sulphides are dominated by pyrite which appears as small angular masses. Next to 1 % pyrite about 0.3 % pyrrhotite and 0.05 % arsenopyrite are present. Contacts are sharp, 47 degCa upper and 66 degCa lower.	
CR-11-046	765.99	785.67	19.68	V3B	Greenish grey coloured and fine grained Basalt. Unit is massive to moderately foliated and may show minor biotite in the foliated sections. Low level chlorite alteration and occasional bands of hornblende - chlorite alteration with trace mineralisation. Presence of minor flow top breccia which in some cases is associated with minor buff bleaching. Dismembered and rotated vein fragments do not contain any mineralisation. Altogether veining is not very strong at 3 % but may reach 5 to 6 % in places.	

Hole Name	From	То	Length	Code	Description	Rep
CR-11-046	785.67	789.00	3.33	12G	Medium grey purplish coloured and fine grained Quartz Monzodiorite. Purple tinge due to the presence of Dumorturite. Intrusive is moderately foliated and contains a minor amount of flaky biotite. Pyrite at 0.4 % appears as small streaks. Very fine grained cubic arsenopyrite is present throughout. Contacts are sharp, upper at 73 degCa and lower at 45 degCa.	
CR-11-046	789.00	792.74	3.74	V3B	Greenish grey coloured and fine grained Basalt. Unit is massive to moderately foliated and may show minor biotite in the foliated sections. Low level chlorite alteration and occasional bands of hornblende - chlorite alteration with trace mineralisation. Presence of minor flow top breccia which in some cases is associated with minor buff bleaching. Dismembered and rotated vein fragments do not contain any mineralisation. Altogether veining is not very strong at 3 % but may reach 5 to 6 % in places.	
CR-11-046	792.74	796.45	3.71	I2G	Medium grey coloured and fine grained Quartz Monzodiorite. Some short sections are very fine and massive without discernable crystals. Otherwise the intrusive is moderately foliated and without other important qualifiers. Grainy pyrite is at 1 %, with pyrrhotite and arsenopyrite running at 0.1 % respectively. Contacts are sharp, upper at 43 degCa and 54 degCa lower.	
CR-11-046	796.45	805.00	8.55	V3B	Green grey coloured and fine grained Basalt with blotchy pale green bleaching in places. About 5 % quartz carbonate veining of which the thicker ones also contain very fine grained biotite. Mineralisation at minimum trace level.	
CR-11-046	805.00	807.58	2.58	12G	Medium grey coloured and fine grained Quartz Monzodiorite. Intrusive is weakly foliated. Contains a couple of chunks of Basalt that are brown from biotite alteration. Sulphides are present in the form of finely disseminated pyrite to 0.5 % and traces of arsenopyrite. Upper contact is uneven at about 60 degCa. Lower contact is sharp at 60 degCa.	
CR-11-046	807.58	896.52	88.94	V3B	Green grey coloured and fine grained Basalt. Moderately foliated with generally 3 % veining, which can reach 6 % locally. Veins tend to be folded and elongate but are not too strongly dismembered. Mostly massive with pillow selvedges and only occasional intervals that are well foliated. Here a very weak biotite alteration goes along with the foliation. Mineralisation were present is only at minimum trace level.	

Hole Name	From	То	Length	Code	Description	Rep
CR-11-046	896.52	916.43	19.91	I3A	Green grey coloured and fine to medium grained Gabbro. Intrusive is massive, with little veining. In two places there are signs of shearing or ductile deformation associated with weak biotite alteration. Upper and lower contacts are very subtle. The upper contact is characterized by two 10cm Diorites that cross the core within 30cm of each other. At the base is a contact shear and the contact is likely at the top of this structure.	
CR-11-046	916.43	933.60	17.17	V3B	Medium grey coloured and fine grained Basalt with pillow selvedges and some flow top Breccia. Minor veining is at only 2 % but picks up downwards to 6 %. Veining is dominated by carbonate with a low percentage of quartz. Trace level fine sulphides in the veins but no mineralisation in the wall rock.	
CR-11-046	933.60	979.40	45.80	I3A	Green grey coloured Gabbro starts fine grained at contact with Basalt but within 80cm it gets increasingly coarser. Past that it is very evenly medium grained and massive. In a couple of places there are signs of ductile deformation. Quartz carbonate veins are few and far inbetween and are of no consequence. Minimum trace level mineralisation with pyrite. Upper contact is very subtle but sharp and interfingered, perpendicular to core axis.	
CR-11-046	979.40	989.00	9.60	SHR	Shear in Gabbro with up to 2 % biotite alteration in places. Between 980m and 982m where the Shear is the most intense several quartz veins run parallel to the shear (NIL mineralization). The Gabbro however does carry traces of very finely disseminated pyrite. Upper contact of Shear is sharp while the lower contact is gragual over 50cm.	
CR-11-046	989.00	998.25	9.25	I3A	Green grey coloured Gabbro continues medium grained past the Shear but gets finer and finer downwards. Between 993.20m and 994.70m an assimilated block of Basalt is present. At the upper contact with the Shear, Gabbro and Basalt blocks are all crossed by low angle fractures and the Gabbro - Basalt contact runs along one of these fractures at 05 degCA.	
CR-11-046	998.25	1003.80	5.55	V3B	Low angle fractured, green coloured, fine grained Basalt. Several unfractured massive sections are present. Low angle fractures are tightly healed with quartz and quartz-carbonate filling. NIL mineralization. One very low angle quartz-(carbonate)-(Pyrite) vein is emplaced along low angle fracture above narrow shear structure.	
CR-11-046	1003.80	1005.61	1.81	FLT	Two well healed, strongly sheared reactivated Fault zone with strong biotite-silica-(albite- sericite) overprinting and dismembered irregular whipsy quartz-carbonate veinlets and associated sheared, blebby, 02% Pyrite and 01% Chalcopyrite mineralization. Shear fabric is very irregular and lost in strong alteration overprinting and very fine grained groundmass. Several quartz veins (5mm thick) are boudinaged from shearing. Upper contact is abrupt at sheared 58degCA contact. Lower contact is diffuse over 40cm.	

Hole Name	From	То	Length	Code	Description	Rep
CR-11-046	1005.61	1014.17	8.56	V3B	Medium dusty green coloured, fine grained, massive to poorly foliated (60degCA) Balmer Basalt with occassional nondescript quartz carbonate veins appearing to be of little consequence. Non magnetic volcanic with trace disseminated pyrite throughout. Upper contact is sheared with abundant quartz carbonate veins over 40cm at diffuse contact. Lower contact is sharp at 60degCA. Good coring unit.	
CR-11-046	1014.17	1016.79	2.62	12G	Steel grey coloured, poorly foliated (60degCA), trace pyrite-pyrrhotite bearing, non-magnetic, weakly sil-ser-(chl) altered, Quartz Monzodiorite. This intrusive is similar to the other intrusives intersected on the property and has been thoroughly sampled. Upper contact is planar and sharp at 60degCA. Lower contact is sharp and undulating at approximately 60degCA.	
CR-11-046	1016.79	1016.99	0.20	V3B	Dark green coloured Basalt. Similar composition as above but has some contact metamorphism chlorite and silica.	
CR-11-046	1016.99	1017.00	0.01	EOH	End of Hole. Hole was terminated early due stuck rod string in the hole. Planned depth was 1,100 metres, which is approximately 10 metres into the projected footwall of the Bruce Channel Formation Unconformity. Rods became stuck in a mechanically fractured 0.60m section of Quartz Monzodiorite. 232 NQ core trays were used. A casing cap was installed on the casing. 800 metres of NQ rods, core barrel, shoe, bit and tube assembly were not recovered from the hole. The core is stored at Conquest's Alexander Core Yard on the property.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-11-046	177.36	178.98	121	Dark brown grey coloured and fine grained Quartz Diorite. Few corroded looking quartz crystals blend into the matrix. Feldspars elongate along foliation plane. Matrix is biotite altered to 5 %. Very fine grained pyrite is disseminated throughout. The upper contact is sharp at 47 degCa. The lower contact is undulating and diffuse, running at 59 degCa.	
CR-11-046	183.67	195.07	V3B/ATZ	Basalt in general looks like remainder of unit, except the green hue has been replaced by a brown hue. Hornblende has retreated and instead the Basalt has seen a 2 % biotite alteration. With it the trace mineralization has increased while the veining remains the same. In the last 2m the alteration is a bit more intense around a thin fault that contains 1 to 2cm fault breccia. Around this the Basalt is partially bleached along hairline fractures.	
CR-11-046	195.91	196.48	130	Fine grained and weakly foliated Lamprophyre. Medium greenish grey coloured due to the presence of hornblende. Foliation best recognized on the basis of orientation of moderate amount of phlogopite aggregates. Contacts are straight but undulating. Upper contact at 65 degCa. Lower contact at 50 degCa.	
CR-11-046	213.84	215.46	121	Quartz Diorite as in 177.36m to 178.98m. Presence of weak carbonate is attributed to the biotite alteration. Conacts are sharp, upper at 51 degCa and lower at 54 degCa.	
CR-11-046	309.95	311.65	ATZ	Buff bleached Basalt with minor brecciation around a thicker quartz carbonate vein. Presence of pervasive carbonate. Rock is rather soft and not silicified in any way. Apart from a few very small pyrit crystals there is no further sulphide mineralisation.	
CR-11-046	342.40	345.30	S6D	Mudstone dominated interflow sediments. Most of the mudstone is nicely banded based on pyrrhotite streaks and thin bands. However, some small scale folding and boudinage is visible in places. Few thin cherty bands and a couple of thicker bands that either represent quartz veins or massive translucent chert. Pyrrhotite content of the mudstone is about 4 %. The banded chert contains a minor amount of magnetite.	
CR-11-046	823.76	825.74	13	Strongly green coloured grainy mafic intrusive. Grainy texture due to the presence of a fair amount of carbonate in the matrix. Diffuse concentrations of carbonate in some places may be the remnants of dismembered and rotated veins. Upper and lower contacts are very uneven and diffuse oriented approximately 65+ degCA.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-11-046	830.86	831.75	I2J	Medium grey coloured and fine grained Diorite. Massive with little internal structure. Fine grained pyrite to 0.25 %. Contacts are sharp, upper and lower both at 62 degCa, following the local foliation pattern.	
CR-11-046	845.75	847.27	12J	Fine grained Diorite as before, but the intrusive shows a tight network of hairline fractures around which the Diorite has been extensively buff bleached. Bleaching is restricted to the Diorite and does not extend into the basaltic wall rock. Contacts are sharp, upper at 73 degCa and lower at 73 degCa.	

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-11-046	E5309769	14.00	15.00	1.00		Wing sample, Basaltic Breccia with trace sulphides.	4	11T488231
CR-11-046	E5309770	0.00	0.00	0.00	not consecutive	Standard Sk 43 4.086 ppm Au	4110	11T488231
CR-11-046	E5309771	15.00	15.85	0.85	not consecutive	Brecciated Basalt with 20 % quartz carbonate healing, trace sulphides.	3	11T488231
CR-11-046	E5309772	15.85	16.85	1.00	consecutive	Non brecciated Basalt with late stage carbonate stringers containing pyrite and magnetite.	3	11T488231
CR-11-046	E5309773	16.85	17.85	1.00	consecutive	Basalt with 7 % quartz carbonate veins and trace sulphides.	3	11T488231
CR-11-046	E5309774	17.85	18.70	0.85	consecutive	Basalt with 7 % quartz carbonate veins and trace sulphides. Two 2cm late carbonate stringers.	3	11T488231
CR-11-046	E5309775	40.00	40.71	0.71	not consecutive	Wing sample, foliated Basalt with weak hornblende alteration.	3	11T488231
CR-11-046	E5309776	18.70	19.40	0.70	not consecutive	Basalt with several thick carbonate stringers with fine pyrite and magnetite.	2	11T488231
CR-11-046	E5309777	19.40	20.00	0.60	consecutive	Wing sample, foliated Basalt with minimum trace sulphides.	3	11T488231
CR-11-046	E5309778	40.71	41.35	0.64	not consecutive	Basalt with several carbonate stringers with fine pyrite and magnetite.	3	11T488231
CR-11-046	E5309779	41.35	41.85	0.50	consecutive	Wing sample, foliated Basalt with weak hornblende alteration.	3	11T488231
CR-11-046	E5309780	47.00	48.00	1.00	not consecutive	Wing sample, Basalt with some carbonate overprinting.	7	11T488231
CR-11-046	E5309781	48.00	49.00	1.00	consecutive	Stronger carbonate overprinting with fine pyrite and some magnetite.	16	11T488231
CR-11-046	E5309782	49.00	50.00	1.00	consecutive	Stronger carbonate overprinting with fine pyrite and some magnetite.	6	11T488231
CR-11-046	E5309783	50.00	51.00	1.00	consecutive	Wing sample, Basalt with only 2 % veining, foliated and much less overprinting.	6	11T488231
CR-11-046	E5309784	68.78	69.28	0.50	not consecutive	Wing sample, foliated Basalt with minor biotite at contact.	3	11T488231
CR-11-046	E5309785	69.28	70.80	1.52	consecutive	Fine to medium grained Quartz Monzodiorite with trace sulphides.	1	11T488231
CR-11-046	E5309786	70.80	72.30	1.50	consecutive	Fine to medium grained Quartz Monzodiorite with trace sulphides.	2	11T488231
CR-11-046	E5309787	72.30	73.80	1.50	consecutive	Fine to medium grained Quartz Monzodiorite with trace sulphides.	2	11T488231
CR-11-046	E5309788	73.80	75.30	1.50	consecutive	Assimilated Basalt with 1 % biotite alteration.	5	11T488231
CR-11-046	E5309789	75.30	76.80	1.50	consecutive	Fine to medium grained Quartz Monzodiorite with trace sulphides.	1	11T488231
CR-11-046	E5309790	0.00	0.00	0.00	not consecutive	Standard Sk 43 4.086 ppm Au	4040	11T488231
CR-11-046	E5309791	76.80	78.30	1.50	not consecutive	Fine to medium grained Quartz Monzodiorite with trace sulphides.	4	11T488231

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-11-046	E5309792	78.30	79.80	1.50	consecutive	Fine to medium grained Quartz Monzodiorite with trace sulphides.	<1	11T488231
CR-11-046	E5309793	79.80	81.30	1.50	consecutive	Fine to medium grained Quartz Monzodiorite with trace sulphides.	2	11T488231
CR-11-046	E5309794	81.30	82.80	1.50	consecutive	Assimilated Basalt with 3 % biotite alteration.	2	11T488231
CR-11-046	E5309795	82.80	84.35	1.55	consecutive	Fine to medium grained Quartz Monzodiorite with trace sulphides.	2	11T488231
CR-11-046	E5309796	84.35	84.85	0.50	consecutive	Wing sample, foliated Basalt.	2	11T488231
CR-11-046	E5309797	92.92	93.42	0.50	not consecutive	Wing sample, foliated Basalt.	5	11T488231
CR-11-046	E5309798	93.42	94.42	1.00	consecutive	Basalt with 15 % veining, blotchy bleaching and brecciation.	6	11T488231
CR-11-046	E5309799	94.42	95.42	1.00	consecutive	Bleached bands, 5 % veining, pyrrhotite in some veins, very fine magnetite.	7	11T488231
CR-11-046	E5309800	95.42	96.42	1.00	consecutive	Basalt with 5 % veining, but not as disturbed or mineralized as before.	4	11T488231
CR-11-046	E5309801	96.42	97.42	1.00	consecutive	Bleached and brecciated Basalt with 8 % veining containing pyrrhotite and magnetite.	3	11T488231
CR-11-046	E5309802	97.42	98.42	1.00	consecutive	Bleaching, 6 % veining with pyrrhotite, less intense as before.	3	11T488231
CR-11-046	E5309803	98.42	99.42	1.00	consecutive	Bleached and brecciated Basalt with 8 % veining containing pyrrhotite and magnetite.	3	11T488231
CR-11-046	E5309804	99.42	100.42	1.00	consecutive	Intensity is waning as compared to previous meter.	3	11T488231
CR-11-046	E5309805	100.42	101.42	1.00	consecutive	Intensity is waning as compared to previous meter.	4	11T488231
CR-11-046	E5309806	101.42	102.42	1.00	consecutive	Brecciation, bleaching and mineralization picks up again.	3	11T488231
CR-11-046	E5309807	102.42	103.42	1.00	consecutive	Bleached and brecciated Basalt with 8 % veining containing pyrrhotite and magnetite.	8	11T488231
CR-11-046	E5309808	103.42	104.42	1.00	consecutive	Bleached and brecciated Basalt with 8 % veining containing pyrrhotite and magnetite.	3	11T488231
CR-11-046	E5309809	104.42	105.42	1.00	consecutive	Unaltered Basalt with 6 % veining with pyrrhotite.	3	11T488231
CR-11-046	E5309810	0.00	0.00	0.00	not consecutive	Standard OxK 69 3.583 ppm Au	3630	11T488231
CR-11-046	E5309811	105.42	106.42	1.00	not consecutive	Basalt with 15 % veining with pyrrhotite but no bleaching or brecciation.	2	11T488231
CR-11-046	E5309812	106.42	107.42	1.00	consecutive	Veining is waning quickly but still mineralized with pyrrhotite.	2	11T488231
CR-11-046	E5309813	107.42	108.42	1.00	consecutive	Normal foliated Basalt with 3 % veining, except for 15cm bleached band with pyrrhotite and magnetite.	3	11T488231
CR-11-046	E5309814	108.42	109.39	0.97	consecutive	Grey Basalt with several quartz carbonate stringers containing pyrrhotite and magnetite.	3	11T488231
CR-11-046	E5309815	109.39	110.00	0.61	consecutive	Wing sample, foliated Basalt with two thin straight veins.	5	11T488231
CR-11-046	E5309816	121.98	122.48	0.50	not consecutive	Wing sample, foliated basalt with hornblende.	5	11T488231

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-11-046	E5309817	122.48	123.08	0.60	consecutive	Basalt with 50 % carbonate veining with some pyrrhotite and magnetite.	5	11T488231
CR-11-046	E5309818	123.08	124.58	1.50	consecutive	Medium grey foliated Basalt.	3	11T488231
CR-11-046	E5309819	124.58	126.08	1.50	consecutive	Medium grey foliated Basalt.	3	11T488231
CR-11-046	E5309820	126.08	126.90	0.82	consecutive	Basalt with 25 % veining and trace sulphides.	4	11T488231
CD 11 04C	55200021	120.00	127.45	0.55		Basalt with 50 % veining near contact with fine pyrrhotite and also	2	117400221
CK-11-046	E5309821	126.90	127.45	0.55	consecutive	in larger fine grained aggregates.	3	111488231
CR-11-046	F5309822	127 45	128 95	1 50	consecutive	Quartz Monzodiorite with sericite, 0.2 % pyrrhotite and trace	27	11T488731
	23303022	127.45	120.55	1.50	consecutive	arsenopyrite.	27	111400231
CP-11-046	F5200822	128 05	120 /5	1 50	consecutive	Quartz Monzodiorite with sericite, 0.2 % pyrrhotite and trace	126	117/00221
CN-11-040	LJJ09823	128.95	130.45	1.50	consecutive	arsenopyrite.	120	111400231
CR-11-046	F530987/	130 45	131 95	1 50	consecutive	Quartz Monzodiorite with sericite, 0.2 % pyrrhotite and trace	477	117/88231
CN-11-040	23303024	130.45	131.55	1.50	consecutive	arsenopyrite.	4//	111400231
CR-11-046	F5309825	131 95	133.00	1.05	consecutive	Quartz Monzodiorite with sericite, 0.2 % pyrrhotite and trace	54	117/88231
CN-11-040	LJJUJ82J	131.95	133.00	1.05	consecutive	arsenopyrite.	54	111400231
CR-11-046	F5200826	122.00	12/ 0/	1 0/	consecutive	Quartz Monzodiorite with sericite, 0.2 % pyrrhotite and trace	7	117/00221
CN-11-040	LJJ09820	133.00	134.04	1.04	consecutive	arsenopyrite.	7	111400231
CR-11-046	E5309827	134.04	134.54	0.50	consecutive	Wing sample, grey green Basalt.	6	11T488231
CR-11-046	E5309828	193.00	193.57	0.57	not consecutive	Wing sample, biotite altered Basalt with trace sulphides.	5	11T488231
CP 11 046	EE200820	102 57	105.07	1 50	consocutivo	Biotite altered Basalt with bleaching around fracture, trace	F	117/00221
CN-11-040	LJJUJ823	193.57	195.07	1.50	consecutive	sulphides.	5	111400231
CR-11-046	E5309830	0.00	0.00	0.00	not consecutive	Standard Sk 43 4.086 ppm Au	4030	11T488231
CP 11 046	EE200921	105 07	105 01	0.01	not consocutivo	Shear zone with carbonate overprinting. Pyrite in small blebs and	o	117/00221
CK-11-040	23303631	193.07	193.91	0.84	not consecutive	disseminated.	0	111400231
CR-11-046	E5309832	195.91	196.48	0.57	consecutive	Grey green Lamprophyre with minimum traces of sulphides.	9	11T488231
CR-11-046	E5309833	196.48	197.89	1.41	consecutive	Shear with some planar veining, blebby and disseminated sulphides	18	11T488231
CP 11 046	FF200824	107.00	100 57	0.69	concerntive.	Intrusive? Possibly Quartz Monzodiorite with angular aggregates	256	117400001
CK-11-046	E5309834	197.89	198.57	0.68	consecutive	of pyrite. Trace pyrrhotite and chalcopyrite.	250	111488231
CR-11-046	E5309835	227.00	228.00	1.00	not consecutive	Basalt with 40 degCa foliation and 5cm mineralised quartz	5	11T488231
						Carbonate vein.		
CR-11-046	E5309836	198.57	199.70	1.13	not consecutive	Shear with some planar veining, blebby and disseminated sulphides	43	11T488231
CR-11-046	E5309837	199.70	200.73	1.03	consecutive	Carbonate overprinting is almost gone. More recognizeable veins	7	11T488231
						with unministred mineralisation.		
CR-11-046	E5309838	200.73	201.35	0.62	consecutive	Desalt returns	10	11T488231
CP 11 046	EE200020	201.25	202.00	0 65	concenting	DdSdil relurns.	5	117/00701
CP 11 046	E22020240	201.35	202.00	0.05		Wing sample, foliated basalt with hornblende.	5	111400231
CN-11-040	23509840	241.40	241.90	0.50	not consecutive	wing sample, iolialeu green grey nornbiende basall.	U	111406231

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-11-046	E5309841	241.90	242.32	0.42	consecutive	Basalt with carbonate overprinting, pyrrhotite aggregates and fine magnetite.	7	11T488231
CR-11-046	E5309842	242.32	242.82	0.50	consecutive	Wing sample, foliated green grey hornblende Basalt.	9	11T488231
CR-11-046	E5309843	282.19	282.69	0.50	not consecutive	Wing sample, foliated Basalt with amygdules.	11	11T488231
CR-11-046	E5309844	282.69	284.19	1.50	consecutive	Quartz Monzodiorite with sericite, arsenopyrite and pyrite.	60	11T488231
CR-11-046	E5309845	284.19	285.69	1.50	consecutive	Quartz Monzodiorite with sericite, arsenopyrite and pyrite.	147	11T488231
CR-11-046	E5309846	285.69	287.19	1.50	consecutive	Quartz Monzodiorite with sericite, arsenopyrite and pyrite.	224	11T488231
CR-11-046	E5309847	287.19	288.69	1.50	consecutive	Half foliated with sericite alteration and half without. Increased pyrite mineralisation.	23	11T488231
CR-11-046	E5309848	288.69	290.19	1.50	consecutive	Quartz Monzodiorite with 1 % pyrite, trace arsenopyrite.	6	11T488231
CR-11-046	E5309849	290.19	291.69	1.50	consecutive	Pyrite mineralisation decreasing, more biotite flakes.	6	11T488231
CR-11-046	E5309850	0.00	0.00	0.00	not consecutive	Standard OxK 69 3.583 ppm Au	3630	11T488231
CR-11-046	E5309851	291.69	293.10	1.41	not consecutive	Pyrite mineralisation decreasing, more biotite flakes.	3	11T488231
CR-11-046	E5309852	293.10	293.60	0.50	consecutive	Wing sample, Basalt with weak biotite alteration.	23	11T488231
CR-11-046	E5309853	389.50	390.00	0.50	not consecutive	Wing sample, finegrained foliated Gabbro.	20	11T488231
CR-11-046	E5309854	390.00	391.25	1.25	consecutive	Quartz Monzodiorite with pyrrhotite and traces of pyrite and arsenopyrite.	369	11T488231
CR-11-046	E5309855	539.13	539.63	0.50	not consecutive	Wing sample, foliated Gabbro with weak biotite.	9	11T488231
CR-11-046	E5309856	391.25	392.50	1.25	not consecutive	Quartz Monzodiorite with pyrrhotite and traces of pyrite and arsenopyrite.	1630	11T488231
CR-11-046	E5309857	392.50	393.00	0.50	consecutive	Wing sample, finegrained foliated Gabbro.	19	11T488231
CR-11-046	E5309858	539.63	541.10	1.47	not consecutive	Quartz Monzodiorite with some fine sulphides and cordierite.	10	11T488231
CR-11-046	E5309859	541.10	542.60	1.50	consecutive	Quartz Monzodiorite with some fine sulphides and cordierite.	12	11T488231
CR-11-046	E5309860	542.60	544.10	1.50	consecutive	Quartz Monzodiorite with some fine sulphides and cordierite.	14	11T488231
CR-11-046	E5309861	544.10	545.60	1.50	consecutive	Quartz Monzodiorite with some fine sulphides and cordierite.	277	11T488231
CR-11-046	E5309862	545.60	547.10	1.50	consecutive	Quartz Monzodiorite with some fine sulphides and cordierite.	107	11T488231
CR-11-046	E5309863	547.10	548.60	1.50	consecutive	Quartz Monzodiorite with some fine sulphides and cordierite.	22	11T488231
CR-11-046	E5309864	548.60	550.10	1.50	consecutive	Quartz Monzodiorite with some fine sulphides and cordierite.	127	11T488231
CR-11-046	E5309865	550.10	551.60	1.50	consecutive	Quartz Monzodiorite with some fine sulphides and cordierite.	32	11T488231
CR-11-046	E5309866	551.60	553.10	1.50	consecutive	Quartz Monzodiorite with some fine sulphides and cordierite.	85	11T488231

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-11-046	E5309867	553.10	554.20	1.10	consecutive	Quartz Monzodiorite with some fine sulphides and cordierite.	60	11T488231
CR-11-046	E5309868	554.20	555.30	1.10	consecutive	Quartz Monzodiorite with some fine sulphides and cordierite.	117	11T488231
CR-11-046	E5309869	555.30	555.80	0.50	consecutive	Wing sample, foliated green Gabbro.	17	11T488231
CR-11-046	E5309870	0.00	0.00	0.00	not consecutive	Standard Sk 43 4.086 ppm Au	4250	11T488231
CR-11-046	E5309871	562.00	562.50	0.50	not consecutive	Wing sample, dark grey fine grained Lamprophyre.	4	11T488231
CR-11-046	E5309872	562.50	564.00	1.50	consecutive	Biotite altered Gabbro (?) with pyrrhotite.	4	11T488231
CR-11-046	E5309873	564.00	565.20	1.20	consecutive	Biotite altered Gabbro (?) with minor veining, but sulphides not in vein.	13	11T488231
CR-11-046	E5309874	565.20	566.68	1.48	consecutive	Biotite altered Gabbro (?) with pyrrhotite.	8	11T488231
CR-11-046	E5309875	572.00	573.00	1.00	not consecutive	Lamprophyre with pyrite and high kappa.	4	11T488231
CR-11-046	E5309876	566.68	567.18	0.50	not consecutive	Wing sample, grainy Lamprophyre with minor pyrite.	3	11T488231
CR-11-046	E5309877	579.00	580.00	1.00	not consecutive	Wing sample, Basalt with 5 % buff bleaching and 1 % veining.	3	11T488231
CR-11-046	E5309878	580.00	581.00	1.00	consecutive	Basalt with one 6cm quartz carbonate vein with pyrrhotite replacement.	3	11T488231
CR-11-046	E5309879	581.00	582.00	1.00	consecutive	Basalt with several quartz carbonate veins with pyrrhotite replacement.	3	11T488231
CR-11-046	E5309880	582.00	583.00	1.00	consecutive	Basalt with one 2cm quartz carbonate vein with pyrrhotite replacement.	2	11T488231
CR-11-046	E5309881	583.00	584.00	1.00	consecutive	Basalt with one 5cm quartz carbonate vein with pyrrhotite replacement.	6	11T488231
CR-11-046	E5309882	584.00	585.00	1.00	consecutive	Basalt with one 10cm quartz carbonate vein with pyrrhotite replacement.	12	11T488231
CR-11-046	E5309883	585.00	586.00	1.00	consecutive	Wing sample, Basalt with 2 % veining.	9	11T488231
CR-11-046	E5309884	590.68	591.18	0.50	not consecutive	Wing sample, Grey Basalt with carbonaceous fractures.	3	11T488231
CR-11-046	E5309885	591.18	591.86	0.68	consecutive	Basalt with 28cm mix of quartz carbonate and hornblende - chlorite alteration with pyrrhotite and chalcopyrite.	6	11T488231
CR-11-046	E5309886	591.86	592.36	0.50	consecutive	Wing sample, Basalt with 1 % veining.	6	11T488231
CR-11-046	E5309887	619.00	619.50	0.50	not consecutive	Wing sample, brownish green foliated Basalt.	25	11T488231
CR-11-046	E5309888	619.50	621.00	1.50	consecutive	Quartz Monzodiorite with prrhotite, pyrite and trace Arsenopyrite.	148	11T488231
CR-11-046	E5309889	621.00	622.50	1.50	consecutive	Quartz Monzodiorite with quartz vein that shows late biotite fill and wall rock enrichment of sulphides.	15	11T488231
CR-11-046	E5309890	0.00	0.00	0.00	not consecutive	Standard OxK 69 3.583 ppm Au	3820	11T488231
CR-11-046	E5309891	622.50	624.00	1.50	not consecutive	Quartz Monzodiorite with quartz vein that shows late biotite fill and wall rock enrichment of sulphides.	127	11T488231
CR-11-046	E5309892	624.00	625.50	1.50	consecutive	Quartz Monzodiorite with upper third being taken up by quartz vein.	43	11T488231

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-11-046	E5309893	625.50	627.00	1.50	consecutive	Quartz Monzodiorite with prrhotite, pyrite and trace Arsenopyrite.	88	11T488231
CR-11-046	E5309894	627.00	628.26	1.26	consecutive	Quartz Monzodiorite with prrhotite, pyrite and trace Arsenopyrite.	202	11T488231
CR-11-046	E5309895	628.26	628.76	0.50	consecutive	Wing sample, green grey Basalt.	7	11T488231
CR-11-046	E5309896	631.36	631.86	0.50	not consecutive	Wing sample, green grey Basalt.	10	11T488231
CR-11-046	E5309897	631.86	633.00	1.14	consecutive	Quartz Monzodiorite with low sulphides.	192	11T488231
CR-11-046	E5309898	633.00	634.20	1.20	consecutive	Quartz Monzodiorite with low sulphides.	252	11T488231
CR-11-046	E5309899	634.20	634.70	0.50	consecutive	Wing sample, green grey Basalt.	15	11T488231
CR-11-046	E5309900	673.00	674.00	1.00	not consecutive	Wing sample, grey massive Basalt with 2 % veining.	4	11T488231
CR-11-046	E5309901	674.00	675.00	1.00	consecutive	Basalt with 12 % two stage veining, hornblende - chlorite alteration with pyrrhotite and trace chalcopyrite.	3	11T488231
CR-11-046	E5309902	675.00	676.00	1.00	consecutive	Wing sample, Basalt with 4 % dismembered veining.	4	11T488231
CR-11-046	E5309903	710.85	711.35	0.50	not consecutive	Wing sample, grey Basalt with 1 % veining	4	11T488231
CR-11-046	E5309904	711.35	712.47	1.12	consecutive	Basalt with swirly quartz carbonate vein with blebby pyrrhotite, pervasive wall rock mineralisation.	6	11T488231
CR-11-046	E5309905	712.47	712.97	0.50	consecutive	Wing sample, Basalt with 5 % dismembered veins with no sulphides.	3	11T488231
CR-11-046	E5309906	752.92	753.42	0.50	not consecutive	Wing sample, Basalt with thick quartz carbonate vein near contact.	4	11T488231
CR-11-046	E5309907	753.42	754.90	1.48	consecutive	Quartz Monzodiorite with 1 % pyrite, trace arsenopyrite.	31	11T488231
CR-11-046	E5309908	754.90	756.35	1.45	consecutive	Quartz Monzodiorite with 1 % pyrite, trace arsenopyrite.	33	11T488231
CR-11-046	E5309909	756.35	756.85	0.50	consecutive	Wing sample, green Basalt.	9	11T488231
CR-11-046	E5309910	0.00	0.00	0.00	not consecutive	Standard Si 42 1.761 ppm Au	1830	11T488231
CR-11-046	E5309911	760.07	760.57	0.50	not consecutive	Wing sample, grey green Basalt.	40	11T488231
CR-11-046	E5309912	760.57	762.00	1.43	consecutive	Quartz Monzodiorite with 1 % pyrite, trace arsenopyrite.	145	11T488231
CR-11-046	E5309913	762.00	763.50	1.50	consecutive	Quartz Monzodiorite with 1 % pyrite, trace arsenopyrite.	13	11T488231
CR-11-046	E5309914	763.50	765.00	1.50	consecutive	Quartz Monzodiorite with 1 % pyrite, trace arsenopyrite.	29	11T488231
CR-11-046	E5309915	777.00	778.00	1.00	not consecutive	Basalt with pervasive biotite to 2%.	14	11T488231
CR-11-046	E5309916	765.00	765.99	0.99	not consecutive	Quartz Monzodiorite with 1 % pyrite, trace arsenopyrite.	54	11T488231
CR-11-046	E5309917	765.99	766.49	0.50	consecutive	Wing sample, grey green Basalt.	9	11T488231
CR-11-046	E5309918	785.17	785.67	0.50	not consecutive	Wing sample, grey green Basalt with faint biotite.	14	11T488231
CR-11-046	E5309919	785.67	787.00	1.33	consecutive	Quartz Monzodiorite with 0.4% pyrite and trace arsenopyrite.	19	11T488231
CR-11-046	E5309920	787.00	788.00	1.00	consecutive	Quartz Monzodiorite with 0.4% pyrite and trace arsenopyrite.	32	11T488231
CR-11-046	E5309921	788.00	789.00	1.00	consecutive	Quartz Monzodiorite with 0.4% pyrite and trace arsenopyrite.	29	11T488231
CR-11-046	E5309922	789.00	789.50	0.50	consecutive	Wing sample, grey green Basalt.	6	11T488231
CR-11-046	E5309923	792.24	792.74	0.50	not consecutive	Wing sample, grey green Basalt.	5	11T488231
CR-11-046	E5309924	792.74	794.00	1.26	consecutive	Quartz Monzodiorite with 1% pyrite and 0.1% arsenopyrite.	26	11T488231
CR-11-046	E5309925	794.00	795.25	1.25	consecutive	Quartz Monzodiorite with 1% pyrite and 0.1% arsenopyrite.	44	11T488231

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-11-046	E5309926	795.25	796.45	1.20	consecutive	Quartz Monzodiorite with 1% pyrite and 0.1% arsenopyrite.	22	11T488231
CR-11-046	E5309927	796.45	796.95	0.50	consecutive	Wing sample, grey green Basalt.	14	11T488231
CR-11-046	E5309928	804.50	805.00	0.50	not consecutive	Wing sample, grey green Basalt.	11	11T488231
CR-11-046	E5309929	805.00	806.30	1.30	consecutive	Quartz Monzodiorite with 0.5% pyrite and trace arsenopyrite.	6	11T488231
CR-11-046	E5309930	0.00	0.00	0.00	not consecutive	Standard Sk 43 4.086 ppm Au	4280	11T488231
CR-11-046	E5309931	806.30	807.58	1.28	not consecutive	Quartz Monzodiorite with 0.5% pyrite and trace arsenopyrite.	20	11T488231
CR-11-046	E5309932	807.58	808.08	0.50	consecutive	Wing sample, green hornblende Basalt.	16	11T488231
CR-11-046	E5309933	856.00	857.00	1.00	not consecutive	Character sample, Basalt with pillow rims and 3% veining.	4	11T488231
CR-11-046	E5309934	857.00	858.00	1.00	consecutive	Basalt, foliated with 2% biotite and 4% veining.	4	11T488231
CR-11-046	E5309935	900.00	901.00	1.00	not consecutive	Fine grained Gabbro with 0.25% disseminated pyrite.	5	11T488231
CR-11-046	E5309936	858.00	859.00	1.00	not consecutive	Basalt, foliated with 2% biotite and 4% veining.	4	11T488231
CR-11-046	F5309937	927.00	928.00	1 00	not consecutive	Character Sample: Basalt with quartz carbonate veins and flow top	3	11T488231
	23303337	527.00	520.00	1.00	not consecutive	breccia. Trace Sulphides.	5	111400201
CR-11-046	E2300038	928 00	929 00	1 00	consecutive	Character Sample: Basalt with quartz carbonate veins and flow top	з	117/88231
CK-11-040	E3303338	528.00	525.00	1.00	consecutive	breccia. Trace Sulphides.	5	111400251
CB-11-046	F5309939	929.00	930.00	1 00	consecutive	Character Sample: Basalt with quartz carbonate veins and flow top	3	11T488731
CN-11-040	L3303333	525.00	550.00	1.00	consecutive	breccia. Trace Sulphides.	5	111400251
CR-11-046	E5309940	965.50	966.00	0.50	not consecutive	Wing Sample: fine gabbro	28	11T488231
CR-11-046	E5309941	966.00	967.00	1.00	consecutive	Quartz Monzodiorite 03PY trAPY	257	11T488231
CR-11-046	E5309942	967.00	968.00	1.00	consecutive	Quartz Monzodiorite 03PY trAPY	278	11T488231
CR-11-046	E5309943	968.00	968.50	0.50	consecutive	Wing Sample: foliated gabbro	39	11T488231
CR-11-046	E5309944	979.50	980.00	0.50	not consecutive	Wing Sample: Sheared Gabbro with trace Pyrite	7	11T488231
CR-11-046	E5309945	980.00	981.00	1.00	consecutive	Shear with quartz vein	3	11T488231
CR-11-046	E5309946	981.00	982.00	1.00	consecutive	Shear with quartz vein	3	11T488231
CR-11-046	E5309947	982.00	982.50	0.50	consecutive	Wing Sample: sheared Gabbro with trace Pyrite	9	11T488231
CR-11-046	E5309948	1001.00	1002.30	1.30	not consecutive	Upper Wing Sample: Basalt NIL sulphides	51	11T489704
CB-11-046	F5309949	1002 30	1003 30	1 00	consecutive	one low angle quartz vein (2-5cm wide) with 01CPY 02PY minor	38	117489704
CK-11-040	L3303343	1002.50	1005.50	1.00	consecutive	selvage mineralization in Basalt	50	111403704
CR-11-046	E5309950	0.00	0.00	0.00	not consecutive	Standard Sample: Oxk69 3583 ppb Au	3620	11T489704
CR-11-046	F5300051	1003 30	1003 80	0.50	not consecutive	Wing Sample: Basalt above Fault and shearing with a few low angle	Q	117/8070/
CK-11-040	2303331	1005.50	1003.80	0.50	not consecutive	fractures, NIL mineralization.	9	111489704
CR-11-046	F5200052	1003 80	100/ 21	0.41	consecutive	sil-bt-qtz-cb-(alb-ser) reactivated very well healed fault zone with	00	117/2070/
CK-11-040	L3303932	1003.80	1004.21	0.41	consecutive	01CPY and 02PY	30	111489704
CR-11-046	E5309953	1004.21	1005.02	0.81	consecutive	Mostly massive Basalt block	10	11T489704
CR-11-046	F530005/	1005.02	1005 62	0.60	consecutive	Second strongly sheared narrow fault plane (very tightly and well	٩	117/8070/
CN-11-040	2303334	1003.02	1003.02	0.00	consecutive	healed) sil-bt-qtz-cb-(alb-ser)-(01CPY-02PY)	3	111403/04
CR-11 046	E52000EE	1005 62	1007.00	1 20	consecutive	Blank Wing Sample: Basalt footwall with very fine grained	6	117/2070/
Ск-11-046 Е5309955	55 1005.62	1007.00	1.30	consecutive	disseminated trace Pyrite	U	111403/04	

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-11-046 E5309956	F5309956	1013 00	101/ 17	1 17	not consecutive	Weakly bt-chl-(sil) altered wing Basalt sample above intrusive (NIL	38	117/8970/
	1013.00	1014.17	1.1/	not consecutive	sulphides)	38	111409704	
CR-11-046 E5309957	101/ 17	101/17 1015 67	1 50		Quartz Monzodiorite with trace APY and 01% very finely	11	117490704	
	E3203337	1014.17	1015.07	1.30	consecutive	disseminated Pyrite. Weak sil-ser alteration.	44	111405704
CP 11 046		58 1015.67	5.67 1016.79	1.12	consecutive	Quartz Monzodiorite with trace APY and 01% very finely	10	11T489704
CK-11-046 E5309958	E2209928					disseminated Pyrite. Weak sil-ser alteration.	10	
CR-11-046 E5309959		050 4046 70	1016 70 1017 00	0.21		Lower Wing to intrusive in dark green coloured Basalt with weak	F	117400704
	1010.79	1017.00		consecutive	chl-bt-gtz-cb. Only 21cm at EOH.	5	111489704	

Reflex EZ-Shot Survey Record

Hole ID	Station (m)	Azimuth	Dip (Degrees)	Mag
CR-11-046	0	14.00	-75.00	na
CR-11-046	30	21.30	-74.50	5871
CR-11-046	90	17.90	-74.40	5782
CR-11-046	120	19.70	-74.30	5865
CR-11-046	150	24.00	-72.00	5818
CR-11-046	213	25.00	-71.10	5766
CR-11-046	243	13.70	-70.40	5749
CR-11-046	273	26.40	-70.00	5761
CR-11-046	309	26.90	-69.50	5755
CR-11-046	339	26.70	-69.30	5763
CR-11-046	375	28.30	-68.70	5761
CR-11-046	405	30.50	-67.50	5766
CR-11-046	435	30.90	-66.90	5760
CR-11-046	465	31.10	-66.70	5766
CR-11-046	495	31.60	-66.60	5754
CR-11-046	525	32.90	-66.10	5766
CR-11-046	555	33.60	-65.70	5761
CR-11-046	585	34.10	-65.10	5768
CR-11-046	615	34.30	-65.10	5765
CR-11-046	645	35.10	-64.70	5761
CR-11-046	675	35.40	-64.50	5763
CR-11-046	711	35.40	-64.10	5767
CR-11-046	759	37.50	-63.20	5766
CR-11-046	789	37.70	-63.10	5769
CR-11-046	813	38.50	-62.30	5750
CR-11-046	843	38.80	-62.00	5753
CR-11-046	873	39.90	-61.00	5761
CR-11-046	903	40.30	-60.70	5758
CR-11-046	933	39.30	-59.90	5770
CR-11-046	963	41.50	-59.60	5763
CR-11-046	993	41.70	-58.40	5770

Conquest Resources Ltd.

Exploration Diamond Drill Log

CR-11-047

DRILL HOLE #	CR-11-047	LOCATION	Balmertown	, Balmer Townsl	nip, Red Lake Dist	rict, Ontario		
PROJECT #	Alexander	REFERENCE	Alexander		GEOLOGIST	Meckert	CLAIM G	oldcorp/KRL20488
GRID/ NAD-ZONE	E	NORTHING		EASTING		ELEVATION		GRID TYPE
GRID	Alexander RL	11+27S		1+34W		9990		Μ
UTM	NAD83 / 15U	5655827		449468		371		
COLLAR DIP	-87	GRID DIRECTION	-	26° W of gridN			AZ DIRECTION	004
NTS REF #	052N04	NTS SHEET NAME		Red Lake, Onta	rio			
START DATE	26-Mar-11			FINISH DATE	14-May-11			
DEPTH (EOH)	1479.00	TARGET & Zone De	epth					
PURPOSE	Deep Alexande	r WEST SHR/VEIN	I target at pro	perty boundary	PIEC	E POINT of Target:	E	mELEV
CASING BV	v na	CASING NW		6m			CASING HW	na
PLUG @	a na	PLUG @		na			PLUG @	na
START DTH	na	WEDGE @		na				
REDUCED @	na		REDUCED @	na				
HOLE STATUS	completed							
DRILLING CONTR	ACTOR	Boart Longyea	r Inc.					
RIG NO.	LY 55 4154						BXS.	342
							_	
				SPT GYRO Surveys	5			
DEP	РТН (m)	AZIMU	тн		DIP		Comments:	
	0	12.2	0	8-	86.72			
1	100	36.8	0	-8	34.39	-		
2	200	39.3	7	-8	81.85	-		
3	300	37.0	3	8-	80.54			
4	400	38.3	8	-7	9.12			FROM GOLDCORP
5	500	37.6	3	-7	7.72	PROPERTY AT DE	PTH. Huston - Bal	mer Unconformity
(600	39.7	1	-7	/5.70	was intersected at	1,038.97 and is cha	racterized as a 7cm
7	700	39.1	7	-7	1.93	wide, stongly sil-s	ser altered, well he	aled fault breccia
8	800	40.8	9	-6	9.05	Basalts occuring i	mmediately beneat	h the Unconfomity
9	900	40.9	5	-6	6.99	are well foliated	to poorly sheare	ed and contain a
1	.000	42.6	9	-6	3.96	significant abunda	ance of quartz-carb	onate veining and
						shear/alteration	at 70 to 9	ted in the Balmer
						Basalts. Gold leve	els were not signifi	icantly elevated in
						these. A short se	ection of Balmer in	iterflow sediments
						between 1278.53	m and 1279.77m y	ielded an assay of
						0.25gr/t Au. A Qu	uartz Monzodiorite	intersected within
						the Balmer Base	alts shows 2.13gr/	/t Au over 1.6m
						between 1130.61r	n and 1132.21M.	
						1		
						1		
				1		1		

Drill with 6m, double stablilized NQ core barrel

Planned hole depth is 1450m (4,750')

Core stored at Alexander Core Yard at UTM 0449935 5656595 UTM NAD83 15U

Water source: beaver pond located at 449718 5656178 UTM NAD83 15U

Drill type: LY-55

Major Lithologies

Hole Name	From	То	Length	Code	Description	Rep
CR-11-047	0.00	6.00	6.00	CAS	NW Casing into overburden and bedrock	
CR-11-047	6.00	98.00	92.00	S6D/S10	Dark grey coloured sulphidic Mudstones interbedded with light to medium grey Chert. Mudstones show streaks and thin bands of pyrrhotite. Close to surface these bands show some spheroidal pyrite replacement. Apart from the sulphide bands there is little internal structure in the mudstones and they appear massive. The more competent Chert bands show extension fractures and micro undulating banding to lamination. Extension fractures are filled with either quartz or pyrrhotite. Darker grey coloured bands within the chert are rich in magnetite.	
CR-11-047	98.00	157.00	59.00	S10C	Light grey to bluish white coloured siliceous Chert. Mudstone interbeds are less frequent and the Chert is very fine grained and glass-like in appearance. Chert is banded from 1cm down to mm thick laminae. Laminations present over <2 metre intervals with folding occurring on small mm scale. On a larger scale the bedding is generally undulating and contorted. Where there is a reversal of the layering to point uphole, fractures in the chert mimic a crude foliation. Pyrrhotite is present mostly in fractures and is less abundant than in fine grained siliciclastics. Medium grey coloured bands represent beds that are rich in fine grained magnetite.	
CR-11-047	157.00	175.63	18.63	S6A	Medium to dark grey coloured, mud-bearing Siltstone. Finer graded beds of Siltstone generally appear massive, are less fissile than coarser beds, and contain only minor fracturing. Thin, folded, weakly boudinaged quartz veins are present which suggest minor structures have been preserved in the rock record but are difficult to recognize with crudely planar bedding dominating the rock record visible throughout this interval. Sections which are slightly coarser in grain size display weak, undisturbed banding representative of bedding. Pyrrhotite present throughout in thin bands, remobilized in fractures and occasionally as selveges on quartz veins.	
CR-11-047	175.63	209.00	33.37	S10C/BRC	Light to medium grey coloured banded chert is 70% brecciated in this interval. The chert fragments are mostly embedded in a muddy matrix which locally contains large amounts of pinkish garnets. In sections where mudstones are not present the breccia is healed by silica which tends to blend with the chert fragments and is mostly noticeable by by a slight yellow to brownish discoloration. Some of the muddy matrix intervals acted as "grease" during phases of movement evident by the presence of undulating shear planes not observed in the silicious sections.	

Hole Name	From	То	Length	Code	Description	Rep
					Light grey to bluish grey coloured highly silicious Chert, sometimes with yellow discoloration.	
					Chert is banded and to 80% intact. The other 20 % are internally brecciated. Quartz veining is	
					more obvious than before due to colour differences to host rock. Medium dark grey coloured	
CR-11-047	209.00	285.35	76.35	S10C	bands contain high levels of magnetite. Very thin occasional bands of Mudstone are rich in in	
					small red garnets. Pyrrhotite is the dominating sulphide at about 1 %. It appears as fillings in	
					extension fractures and as selveges on some of the magnetite rich medium grey coloured	
					bands.	
					Dark grey coloured sulphidic Mudstones interbedded with light to medium grey coloured Chert.	
					Mudstones show little internal structure except for pseudo bedding planes based on	
		333.50			accumulations of pyrrhotite. Pyrrhotite is also finely disseminated and on occasion may make	
CP-11-047	285 25		10 15	SED/S10	up about 20 % of mudstone sections. Mudstones as well as the interbedded Cherts are crossed	
CN-11-047	205.55		40.15	500/510	by a multitude of light grey thin quartz veins that are folded and broken up. Multigenerational	
					fillings in these veins make it sometimes difficult to distinguish between veins and primary	
					banded Chert. Veins, Chert and to a lesser degree the Mudstones show extension fractures	
					healed by quartz.	
					Interbedded Chert and Mudstones are crudely brecciated and well healed healed with opaque	
					white-coloured quartz. Brecciation is defined by the fragmentation of sorted beds of Chert and	
					Mudstone whereby preciation is limited to each bed not causing mixing of Cherts and	
					Mudstone Veining hosted within brecciated hosts especially the very low angle veins are	
CR-11-047	333.50	358.46	24.96	BRC/S10C	fragmented/brecciated and often contain a mosaic of wall rock fragments. Sulphide	
					migneticed bicectated and often contain a mosale of war fock highlends. Subjude	
					2E to AO degCA. Due to drilling processes there are sourced matrices of broken massive	
					25 to 40 degCA. Due to drilling processes, there are several metres of proken massive	
					Brecciated Mudstones and Cherts. Chert and Mudstone fragments mixed together. Matrix is	
					made up of light grey to white coloured, opaque, quartz and pyrrhotite mineralization. In upper	
					half of unit Breccia was subject to shearing and the pyrrhotite appears mostly as vein	
CR-11-047	358.46	369.19	10.73	BRC	replacement. Where Chert is the dominating lithology in the Breccia the matrix is made up of	
					pyrrhotite to about 20%. In the lower half of the unit brecciated Mudstones make up 80 % of	
					the rocks present. Here the matrix is made up solely of silica and pyrrhotite can only be seen in	
					the Mudstone itself.	

Hole Name	From	То	Length	Code	Description	Rep
CR-11-047	369.19	437.07	67.88	S10C	Light to medium grey coloured and banded to laminated Chert. In some cases with a distinct pale yellow brownish hue. For the most part the Chert is intact albeit crossed by numerous thin quartz veins, but some sections are brecciated. The brecciation is related to wider fractures filled with wall rock fragments and subsequently healed with quartz. Some thin Mud to Siltstone bands are interbedded and contain fine grained retrograde garnets. Pyrrhotite is the dominating sulphide which can be found in quartz veins, fracture fillings and occasionally as bands within the Chert. Magnetite is present throughout but tends to blend into the Chert. As in previous units the Chert is folded and undulating along the core axis frequently reversing direction.	
CR-11-047	437.07	593.99	156.92	S10F	Chert - Ironstone Formation. Light to medium grey coloured banded to laminated Chert alternating with green grey coloured bands that can reach 50cm in true thickness. Chert is mostly intact except for extension fractures but in some sections it is brecciated. The matrix is milky grey coloured quartz and late stage pyrrhotite. The green grey coloured bands are dominated by amphiboles and contain magnetite and very finely disseminated pyrrhotite. However, the amphibole crystals which can reach up to 1cm in size mask other underlying texture or mineral content. These amphibole rich bands macroscopically could be mistaken as gabbroic at first glance but represent reconstituted sedimentary matter likely of volcanic origin. These bands often show a thin pyrrhotitic selvedge, which indicates the pyrrhotite mineralisation took place after the amphibole alteration and contemporary with the Chert fractures, allowing pyrrhotite infill of those fractures. The amphibole bands stayed intact for the most part and were impermeable to the pyrrhotite carrying fluids. The Chert bands as in the previously described units are undulating and folded with sedimentary banding often running along the core axis and constantly changing directions.	
CR-11-047	593.99	596.16	2.17	12J	Medium grey coloured and fine grained Diorite. Intrusive is uniform, massive and foliated. Foliation running at 51 degCa. Very fine grained pyrite is disseminated throughout at about 0.25%. Near the base some pinkish coloured garnets are sprinkled in. The contacts are sharp but interfingered.	
CR-11-047	596.16	600.66	4.50	S6D	Dark grey coloured and massive Mudstone. Hairline fractures are filled with pyrrhotite. Approximatly 05% Pyrrhotite is disseminated evenly throughout in small flecks. Few folded and dismembered quartz veins give insight into otherwise invisible planes of movement within the Mudstone.	

CONQUEST Resources Limited

Hole Name	From	То	Length	Code	Description	Rep
CR-11-047	600.66	618.86	18.20	S5D	Unsorted polymictic Conglomerate. Pebble- to cobble-sized clasts are made of solid light grey to white coloured banded chert or quartz vein fragments and pyrrhotite bearing Argillite. The clasts are subangular to well rounded. The matrix is composed of muddy fine siliciclastic sediment which contains considerable garnet and pyrrhotite. Locally, pyrrhotite is present as solid sulphide replacement in matrix which overprints any recognizeable bedding. Earthy weathered, spheroidal pyrite replacement is present locally in trace to 01% concentrations. Locally the matrix contains carbonate which may represent the primary matrix.	
CR-11-047	618.86	619.73	0.87	SHR	Narrow shear with undulating planes. Thin quartz veins alternating with bands of ground up conglomerate. Shear fabric is oriented at 42 degCA. Upper and lower contacts are well defined at approximately 40degCA.	
CR-11-047	619.73	685.00	65.27	S5D	Unsorted polymictic Conglomerate. Continuation of Unit encountered above the Shear. Between 632m and 633m several well rounded buff coloured Bassalt cobbles appear can be observed. Lower contact to the muddy Siltstone below is gradual over 30cm.	
CR-11-047	685.00	748.70	63.70	S6D	Poorly PO-(PY) mineralized, well bedded, poorly graded, dark grey coloured, silty Mudstone (85%) and Wackestone (15%). Upper contact is diffuse over 0.50 metres containing trace very fine grained garnets and local trace leucoxene and magnetite crystals. Local siltstone beds, well defined, undlating bedding planes at 35 to 55degCA. Mixed silty sediments are poorly sorted throughout unit. Quartz Diorite intrusive and sections of mixed 35/65 assimilated fine grained siliciclastic garnet-bearing sediments and intrusive are found at upper and lower contacts of Quartz Diorite over <2 metres.	
CR-11-047	748.70	761.20	12.50	VS3	Well graded, well bedded, interbedded, conformable, sil-gt-(leucoxene-chl) altered Mafic Volcaniclastic sediments and PY-bearing Mudstone. Generally fine grained with common subhedral plagioclase crystals and occasional rounded quartz vein fragments. Planar bedding and foliation is oriented at 55degCA. Silica (up to 25%) is pervasive within very fine grained beds. Garnets are anhedral to subhedral and disseminated within narrow 5 to 30cm beds below silica enriched beds. Leucoxene (trace to 01%) is finely disseminated and generally replaces minor pyrite and possibly FeOxides (magnetite?).	

CONQUEST Resources Limited

Hole Name	From	То	Length	Code	Description	Rep
CR-11-047	761.20	829.95	68.75	12G	Grey-blue coloured, medium to coarse grained, variably gt-sil-ser altered, sparsely disseminated sulphide (cheifly 01PO) mineralized, blue quartz eye bearing, Quartz Monzodiorite. Moderately well foliated at 45degCA. This is a broad intrusive of significant thickness. Alteration of finest grain fraction comprises plagioclase feldspar being sericitized (up to 10%) locally in to whispy threads along foliation and generally elevated silica (5-10%) throughout fine to medium grained portions of unit. Biotite (trace to 01%) is common in fine grained groundmass oriented subparallel to foliation. Upper contact is sharp, irregular, and appears conformable to adjacent bedding in Mudstones.	
CR-11-047	829.95	831.55	1.60	ATZ/BRE	Strongly carb-ser-sil altered, rusty beige coloured, brecciated Quartz Monzodiorite. 25% sericite, 10% silica, and 10% carbonate pervasive alteration throughout interval. 90% fine grained and altered intrusive. Approximately 10% 5mm to 20mm sized subangular breccia clasts comprised of siliceous intrusive as above. Occasional trace fine grained disseminated Pyrite. Upper and lower contacts are diffuse over 20cm.	
CR-11-047	831.55	838.76	7.21	12G	Quartz Monzodiorite as above. Lower contact is irregular oriented approximately 50degCA.	
CR-11-047	838.76	897.50	58.74	S6/V2	Silica-Magnetite-Garnet-Cordierite altered muddy Siltstone or possible Volcaniclastic/epiclastic with minor Chert intervals. One 9 metre interval (see minor litho 851.34 to 860.40m) of volcanic (and/or volcaniclastics with low angle,folded and boudinaged, quartz veining. Alteration of Siltstone is unusually strong and pervasive. High percentage of replacement silica 30-50% throughout most of this unit. Bedding is dicernable through sil-mt-cord alteration at low angles to the core axis (25degCA). Beds are locally fractured and offset at orthonormal angles to deposition likely from lithification processes, which in all, characterizes a generally undeformed rock record in this part of the Huston Formation. Concoidal fracturing common in highly siliceous intervals. At 881m hole depth, examples of rhythmic fine sediment deposition is clearly displayed in bed which are 20cm in true thickness at low angles to core axis (20degCA). Quartz veining is common and is associated with chlorite-garnet-biotite selvage mineralization in wallrock.	
CR-11-047	897.50	905.67	8.17	S6A	Well graded, light grey coloured Siltstone. Very minor carbonate in fine veins present along bedding planes. Upper contact is planar at 45degCA. NIL mineralization.	

Hole Name	From	То	Length	Code	Description	Rep
CR-11-047	905.67	974.58	68.91	S6D	Dark grey to black coloured, Pyrite-bearing (02-03%), carbonaceous Mudstone with mixed light grey Siltstone interbeds. Deep water sediments. Irregular quartz-(carbopnate) fine veinlets are commonly threaded parallel bedding planes with no obvious association to sulphide mineralization. Silty interbedded intervals are common and contain occasional quartz clasts (epiclastic fragments?) and have associated carbonate in strain shadows. Bedding is planar at 40 to 50degCA.	
CR-11-047	974.58	1038.97	64.39	S6D	Dark grey coloured, well bedded, variably magnetic Mudstone. Local flame and dewatering primary structures. Trace finely disseminated garnet and magnetite. Chlorite is common within dirty Mudstone beds which contain fine lithic material. Several interbeds which contain chlorite and <1mm garnet may be volcanically derived epiclastics. Upper contact is gradational and defined by fine to medium-fine grain size sorting and NIL pyrite mineralization within this unit. Lower contact at Huston - Balmer Unconformity is tightly healed, bleached ground breccia at 90degCA.	
CR-11-047	1038.97	1039.04	0.07	FLT	Narrow, well healed, bleached, brecciated (fault) Huston - Balmer Unconformity. Cemented matrix is very fine grained and completely overprinted by sericite bleaching. Small <1cm sized fragments are buff brown coloured and marginally less altered than cemented matrix material. NIL Mineralization. Breccia Zone is crudely oriented 90degCA.	
CR-11-047	1039.04	1051.80	12.76	V3B	Balmer Assemblage. Green coloured, very fine grained, Basalt with abundant (up to 15%) quartz carbonate in veinlets and fracture filling and up to 05% silica alteration. Trace Pyrite as fine grained disseminations is common. Poorly sheared and quenched fine grained volcanic textured at top of flow.	
CR-11-047	1051.80	1054.75	2.95	ATZ/BRE	Buff beige coloured, strongly silica-sericite altered, well healed Breccia Zone in Basalt. Overprinting is very intense locally (over 0.5 to 2m intervals) with up to 50% sericite, 10% silica, and 10% carbonate. Carbonate is late stage in alteration scheme in veins and replacement locally of groundmass. Later still are occasional very fine featured fractures at low angles to the core axis which contain Pyrite fracture filling. Breccia structure is crudely oriented at 70 to 90degCA while abundant fractures show offset along minor Faults oriented at low angle to CA. Lower contact is sharp at dyke.	

Hole Name	From	То	Length	Code	Description	Rep
CR-11-047	1054.75	1065.52	10.77	V3B	Very fine grained, sil-bt altered Basalt. Strong silica overprinting washes out original volcanic texture. Vein and fracture swarm contains 90degCA threads and fractures which are closely spaced with trace pyrite associations in wall rock and quartz-carbonate veins. Basalt is otherwise similar to above volcanic with abundant, tightly healed fractures and quartz carbonate veins. Quartz Monzodiorite dyke within unit is strongly sericite altered and contains folded bull quartz-chl-tml veins at low angles to the core axis.	
CR-11-047	1065.52	1140.00	74.48	V3B	Green coloured, fine to coarse grained, massive to foliated, hb-plag-(chl-bt) Basalt with up to 8% quartz carbonate veins locally. Biotite alteration halos in vein selvages is common. Trace disseminations of Pyrite is mostly tied to sections with moderate biotite alteration. Upper contact is very fine grain textured but quickly moves into medium and sometimes even coarse textures. Alteration often most pronounced in 10 to 20cm thick bands and masks basaltic fabric completely giving the impression of an intrusive origin of the rock. Downward the hornblende alteration gradually dissappears.	
CR-11-047	1140.00	1206.78	66.78	V3B	By 1140m the Basalt is very fine grained and medium grey coloured. Occasional spots with hornblende make up less than 5% of the rock present. Pillow selvedges can be more readiliy identified again as they tend to be accompanied by clouds of amygdules. Quartz carbonate veins are in the 4 to 5% range and more than 90% are less than 1cm thick. At times the Basalt is crossed by a fine network of carbonaceous fractures. As in the hornblende overprinted section pyrite and pyrrhotite mineralisation is mostly tied to moderate biotite alteration and the occasional quartz carbonate stringer.	
CR-11-047	1206.78	1211.23	4.45	SHR	Shear with gradual upper and lower contacts and Quartz Monzodiorite exploiting the structure. Section above the intrusion shows planar shearing with thin quartz carbonate veins and 5 to 7% very finely disseminated pyrrhotite. Pyrrhotite can be observed in the veins as well as in the basaltic wall rock. Below the intrusive the shear shows less carbonate but an increase in moderate biotite alteration and bands with accumulations of corroded garnets. Sulphide mineralisation has weakend slightly and is even finer grained than before. Close to the base a short buff bleached carbonate overprinted and brecciated section is intersected. The clasts are rounded and have worked like a roll bearing inside the shear. Below that the shear quickly wanes and so does the sulphide mineralisation.	
CR-11-047	1211.23	1221.15	9.92	V3B	Greenish grey coloured Balmer Basalt with less quartz carbonate veining than before. The hornblende and chlorite content is steadily increasing downwards.	

Hole Name	From	То	Length	Code	Description	Rep
CR-11-047	1221.15	1222.06	0.91	VEIN	Carbonate dominated quartz carbonate stringer with garnets and trace tourmaline. The alteration minerals are not in the quartz carbonate itself but in strongly hornblende altered Basalt fragments within the stringer. Sulphides are present as blebby masses close to the upper and lower contacts and to a lesser degree finely disseminated.	
CR-11-047	1222.06	1262.50	40.44	V3B	Green grey coloured chloritic Basalt. On occasion permeated by stronger hornblende alteration and weak biotite alteration. The latter mostly restricted to the selvedges of quartz carbonate veins. Veining is infrequent and hovering between 3 and 5% on average. Pillow selvedges are accompanied by clouds of amygdules. Mineralisation at minimum trace level.	
CR-11-047	1262.50	1265.50	3.00	S	Mixed interflow sediments are dominated by volcaniclastic debris. Gradual contact from biotite altered Basalt into silicified massive garnetiferous Mudstone. Intermittent bands of reddish grey to brownish yellow coloured Chert. Contacts between Chert and Mudstone are diffuse and not sharp due due to the underlying silicification. The Chert does not contain any sulphides but within the Mudstone pyrrhotite is concentrated around garnets. The lower contact to the Basalt is gradual as well with less biotite present than at the upper contact.	
CR-11-047	1265.50	1283.00	17.50	V3B	Green grey coloured chloritic Basalt as before the interflow sediments. Hornblende alteration getting stronger downwards towards the contact with the Gabbro. Last three meters the hornblende is coarse completely masking the original basaltic fabric. Only pillow selvedges and quartz carbonate veining remain unaffected and display the "typical" Basalt look.	
CR-11-047	1283.00	1323.00	40.00	I3A	First 40m of Gabbro are contact sheared. First few meters are medium grey coloured with fused feldspar masses and distinct flaky brown coloured phlogopite masses. With increasing depth the Gabbro shows more and more hornblende alteration and the color takes on a green grey hue. The phlogopite content quickly decreases downwards. Upper contact to Balmer Basalt is disturbed by and intrusive that exploits the contact zone. Contact runs at about 69 degCA.	
CR-11-047	1323.00	1326.00	3.00	SHR	Shear within contact shear of Gabbro. Direction of shear is the same as in surrounding Rock. Defined mostly by a gradual but marked increase in biotite alteration followed by quartz carbonate veining at center and then a gradual decrease in biotite back to background level. The quartz carbonate veining is not planar but folded and truncated. Finely disseminated pyrite is present in veins as well as in biotite alteration. Strength of mineralisation is tied to biotite alteration.	

Hole Name	From	То	Length	Code	Description	Rep
CR-11-047	1326.00	1449.23	123.23	I3A	Fine to medium grained green grey Gabbro with pervasive hornblende. Massive for the most part with occasional section showing weakly defined foliation. Infrequent quartz carbonate veins tend to be folded. Equally infrequent milky quartz veins are straight and cross cutting. Neither are mineralised. Trace mineralisation in Gabbro itself. The last few meters before the contact with the Bruce Channel Formation are contact sheared and show the same phlogopite flake mineralisation as is present near the upper contact. The contact is sharp and solid at 70	
CR-11-047	1449.23	1450.75	1.52	S6D	degCa. Dark grey coloured Mudstone of the <u>Bruce Channel</u> Formation. Sediments are folded, contorted, truncated and generally disturbed. Same counts for quartz carbonate veining that is present in the contact area. Veining has also been recrystallised and pervasive carbonate is present in the Mudstone. Half of the primary pyrrhotite has been replaced by spheroidal pyrite. Sulphides make up about 10% of the rock in large masses, blebs and disseminated in carbonate richer sections.	
CR-11-047	1450.75	1461.00	10.25	121	Light grey coloured and fine grained Quartz Diorite. Very uniform throughout in quartz and feldspar content, with buff coloured streaks where sericite is concentrated on foliation planes. Few dark grey coloured quartz veins in first 3m of intrusive are not mineralised to any extent. Sulphides present are equal parts pyrite and pyrrhotite but pyrite is prominent at the top of the intrusive with the concentration staying the same throughout while the pyrrhotite content steadily climbs. Tied to the increase in pyrrhotite arsenopyrite also picks up downwards. The arsenopyrite is very fine grained but crystals of 1mm size can be observed in the meter before the lower contact. Upper contact is irregular and interfingered with the Bruce Channel Mudstones. Lower contact is sharp at 70DegCA.	
CR-11-047	1461.00	1466.62	5.62	S6D	Dark grey coloured banded and foliated silty Mudstone. Banding - bedding is unorderly and contains boudines of thin quartz carbonate veins and sulphides. Primary sulphide is pyrrhotite showing almost complete spheroidal pyrite replacement in places. Diffuse very fine grained carbonate bands are interpreted as recrystalised carbonate stringers.	
CR-11-047	1466.62	1467.10	0.48	FLT	Blocky dark grey coloured Mudstone and black graphitic fault gauge.	
CR-11-047	1467.10	1478.99	11.89	S6D	Dark grey coloured banded and foliated silty Mudstone. With increasing depth the banding - bedding is less and less disturbed but still contains boudines of thin quartz carbonate veins and sulphides. Primary sulphide is pyrrhotite showing almost complete spheroidal pyrite replacement in places. Carbonate stringers are waning as well, but occasinal thin veins can be observed.	

Hole Name	From	То	Length	Code	Description	Rep
CR-11-047	1478.99	1479	0.01	ЕОН	EOH in <u>Bruce Channel Formation</u> . Hole ended 29.5m past Balmer (Gabbro) / Bruce Channel unconformity. EOH at 1479m on May 14, 2011. Steel wedge set at 325m for CR-11-047. Surveyed by Goldcorp surveyors to 1050m, remainder surveyed using Easy Shot. Core is stored at the Conquest Core Facility on the Alexander Property in 342 NQ trays in racks. 194 samples sent for Au fire assay (50g pulp) at AGAT Labs, Mississauga, ON.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-11-047	252.38	254.22	I2J	Dark grey coloured and fine grained Diorite. Medium to coarse feldspar phenocrystals with altered edges. Unit does not show foliation and the contacts are both jagged, approximately running at 60 degrees.	
CR-11-047	285.18	287.23	12J	Dark grey coloured and fine grained and massive Diorite. Towards the base of the intrusive an about 40cm section of banded Chert is encountered. An open calcite lined fracture makes up the upper and lower contacts of the Chert. There is also a 20cm open fracture lined with large calcite crystals in the center of the Chert. The upper and lower contacts of Diorite are uneven, both hovering between 80 and 90 degCa.	
CR-11-047	291.10	293.18	I2J	In this interval three more arms of the same dioritic intrusion cross the core. As before the contacts are uneven to jagged and run at aproximately 80 degCa.	
CR-11-047	607.44	618.23	I2H	Intermediate Intrusive, possibly strongly altered Monzodiorite. Very fine to medium grained with a green hue. Chloritisation is overprinted on strong biotite alteration. Biotite is dark brown to rust brown occurs in large aggregates and disseminated leading to an odd green- brown colour mix. Biotite alteration is the strongest along undulating planes that are interpreted as signs of ductile deformation. Very fine grained pyrite is associated with the biotite. Core is very blocky throughout the unit and there has been some core loss. Contacts are sharp, upper at 33 degCa and lower at 40 degCa.	
CR-11-047	652.82	653.35	VEIN	Quartz carbonate vein crossing Conglomerate along foliation plane. Vein is massive and contains 0.1% fine grained pyrite and the occasional bleb. Distribution of pyrite is very uneven though. Contacts of vein are sharp, upper at 24 degCa and lower at 52 degCa.	
CR-11-047	688.03	690.30	13	Medium grey-green coloured, medium grained, carbonate bearing Mafic Intrusive. Possibly Lamprophyric due to presence of 03-05% fine grained, pervasive carbonate throughout but contains less than 02% very fine grained biotite. This interval contains several dykes with similar composition and varying contacts ranging from planar at 60deg to shallow undulating (possibly transposed) contacts. Wall rock fragments between small 50cm scale dykes is mudstone and appears to be proximal in-situ. NIL mineralization. Abundant retrograde hornblende crystals.	
CR-11-047	695.60	696.24	13	Narrow Mafic Intrusive as above. Upper contact is ground. Lower contact is sharp at 32degCA.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-11-047	712.97	716.57	S6A	Light grey coloured Siltstone interbed within Mudstone with sharp upper and lower contacts at 35 and 50degCA respectively. Well graded irregular undulating bedding. NIL mineralization.	
CR-11-047	731.72	738.25	S3E	Light grey coloured, poorly bedded lithic Wackestone with frequent irregular Mudstone interbeds. NIL mineralization. Upper contact is sharp at irregular bedding plane surface. Undisturbed.	
CR-11-047	738.25	741.89	121	Massive, light grey coloured, fine to medium grained interlocking crystal textured, plag- hb-sil-(bt-cb-PY) bearing Quartz Diorite Intrusive within Mudstone sediments. Hard unit. Trace to 01% Pyrite is finely disseminated. Upper and lower contact is undulating and irregular at approximately 80degCA.	
CR-11-047	746.58	746.92	13	Narrow fine grained chl-hb-plagioclase bearing Mafic Intrusive. Upper and lower contacts are sharp 55degCA.	
CR-11-047	790.36	793.94	S6D	Poorly mineralized (01PY 01 PO) Mudstone assimilated block within Quartz Monzodiorite intrusive. Upper and lower contact are stongly altered adjacent to intrusive. Up to 5% magnetite over 30cm at upper and at lower contacts in bedding.	
CR-11-047	794.6	795.38	12J	Two closely spaced, 30cm wide, fine grained, 10chl-03bt bearing, Quartz Diorite Dykes. Crosscutting foliation at 65degCA in downhole direction when foliation of adjacent Quartz Monzodiorite is oriented uphole at 60degCA. NIL mineralization.	
CR-11-047	809.50	810.00	S6D	Highly magnetic, assimilated wallrock Mudstone block. Contact metamorphism has formed large pale red coloured garnets (03%) and fine magnetite (05%). Block is pervasively chloritized (10%).	
CR-11-047	812.85	815.12	I2J	Green-grey coloured, non-magnetic, massive, chl-bt Diorite Dyke. Upper contact is irregular and sharp at 85degCA. Lower contact is irregular and sharp with an assimilated Quartz Monzodiorite block.	
CR-11-047	818.92	820.00	12J	Massive chl-bt Diorite Dyke as above. Upper and lower contacts sharp at 65 and 80degCA respectively.	
CR-11-047	822.63	826.95	I2J	Poorly foliated, chl-bt Diorite Dyke as above. One planar 2cm thick quartz-carb-chl vein near lower contact. Contacts are sharp having quenched intrusive texture.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-11-047	838.85	840.5	12J	Massive chl-bt-gt Diorite Dyke of similar composition to above dykes. Contact alteration with Mudstone seds has resulted in local concentrations of 01-05% magnetite and minor 01-03% fine garnets. Upper contact is lost in contact metamorphism and contorted bedding at Quartz Monzodiorite -Mudstone-Diorite contact. It is likely that this Diorite has exploited similar structural weaknesses as did the adjacent Quartz Monzodiorite. Lower contact is sharp at 70degCA. NIL mineralization.	
CR-11-047	843.15	844.47	12J	Massive, chl-bt-(PY-PO) bearing Diorite similar to above. Trace sulphides (PY+PO) are disseminated and present along fractures as late fracture filling. Contacts are sharp and approximately parallel to adjacent bedding at 40degCA. Fragmented quartz veins are present at both the upper and lower contacts.	
CR-11-047	851.34	860.40	V2/VS2	Conformable interflow volcanic or intermediate volcaniclastic interbeds containing locally strongly magnetic beds. Several narrow 1cm quartz veins oriented at steep angles to core axis are boudinaged while other, more substantial, very low angle, quartz-chl-(carb) Veins are brecciated (well healed by silica-carb), dismembered and locally folded over a 3 metre interval in the core of the flow (unit). Several narrow 3-10cm thick sections within this 3m interval are green and appear distinctly volcanic with small garnets in selvages to adjacent veins. Above veining several beds show rounded mineral growth (possibly orthoclase) which are 2-4mm in diameter and have carbonatized rims in variolitic textured sections. Upper contact is low angle (approx. 15degCA) and irregular with folded grey coloured quartz veins. Lower contact is sharp at 35degCA.	
CR-11-047	873.36	873.98	I2J	Medium grey coloured, massive, non-magnetic Diorite Dyke with trace disseminated pyrite throughout. Upper and lower contacts are sharp at 80 and 70degCA respectively.	
CR-11-047	889.60	891.22	S10C	Poorly banded, replacement silica saturated, gt-mt-(chl) bearing, strongly magnetic, Silicate Chert. Crude bedding is oriented at 50-60degCA. Upper and lower contacts are conformable to adjacent silt sediments at 45 and 65degCA respectively.	
CR-11-047	895.20	896.20	12	Very fine grained, intermediate composition (diorite) dyke. Upper and lower contacts are sharp and conformable to Siltstone beds.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-11-047	897.50	905.67	S6A	Well graded, light grey coloured Siltstone. Very minor carbonate in fine veins present along bedding planes. Upper contact is planar at 45degCA. NIL mineralization.	
CR-11-047	921.15	932.60	S6A	Light grey coloured Siltstone as above. Interbedded with 05% pyrite-bearing Mudestone. Few minor intermediate 3-10cm wide dykes along bedding at 50degCA. Sharp upper and lower contacts at 30 and 45degCA.	
CR-11-047	946.30	949.82	121	Massive to poorly foliated, medium grained, grey-green coloured, bt-(gt-chl-qtz-cb) bearing Quartz Diorite. Trace pyrite disseminations locally. Garnet is present near contacts and is fine grained. Biotite is trace to 01% and is associated with coarser grained intersections of the intrusive where subhedral quartz and plagioclase crystals <2mm constitute less than 40% of intrusive. Trace chloriteis present in fine grained groundmass. Trace quartz-carbonate fracture healing and minor veining. Upper contact is sharp and crosscuts bedding in downhole direction at 80degCA when adjacent bedding is oriented in uphole direction at 55degCA.	
CR-11-047	956.34	959.10	121	Quartz Diorite dyke as above. Sharp upper and lower contacts at 90degCA and 50degCA.	
CR-11-047	968.68	974.58	S6A	Light grey coloured dirty Siltstone to Lithic Wackestone. Approximately 4m of lithic fine sediments and Siltstone are poorly sorted on top of approximately 4m of light grey clean Siltstone. Fine rounded clasts less than 1-2mm diameter. Dewatering structures are present (10-30degCA) at steep angles to bedding and foliation 55 to 60degCA. Trace fine grained pyrite disseminated throughout. Upper contact is unconformable undulating at low angles to core axis. Lower contact is sharp with adjacent mudstone with 1cm of carbonate cemented mudstone.	
CR-11-047	1012.35	1013.00	121	Bleached, tightly silica-chlorite healed fractured, Quartz Diorite. Black chlorite in silica over 4cm at minor quartz vein. Narrow dyke. Nil mineralization. Upper and Lower contacts are sharp at 70degCA.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-11-047	1026.74	1030.15	130	Medium green coloured, fine grained, massive, magnetic, chl-hb-cal-MT-(bt) Mafic Lamprophyre (sill). Coarse subhedral calcite crystals are suspended in fine grained intrusive texture. This unit is generally biotite (01-02%) deficient when compared to other Lamprophyric dykes on the property. Contacts are sharp and roughly conformable to adjacent sedimentary bedding at 80 and 65degCA.	
CR-11-047	1034.09	1036.25	121	Grey-green coloured, medium grained, moderately foliated, bt-bearing Quartz Diorite with trace disseminated Pyrite throughout. Upper and lower contacts are sharp and conformable adjacent sedimentary bedding at 65degCA.	
CR-11-047	1045.03	1048.45	12G	Steel grey coloured, medium grain textured, blue quartz eye crystal, Quartz Monzodiorite. Several irregular bull quartz veins with very trace associated pyrite throughout intrusive. Sharp, irregular upper contact is biotite altered in Basalt wall rock. Lower contact is sharp and planar at 72degCA.	
CR-11-047	1054.75	1055.92	I2J	Plagioclase lath phyric (1mm scale fleshy beige coloured crystals 02%), fine grained, green coloured, 15% sericite and 03% very fine biotite altered, Diorite dyke. Abundant fracturing with wall rock bleaching halos. NIL sulphides. Upper and lower contacts are sharp at 60degCA.	
CR-11-047	1059.80	1059.87	SHR	Very narrow, sericite-silica altered, S-fabric in 10cm wide shear with contacts oriented at 65degCA.	
CR-11-047	1063.60	1064.73	12G	Pale buff brown-grey coloured, fractured and veined Quartz Monzodiorite dyke. Strongly sericite altered and contains folded bull quartz-chl-tml veins at low angles to the core axis. Sharp contacts at 70degCA.	
CR-11-047	1066.40	1067.30	I2G	Pale buff brown-grey coloured, fractured and veined Quartz Monzodiorite dyke as above with folded bull quartz-chl-tml veins (3cm thick). Sharp contacts at 70degCA.	
CR-11-047	1082.60	1083.63	I2G	Medium grey coloured and fine grained Quartz Monzodiorite. Contacts are sharp, 55 degCA upper and 57 degCA lower.	
CR-11-047	1086.21	1087.53	I2G	Medium grey coloured and fine grained Quartz Monzodiorite. Contacts are sharp, 61 degCA upper and 58 degCA lower.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-11-047	1119.15	1120.97	130	Dark grey coloured and fine grained Lamprophyre. Massive with uneven distribution of carbonate in matrix. Crosscut by several quartz carbonate veins that are rich in coarse turmaline up to 3cm in length. Cubic pyrite in intrusive as well as veins and ingrown in turmaline. Contacts are very subtle and diffuse hovering around 75 degCa.	
CR-11-047	1129.11	1132.21	12G	Light to medium grey coloured and fine grained Quartz Monzodiorite. Intrusive is well foliated troughout but intensity is rising downwards and so is the sericite content. Few thin quartz carbonate veins of no consequence. 1% of pyrite and 0.1% of arsenopyrite is finely disseminated except in the stronger sericitised section where pyrite appears in thin elongate masses along the foliation. upper contact sharp at 62 degCa. Lower contact is dyked out by Diorite.	
CR-11-047	1132.21	1133.83	12J	Medium grenish grey coloured and medium grained Diorite. Contains up to 2 % large phlogopite crystals skirting the rounded feldspars. Greenish hue stems from minor pervasive chloritisation. Foliation is weak to non present and may be more associated with intrusion parallel flow structures than actual foliation. Trace level cubic pyrite is present. Contacts are sharp, upper at 81 degCa and lower at 63 degCa.	
CR-11-047	1134.05	1134.97	12G	Light grey coloured and fine grained Quartz Monzodiorite. Seriticised with coarse quartz eyes and trace pyrite. Contacts following local foliation pattern at 62 degCa.	
CR-11-047	1136.83	1138.79	12G	Medium brown greycoloured and fine grained Quartz Monzodiorite. Intrusive closely resembles Quartz Monzodiorite between 1132.21m and 1133.83m in composition and mineralisation but does not show the same amount of sericite alteration. Contacts are sharp, upper at 53 degCa and lower at 67 degCa.	
CR-11-047	1181.87	1185.52	12J	Medium grey coloured and fine grained Diorite is massive and shows very little internal structure apart from trace biotite that is crudely oriented along foliation planes. Few small chunks of assimilated Quartz Monzodiorite, some of which is in a state of dissolution and has led to local silicification. In the immediate contact area no mineralisation is present but at center cubic pyrite makes up 0.25% of the intrusive. Contacts are sharp and undulating, upper at 60 degCa and lower at 68 degCa.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-11-047	1186.3	1187.22	I2H	Fine grained dark brown grey coloured and fine grained Monzodiorite. White corroded looking feldspars in dark matrix. Occasional rounded and pebbly looking quartz crystal is present. Intrusive is not foliated but the contacts roughly follow the local foliation pattern. Trace mineralised with pyrite in the shape of small fine grained cloudy masses of cubic crystals. Contacts are sharp, upper at 49 degCa and lower at 63 degCa.	
CR-11-047	1190.15	1193.20	I2H	Monzodiorite as previous unit. Contacts are sharp, upper at 49 degCa and lower at 54 degCa.	
CR-11-047	1207.30	1209.85	I2G	Medium grey brown coloured and fine grained Quartz Monzodiorite. Bleached in spots, especially adjacent to the few crossing quartz veins. 5cm chunk of assimilated part of shear close to upper contact is strongly mineralized with pyrrhotite and black coloured from contact biotite alteration. Intrusive is weakly foliated and contains medium grained rounded quartz crystals. Sulphides are barely above trace level, with pyrite and pyrrhotite present. Contacts are sharp, upper at 63 degCa and lower at 58 degCa.	
CR-11-047	1227.91	1230.89	12G	Dark brown grey coloured and fine to medium grained Quartz Monzodiorite. Intrusive is weakly foliated and crossed by very thin infrequent quartz veins. Locally few crystals of arsenopyrite and blebby pyrrhotite canbe observed but mineralisation in general is at minimum trace level. Contacts are sharp, upper at 64 degCa and lower at 74 degCa.	
CR-11-047	1278.53	1279.77	S	Mixture of highly magnetic grey coloured Chert, dark grey pyrrhotitic Mudstones and pebble Conglomerate with muddy matrix. Chert is evenly banded and translucent. Mudstones and Conglomerate are disturbed with streaks and swirls of pyrrhotite.	
CR-11-047	1279.77	1282.46	I2G	Medium grey to sometimes buff coloured and fine grained Quartz Monzodiorite. Intrusive is well foliated and contains 5% sericite. Few late straight milky quartz veins are not mineralised. Mineralisation of intrusive is moderate, with finely disseminated pyrite and pyrrhotite reaching 0.3% each. Arsenopyrite is present in traces. Contacts are sharp, upper at 70 degCa and lower at 73 degCa.	
CR-11-047	1282.46	1283.00	S6D	Dark grey coloured Mudstone is massive except for numerous hairline fractures and thin streaks of pyrrhotite. Not as pyrrhotitic as before the Quartz Monzodiorite. Contact to the underlying Gabbro is sharp without much contact metamorphism.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-11-047	1288.77	1290.64	12G	Medium grey brown coloured and fine grained Quartz Monzodiorite. Moderately foliated with trace sericite and minimum trace sulphides. Contacts are sharp following local foliation pattern. Upper contact at 62 degCa and lower at 63 degCa.	
CR-11-047	1292.09	1293.76	12G	Grey brown coloured and fine grained medium Quartz Monzodiorite. Moderately foliated with trace sericite and minimum trace sulphides. Upper contact at 72 degCa and lower at 72 degCa.	
CR-11-047	1315.43	1316.42	I2H	Medium brown grey coloured and fine grained and Monzodiorite. More than 50% matrix with otherwise mostly feldspars showing as phenocrystals. Upper contact undulating at 69 degCa. Lower contact broken core.	
CR-11-047	1328.97	1333.69	I2H	Medium brown coloured and fine grained Monzodiorite. Intrusive is weakly foliated and contains the occasional rounded quartz crystal. Mineralisation is not very strong, but pyrite and arsenopyrite are present in equal amounts. Contacts are sharp, upper at 65 degCa and lower at 55 degCa.	

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-11-047	E5301000	803.00	804.50	1.50	consecutive	sil-ser Quartz Monzodiorite with trace Pyrite	<1	11T493393
CR-11-047	E5301001	804.50	806.00	1.50	consecutive	bleached (15%) sil-ser Quartz Monzodiorite. Trace Pyrite.	1	11T493393
CR-11-047	E5301002	806.00	807.50	1.50	consecutive	sil-ser Quartz Monzodiorite with trace Pyrite	<1	11T493393
CR-11-047	E5301003	807.50	808.50	1.00	consecutive	sil-ser Quartz Monzodiorite with trace Pyrite	2	11T493393
CR-11-047	E5301004	808.50	809.50	1.00	consecutive	sil-ser Quartz Monzodiorite with trace Pyrite	2	11T493393
CR-11-047	E5301005	809.50	810.00	0.50	consecutive	highly magnetic Mudstone wallrock 10chl-05MT-03gt	7	11T493393
CR-11-047	E5301006	810.00	811.50	1.50	consecutive	10sil-10ser altered Quartz Monzodiorite with trace Pyrite	3	11T493393
CR-11-047	E5301007	811.50	812.85	1.35	consecutive	10sil-10ser altered Quartz Monzodiorite with trace Pyrite	3	11T493393
CR-11-047	E5301008	812.85	814.35	1.50	consecutive	Wing Sample: Diorite NIL sulphides	2	11T493393
CR-11-047	E5301009	814.35	815.12	0.77	consecutive	Wing Sample: Diorite NIL sulphides	3	11T493393
CR-11-047	E5301010	0.00	0.00	0.00	not consecutive	Standard Sample: Oxk69 3583 ppb Au	3840	11T493393
CR-11-047	E5301011	815.12	815.92	0.80	not consecutive	05chl-01-gt-10ser-10sil Quartz Monzodiorite. Trace Pyrite.	3	11T493393
CR-11-047	E5301012	815.92	817.42	1.50	consecutive	05chl-01-gt-10ser-10sil Quartz Monzodiorite. Trace Pyrite.	2	11T493393
CR-11-047	E5301013	817.42	818.92	1.50	consecutive	10sil-10ser altered Quartz Monzodiorite with trace Pyrite	3	11T493393
CP 11 047	EE201014	010 00	020.00	1 00	concocutivo	Infill Wing Sample: grey-green coloured medium grained Diorite	n	117/02202
CK-11-047	25501014	010.92	820.00	1.08	consecutive	NIL mineralization	2	111495595
CR-11-047	E5301015	822.63	824.13	1.50	not consecutive	Blank Sample: chl-bt Diorite NIL	1	11T493393
CP 11 047	EE201016	820.00	921 EO	1 50	not consecutive	bleached intrusive 05ser-15sil-02chl Quartz Monzodiorite trace	2	117/02202
CK-11-047	23201010	820.00	821.50	1.50	not consecutive	Pyrite	2	111495595
CP 11 047	EE201017	921 50	077 62	1 1 2	consocutivo	bleached intrusive 05ser-15sil-02chl Quartz Monzodiorite trace	2	117/02202
CK-11-047	23301017	821.30	022.03	1.15	consecutive	Pyrite	5	111495595
CR-11-047	E5201018	877 62	82/112	1 50	consecutive	bleached intrusive 05ser-15sil-02chl Quartz Monzodiorite trace	1	117/02202
CK-11-047	13301018	822.05	024.13	1.50	consecutive	Pyrite	Ŧ	111495595
CR-11-047	F5301019	828 / 5	820 05	1 50	consecutive	bleached intrusive 05ser-15sil-02chl Quartz Monzodiorite trace	1	117/03303
CK-11-047	25501015	020.45	025.55	1.50	consecutive	Pyrite	Ŧ	111455555
CR-11-047	F5301020	829 95	830 75	0.80	consecutive	Strongly altered and brecciated Quartz Monzodiorite. Brownish	1	117/03303
	23301020	029.95	030.75	0.00	consecutive	rusty coloured. 25ser-10sil-10cb.	Ĩ	111455555
CR-11-047	F5301021	830 75	831 55	0.80	consecutive	Strongly altered and brecciated Quartz Monzodiorite. Brownish	2	117/03303
	23301021	030.75	051.55	0.00	consecutive	rusty coloured. 25ser-10sil-10cb.	2	111455555
CR-11-047	F5301022	831 55	833.00	1 45	consecutive	10ser-10sil-05chl fractured Quartz Monzodiorite, Trace Pyrite	2	117493393
	23301022	031.33	055.00	1.45	consecutive		2	1114555555
CR-11-047	E5301023	833.00	834.50	1.50	consecutive	05ser-10sil Quartz Monzodiorite. Trace Pyrite.	2	11T493393
CR-11-047	E5301024	834.50	836.00	1.50	consecutive	05ser-10sil Quartz Monzodiorite. Trace Pyrite.	2	11T493393
CR-11-047	E5301025	836.00	837.50	1.50	consecutive	05ser-10sil Quartz Monzodiorite. Trace Pyrite.	2	11T493393
CR-11-047	E5301026	837.50	838.76	1.26	consecutive	05ser-10sil Quartz Monzodiorite. Trace Pyrite.	2	11T493393
CR-11-047	F5301027	855 70	856 70	1 00	not consecutive	Character Sample: folded qtz-(carb) veins in intermediate Volcanic	3	117493393
CR 11 047	23301027	000.70	030.70	1.00	hot consecutive	interflow within Huston. Trace Pyrite.	5	111755555
CR-11-047	F5301028	856 70	857 53	0.83	consecutive	Character Sample: folded qtz-(carb) veins in intermediate Volcanic	з	117493393
	23301020	030.70	057.55	0.05	consecutive	interflow within Huston. Trace Pyrite.	5	111-33333

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-11-047	E5301029	857.53	858.70	1.17	consecutive	Character Sample: low angle gentle open folded qtz-chl-(carb) veins in intermediate Volcanic interflow.	2	11T493393
CR-11-047	E5301030	0.00	0.00	0.00	not consecutive	Standard Sample: Oxk69 3583 ppb Au	3870	11T493393
CR-11-047	E5301031	858.70	859.35	0.65	not consecutive	Infill Wing Sample: Massive Siltstone. Nil Mineralization.	2	11T493393
CR-11-047	E5301032	859.35	860.40	1.05	consecutive	Character Sample: Mixed folded and brecciated lower contact area of intermediate Volcanic with quartz veins and trace Pyrite.	3	11T493393
CR-11-047	E5301033	945.55	946.30	0.75	not consecutive	Character Sample: Whispy disseminations of Pyrite (04%) adjacent to Quartz Diorite.	7	11T493513
CR-11-047	E5301034	946.30	947.30	1.00	consecutive	Character Sample: Quartz Diorite with trace Pyrite.	1	11T493513
CR-11-047	E5301035	824.13	825.63	1.50	not consecutive	Blank Sample: chl-bt Diorite NIL	1	11T493513
CR-11-047	E5301036	1033.09	1034.09	1.00	not consecutive	Wing Sample: Siltstone/Mudstone trace Pyrite	8	11T493513
CR-11-047	E5301037	1034.09	1035.15	1.06	consecutive	Quartz Diorite in Huston with trace Pyrite	53	11T493513
CR-11-047	E5301038	1035.15	1036.25	1.10	consecutive	Quartz Diorite in Huston with trace Pyrite	8	11T493513
CR-11-047	E5301039	1036.25	1037.25	1.00	consecutive	Infill Wing Sample: Siltstone/Mudstone with trace Pyrite	6	11T493513
CR-11-047	E5301040	1010.97	1011.97	1.00	not consecutive	Upper Wing Sample: gt Mudstone NIL	2	11T493513
CR-11-047	E5301041	1011.97	1013.00	1.03	consecutive	Character Sample: Fractured and sil-chl healed Quartz Diorite trace Pyrite	2	11T493513
CR-11-047	E5301042	1013.00	1014.00	1.00	consecutive	Lower Wing Sample: 02% gt bearing Mudstone 01% Pyrite	9	11T493513
CR-11-047	E5301043	1037.25	1038.75	1.50	not consecutive	Infill Wing Sample: Siltstone/Mudstone with trace Pyrite	85	11T493513
CR-11-047	E5301044	1038.75	1039.25	0.50	consecutive	Huston/Balmer Unconformity (0.07m brecciated and bleached trace pyrite)	11	11T493513
CR-11-047	E5301045	1039.25	1040.75	1.50	consecutive	10% quartz carbonate veins in foliated Balmer Basalt with one small Pyrrhotite whisp (01%) and trace Pyrite	12	11T493513
CR-11-047	E5301046	1040.75	1042.25	1.50	consecutive	Balmer Basalt. Foliated with 10% qtz-cb veins trPO trPY	10	11T493513
CR-11-047	E5301047	1042.25	1043.75	1.50	consecutive	Balmer Basalt. Foliated with 10% qtz-cb veins trPO trPY	11	11T493513
CR-11-047	E5301048	1043.75	1045.03	1.28	consecutive	Balmer Basalt. Foliated with 10% qtz-cb veins trPO trPY	7	11T493513
CR-11-047	E5301049	1045.03	1046.47	1.44	consecutive	Steel grey coloured Quartz Monzodiorite with trAPY trPY	95	11T493513
CR-11-047	E5301050	0.00	0.00	0.00	not consecutive	Standard Sample: Oxk69 3583 ppb Au	3810	11T493513
CR-11-047	E5301051	1046.47	1047.47	1.00	not consecutive	Steel grey coloured Quartz Monzodiorite with trAPY trPY	58	11T493513
CR-11-047	E5301052	1047.47	1048.45	0.98	consecutive	Steel grey coloured Quartz Monzodiorite with trAPY trPY	110	11T493513
CR-11-047	E5301053	1048.45	1049.95	1.50	consecutive	Basalt with abundant tightly healed qtz-cb fractures and veinlets (10%) and trace very fine grained disseminated Pyrite	5	11T493513
CR-11-047	E5301054	1049.95	1051.00	1.05	consecutive	Basalt with abundant tightly healed qtz-cb fractures and veinlets (10%) and trace very fine grained disseminated Pyrite	7	11T493513
CR-11-047	E5301055	825.63	826.95	1.32	not consecutive	Blank Sample: chl-bt Diorite NIL	2	11T493513

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description		Batch-Number
CR-11-047	E5301056	1051.00	1051.80	0.80	not consecutive	Basalt with abundant tightly healed qtz-cb fractures and veinlets (10%) and trace very fine grained disseminated Pyrite	4	11T493513
CR-11-047	E5301057	1051.80	1053.30	1.50	consecutive	Altered and brecciated Basalt. 30ser-05sil-02carb. Trace Pyrite.	4	11T493513
CR-11-047	E5301058	1053.30	1054.75	1.45	consecutive	Altered and brecciated Basalt with low angle fault fracture structure. 30ser-05sil-02carb. Trace Pyrite.	5	11T493513
CR-11-047	E5301059	1054.75	1055.92	1.17	consecutive	Diorite with very fine grained mesostasis and 02% plagioclase laths and ser-bt alteration.	3	11T493513
CR-11-047	E5309960	737.22	738.25	1.03		Upper Wing Sample. Wackestone NIL sulphides	3	11T493393
CR-11-047	E5309961	738.25	739.25	1.00	consecutive	Character Sample: Quartz Diorite with assimilated clasts of Mudstone and Wackestone. Trace Pyrite.	1	11T493393
CR-11-047	E5309962	739.25	740.25	1.00	consecutive	Massive sil-plag-(bt)-hb-(PY) Quartz Diorite. Trace Pyrite.	2	11T493393
CR-11-047	E5309963	740.25	741.00	0.75	consecutive	Massive sil-plag-(bt)-hb-(PY) Quartz Diorite. Trace Pyrite.	<1	11T493393
CR-11-047	E5309964	741.00	741.89	0.89	consecutive	Massive sil-plag-(bt)-hb-(PY) Quartz Diorite. Trace Pyrite.	3	11T493393
CR-11-047	E5309965	741.89	743.00	1.11	consecutive	Lower Wing Sample: Silty Mudstone	2	11T493393
CR-11-047	E5309966	760.20	761.20	1.00	not consecutive	Upper Wing Sample: Mudstone 01PY	2	11T493393
CR-11-047	E5309967	761.20	762.70	1.50	consecutive	sil-ser Quartz Monzodiorite with blue quartz-eyes. 01PY	<1	11T493393
CR-11-047	E5309968	762.70	764.20	1.50	consecutive	sil-ser Quartz Monzodiorite with blue quartz-eyes. 01PY	<1	11T493393
CR-11-047	E5309969	764.20	765.70	1.50	consecutive	sil-ser Quartz Monzodiorite with blue quartz-eyes. 01PY	<1	11T493393
CR-11-047	E5309970	0.00	0.00	0.00	not consecutive	Standard Sample: Si42 1761 ppb Au	1820	11T493393
CR-11-047	E5309971	765.70	767.20	1.50	not consecutive	sil-ser Quartz Monzodiorite with blue quartz-eyes. 01PY	1	11T493393
CR-11-047	E5309972	767.20	768.70	1.50	consecutive	sil-ser Quartz Monzodiorite with blue quartz-eyes. 01PY	2	11T493393
CR-11-047	E5309973	768.70	770.20	1.50	consecutive	sil-ser Quartz Monzodiorite with blue quartz-eyes. 01PY	1	11T493393
CR-11-047	E5309974	770.20	771.70	1.50	consecutive	sil-ser Quartz Monzodiorite with blue quartz-eyes. 01PY	<1	11T493393
CR-11-047	E5309975	792.00	792.50	0.50	not consecutive	Blank Sample: Mudstone 01PY	11	11T493393
CR-11-047	E5309976	771.70	773.20	1.50	not consecutive	sil-ser Quartz Monzodiorite with blue quartz-eyes. 01PY	1	11T493393
CR-11-047	E5309977	773.20	775.20	2.00	consecutive	sil-ser Quartz Monzodiorite with blue quartz-eyes. 01PY	1	11T493393
CR-11-047	E5309978	775.20	776.70	1.50	consecutive	sil-ser Quartz Monzodiorite with blue quartz-eyes. 01PY	1	11T493393
CR-11-047	E5309979	776.70	778.20	1.50	consecutive	sil-ser Quartz Monzodiorite with blue quartz-eyes. 01PY	1	11T493393
CR-11-047	E5309980	778.20	779.70	1.50	consecutive	sil-ser Quartz Monzodiorite with blue quartz-eyes. 01PY	2	11T493393
CR-11-047	E5309981	779.70	781.20	1.50	consecutive	sil-ser Quartz Monzodiorite with blue quartz-eyes. 01PY	<1	11T493393
CR-11-047	E5309982	781.20	782.70	1.50	consecutive	sil-ser Quartz Monzodiorite with blue quartz-eyes. 01PY	<1	11T493393
CR-11-047	E5309983	782.70	784.20	1.50	consecutive	sil-ser Quartz Monzodiorite with blue quartz-eyes. 01PY	<1	11T493393
CR-11-047	E5309984	784.20	785.70	1.50	consecutive	sil-ser Quartz Monzodiorite with blue quartz-eyes. 01PY	<1	11T493393
CR-11-047	E5309985	785.70	787.20	1.50	consecutive	sil-ser Quartz Monzodiorite with blue quartz-eyes. 01PY	<1	11T493393
CR-11-047	E5309986	787.20	788.70	1.50	consecutive	sil-ser Quartz Monzodiorite with blue quartz-eyes. 01PY		11T493393
CR-11-047	E5309987	788.70	789.70	1.00	consecutive	sil-ser Quartz Monzodiorite with blue quartz-eyes. 01PY	<1	11T493393
CR-11-047	E5309988	789.70	790.36	0.66	consecutive	Lowermost sample of Quartz Monzodiorite at Mudstone	<1	11T493393

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-11-047	E5309989	790.36	791.05	0.69	consecutive	Highly magnetic contact zone with quartz veining and quartz carbonate veins. Minor 01% Pyrite and 03-05% MT locally.	2	11T493393
CR-11-047	E5309990	0.00	0.00	0.00	not consecutive	Standard Sample: Sk43 4086 ppb Au	4340	11T493393
CR-11-047	E5309991	793.44	793.94	0.50	not consecutive	Contact metamorphism MT-qtz-cb-(gt) Mudstone at Quartz Monzodiorite contact	17	11T493393
CR-11-047	E5309992	793.94	794.60	0.66	consecutive	sil-ser Quartz Monzodiorite with blue quartz-eyes. 01PY	1	11T493393
CR-11-047	E5309993	794.60	795.94	1.34	consecutive	green coloured fine grained Diorite. Blue quartz eyes. NIL Py	2	11T493393
CR-11-047	E5309994	795.94	797.00	1.06	consecutive	gt-sil-ser-chl Quartz Monzodiorite. Trace Pyrite	2	11T493393
CR-11-047	E5309995	791.05	792.00	0.95	not consecutive	Blank Sample: Mudstone 01PY	17	11T493393
CR-11-047	E5309996	797.00	798.50	1.50	not consecutive	gt-sil-ser-chl Quartz Monzodiorite. Trace Pyrite	<1	11T493393
CR-11-047	E5309997	798.50	800.00	1.50	consecutive	sil-ser Quartz Monzodiorite with trace Pyrite	<1	11T493393
CR-11-047	E5309998	800.00	801.50	1.50	consecutive	sil-ser Quartz Monzodiorite with trace Pyrite and quartz-bt veins	<1	11T493393
CR-11-047	E5309999	801.50	803.00	1.50	consecutive	sil-ser Quartz Monzodiorite with trace Pyrite and quartz-chl-bt veins	<1	11T493393
CR-11-047	E5338060	1055.92	1057.42	1.50	consecutive	sil-bt altered Basalt. Trace PO and PY.	3	11T493513
CR-11-047	E5338061	1057.42	1058.70	1.28	consecutive	sil-bt altered Basalt. Trace PO and PY.	3	11T493513
CR-11-047	E5338062	1058.70	1059.70	1.00	consecutive	sil-bt altered Basalt. Trace PO and PY.	3	11T493513
CR-11-047	E5338063	1059.70	1060.00	0.30	consecutive	sil-ser strongly altered S-fabric shear 65degCA. NIL sulphides	5	11T493513
CR-11-047	E5338064	1060.00	1061.50	1.50	consecutive	sil-bt altered Basalt. Trace PO and PY.	4	11T493513
CR-11-047	E5338065	1061.50	1063.00	1.50	consecutive	Strong alteration (05-08% biotite) around quartz-carbonate veins	4	11T493513
						in sil-bt Basalt. NIL sulphides.		
CR-11-047	E5338066	1063.00	1063.60	0.60	consecutive	in sil-bt Basalt. NIL sulphides.	5	11T493513
CR-11-047	E5338067	1063.60	1064.73	1.13	consecutive	sil-ser altered Quartz Monzodiorite with qtz-chl-tml veins and trace Pyrite.	3	11T493513
CR-11-047	E5338068	1064.73	1065.52	0.79	consecutive	Very fine grained Basalt. Sil-(qtz-cb). NIL sulphides.	4	11T493513
CR-11-047	E5338069	1065.52	1066.40	0.88	consecutive	Infill Wing Sample: fine grained Basalt with qtz-carbonate veins at Quartz Monzodioirte contact.	8	11T493513
CR-11-047	E5338070	0.00	0.00	0.00	not consecutive	Standard Sample: Oxk69 3583 ppb Au	4000	11T493513
CR-11-047	E5338071	1066.40	1067.30	0.90	not consecutive	Quartz Monzodiorite with folded quartz-chl-tml veins (3cm). Trace Pyrite.	2	11T493513
CR-11-047	E5338072	1074.00	1075.00	1.00	not consecutive	Character sample, foliated hornblende Basalt, 5% veining, trace sulphides.	6	11T493513
CR-11-047	E5338073	1075.00	1076.00	1.00	consecutive	Foliated hornblende Basalt, 5% veining, trace sulphides.	3	11T493513
CR-11-047	E5338074	1076.00	1077.00	1.00	consecutive	Foliation is less pronounced, 3% veining, minimum trace sulphides.	3	11T493513
CR-11-047	E5338075	1103.00	1104.00	1.00	not consecutive	Hornblende Basalt with amygdules and folded veins with trace pyrite and pyrrhotite.	14	11T493513

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-11-047	E5338076	1089.00	1090.00	1.00	not consecutive	Character sample, well foliated Basalt , coarse hornblende, 1% biotite, 7% veining, trace sulphides	3	11T493513
CR-11-047	E5338077	1090.00	1091.00	1.00	consecutive	Well foliated Basalt , coarse hornblende, 1% biotite, 7% veining, trace sulphides	4	11T493513
CR-11-047	E5338078	1091.00	1092.00	1.00	consecutive	Well foliated Basalt , coarse hornblende, 1% biotite, 7% veining, trace sulphides.	3	11T493513
CR-11-047	E5338079	1122.00	1123.00	1.00	not consecutive	Wing sample, well foliated Basalt with trace sulphides	5	11T493513
CR-11-047	E5338080	1123.00	1124.00	1.00	consecutive	Very well foliated to weakly sheared Basalt with 2% biotite and trace sulphides.	5	11T493513
CR-11-047	E5338081	1124.00	1125.00	1.00	consecutive	Very well foliated to weakly sheared Basalt with 2% biotite and trace sulphides.	4	11T493513
CR-11-047	E5338082	1125.00	1126.00	1.00	consecutive	Wing sample, well foliated chloritised Basalt.	3	11T493513
CR-11-047	E5338083	1128.61	1129.11	0.50	not consecutive	Wing sample, well foliated chloritised Basalt.	8	11T493513
CR-11-047	E5338084	1129.11	1130.61	1.50	consecutive	Quartz Monzodiorite with 1% pyrite and pyrrhotite.	44	11T493513
CR-11-047	E5338085	1130.61	1132.21	1.60	consecutive	Quartz Monzodiorite with 1% pyrite and pyrrhotite.	2130	11T493513
CR-11-047	E5338086	1132.21	1132.71	0.50	consecutive	Wing sample, Diorite with chlorite and phlogopite.	13	11T493513
CR-11-047	E5338087	1136.33	1136.83	0.50	not consecutive	Wing sample, foliated hornblende Basalt.	19	11T493513
CR-11-047	E5338088	1136.83	1137.83	1.00	consecutive	Quartz Monzodiorite with 1% pyrite and trace arsenopyrite.	25	11T493513
CR-11-047	E5338089	1137.83	1138.79	0.96	consecutive	Quartz Monzodiorite with 1% pyrite and trace arsenopyrite.	18	11T493513
CR-11-047	E5338090	0.00	0.00	0.00	not consecutive	Standard Sk43 4.086 ppm Au	4220	11T493513
CR-11-047	E5338091	1138.79	1139.29	0.50	not consecutive	Wing sample, foliated hornblende Basalt.	13	11T493513
CR-11-047	E5338092	1110.00	1110.60	0.60	not consecutive	Wing sample, Hornblende Basalt with 10% veining and trace sulphides.	5	11T493513
CR-11-047	E5338093	1110.60	1111.63	1.03	consecutive	Basalt with bleaching around hairline fractures with pyrrhotite and chalcopyrite mineralisation.	8	11T493513
CR-11-047	E5338094	1111.63	1112.13	0.50	consecutive	Wing sample, green grey basalt.	7	11T493513
CR-11-047	E5338095	1147.00	1148.00	1.00	not consecutive	Wing sample, grey Basalt with 8% veining.	6	11T493513
CR-11-047	E5338096	1148.00	1149.00	1.00	consecutive	Biotite altered Basalt with trace sulphides.	7	11T493513
CR-11-047	E5338097	1149.00	1150.00	1.00	consecutive	Biotite altered Basalt with trace sulphides.	7	11T493513
CR-11-047	E5338098	1150.00	1151.00	1.00	consecutive	Biotite altered Basalt with trace sulphides.	10	11T493513
CR-11-047	E5338099	1151.00	1152.00	1.00	consecutive	Wing sample, Basalt with pillow selvedges and network of fine carbonate filled fractures.	9	11T493513
CR-11-047	E5338100	1164.14	1164.64	0.50	not consecutive	Wing sample, green grey chloritic Basalt.	6	11T493513
CR-11-047	E5338101	1164.64	1164.94	0.30	consecutive	Basalt with 15cm quartz carbonate stringer cut off by low angle fracture. Blebby pyrrhotite showing spheroidal pyrite replacement in vein.	11	11T493513
CR-11-047	E5338102	1164.94	1165.44	0.50	consecutive	Wing sample, green grey chloritic Basalt.	14	11T493513
CR-11-047	E5338103	1206.00	1206.78	0.78	not consecutive	Wing sample, grey Basalt with 4% veining.	14	11T493513

Sampling Record

CR-11-047 E5338104 1206.78 1207.30 0.52 consecutive consecutive Quartz Monzodiorite with trace sulphides. 14 117493513 CR-11-047 E5338105 1207.30 1208.60 1.30 consecutive Quartz Monzodiorite with trace sulphides. 14 117493513 CR-11-047 E5338107 1206.81 121.23 1.38 consecutive Monzodiorite with trace sulphides. 14 117493513 CR-11-047 E5338107 1206.81 121.12 1.38 consecutive Wing sample, gree partial and pyrchotite. 19 117493513 CR-11-047 E5338100 122.05 122.15 0.50 not consecutive Wing sample, gree basalt with 4% veining. 14 117493513 CR-11-047 E5338110 0.00 0.00 not consecutive Wing sample, gree basalt 7 117493513 CR-11-047 E5338110 122.05 122.05 0.50 consecutive Wing sample, gree basalt 7 117493513 CR-11-047 E5338110 122.06 122.05 0.50 cono	HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-11-047 ES338105 1207.30 1208.60 1.20 consecutive consecutive science Quartz Monzodiorite with trace sulphides. 14 117493513 CR-11-047 ES338106 1208.85 1.21.23 consecutive consecutive science Consecutive consecutive science Shear with brecciation, carbonate overprinting, garnets and bleaching. Trace pyrite and pyrintite. 19 117493513 CR-11-047 ES338109 1221.15 0.50 not consecutive science Shear with brecciation, carbonate overprinting, garnets and bleaching. Trace pyrite and pyrintite. 14 117493513 CR-11-047 ES338109 1221.15 0.50 not consecutive with garnet, grey Basalt 17 117493513 CR-11-047 ES338111 1222.06 1222.56 0.50 consecutive with garnet, grey Basalt. 7 117493513 CR-11-047 ES338112 1222.06 1222.56 0.50 not consecutive with garnet, grey Basalt. 7 117493513 CR-11-047 ES338112 1222.06 1240.00 1.00 not consecutive with garnet, grey Basalt. 7 117493513 CR-11-047 ES338112 <t< td=""><td>CR-11-047</td><td>E5338104</td><td>1206.78</td><td>1207.30</td><td>0.52</td><td>consecutive</td><td>Shear with pervasive carbonate and fine disseminated pyrrhotite.</td><td>22</td><td>11T493513</td></t<>	CR-11-047	E5338104	1206.78	1207.30	0.52	consecutive	Shear with pervasive carbonate and fine disseminated pyrrhotite.	22	11T493513
CR-11-047 ES338106 1209.85 1.25 consecutive consecutive bleaching. Trace supplieds. 8 117493513 CR-11-047 ES338107 1209.85 1211.23 1.38 consecutive bleaching. Trace pyrite and pyrrhotite. 19 117493513 CR-11-047 ES338108 1211.23 1.21 0.77 consecutive bleaching. Trace pyrite and pyrrhotite. 14 117493513 CR-11-047 ES338100 0.00 0.00 not consecutive transmission Wing sample, green chloritic hornblende Basit. 17 117493513 CR-11-047 ES338111 1222.06 0.91 not consecutive transmission Wing sample, green chloritic hornblende Basit. 7 117493513 CR-11-047 ES38110 1222.06 0.50 consecutive transmission Wing sample, green tornblende Basit. 7 117493513 CR-11-047 ES38116 1222.41 122.94 1.50 consecutive Wing sample, green tornblende Basit 7 117493513 CR-11-047 ES38116 122.94 1.23 0.50 consecutive Wing sample, gree rase uphides. 9 117493513 </td <td>CR-11-047</td> <td>E5338105</td> <td>1207.30</td> <td>1208.60</td> <td>1.30</td> <td>consecutive</td> <td>Quartz Monzodiorite with trace sulphides.</td> <td>14</td> <td>11T493513</td>	CR-11-047	E5338105	1207.30	1208.60	1.30	consecutive	Quartz Monzodiorite with trace sulphides.	14	11T493513
CR-11-047 ES338107 1209.85 1211.23 1.38 consecutive blacking. Trace pyrite and pyrrhotite. 9 117493513 CR-11-047 ES338108 1211.23 1212.00 0.77 consecutive blacking. Trace pyrite and pyrrhotite. 14 117493513 CR-11-047 ES338108 1221.15 0.50 not consecutive blacking. Trace pyrite and pyrrhotite. 14 117493513 CR-11-047 ES338110 1221.15 0.50 not consecutive blacking. Trace pyrite and pyrrhotite in places. 17 117493513 CR-11-047 ES338111 1221.15 1222.06 0.91 not consecutive blacking. Trading. Blebby pyrrhotite in places. 117493513 CR-11-047 ES338113 1227.06 0.50 consecutive blacking. Trading. Blebby pyrrhotite in places. 117493513 CR-11-047 ES338114 1227.91 0.50 not consecutive blacking. Trading. Blebby pyrrhotite in places. 117493513 CR-11-047 ES338114 1227.91 0.50 not consecutive blacking. Trading. Blebby parks 145 117493513 CR-11-047 ES338116 1220.00 1.60 <td>CR-11-047</td> <td>E5338106</td> <td>1208.60</td> <td>1209.85</td> <td>1.25</td> <td>consecutive</td> <td>Quartz Monzodiorite with trace sulphides.</td> <td>8</td> <td>11T493513</td>	CR-11-047	E5338106	1208.60	1209.85	1.25	consecutive	Quartz Monzodiorite with trace sulphides.	8	11T493513
CR.11-047 E5338108 1211.23 1212.10 0.77 consecutive Wing sample, grey Basalt with 4% veining. 14 117493513 CR.11-047 E5338109 1221.15 0.50 not consecutive Wing sample, grey Basalt with 4% veining. 17 117493513 CR.11-047 E5338111 1221.15 1220.06 0.00 0.00 not consecutive Standard Ox 69 3.583ppm Au 3800 117493513 CR.11-047 E5338112 1222.06 0.91 not consecutive Wing sample, green homblende Basalt. 7 117493513 CR.11-047 E5338113 1227.41 1227.91 0.50 consecutive Wing sample, green homblende Basalt. 7 117493513 CR.11-047 E5338113 1227.91 0.50 consecutive Wing sample, green aconate. 9 117493513 CR.11-047 E5338116 1220.00 1240.00 1.00 not consecutive Wing sample, green Basalt. 7 117493513 CR-11-047 E5338116 1260.00 1260.50 consecutive Wing sample, g	CR-11-047	E5338107	1209.85	1211.23	1.38	consecutive	Shear with brecciation, carbonate overprinting, garnets and bleaching. Trace pyrite and pyrrhotite.	19	11T493513
CR:11:047 ES338109 1220.65 1221.15 0.50 net consecutive Wing sample, green chronitic hornblende Basalt. 17 117493513 CR:11:047 ES338110 0.00 0.00 net consecutive Standard OxK 69 3.583ppm Au 3800 117493513 CR:11:047 ES338111 1221.05 1222.06 1222.50 0.50 consecutive Garbonate to Quartz carbonate stringer with garnets and possibly turmaline. Blebby pyrrhottite in places. 7 117493513 CR:11:047 ES338113 1227.91 1222.06 1222.50 o.50 consecutive Wing sample, green hornblende Basalt. 7 117493513 CR:11:047 ES338116 1229.01 1240.00 1.00 not consecutive Quartz Monzodoirite with trace sulphides. 9 117493513 CR:11:047 ES338116 1229.41 1.20 consecutive Quartz Monzodoirite with trace sulphides. 9 117493513 CR:11:047 ES338116 1229.41 1230.00 1264.03 1.53 consecutive Wing sample, grey green Basalt 7 117493513 <t< td=""><td>CR-11-047</td><td>E5338108</td><td>1211.23</td><td>1212.00</td><td>0.77</td><td>consecutive</td><td>Wing sample, grey Basalt with 4% veining.</td><td>14</td><td>11T493513</td></t<>	CR-11-047	E5338108	1211.23	1212.00	0.77	consecutive	Wing sample, grey Basalt with 4% veining.	14	11T493513
CR-11-047 E3338110 0.00 0.00 net consecutive curvaliance to quartz carbonate stringer with garnets and possibly turvaline. Blebby pyrrhottic in places. 3800 117493513 CR-11-047 E5338111 1221.05 1222.06 0.91 net consecutive turvaline. Blebby pyrrhottic in places. 7 117493513 CR-11-047 E5338111 1227.41 1227.40 0.50 consecutive wing sample, grey Basalt. 7 117493513 CR-11-047 E5338113 1229.41 1.50 consecutive Wing sample, grey Basalt. 7 117493513 CR-11-047 E5338115 1229.41 1.50 consecutive Quartz Monzodiorite with trace sulphides. 9 117493513 CR-11-047 E5338116 1229.41 1.20.00 1.00 net consecutive Wing sample, grey green Basalt. 7 117493513 CR-11-047 E5338110 1262.00 1264.03 1.53 consecutive Wing sample, grey green Basalt. 7 117493513 CR-11-047 E5338120 1264.03 1.53 consecutive Wing sample, green grey hornblende Basalt to interflow sediments. 6 117493513	CR-11-047	E5338109	1220.65	1221.15	0.50	not consecutive	Wing sample, green chloritic hornblende Basalt.	17	11T493513
CR-11-047 E5338111 1221.15 1222.06 0.91 not consecutive turmaline. Blebby pyrrhotite in places. 5 11T493513 CR-11-047 E5338112 1222.06 1222.56 0.50 consecutive turmaline. Blebby pyrrhotite in places. 7 11T493513 CR-11-047 E5338113 1227.91 1227.91 0.50 not consecutive turmaline. Blebby pyrrhotite and passit. 7 11T493513 CR-11-047 E5338114 1227.91 1220.00 1.00 not consecutive unat consecutive Quart Monzodiorite with trace sulphides. 9 11T493513 CR-11-047 E5338116 1229.01 1240.00 1.00 not consecutive Wing sample, gree presene Basalt. 7 11T493513 CR-11-047 E5338116 1229.01 1264.03 1.53 consecutive Wing sample, prey green Basalt 7 11T493513 CR-11-047 E5338119 1262.00 1264.03 1.53 consecutive Wing sample, prey prene Basalt 7 11T493513 CR-11-047 E5338120 1264.03 1.53 consecutive Wi	CR-11-047	E5338110	0.00	0.00	0.00	not consecutive	Standard OxK 69 3.583ppm Au	3800	11T493513
CR-11-047 E5338112 1222.06 1222.56 0.50 consecutive Wing sample, grey Basalt. 7 117493513 CR-11-047 E5338113 1227.41 1227.91 0.50 not consecutive Wing sample, grey Basalt. 7 117493513 CR-11-047 E5338114 1227.91 1.229.41 1.50 consecutive Quartz Monzodiorite with trace sulphides. 145 117493513 CR-11-047 E5338116 1229.41 1230.69 1.48 not consecutive Wing sample, grey green Basalt. 7 117493513 CR-11-047 E5338118 1262.00 1262.50 0.50 consecutive Wing sample, grey green Basalt. 7 117493513 CR-11-047 E5338112 1264.03 1.53 consecutive Wing sample, grey green Basalt. 6 117493513 CR-11-047 E5338120 1264.03 1.53 consecutive Wing sample, green grey green Basalt. 7 117493513 CR-11-047 E5338121 1264.03 1.264.87 0.84 consecutive Wing sample, green grey hor	CR-11-047	E5338111	1221.15	1222.06	0.91	not consecutive	Carbonate to quartz carbonate stringer with garnets and possibly turmaline. Blebby pyrrhotite in places.	5	11T493513
CR-11-047 E5338113 1227.41 1227.91 0.50 not consecutive Wing sample, grey Basalt. 7 117493513 CR-11-047 E5338114 1229.91 1229.41 1.50 consecutive Quartz Monzodiorite with trace sulphides. 145 117493513 CR-11-047 E5338115 1229.01 1200.00 not consecutive Quartz Monzodiorite with trace sulphides. 9 117493513 CR-11-047 E5338115 1220.01 1262.50 0.50 not consecutive Wing sample, grey green Basalt. 7 117493513 CR-11-047 E5338118 1262.00 1262.50 0.50 not consecutive Wing sample, grey meen Basalt. 7 117493513 CR-11-047 E5338112 1264.03 1.53 consecutive Wing sample, grey mon boite altered Basalt with trace sulphides. 3 117493513 CR-11-047 E5338120 1264.03 1264.87 0.84 consecutive Wing sample, green grey hornblende Basalt with trace sulphides. 7 117493513 CR-11-047 E5338120 1264.87 0.64 <t< td=""><td>CR-11-047</td><td>E5338112</td><td>1222.06</td><td>1222.56</td><td>0.50</td><td>consecutive</td><td>Wing sample, green hornblende Basalt.</td><td>7</td><td>11T493513</td></t<>	CR-11-047	E5338112	1222.06	1222.56	0.50	consecutive	Wing sample, green hornblende Basalt.	7	11T493513
CR-11-047 E5338114 1227.91 1229.41 1.50 consecutive Quartz Monzodiorite with trace sulphides. 145 117493513 CR-11-047 E5338115 1230.00 1240.00 1.00 not consecutive Basalt with Sys pervasive carbonate. 9 117493513 CR-11-047 E5338116 1229.41 1.20.89 1231.39 0.50 consecutive Wing sample, grey green Basalt. 7 117493513 CR-11-047 E5338116 1262.00 1264.03 1.53 consecutive Wing sample, Foliated hornblende Basalt with trace sulphides. 3 117493513 CR-11-047 E5338120 1264.03 1.53 consecutive Wing sample, Foliated hornblende Basalt with trace sulphides. 7 117493513 CR-11-047 E5338120 1264.03 1264.87 0.84 consecutive Gradual change from biotite altered Basalt to interflow sediments. Sulphides associated with the presence of garnets. 7 117493513 CR-11-047 E5338121 1264.87 0.84 consecutive Wing sample, green grey hornblende Basalt with trace sulphides. 3 117493513	CR-11-047	E5338113	1227.41	1227.91	0.50	not consecutive	Wing sample, grey Basalt.	7	11T493513
CR-11-047 E5338115 1239.00 1240.00 1.00 not consecutive Basalt with 5% pervasive carbonate. 9 117493513 CR-11-047 E5338116 1229.41 1230.89 1.48 not consecutive Quartz Monzodorite with trace sulphides. 9 117493513 CR-11-047 E5338117 1220.89 1262.50 0.50 not consecutive Wing sample, grey green Basalt. 7 117493513 CR-11-047 E5338119 1262.50 1264.03 1.53 consecutive Wing sample, foliated hornblende Basalt with trace sulphides. 6 117493513 CR-11-047 E5338120 1264.03 1264.87 0.84 consecutive Gradual change from biotite altered Basalt to interflow sediments. 7 117493513 CR-11-047 E5338121 1264.87 0.84 consecutive Wing sample, green grey hornblende Basalt with trace sulphides. 7 117493513 CR-11-047 E5338121 1264.87 0.84 consecutive Wing sample, green grey hornblende Basalt with trace sulphides. 3 117493513 CR-11-047 E5338124	CR-11-047	E5338114	1227.91	1229.41	1.50	consecutive	Quartz Monzodiorite with trace sulphides.	145	11T493513
CR-11-047 E5338116 1229.41 1230.89 1.48 not consecutive Quartz Monzodiorite with trace sulphides. 9 11T493513 CR-11-047 E5338117 1230.89 1231.39 0.50 consecutive Wing sample, grey green Basalt. 7 11T493513 CR-11-047 E5338118 1262.00 1262.50 0.50 not consecutive Wing sample, follated hornblende Basalt with trace sulphides. 3 11T493513 CR-11-047 E5338120 1264.03 1.53 consecutive Gradual change from biotite altered Basalt to interflow sediments. Pyrrhotite increasing downwards. 6 11T493513 CR-11-047 E5338121 1264.03 1264.87 0.84 consecutive Formation increasing downwards. 7 11T493513 CR-11-047 E5338121 1264.07 0.63 consecutive Wing sample, green grey hornblende Basalt with trace sulphides. 7 11T493513 CR-11-047 E5338123 1278.00 1278.53 0.53 not consecutive Wing sample, green grey hornblende Basalt with trace sulphides. 3 11T493513 CR-11-047 <td>CR-11-047</td> <td>E5338115</td> <td>1239.00</td> <td>1240.00</td> <td>1.00</td> <td>not consecutive</td> <td>Basalt with 5% pervasive carbonate.</td> <td>9</td> <td>11T493513</td>	CR-11-047	E5338115	1239.00	1240.00	1.00	not consecutive	Basalt with 5% pervasive carbonate.	9	11T493513
CR-11-047 E5338117 1230.89 1231.39 0.50 consecutive Wing sample, grey green Basalt. 7 11T493513 CR-11-047 E5338118 1262.00 1262.50 0.50 not consecutive Wing sample, Foliated hornblende Basalt to interflow sediments. Pyrrhotite increasing downwards. 6 11T493513 CR-11-047 E5338119 1262.50 1264.03 1.53 consecutive Gradual change from biotite altered Basalt to interflow sediments. Pyrrhotite increasing downwards. 6 11T493513 CR-11-047 E5338120 1264.03 1264.87 0.84 consecutive Chert bands alternating with Mudstone containing garnets. Sulphides associated with the presence of garnets. 7 11T493513 CR-11-047 E5338121 1264.87 1265.50 0.63 consecutive Wing sample, green grey hornblende Basalt with trace sulphides. 7 11T493513 CR-11-047 E5338123 1278.00 1278.53 0.53 not consecutive Wing sample, green grey hornblende Basalt with trace sulphides. 3 11T493513 CR-11-047 E5338125 1279.77 1.24 consecutive Wing	CR-11-047	E5338116	1229.41	1230.89	1.48	not consecutive	Quartz Monzodiorite with trace sulphides.	9	11T493513
CR-11-047 E5338118 1262.00 1262.50 0.50 not consecutive Wing sample, Foliated hornblende Basalt with trace sulphides. 3 11T493513 CR-11-047 E5338119 1262.50 1264.03 1.53 consecutive Gradual change from biotite altered Basalt to interflow sediments. Pyrrhotite increasing downwards. 6 11T493513 CR-11-047 E5338120 1264.03 1264.87 0.84 consecutive Chert bands alternating with Mudstone containing garnets. Sulphides associated with the presence of garnets. 7 11T493513 CR-11-047 E5338121 1264.87 1266.00 0.50 consecutive Wing sample, green grey hornblende Basalt with trace sulphides. 7 11T493513 CR-11-047 E5338121 1278.00 1278.53 0.53 not consecutive Wing sample, green grey hornblende Basalt with trace sulphides. 3 11T493513 CR-11-047 E5338124 1278.00 1278.53 0.53 not consecutive Wing sample, green grey hornblende Basalt with trace sulphides. 3 11T493513 CR-11-047 E5338124 1278.07 1.24 consecutive Win	CR-11-047	E5338117	1230.89	1231.39	0.50	consecutive	Wing sample, grey green Basalt.	7	11T493513
CR-11-047 E5338119 1262.50 1264.03 1.53 consecutive consecutive Gradual change from biotite altered Basalt to interflow sediments. Pyrrhotite increasing downwards. 6 117493513 CR-11-047 E5338120 1264.03 1264.87 0.84 consecutive Chert bands alternating with Mudstone containing garnets. Sulphides associated with the presence of garnets. 7 117493513 CR-11-047 E5338121 1264.87 1265.50 0.63 consecutive Biotite, garnets and sulphides quickly waning downwards. 7 117493513 CR-11-047 E5338122 1265.00 0.50 consecutive Wing sample, green grey hornblende Basalt with trace sulphides. 3 117493513 CR-11-047 E5338123 1278.00 1278.53 0.53 not consecutive Wing sample, green ish brown Basalt. 8 117493513 CR-11-047 E5338125 1279.77 1.24 consecutive Mixed sediments, Chert, Mudstone and Conglomerate. Disturbed beding with pyrrhotite. 249 117493513 CR-11-047 E5338126 1281.27 1.50 consecutive arsenopyrite. Quartz Monzodiorite with low levels of pyrit	CR-11-047	E5338118	1262.00	1262.50	0.50	not consecutive	Wing sample, Foliated hornblende Basalt with trace sulphides.	3	11T493513
CR-11-047 E5338120 1264.03 1264.87 0.84 consecutive consecutive Chert bands alternating with Mudstone containing garnets. Sulphides associated with the presence of garnets. 7 11T493513 CR-11-047 E5338121 1264.87 1265.50 0.63 consecutive Biotite, garnets and sulphides quickly waning downwards. 7 11T493513 CR-11-047 E5338122 1265.50 1266.00 0.50 consecutive Wing sample, green grey hornblende Basalt with trace sulphides. 3 11T493513 CR-11-047 E5338123 1278.00 1278.53 0.53 not consecutive Wing sample, green grey hornblende Basalt with trace sulphides. 3 11T493513 CR-11-047 E5338124 1278.53 0.53 not consecutive Wing sample, green grey hornblende Basalt with trace sulphides. 3 11T493513 CR-11-047 E5338124 1278.53 0.53 not consecutive Mixed sediments, Chert, Mudstone and Conglomerate. Disturbed bedding with pyrrhotite. 249 11T493513 CR-11-047 E5338126 1281.27 1282.46 1.19 consecutive arsenopyrite. Quartz Monzodiorite	CR-11-047	E5338119	1262.50	1264.03	1.53	consecutive	Gradual change from biotite altered Basalt to interflow sediments. Pyrrhotite increasing downwards.	6	11T493513
CR-11-047 E5338121 1264.87 1265.50 0.63 consecutive Biotite, garnets and sulphides quickly waning downwards. 7 11T493513 CR-11-047 E5338122 1265.50 1266.00 0.50 consecutive Wing sample, green grey hornblende Basalt with trace sulphides. 3 11T493513 CR-11-047 E5338123 1278.00 1278.53 0.53 not consecutive Wing sample, green ish brown Basalt. 8 11T493513 CR-11-047 E5338124 1278.53 1279.77 1.24 consecutive Wing sample, green ish brown Basalt. 8 11T493513 CR-11-047 E5338125 1279.77 1.24 consecutive Mixed sediments, Chert, Mudstone and Conglomerate. Disturbed beding with pyrrhotite. 249 11T493513 CR-11-047 E5338125 1279.77 1281.27 1.50 consecutive Quartz Monzodiorite with low levels of pyrite, pyrrhotite and trace arsenopyrite. 179 11T493513 CR-11-047 E5338126 1281.27 1282.46 1.19 consecutive consecutive Mudstone with pyrrhotite and some drawn out thin quartz arsenopyrite. 174	CR-11-047	E5338120	1264.03	1264.87	0.84	consecutive	Chert bands alternating with Mudstone containing garnets. Sulphides associated with the presence of garnets.	7	11T493513
CR-11-047 E5338122 1265.50 1266.00 0.50 consecutive Wing sample, green grey hornblende Basalt with trace sulphides. 3 11T493513 CR-11-047 E5338123 1278.00 1278.53 0.53 not consecutive Wing sample, green grey hornblende Basalt with trace sulphides. 3 11T493513 CR-11-047 E5338124 1278.53 1279.77 1.24 consecutive Mixed sediments, Chert, Mudstone and Conglomerate. Disturbed beding with pyrrhotite. 249 11T493513 CR-11-047 E5338125 1279.77 1281.27 1.50 consecutive consecutive Quartz Monzodiorite with low levels of pyrite, pyrrhotite and trace arsenopyrite. 179 11T493513 CR-11-047 E5338126 1281.27 1282.46 1.19 consecutive consecutive arsenopyrite. Quartz Monzodiorite with low levels of pyrite, pyrrhotite and trace arsenopyrite. 174 11T493513 CR-11-047 E5338127 1282.46 1.283.00 0.54 consecutive consecutive consecutive wins. Mudstone with pyrrhotite and some drawn out thin quartz carbonate veins. 77 11T493513 CR-11-047 E5338128 1283.00 1283.50 0.50 consecutive wins carbonate veins. 9	CR-11-047	E5338121	1264.87	1265.50	0.63	consecutive	Biotite, garnets and sulphides quickly waning downwards.	7	11T493513
CR-11-047 E5338123 1278.00 1278.53 0.53 not consecutive Wing sample, greenish brown Basalt. 8 11T493513 CR-11-047 E5338124 1278.53 1279.77 1.24 consecutive Mixed sediments, Chert, Mudstone and Conglomerate. Disturbed bedding with pyrhotite. 249 11T493513 CR-11-047 E5338125 1279.77 1281.27 1.50 consecutive Quartz Monzodiorite with low levels of pyrite, pyrrhotite and trace arsenopyrite. 179 11T493513 CR-11-047 E5338126 1281.27 1282.46 1.19 consecutive Quartz Monzodiorite with low levels of pyrite, pyrrhotite and trace arsenopyrite. 174 11T493513 CR-11-047 E5338126 1281.27 1282.46 1.19 consecutive Mudstone with pyrrhotite and some drawn out thin quartz arsenopyrite. 174 11T493513 CR-11-047 E5338127 1282.46 1283.00 0.54 consecutive Mudstone with pyrrhotite and some drawn out thin quartz carbonate veins. 77 11T493513 CR-11-047 E5338128 1283.00 1283.50 0.50 consecutive Wing sample,	CR-11-047	E5338122	1265.50	1266.00	0.50	consecutive	Wing sample, green grey hornblende Basalt with trace sulphides.	3	11T493513
CR-11-047 E5338124 1278.53 1279.77 1.24 consecutive bedding with pyrrhotite. Mixed sediments, Chert, Mudstone and Conglomerate. Disturbed bedding with pyrrhotite. 249 11T493513 CR-11-047 E5338125 1279.77 1281.27 1.50 consecutive consecutive Quartz Monzodiorite with low levels of pyrite, pyrrhotite and trace arsenopyrite. 179 11T493513 CR-11-047 E5338126 1281.27 1282.46 1.19 consecutive consecutive Quartz Monzodiorite with low levels of pyrite, pyrrhotite and trace arsenopyrite. 174 11T493513 CR-11-047 E5338127 1282.46 1283.00 0.54 consecutive consecutive Mudstone with pyrrhotite and some drawn out thin quartz carbonate veins. 77 11T493513 CR-11-047 E5338128 1283.00 1283.50 0.50 consecutive Wing sample, Contact sheared Gabbro. 9 11T493513 CR-11-047 E5338129 1323.65 1324.15 0.50 not consecutive Wing sample, Contact sheared Gabbro. 9 11T493513 CR-11-047 E5338130 0.00 0.00 not consecutive Wing sam	CR-11-047	E5338123	1278.00	1278.53	0.53	not consecutive	Wing sample, greenish brown Basalt.	8	11T493513
CR-11-047E53381251279.771281.271.50consecutiveQuartz Monzodiorite with low levels of pyrite, pyrrhotite and trace arsenopyrite.17911T493513CR-11-047E53381261281.271282.461.19consecutiveQuartz Monzodiorite with low levels of pyrite, pyrrhotite and trace arsenopyrite.17411T493513CR-11-047E53381271282.461.283.000.54consecutiveMudstone with pyrrhotite and some drawn out thin quartz carbonate veins.7711T493513CR-11-047E53381281283.001283.500.50consecutiveWing sample, Contact sheared Gabbro.911T493513CR-11-047E53381291323.651324.150.50not consecutiveWing sample, sheared Gabbro with 5% biotite.1811T494504CR-11-047E53381300.000.00not consecutiveStandard PM 440169011T494504	CR-11-047	E5338124	1278.53	1279.77	1.24	consecutive	Mixed sediments, Chert, Mudstone and Conglomerate. Disturbed bedding with pyrrhotite.	249	11T493513
CR-11-047 E5338126 1281.27 1282.46 1.19 consecutive Quartz Monzodiorite with low levels of pyrite, pyrrhotite and trace arsenopyrite. 174 11T493513 CR-11-047 E5338127 1282.46 1283.00 0.54 consecutive Mudstone with pyrrhotite and some drawn out thin quartz carbonate veins. 77 11T493513 CR-11-047 E5338128 1283.00 1283.50 0.50 consecutive Wing sample, Contact sheared Gabbro. 9 11T493513 CR-11-047 E5338129 1323.65 1324.15 0.50 not consecutive Wing sample, Sheared Gabbro with 5% biotite. 18 11T494504 CR-11-047 E5338130 0.00 0.00 not consecutive Standard PM 440 1690 11T494504	CR-11-047	E5338125	1279.77	1281.27	1.50	consecutive	Quartz Monzodiorite with low levels of pyrite, pyrrhotite and trace arsenopyrite.	179	11T493513
CR-11-047 E5338127 1282.46 1283.00 0.54 consecutive Mudstone with pyrrhotite and some drawn out thin quartz carbonate veins. 77 11T493513 CR-11-047 E5338128 1283.00 1283.50 0.50 consecutive Wing sample, Contact sheared Gabbro. 9 11T493513 CR-11-047 E5338129 1323.65 1324.15 0.50 not consecutive Wing sample, sheared Gabbro with 5% biotite. 18 11T494504 CR-11-047 E5338130 0.00 0.00 not consecutive Standard PM 440 1690 11T494504	CR-11-047	E5338126	1281.27	1282.46	1.19	consecutive	Quartz Monzodiorite with low levels of pyrite, pyrrhotite and trace arsenopyrite.	174	11T493513
CR-11-047 E5338128 1283.00 1283.50 0.50 consecutive Wing sample, Contact sheared Gabbro. 9 11T493513 CR-11-047 E5338129 1323.65 1324.15 0.50 not consecutive Wing sample, Sheared Gabbro with 5% biotite. 18 11T494504 CR-11-047 E5338130 0.00 0.00 not consecutive Standard PM 440 1690 11T494504	CR-11-047	E5338127	1282.46	1283.00	0.54	consecutive	Mudstone with pyrrhotite and some drawn out thin quartz carbonate veins.	77	11T493513
CR-11-047 E5338129 1323.65 1324.15 0.50 not consecutive Wing sample, sheared Gabbro with 5% biotite. 18 11T494504 CR-11-047 E5338130 0.00 0.00 not consecutive Standard PM 440 1690 11T494504	CR-11-047	E5338128	1283.00	1283.50	0.50	consecutive	Wing sample, Contact sheared Gabbro.		11T493513
CR-11-047 E5338130 0.00 0.00 not consecutive Standard PM 440 1690 11T494504	CR-11-047	E5338129	1323.65	1324.15	0.50	not consecutive	Wing sample, sheared Gabbro with 5% biotite.		11T494504
	CR-11-047	E5338130	0.00	0.00	0.00	not consecutive	Standard PM 440	1690	11T494504

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-11-047	E5338131	1324.15	1324.88	0.73	not consecutive	Gabbroic shear with dismembered quartz carbonate veins, 12% biotite. Finely disseminated pyrite in biotite and veins.	58	11T494504
CR-11-047	E5338132	1324.88	1325.38	0.50	consecutive	Wing sample, sheared Gabbro with 5% biotite.	34	11T494504
CR-11-047	E5338133	1328.47	1328.97	0.50	not consecutive	Wing sample, foliated Gabbro.	18	11T494504
CR-11-047	E5338134	1328.97	1330.47	1.50	consecutive	Monzodiorite with equal traces of pyrite and arsenopyrite.	63	11T494504
CR-11-047	E5338135	1432.00	1433.00	1.00	not consecutive	Medium grained Gabbro with folded and dismembered quartz carbonate veins.	11	11T494504
CR-11-047	E5338136	1330.47	1332.00	1.53	not consecutive	Monzodiorite with equal traces of pyrite and arsenopyrite.	23	11T494504
CR-11-047	E5338137	1332.00	1333.69	1.69	consecutive	Monzodiorite with equal traces of pyrite and arsenopyrite.	112	11T494504
CR-11-047	E5338138	1333.69	1334.19	0.50	consecutive	Wing sample, foliated Gabbro.	19	11T494504
CR-11-047	E5338139	1408.00	1409.00	1.00	not consecutive	Character sample, foliated Gabbro with 5% biotite and trace pyrite.	43	11T494504
CR-11-047	E5338140	1409.00	1410.00	1.00	consecutive	Gabbro with 5% biotite, 6% quartz carbonate veins with 1% pyrite in blebs and disseminated.	35	11T494504
CR-11-047	E5338141	1410.00	1411.00	1.00	consecutive	Massive fine grained Gabbro with less than 1% veining and trace pyrite.	19	11T494504
CR-11-047	E5338142	1448.23	1449.23	1.00	not consecutive	Wing sample, Gabbro with pervasive carbonate and disseminated pyrite.	15	11T494504
CR-11-047	E5338143	1449.23	1450.75	1.52	consecutive	Bruce Channel Mudstone with 5% pyrrhotite and pyrite respectively.	89	11T494504
CR-11-047	E5338144	1450.75	1452.25	1.50	consecutive	Quartz Diorite with 1% pyrite disseminated and in blebs	83	11T494504
CR-11-047	E5338145	1452.25	1453.75	1.50	consecutive	Quartz Diorite with 1% pyrite and increasing amount of pyrrhotite.	73	11T494504
CR-11-047	E5338146	1453.75	1455.25	1.50	consecutive	Quartz Diorite with 1% pyrite and increasing amount of pyrrhotite.	43	11T494504
CR-11-047	E5338147	1455.25	1456.75	1.50	consecutive	Quartz Diorite with 1% pyrite and increasing amount of pyrrhotite.	116	11T494504
CR-11-047	E5338148	1456.75	1458.25	1.50	consecutive	Quartz Diorite with 1% pyrite and at least same amount of pyrrhotite	35	11T494504
CR-11-047	E5338149	1458.25	1459.75	1.50	consecutive	Quartz Diorite with more pyrrhotite than pyrite now, more larger arsenopyrite crystals as well.	39	11T494504
CR-11-047	E5338150	0.00	0.00	0.00	not consecutive	Standard OxK 69 3.583ppm Au	3760	11T494504
CR-11-047	E5338151	1459.75	1461.00	1.25	not consecutive	Quartz Diorite with 1% pyrite, 2% pyrrhotite and 0.25% arsenopyrite.	319	11T494504
CR-11-047	E5338152	1461.00	1462.00	1.00	consecutive	Wing sample, Mudstone with pyrrhotite, trace pyrite and carbonate stringers.	14	11T494504

SPT GYRO Survey Record

Hole ID	Station (m)	Azimuth	Dip (Degrees)
CR-11-047	0	12.20	-86.72
CR-11-047	25	24.21	-85.95
CR-11-047	50	28.01	-85.49
CR-11-047	75	34.28	-84.87
CR-11-047	100	36.80	-84.39
CR-11-047	125	38.34	-83.15
CR-11-047	150	39.64	-82.39
CR-11-047	175	39.78	-82.04
CR-11-047	200	39.37	-81.85
CR-11-047	225	37.76	-81.01
CR-11-047	250	37.36	-80.83
CR-11-047	275	36.76	-80.70
CR-11-047	300	37.03	-80.54
CR-11-047	325	39.06	-80.43
CR-11-047	350	39.06	-79.90
CR-11-047	375	39.57	-79.52
CR-11-047	400	38.38	-79.12
CR-11-047	425	37.76	-78.93
CR-11-047	450	37.10	-78.50
CR-11-047	475	37.33	-77.74
CR-11-047	500	37.63	-77.72
CR-11-047	525	38.13	-77.46
CR-11-047	550	39.76	-77.02
CR-11-047	575	38.79	-76.30
CR-11-047	600	39.71	-75.70
CR-11-047	625	39.93	-74.49
CR-11-047	650	40.13	-73.47
CR-11-047	675	39.93	-72.71
CR-11-047	700	39.17	-71.93
CR-11-047	725	39.79	-71.02
CR-11-047	750	40.68	-70.43
CR-11-047	775	40.85	-69.77
CR-11-047	800	40.89	-69.05
CR-11-047	825	41.07	-68.89
CR-11-047	850	40.76	-68.11
CR-11-047	875	40.73	-67.62
CR-11-047	900	40.95	-66.99

SPT GYRO Survey Record

Hole ID	Station (m)	Azimuth	Dip (Degrees)
CR-11-047	925	41.99	-65.78
CR-11-047	950	42.09	-65.29
CR-11-047	975	42.43	-64.62
CR-11-047	1000	42.69	-63.96

Conquest Resources Ltd.

Exploration Diamond Drill Log

CR-11-047-W1

DRILL HOLE #	CR-11-047-W1	LOCATION	Balmertown	, Balmer Townshi	p, Red Lake Dist	rict, Ontario		
PROJECT #	Alexander	REFERENCE	Alexander		GEOLOGIST	Meckert		ioldcorp/KRL2048
GRID/ NAD-ZONE		NORTHING		EASTING		ELEVATION		GRID TYPE
GRID	Alexander RL	11+27S		1+34W		9990		Μ
UTM	NAD83 / 15U	5655827		449468		371		
COLLAR DIP	-87	GRID DIRECTION		26° W of gridN			AZ DIRECTION	004
NTS REF #	052N04	NTS SHEET NAME		Red Lake, Ontari	0			
START DATE	15-May-11			FINISH DATE	24-Jun-11			
DEPTH (EOH)	1448.00	TARGET & Zone De	pth					
PURPOSE	Deep Alexand	er WEST SHR/V	EIN target at	property boundar	<u>y</u> PIECI	POINT of Target:	E	mELEV
CASING BW	/ <u>na</u>	CASING NW		na			CASING HW	na
PLUG @	o na	PLUG @		na			PLUG @	na
START DTH	na	WEDGE @		320m & 348.5m				
REDUCED @	na		REDUCED @	na na				
HOLE STATUS	completed							
DRILLING CONTR/	ACTOR	Boart Longyea	r Inc.					
RIG NO.	LY 55 4154						BXS.	259
				SPT GYRO Surv	/eys			
DEPTH	H (m)	AZIMU	гн	D	IP		Comments:	
0		12.2	0	-86	.72			
10	0	36.8	0	-84	.39]		
20	0	39.3	7	-81	.85			
30	0	36.7	7	-80	.54			
40	0	36.1	3	-71	.67]		
50	0	48.9	3	-63	.54	After wedging of	f the parent hole th	ne Balmer Basalt
60	0	52.9	5	-60	.00	was intersected a	s planned above ho	le CR-11-047 at a
70	0	54.2	0	-56	.88	depth of 961.60r	m. Alteration and f	racture patterns
80	0	54.5	3	-53	.23	close to the un	conformity are cor	nparable to the
90	0	53.7	3	-51	.78	conditions encou	ntered in the pare	nt hole. Several
10	00	54.2	2	-50	.34	minor shear and	alteration zones w	ere encountered
11	00	54.7	3	-49	.13	gold values. Ho	wever, a quartz	veinlet bearing
12	00	56.6	5	-48	.49	tourmaline, qu	artz carbonate	fragments and
13	00	57.3	5	-48	.02	arsenopyrite betv	veen 993.77m and 9	93.97m returned
						and assay of 1.9	8gr/t Au and may	warrant further
						investigation.		
]		
]		
]		

Drill with 6m standard NQ core barrel

Planned hole depth is 1450m (4,750')

Core stored at Alexander Core Yard at UTM 0449935 5656595 UTM NAD83 15U Water source: beaver pond located at 449718 5656178 UTM NAD83 15U

Drill type: LY-55

Major Lithologies

Hole Name	From	То	Length	Code	Description	Rep
CR-11-047-W1	320.00	323.50	3.50	WED	Steel wedge from parent hole CR-11-047.	
CR-11-047-W1	323.50	331.40	7.90	S6D/S10	Dark grey coloured sulphidic mudstones interbedded with light to medium grey coloured chert. Mudstones show little internal structure except for pseudo bedding planes based on accumulations of pyrrhotite. Pyrrhotite is also finely disseminated and on occasion may make up about 20 % of mudstone sections. Mudstones as well as the interbedded Cherts are crossed by a multitude of light grey thin quartz veins that are folded and broken up. Multigenerational fillings in these veins make it sometimes difficult to distinguish between veins and primary banded Chert. Veins, Chert and sometimes the Mudstones show extension fractures healed by quartz.	
CR-11-047-W1	331.40	356.50	25.10	BRC/S10C	Interbedded Chert and Mudstones are crudely brecciated and healed with opaque white- coloured quartz. Brecciation is defined by the fragmentation of sorted beds of Chert and Mudstone whereby brecciation is limited to each bed, not causing mixing of cherts and mudstone. Veining hosted within brecciated sections, especially the very low angle veins, are fragmented/brecciated and often contain a mosaic of wall rock fragments. Sulphide mineralization (cheifly pyrrhotite) is not as abundant as above mudstone. Bedding is crudely oriented 29 to 40 degCA.	
CR-11-047-W1	356.50	363.27	6.77	BRC	Brecciated Mudstones and Cherts. Chert and Mudstone fragments mixed together. Matrix is made up of light grey to white coloured, opaque, quartz and pyrrhotite mineralization. In upper 3m of unit Breccia was subject to minor shearing and the pyrrhotite appears mostly as vein replacement. Where Chert is the dominating lithology in the Breccia the matrix is made up of pyrrhotite to about 20%. In the lower part of the unit brecciated Mudstones make up 80 % of the rocks present. Here the matrix is made up solely of quartz and pyrrhotite, but these do not appear spatially related.	
CR-11-047-W1	363.27	375.55	12.28	BRC/S10C	Brecciated Mudstones as in previous unit. Angular clasts healed with white coloured massive quartz. No sulphides in the quartz matrix but in clasts themselves and as selvedges around them. Alternating banded Chert is not brecciated, but banded to laminated. Extension fractures are either quartz or pyrrhotite filled.	

Hole Name	From	То	Length	Code	Description	Rep
CR-11-047-W1	375.55	427.15	51.60	\$10C	Light to medium grey coloured banded to laminated Chert. In some cases of a distinct pale yellow brown colour. For the most part the Chert is intact albeit crossed by numerous thin quartz veins, but some sections are brecciated. It does not look like autobrecciation but related to wider fractures filled with wall rock fragments and subsequently healed with quartz. Some thin Mud to Siltstone bands are interbedded and contain fine grained retrograde garnets. Pyrrhotite is the dominating sulphide which can be found in quartz veins, fracture fillings and occasionally as bands within the Chert. Magnetite is present throughout but tends to blend into the Chert. As in previous units the Chert is folded and undulating and the banding tends to frequently reverse direction.	
CR-11-047-W1	427.15	538.84	111.69	S10F	Chert - Ironstone Formation. Light to medium grey coloured, banded to laminated Chert alternating with green grey coloured bands that can reach 50cm in true thickness. Chert is mostly intact except for extension fractures and local brecciation. The matrix is milky grey quartz and pyrrhotite but it appears as if the pyrrhotite happened subsequent to the quartz. The green grey bands are dominated by amphiboles and contain magnetite and possibly very finely disseminated pyrrhotite. However, the amphibole crystals which can reach up to 1cm in size mask any other underlying texture or mineral content. These amphibole rich bands macroscopically could be mistaken as gabbroic at first glance but are obviously reconstituted sedimentary matter likely of volcanic origin. Often showing a thin pyrrhotitic selvege. Looks like the pyrrhotite mineralisation happened after the amphibole alteration and while the Chert fractured and allowed pyrrhotite infill of those fractures the amphibole bands stayed intact for the most part and were impermeable to the pyrrhotite carrying fluids. The Chert bands as in the previously described units are flexed and folded with sedimentary banding often running along the core axis and constantly changing directions.	
CR-11-047-W1	538.84	550.40	11.56	S10F/BRC	Irregularly bedded/banded, locally brecciated and quartz veined, Chert. Breccia and quartz veined intervals are present within dense milky white to grey coloured, magnetite rich Chert beds with no gradational, poorly defined beds/bands. Pyrrhotite is present as the matrix in the Breccia but also as vein replacement and late fracture fillings, especially in extension fractures as translucent white quartz veins. Pyrrhotite locally comprises up to 20% of unit and generally increases in down hole direction.	
CR-11-047-W1	550.40	560.50	10.10	NSS	Near Solid Sulphide to Solid Sulphide Pyrrhotite and minor Pyrite replacement mineralization within Huston Formation metasediments. Sulphides are very fine grained, appearing as dull metallic masses within fine grained clastics. A few amorphous textured milky white-grey coloured, Chert beds are presesnt within NSS over 10-50cm scale with very low angle bedding at 10degCA. Upper contact is diffuse. Lower contact is sharp at 50degCA intrusive contact.	

Major Lithologies

Hole Name	From	То	Length	Code	Description	Кер
CR-11-047-W1	560.50	573.80	13.30	12J	Fine grained, medium grey coloured, foliated, silica-sericite-Magnetite altered, variably magnetic, Diorite and Quartz Diorite. Some sections of intrusive contain grey coloured, subhedral quartz crystals over 1 to 2 metre intervals. In very fine grained sections, alteration is strongest comprised of 15% silica, <05% sericite and up to 2% Magnetite. Foliation is planar and oriented 45degCA. Minor trace amounts of Pyrite througout with one 0.50m interval containing up to 20% sulphides (05%PY 15%PO) along low angle fracture and blebby disseminations. Upper and lower contacts are sharp and planare at 45degCA and 40degCA respectively.	
CR-11-047-W1	573.80	584.36	10.56	S5D	Unsorted polymictic Conglomerate as CR-11-047 at 600.66m. Pebble- to cobble-sized clasts are made of comprised of banded Chert, solid light grey to white coloured banded chert or quartz vein fragments, pyrrhotite bearing Argillite. The clasts are subangular to well rounded and crudely oriented to 45degCA. One fractured quartz vein is cross cutting at 15degCA in down hole direction. The matrix is composed of muddy fine siliciclastic sediment which contains considerable garnet, silica and pyrrhotite. Locally, pyrrhotite is present as 5mm to 20mm solid sulphide replacement in matrix. Minor trace to 01% earthy spheroidal pyrite replacement is present locally. The original carbonaceous matrix is preserved in a few spots and has been otherwise replaced by sulphides-silica-(chlorite) pervasive alteration.	
CR-11-047-W1	584.36	689.08	104.72	S6D	Poorly PO-(PY) mineralized, well bedded, poorly graded, dark grey coloured, silty Mudstone (85%) and Wackestone (15%) at in CR-11-047 at 685m. Upper contact is planar and sharp at 40degCA. Up to 20% local siltstone beds are well defined, undlating bedding planes with foliation oriented approximately 40degCA. Mixed silty sediments are poorly graded and poorly sorted throughout unit. Lower contact at intrusive is sharp at 50degCA with no apparent alteration.	
CR-11-047-W1	689.08	777.31	88.23	I2G	Grey-blue coloured, medium to coarse grained, variably sil-ser-(bt-chl) to sil-ser-(gt) altered, sparsely disseminated sulphide (cheifly 01PO) mineralized, blue quartz eye bearing, Quartz Monzodiorite as in CR-11-047 at 761.20m. Moderately well foliated at 55degCA. This is a broad intrusive of significant thickness. Alteration of finest grain fraction comprises plagioclase feldspar being sericitized (up to 10%) locally in to whispy threads along foliation and generally elevated silica (5-10%) throughout fine to medium grained portions of unit. Biotite (trace to 01%) is common in fine grained groundmass oriented subparallel to foliation. One light greywhite coloured, fractured, bull quartz vein which crosscuts foliation at 35degCA in down hole direction at 694.77 to 695.50m. Upper contact is sharp at 50degCA. Lower contact is planar and sharp at 28degCA.	

Major Lithologies

Hole Name	From	То	Length	Code	Description	Rep
CR-11-047-W1	777.31	840.13	62.82	S6D	Poorly PO-(PY) mineralized, well bedded, poorly graded, dark grey coloured, silty Mudstone as above. Up to 20% local siltstone beds are well defined, undulating bedding planes with foliation oriented approximately 50degCA. Upper contact is weakly magnetic due to magnetite locally. Magnetism below 780 is due to <05% Pyrrhotite within mudstone.	
CR-11-047-W1	840.13	867.14	27.01	I2G	Grey-blue coloured, medium to coarse grained, variably sil-ser-(bt-chl), foliated, blue quartz eye bearing, Quartz Monzodiorite as above at 689.08 to 777.31m. Upper and lower contacts are sharp.	
CR-11-047-W1	867.14	924.49	57.35	S6D	Poorly PO-(PY) mineralized, well bedded, poorly graded, dark grey coloured, silty Mudstone as above. Up to 20% local siltstone beds are well defined, undulating bedding planes as above. Local bull quartz veining with trace PY. Upper contact is sharp at 48degCA.	
CR-11-047-W1	924.49	947.09	22.60	12G	Light grey-green coloured, quartz crystal bearing, foliated Quartz Monzodiorite as above. Planar foliation at 65degCA. Upper contact contains sericite altered mudstone fragments and may be transposed. Sharp lower contact at 65degCA.	
CR-11-047-W1	947.09	961.60	14.51	S6D	Light grey to dark grey coloured, non magnetic, silt laden Mudstone as above. Minor, narrow, Quartz Monzodiorite dyke at 947.64 to 947.97m.	
CR-11-047-W1	961.60	969.58	7.98	ATZ/BRE	Buff beige coloured, strongly sericite altered, well healed Breccia Zone in Basalt. Overprinting is very intense locally (over 0.5 to 2m intervals) with up to 20% sericite and 5% carbonate and minor silica. Carbonate is late stage in alteration scheme in vein fragments and replacement locally of groundmass. Breccia structure is crudely oriented at 50 to 90degCA while abundant fractures show offset along minor Faults oriented at about 45 degCA. Unit is almost devoid of any sulphide mineralization. Lower contact is gradual over 1.2m and is put at contact to Quartz Monzodiorite below.	
CR-11-047-W1	969.58	984.76	15.18	V3B	Green coloured and fine to medium grained, well foliated, hb-plag-(chl-bt) Basalt with up to 8% quartz carbonate veins locally. Biotite alteration halos in vein selvages is common. Trace disseminations of Pyrite is mostly tied to sections with moderate biotite alteration. Upper contact is very fine grain textured but quickly moves into medium grained textures. Alteration often most pronounced in 10 to 20cm thick bands and masks basaltic fabric completely giving the impression of an intrusive origin of the rock. Downward the hornblende alteration stays fairly constant.	

CP 11_047-W1

CON		ited			Major Lithologies	CR-11-047-W	
Hole Name	From	То	Length	Code	Description	Rep	
CR-11-047-W1	984.76	985.46	0.70	SHR	Shear zone / fracture zone with 40% quartz carbonate stringers and hornblende - chlorite alteration. Quartz carbonate is fine grained and opaque from very fine grained pyrrhotite. In some places pyrrhotite accumulates to small angular masses. Calcopyrite is present in traces. Wall rock also shows trace to 0.5 % pyrrhotite.		
CR-11-047-W1	985.46	1112.02	126.56	V3B	As before the shear: Green coloured and fine to coarse grained, massive to foliated, hb-plag- (chl-bt) Basalt with up to 8% quartz carbonate veins locally. Biotite alteration halos in vein selvages is common. Trace disseminations of Pyrite is mostly tied to sections with moderate biotite alteration. Upper contact is very fine grain textured but quickly moves into medium and sometimes even coarse textures. Alteration often most pronounced in 10 to 20cm thick bands and masks basaltic fabric completely giving the impression of an intrusive origin of the rock. Downward the hornblende alteration continues to gradually dissappear and by 1085m it is macroscopic not discernible anymore.		
CR-11-047-W1	1112.02	1112.56	0.54	S/T	Mixed Interflow sediments ranging from muddy to cherty with more than 50 % tufaceous material. Tufaceous bands are high in chlorite content and dotted with red coloured garnets, with single crystals reaching 5 mm in size. About 3 % pervasive carbonate is present, postdating the sediment emplacement. It is plausible that pyrrhotite mineralisation (5%) is associated with the carbonate overprinting.		
CR-11-047-W1	1112.56	1116.34	3.78	ATZ	Dark grey coloured Basalt is well foliated and has undergone a hornblende - chlorite alteration as well as silicification to about 5 %. While the alteration stays fairly constant throughout, the silicification gradually disappears downward. Unit is well foliated and contains distinct bands that show accumulations of garnets. These are either narrow alteration bands or indicative of tufaceous material. Alongside the carbonate overprinting goes a pyrrhotite mineralisation that is concentrated in veins, pillow selvedges and sections where the biotite content is the highest. The remaining Basalt is mineralised to about 0.25 %. The lower contact is dyked out.		
CR-11-047-W1	1116.34	1166.23	49.89	V3B	Medium grey-green coloured and fine to very fine grained Basalt. Standard greenschist alteration Basalt with pervasive chlorite up to 3% and occasional bands of hornblende-chlorite alteration usually accompanying pillow selvages. Often criss crossed by a network of fine carbonaceous fractures. Quartz carbonate veins (5%) are multistage, ranging from almost undeformed to folded to completely dismembered and fragmented. Mineralisation is at trace level, but long stretches show no sulphides at all.		

Hole Name	From	То	Length	Code	Description	Rep
CR-11-047-W1	1166.23	1168.09	1.86	S	Light to dark grey coloured mixture of interflow sediments. Green from hornblende and chlorite where volcanic components dominate. Sediments were originally mostly chert and to a lesser degree argillitic. However, there has been a substantial infusion of carbonate, with the veining following the bedding planes. Subsequent to this the carbonate has been partially replaced by pyrrhotite and the carbonate recrystallised. The magnetite present is mixed into the darker grey coloured argillitic bands and so fine grained that it blends into the background. The sediments are undulating but for the most part follow the local bedding pattern. Only in the first 30cm a handfull of distinct planes cross the core perpendicular and show associated drag features. Upper contact against Basalt is sharp and lower contact is dyked out by an intrusive.	
CR-11-047-W1	1168.09	1171.78	3.69	I2G	Medium grey-brown coloured and fine grained Quartz Monzodiorite. Intrusive is well foliated and sericitized to about 10 % on average. In a few cm thick bands the alteration has been almost complete and these stand out due to their light buff colour. A couple of sediment fragments have been assimilated and close to the lower contact a cobble of Gabbro can be observed. The intrusive is well mineralised with pyrite to about 1.5 %. At 1171.15m a milky quartz vein cuts of a quartz carbonate vein with late biotite filling. here the intrusive is bleached and shows larger aggregates of pyrite and traces of arsenopyrite. The upper contact is uneven but roughly follows 67 degCa. The lower contact is sharp and straight at 73 degCa.	
CR-11-047-W1	1171.78	1186.00	14.22	I3A/SHR	Green-brown coloured and fine grained Gabbro. First 14m of Gabbro are very evenly contacts sheared. Small brown biotite/phlogopite crystals give it its distinct look. Lower contact is gradual over 2m.	
CR-11-047-W1	1186.00	1194.77	8.77	I3A	Bluish-green coloured and fine to medium grained Gabbro. Intrusive is massive and only shows vague signs of foliation. Thin quartz carbonate veins are spaced 0.5m to 1m apart. Some sections show trace mineralisation with pyrite.	
CR-11-047-W1	1194.77	1196.33	1.56	SHR	Shear or ductile deformation zone is characterized by minor brecciation, undulating shear planes and increased quartz carbonate veining as well as some chloritisation. The structure is mineralised with pyrite, pyrrhotite and chalcopyrite, but the combined amount is well below 1 %. Contacts are gradual.	
CR-11-047-W1	1196.33	1201.03	4.70	I3A	Blueish green coloured Gabbro as before the Deformation zone, but this section is fairly well foliated at 60 to 70 degCa.	
CR-11-047-W1	1201.03	1206.59	5.56	I2G	Dark grey coloured and fine grained Quartz Monzodiorite with coarse subrounded quartz crystals. The intrusive is nicely foliated and moderately sericite altered in certain layers. The Quartz Monzodiorite is well mineralized with blebby and disseminated pyrrhotite. The blebs are upt o 1cm in size and on occasion show pyrite replacement. Contacts are sharp, upper at 58 degCa and lower at 84 degCa.	

Major Lithologies

Hole Name	From	То	Length	Code	Description	Rep
CR-11-047-W1	1206.59	1278.75	72.16	I3A	Green-grey coloured and fine to coarse grained Gabbro. Finer grained sections tend to show signs of foliation but the direction is very irregular and can be attributed mostly to local deformational patterns. Coarse grained sections are massive with large hornblende crystals often exceeding 1cm in length. The unit is criss crossed by at least two generations of folded and dismembered quartz carbonate veins and late stage milky quartz veins that are undeformed. The unit shows trace mineralisation with pyrite locally.	
CR-11-047-W1	1278.75	1283.37	4.62	12G	Medium brown-grey coloured and fine grained Quartz Monzodiorite. Quartz crystals tend to be medium grained. The occasional blue cordierite can be observed as well. Intrusive is well foliated and was subject to 5 % sericite alteration. A few thin buff coloured bands show up to 50 % sericite. Both pyrite and pyrrhotite are disseminated throughout. They are also found as small streaks and grainy masses. Both contacts are sharp but uneven. upper contact at 62 degCa and lower at 46 degCa.	
CR-11-047-W1	1283.37	1340.77	57.40	I3A	Green-grey coloured fine to medium grained Gabbro. As in previously described Gabbro interval, fine grained weakly foliated sections alternate with coarser and massive sections. Intrusive shows 2 % quartz carbonate veining with 99 % showing nil sulphides. If sulphides are present in veins it tends to be pyrrhotite with trace chalcopyrite. The Gabbro itself shows traces of pyrite.	
CR-11-047-W1	1340.77	1353.16	12.39	12J	Green-brown-grey mottled and fine grained Diorite. Unit is massive yet shows a crude foliation like pattern based on curved streaks of biotite. However the pattern exhibited by these biotite streaks is not only crude but also changes direction over short intervals and is more like associated with internal non foliation related deformation and possibly flow patterns. Intrusive is porous and more brittle than surrounding Gabbro. Within the first 85 cm of the upper contact the Diorite is very fine grained due to faster cooling aginst the wall rock. Diorite shows traces of disseminated pyrite.Upper contact is gradual over 20cm, with biotite rich cm thick bands of Gabbro alternating with very fine grained Diorite bands. Lower contact falls within partially ground core.	
CR-11-047-W1	1353.16	1396.50	43.34	I3A	Green-grey coloured fine to medium grained Gabbro as in previously described interval.	
CR-11-047-W1	1396.50	1425.28	28.78	I3A/SHR	Brownish-green coloured and fine grained Gabbro. Gabbro shows typical contact shear characters. It is very well and evenly foliated with biotite rich thin bands alternating with bands where hornblende and feldspar stand out. The upper contact is gradual over 1m and the lower contact is dyked out.	

Major Lithologies

Hole Name	From	То	Length	Code	Description	Rep
CR-11-047-W1	1425.28	1433.28	8.00	I2G	Medium grey coloured and fine to very fine grained Quartz Monzodiorite. Containing a higher ratio of quartz crystals than usual (12 to 15%). Quartz crystals are medium grained. Intrusive is weakly foliated and shows minor sericite alteration. Around 1426m the uartz Monzodiorite shows an interestingpattern of diffuse bleaching around a folded quartz vein, yet the immediate contact to the vein is rust brown coloured from biotite. The intrusive is well mineralised with pyrite to 1.5 % which is present as irregular grainy masses and finely disseminated. Arsenopyrite can be found in traces. Contacts are sharp, upper at 45 degCA and lower at 41 degCA.	
CR-11-047-W1	1433.38	1436.38	3.00	12J	Dark brown coloured and very fine grained Diorite. Intrusive is very well foliated and most of the groundmass has been replaced by biotite. Hence the brown color. The intrusive contains a cobble of Gabbro and within less than a meter to the lower contact a couple of bands of dark grey sulphidic Mudstone show up. Finely disseminated pyrite is unevenly distributed throughout to the tune of 1 %. Upper contact against Quartz Monzodiorite is sharp as described. Lower contact is sharp as well at 50 degCA.	
CR-11-047-W1	1436.38	1441.93	5.55	S6D	Dark grey coloured sulphidic Mudstone is solid but the structure is folded to disturbed. Two milky quartz veins cross within the first 1.2 meters, followed by a short section of foliated Gabbro. The following stretch of Mudstone is even more disjointed and shows signs of pyrrhotite healed brecciation.	
CR-11-047-W1	1441.93	1446.77	4.84	I2J	Medium grey brown coloured and fine grained Diorite. Intrusive is foliated and shows much less biotite than previous Diorite. The unit is massive and solid and shows several assimilated irregular shaped chunks of Mudstone. In contrast to the previous Diorite this Intrusive is dominated by pyrrhotite, which is finely disseminated throughout and reaches a concentration of 2 %. Upper contact is irregular over 10cm and the lower contact is sharp at 43 degCA.	
CR-11-047-W1	1446.77	1447.85	1.08	FLT	Fault in uppermost part of Bruce Channel Formation. Mudstone is ground up accompanied by goug. Significant amount of core loss due to gouge being washed out during drilling. Typical for Balmer-Bruce Channel Unconformity in that the sediments immediately adjacent to the contact are folded contorted and disturbed, and that a gougy broken up contact-fault only follows several meters into the sediments.	
CR-11-047-W1	1447.85	1447.99	0.14	S6D	Dark grey coloured sulphidic Mudstone as before the fault.	
CR-11-047-W1	1447.99	1448.00	0.01	EOH	EOH in <u>Bruce Channel Formation</u> . Hole ended 11.62m past Bruce Channel unconformity. EOH at 1448m on June 24, 2011. Surveyed by Goldcorp surveyors to 1300m, remainder surveyed using Easy Shot. Core is stored at the Conquest Core Facility on the Alexander Property in 259 NQ trays in racks. 121 samples sent for Au fire assay (50g pulp) at AGAT Labs, Mississauga, ON.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-11-047-W1	496.00	500.00	BRC	Brecciated, clast supported Chert. Clasts are flakes and shards with a wide range of sizes. Matrix was initially carbonaceous but this is preserved only in a few places as remnants. Otherwise the matrix has been replaced by massive fine grained pyrrhotite. Pyrrhotite makes up about 15 % of Breccia.	
CR-11-047-W1	503.16	504.03	130	Dark grey and fine grained Lamprophyre. Intrusive shows weak pervasive carbonate. Apart from 0.5mm size off white feldspars the Lamprophyre shows no internal structure and is massive. Contacts are sharp and undulating. Upper contact is at 70 degCA and lower at 66 degCA.	
CR-11-047-W1	590.57	598.98	S3	Quartz lithic Wackestone with coarsely disseminated (02%) Pyrite and whispy disseminations of (05%) Pyrrhotite. Up to 03-05% chlorite and quartz carbonate within fine matrix with inverse correlation to sulphides which are not generally present in altered fine grained cement. Milky white-grey coloured, rounded quartz clasts are frequent (<02%) of total unit and appear to be of a similar origin as those quartz clasts in above conglomerate unit. Upper and lower contacts are sharp at 50degCA and 90degCA respectively.	
CR-11-047-W1	598.98	600.86	13	Medium grey green coloured, medium grained, carbonate bearing Mafic Intrusive as CR- 11-047 at 688.03m. Possibly Lamprophyric due to presence of 03-05% fine grained, pervasive carbonate throughout but contains less than 02% very fine grained biotite. NIL mineralization.	
CR-11-047-W1	640.49	640.58	13	Narrow, massive, non-magnetic, Mafic Dyke similar to above. Sharp upper and lower contacts at 55degCA.	
CR-11-047-W1	671.85	674.18	S	Dark grey coloured, well foliated, 10% quartz and <05% lithic rounded clast bearing, 75% mudstone cemented, matrix supported, undifferentiated, Mudstone sediments. Clasts are preferentially oriented along bedding planes. Very poorly sorted. Unit is matrix supported with attenuated and finely disseminated blebs of Pyrite (02-04%) througout. 02% disseminated garnet and 02% irregular, folded and dismembered quartz-carbonate veining present locally. Upper contact is gradational with presence of quartz clasts. Lower contact is sharp at 60degCA.	
CR-11-047-W1	751.64	754.00	I2J	Dark grey green coloured, fine grained, 05% biotite, 02% chlorite, 01% fine carbonate bearing, non-magnetic Diorite. Possible very fine grained lamprophyre. Upper and lower contacts are planar and sharp at 60degCA.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-11-047-W1	801.51	802.34	I2J	Dark grey green coloured, fine grained, 02% chlorite and 01% fine carbonate bearing, non-magnetic Diorite. Possible very fine grained lamprophyre. Upper and lower contacts are planar and sharp at 55degCA.	
CR-11-047-W1	803.37	806.3	12J	Dark grey green coloured, fine grain textured, carbonate bearing Diorite as above at 801.51 to 802.34m. Upper contact is sharp and contains several small 2 -10cm sized blocks of assimilated muddy siltstone wallrock. Lower contact is sharp at 60degCA.	
CR-11-047-W1	806.38	810.32	ATZ	Dark brown grey coloured, silicified, Huston Mudstone. Very fractured blocky core between Diorite Dykes. Fractures crosscut bedding at 60degCA in downhole direction. Bedding is planar at 55degCA. NIL Sulphides.	
CR-11-047-W1	810.32	810.60	I2J	Dark grey green coloured, fine grain textured, carbonate bearing, Diorite as above at 801.51 to 802.34m. Upper contact is sharp at 70degCA. Lower contact is sharp at 60degCA.	
CR-11-047-W1	811.00	814.55	I2J	Dark grey green coloured, fine grain textured, carbonate bearing Diorite as above at 801.51 to 802.34m. Upper contact is sharp at 70degCA. Lower contact is sharp at 60degCA.	
CR-11-047-W1	814.55	816.64	12G	Porphyritic, biotite-pyrrhotite bearing, Quartz Monzodiorite. Small <1cm scale microfolded quartz veins are present (<05% of total unit). Several assimilated angular fragments of green coloured, chloritized, wallrock are also present. Intrusive has a well developed planar foliation fabric/weak shearing oriented at 50degCA. Upper and lower contacts are irregular and sharp at approximately 70degCA.	
CR-11-047-W1	817.47	818.12	12J	Medium grey green coloured, very fine grain textured, non-magnetic Diorite. This is a different composition than the carbonate Diorite/Lamprophyre occuring above this intrusive. Minor 03-05% chlorite and trace biotite between very fine grain-, interlocking crystal- textured intrusive. Upper and lower contacts are sharp and appear conformable to adjacent bedding at 50degCA.	
CR-11-047-W1	819.90	820.53	I2J	Medium grey green coloured, very fine grain textured, non-magnetic Diorite as above. Upper and lower contacts are sharp and appear conformable to adjacent bedding at 50degCA.	
CR-11-047-W1	820.80	821.92	12J	Medium grey green coloured, very fine grain textured, non-magnetic Diorite as above. Upper and lower contacts are sharp and appear conformable to adjacent bedding at 50degCA.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-11-047-W1	822.05	822.36	12J	Medium grey green coloured, very fine grain textured, non-magnetic Diorite as above. Upper and lower contacts are sharp and appear conformable to adjacent bedding at 50degCA.	
CR-11-047-W1	829.20	832.51	12J	Medium grey green coloured, very fine grain textured, non-magnetic Diorite as above. Upper and lower contacts are sharp and appear conformable to adjacent bedding at 50degCA.	
CR-11-047-W1	877.50	878.85	12J	Medium grey green coloured, very fine grain textured, non-magnetic Diorite as above. Upper and lower contacts are sharp and appear conformable to adjacent bedding at 50degCA.	
CR-11-047-W1	917.15	917.50	12G	Light grey green coloured, quartz crystal bearing, foliated Quartz Monzodiorite as above. Planar foliation at 65degCA. Sharp upper and lower contacts at 65degCA.	
CR-11-047-W1	920.27	921.94	12G	Light grey green coloured, quartz crystal bearing, foliated Quartz Monzodiorite as above. Planar foliation at 65degCA. Sharp upper and lower contacts at 65degCA.	
CR-11-047-W1	954.48	961.60	12G/I2J	The last 6m of core before the contact with the Balmer Formation present a mixture of strongly sericite altered Quartz Monzodiorite, grey fine grained and massive Diorite and the occasional shard of muddy sediments. The core is quite broken up and many surfaces show talcy gouge material. Due to the nature of the core condition contacts are hard to classify.	
CR-11-047-W1	969.58	971.63	12G	Blotchy grey greenish coloured and medium grained Quartz Monzodiorite is brecciated, bleached, and in parts chloritized. Breccia is well healed with quartz and biotite. A number of white-grey coloured quartz veins crudely follow the core axis. These tend to show selvedges of biotite. Mineralisation is mostly absent. Sulphides as dust fine grains in a few locales. Contacts are sharp, upper undulating at 50 degCA and lower at 56 degCA.	
CR-11-047-W1	975.61	976.83	12G	Medium grey brown coloured and medium grained Quartz Monzodiorite. Unit is only weakly foliated. It contains about 2% dismembered and strongly fragmented quartz carbonate veins. Mineralisation is mostly tied to the vein fragments while the intrusive itself is almost devoid of sulphides. Contacts are sharp, upper at 50 degCA and lower at 65 degCA.	
CR-11-047-W1	993.82	993.90	VEIN	Veinlet with fragments of quartz carbonate that contain finely disseminated sulphides. Next stage quartz vein is less broken up and contains no mineralisation. Last stage appears to be turmaline and arsenopyrite dominated and takes up half the volume of the vein. Orientation of the vein is almost perpendicular to the foliation present. Vein crosses at 45 degCA and is 5cm in true thickness.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-11-047-W1	997.99	998.94	12G	Grey brown coloured and fine grained Quartz Monzodiorite. Unit is moderately foliated and contains biotite flakes that are aligned with the foliation. Intrusive is crossed by several thin quartz carbonate veins that contain fine grained sulphides. The intrusive itself contains traces of pyrite and arsenopyrite. Upper contact is sharp at 74 degCA. Lower conyact is sharp as well but interfingered and very irregular.	
CR-11-047-W1	1001.48	1004.80	12G	Grey brown coloured and fine grained Quartz Monzodiorite. More foliated than previous unit containing similar biotite flakes that are aligned with the foliation. Minor thin quartz carbonate veins that contain fine grained sulphides are present. The intrusive itself contains minor trace sulphides. Contacts are sharp, both upper and lower at 70 degCA.	
CR-11-047-W1	1007.77	1009.90	12G	Quartz Monzodiorite of similar composition and appearance as previous unit. Contacts are sharp, upper at 45 degCA and lower at 49 degCA.	
CR-11-047-W1	1043.00	1046.55	12G	Medium grey coloured and fine grained Quartz Monzodiorite. Unit is well foliated und shows moderate sericite alteration locally. Intrusive is weakly mineralised with 0.2 % pyrite. Upper contact is sharp at 55 degCA. Core at lower contact is broken.	
CR-11-047-W1	1055.77	1056.98	I2G	Dark grey brown coloured very fine grained Quartz Monzodiorite. Intrusive is well foliated and streaky looking due do biotite and in places sericite that has grown along the foliation planes. Pyrite and pyrrhotite are present in traces. Contacts are sharp, upper at 47 degCA and lower at 53 degCA.	
CR-11-047-W1	1059.33	1060.06	I2G	Medium grey coloured and medium grained Quartz Monzodiorite. Much lighter coloured than the previously described one. Intrusive is foliated and looks very dense due to silicification to about 10 %. Mineralisation however hovers around the same trace values for pyrite and pyrrhotite. Contacts are sharp, upper at 58 degCA and lower at 46 degCA.	
CR-11-047-W1	1063.03	1065.20	12G	Dark grey coloured and fine to medium grained Quartz Monzodiorite. Intrusive is not foliated with a very unorderly grain pattern, which is aggravated by the much larger quartz crystals that are mixed in. Three 3 to 5cm thick milky quartz veins cross at low angle. The veins show late stage biotite infilling and the intrusive adjacent to these is silicified and bleached. Pyrite is the predominant sulphide with 0.2 %. Contacts are sharp, upper at 52 degCA and lower at 61 degCA.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-11-047-W1	1072.88	1075.54	12H	Dark grey brown coloured and finegrained Monzodiorite. Intrusive is well foliated and contains traces of sericite. Notable are angular masses of pyrrhotite that look like vein fragments, where the pyrrhotite is set in biotite. Contacts are sharp, upper at 72 degCA. The lower contact is interfingered but runs roughly at 54 degCA.	
CR-11-047-W1	1116.34	1118.07	12J	Medium grey coloured and medium grained Diorite. Intrusive is moderately foliated with small biotite flakes crudely mirroring foliation planes. About 0.5% fine cubic pyrite is evenly distributed throughout the intrusive. Contacts are sharp, upper at 77 degCA and lower at 75 degCA.	
CR-11-047-W1	1119.40	1121.65	12H	Dark grey-brown coloured and fine grained Monzodiorite. Intrusive is rather uneventful and massive with the occasional trace of blebby pyrite. Contacts are sharp, upper at 70 degCA and lower at 65 degCA.	
CR-11-047-W1	1123.84	1125.44	12H	Medium grey-brown coloured and very fine grained Monzodiorite. Intrusive is fairly well foliated and shows traces of sericite alteration to 12%. Sulphides are only present in minimum trace amounts. Contacts are sharp but subtle. Upper contact at 51 degCA and lower at 65 degCA.	
CR-11-047-W1	1149.93	1155.12	130	Dark grey coloured and fine grained Lamprophyre. Intrusive shows no carbonate. The Lamprophyre shows no internal structure apart from some striation that can be attributed to flow patterns or ductile deformation. Otherwise the intrusive is massive and the core very solid. Pyrite is disseminated throughout, sometimes as blebs but mostly as cubic crystals up to 1mm in size. Contacts are sharp and straught. Upper contact is at 65 degCA and lower at 69 degCA.	
CR-11-047-W1	1163.82	1165.60	12G	Grey-brown coloured and fine grained Quartz Monzodiorite. Intrusive is well foliated in places but also shows sections that are not affected at all. Foliated places show up to 5 % sericite. The unit contains 5 % veining, most of which is thin quartz veining. Quartz carbonate veins are dismembered and corroded looking while the quartz veining is younger and less broken up. Pyrite is present as blebby masses and it is likely that the source are assimilated quartz carbonate veins. Contacts are sharp, upper at 55 degCA and lower at 56 degCA.	
CR-11-047-W1	1210.80	1213.90	12J	Dark grey coloured and very fine grained Diorite with lots of mafic components. Crude foliation based on biotite streaks is visible. The lower 40cm show some quartz veining with the silica bleeding into the wall rock, obscuring the vein boundaries. Intrusive shows traces of pyrite locally. Contacts are sharp, upper at 66 degCA and lower at 63 degCA.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-11-047-W1	1237.52	1238.7	I2H	Medium grey coloured and fine grained Quartz Monzodiorite. Speckled porous groundmass contains few of white feldspars and the occasional corroded quartz crystal. Sulphides are present only at minimum trace level. Both contacts are sharp and run at 70 degCA.	
CR-11-047-W1	1239.79	1241.19	I2H	Medium grey coloured and fine grained Quartz Monzodiorite very much like in previous unit. However the ratio of crystals versus ground mass is picking up in favour of the crystals downward and so does the amount of corroded quartz crystals. The mineralisation stays at minimum trace level. Contacts are sharp, upper at 70 degCA and lower at 62 degCA.	
CR-11-047-W1	1253.43	1255.72	I2H	Dark grey coloured and fine grained Monzodiorite. Dense groundmass supports 20 % phenocrystals. Occasional medium grained light blue coloured crystals are cordierite. A milky, straight and 23cm thick quartz vein with coarse crystals contains biotite filled fractures near the top but no sulphides. Pyrrhotite is present in the intrusive to the tune of 0.25 %. The upper contact is sharp at 70 degCA. The lower contact is irregular and somewhat obscured by chlorite filled fractures, but runs almost perpendicular to the core axis.	
CR-11-047-W1	1266.00	1267.73	12H	Dark grey coloured and fine grained Monzodiorite similar to last described intrusive, but with less cordierite. Contacts are sharp and undulating, upper at 59 degCA and lower at 58 degCA.	
CR-11-047-W1	1366.28	1367.85	12J	Brown grey coloured and fine to medium grained Diorite. Biotite alteration to 10%. First 5 cm at upper and last 5cm at lower contact are fine grained and altered to a much lesser degree but the 10cm adjacent to that are biotite altered to 70% and the foliation/shearing pattern follows the orientation of the respective contacts. Possibly an assimilated boulder with contact metamorphism than a dyke or sill. Contacts are sharp, upper at 53 degCA and lower at 45 degCA.	
CR-11-047-W1	1437.53	1439.80	I3A	Greenish grey coloured and fine grained Gabbro. Looks like typical contact sheared Gabbro to 1439.40m. Past that it shows an increase in biotite content as well as carbonate and pyrrhotite. The upper contact is obscured by a thick milky quartz vein that shows a 1cm pyrrhotite selvage against the Gabbro. The lower contact to the sulphidic Mudstone is very subtle at 52 degCA.	

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-11-047-W1	E5338153	590.57	592.00	1.43		Character Sample: Huston 02PY 05PO mineralized quartz lithic Wackestone	8	11T506903
CR-11-047-W1	E5338154	592.00	593.50	1.50	consecutive	Character Sample: Huston 02PY 05PO mineralized quartz lithic Wackestone	4	11T506903
CR-11-047-W1	E5338155	593.50	595.00	1.50	consecutive	Character Sample: Huston trPY trPO mineralized quartz lithic Wackestone	4	11T506903
CR-11-047-W1	E5338156	595.00	596.50	1.50	consecutive	Character Sample: Huston 02PY 05PO mineralized quartz lithic Wackestone	8	11T506903
CR-11-047-W1	E5338157	554.72	555.63	0.91	not consecutive	Character Sample: Huston Near Solid Sulphide 30% PO replacement of muddy sediments and 60cm of milky white-grey coloured, 05% MT bearing Chert.	7	11T506903
CR-11-047-W1	E5338158	555.63	557.00	1.37	consecutive	Character Sample: Huston Solid Sulphide (to Near Solid Sulphide) 60-70% PO, <05% MT, <05% PY with muddy cement where not fully replaced by sulphides.	12	11T506903
CR-11-047-W1	E5338159	557.00	558.50	1.50	consecutive	Character Sample: Huston Solid Sulphide (to Near Solid Sulphide) 60-70% PO, <05% MT, <05% PY with muddy cement where not fully replaced by sulphides.	9	11T506903
CR-11-047-W1	E5338160	558.50	559.50	1.00	consecutive	Character Sample: Huston Solid Sulphide (to Near Solid Sulphide) 60-70% PO, <05% MT, <05% PY with muddy cement where not fully replaced by sulphides.	4	11T506903
CR-11-047-W1	E5338161	559.50	560.50	1.00	consecutive	Character Sample: Huston Solid Sulphide (to Near Solid Sulphide) 60-70% PO, <05% MT, <05% PY with muddy cement where not fully replaced by sulphides.	7	11T506903
CR-11-047-W1	E5338162	693.77	694.77	1.00	not consecutive	Wing sample, Quartz Monzodiorite with silica-sericite alteration and nil sulphides	2	11T506903
CR-11-047-W1	E5338163	694.77	695.50	0.73	consecutive	White grey coloured quartz vein with trace pyrite.	2	11T506903
CR-11-047-W1	E5338164	695.50	696.50	1.00	consecutive	Wing sample, Quartz Monzodiorite, 10%sil, 7%ser, 3%bt, 2%chl, nil sulphides.	3	11T506903
CR-11-047-W1	E5338165	814.55	815.55	1.00	not consecutive	Character sample, Quartz Monzodiorite with 5% quartz veinlets and fragments, 0.2% pyrrhotite.	3	11T506935
CR-11-047-W1	E5338166	815.55	816.64	1.09	consecutive	Quartz Monzodiorite with 5% quartz veinlets and fragments, 0.2% pyrrhotite.	3	11T506935
CR-11-047-W1	E5338167	966.58	967.58	1.00	not consecutive	Brecciated bleached Basalt.	10	11T506935
CR-11-047-W1	E5338168	967.58	968.58	1.00	consecutive	Brecciated bleached Basalt.	10	11T506935
CR-11-047-W1	E5338169	968.58	969.58	1.00	consecutive	Brecciation and bleaching quickly waning downwards.	12	11T506935
CR-11-047-W1	E5338170	0.00	0.00	0.00	not consecutive	Standard PM 442 620 ppm	558	11T506935
CR-11-047-W1	E5338171	969.58	970.58	1.00	not consecutive	Bleached and brecciated Quartz Monzodiorite with minor trace sulphides.	4	11T506935
CR-11-047-W1	E5338172	970.58	971.63	1.05	consecutive	Bleached and brecciated Quartz Monzodiorite with minor trace sulphides.	2	11T506935
CR-11-047-W1	E5338173	971.63	972.63	1.00	consecutive	Wing sample, well foliated Basalt	9	11T506935

Sampling Record

CR-11-047-W1

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-11-047-W1	E5338174	975.11	975.61	0.50	not consecutive	Wing sample, foliated Basalt with biotite alteration at contact.	10	11T506935
CR-11-047-W1	E5338175	993.27	993.77	0.50	not consecutive	Wing sample, foliated green Basalt.	6	11T506935
CR-11-047-W1	E5338176	975.61	976.83	1.22	not consecutive	Quartz Monzodiorite with quartz carbonate veins containing sulphides.	6	11T506935
CR-11-047-W1	E5338177	976.83	977.33	0.50	consecutive	Wing sample, Basalt with biotite alteration at contact.	7	11T506935
CR-11-047-W1	E5338178	984.26	984.76	0.50	not consecutive	Wing sample, Basalt with hornblende-chlorite alteration.	4	11T506935
CR-11-047-W1	E5338179	984.76	985.46	0.70	consecutive	Shear with quartz carbonate stringers containing fine pyrrhotite.	6	11T506935
CR-11-047-W1	E5338180	985.46	985.96	0.50	consecutive	Wing sample, foliated grey green Basalt.	28	11T506935
CR-11-047-W1	E5338181	993.77	993.97	0.20	not consecutive	Veinlet with quartz carbonate fragments, tourmaline and medium grained arsenopyrite.	1980	11T506935
CR-11-047-W1	E5338182	993.97	994.47	0.50	consecutive	Wing sample, massive Basalt, partially chloritic.	21	11T506935
CR-11-047-W1	E5338183	1000.98	1001.48	0.50	not consecutive	Wing sample, foliated Basalt with biotite alteration at contact.	10	11T506935
CR-11-047-W1	E5338184	1001.48	1002.60	1.12	consecutive	Quartz Monzodiorite with trace sulphides.	16	11T506935
CR-11-047-W1	E5338185	1002.60	1003.70	1.10	consecutive	Quartz Monzodiorite with trace sulphides.	34	11T506935
CR-11-047-W1	E5338186	1003.70	1004.80	1.10	consecutive	Quartz Monzodiorite with trace sulphides.	23	11T506935
CR-11-047-W1	E5338187	1004.80	1006.30	1.50	consecutive	Green chloritic Basalt.	9	11T506935
CR-11-047-W1	E5338188	1006.30	1007.77	1.47	consecutive	Green chloritic Basalt.	9	11T506935
CR-11-047-W1	E5338189	1007.77	1008.80	1.03	consecutive	Quartz Monzodiorite with trace sulphides.	3	11T506935
CR-11-047-W1	E5338190	0.00	0.00	0.00	not consecutive	Standard PM 446 1,220 ppm	1276	11T506935
CR-11-047-W1	E5338191	1008.80	1009.90	1.10	not consecutive	Quartz Monzodiorite with trace sulphides.	5	11T506935
CR-11-047-W1	E5338192	1009.90	1010.40	0.50	consecutive	Wing sample, green chloritic Basalt.	8	11T506935
CR-11-047-W1	E5338193	1040.00	1041.00	1.00	not consecutive	Wing sample, hornblende rich Basalt with 5% veining.	4	11T506935
CR-11-047-W1	E5338194	1041.00	1042.00	1.00	consecutive	Basalt with section of coarse hornblende -chlorite alteration.	3	11T506935
CR-11-047-W1	E5338195	1042.00	1043.00	1.00	consecutive	Basalt with hornblende-chlorite alteration less than before.	11	11T506935
CR-11-047-W1	E5338196	1043.00	1044.10	1.10	consecutive	Quartz Monzodiorite with disseminated pyrite and sericite.	172	11T506935
CR-11-047-W1	E5338197	1044.10	1045.20	1.10	consecutive	Quartz Monzodiorite with disseminated pyrite and sericite.	9	11T506935
CR-11-047-W1	E5338198	1045.20	1046.55	1.35	consecutive	Quartz Monzodiorite with disseminated pyrite and sericite.	42	11T506935
CR-11-047-W1	E5338199	1046.55	1047.05	0.50	consecutive	Wing sample, Basalt with bleaching around hairline fractures.	26	11T506935
CR-11-047-W1	E5338200	1062.53	1063.03	0.50	not consecutive	Wing sample, green fine grained Basalt.	5	11T506935
CR-11-047-W1	E5338201	1063.03	1064.03	1.00	consecutive	Quartz Monzodiorite with 0.2% pyrite, biotite-quartz veins.	22	11T506935
CR-11-047-W1	E5338202	1064.03	1065.20	1.17	consecutive	Quartz Monzodiorite with 0.2% pyrite, biotite-quartz veins.	12	11T506935
CR-11-047-W1	E5338203	1065.20	1065.70	0.50	consecutive	Wing sample, green fine grained Basalt.	7	11T506935
CR-11-047-W1	E5338204	1072.38	1072.88	0.50	not consecutive	Wing sample, green fine grained Basalt with hornblende.	13	11T506935
CR-11-047-W1	E5338205	1072.88	1074.38	1.50	consecutive	Monzodiorite with pyrrhotite alongside biotite.	200	11T506935
CR-11-047-W1	E5338206	1074.38	1075.54	1.16	consecutive	Monzodiorite with pyrrhotite alongside biotite.	38	11T506935
CR-11-047-W1	E5338207	1075.54	1076.04	0.50	consecutive	Wing sample, fine grained foliated hornblende Basalt.	7	11T506935
CR-11-047-W1	E5338208	1084.00	1085.00	1.00	not consecutive	Character sample, Basalt with hornblende alteration disappearing.	3	11T506935

CONQUEST

Sampling Record

CR-11-047-W1

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-11-047-W1	E5338209	1085.00	1086.00	1.00	consecutive	Basalt with thin carbonaceous fractures, amygdules and high	3	11T506935
CR-11-047-W1	F5338210	0.00	0.00	0.00	not consecutive	Standard PM 442 620 ppm	679	11T506935
CR-11-047-W1	E5338211	1086.00	1087.00	1.00	not consecutive	Basalt with thin carbonaceous fractures, amygdules and high kappa.	4	117506935
CR-11-047-W1	E5338212	1110.48	1110.98	0.50	not consecutive	Wing sample, grey fine grained Basalt with minor flow top Breccia.	4	11T506935
CR-11-047-W1	E5338213	1110.98	1112.02	1.04	consecutive	Foliated basalt with biotite and trace sulphides.	5	11T506935
CR-11-047-W1	E5338214	1112.02	1112.56	0.54	consecutive	Interflow sediments with 5% pyrrhotite.	17	11T506935
CR-11-047-W1	E5338215	1136.00	1137.00	1.00	not consecutive	Basalt with 7% veining and trace pyrrhotite.	5	11T506935
CR-11-047-W1	E5338216	1112.56	1113.56	1.00	not consecutive	Basalt with pyrrhotite in veins, trace pyrite.	5	11T506935
CR-11-047-W1	E5338217	1113.56	1114.56	1.00	consecutive	Basalt with pyrrhotite in veins, trace pyrite.	7	11T506935
CR-11-047-W1	E5338218	1114.56	1115.56	1.00	consecutive	Basalt with pyrrhotite in veins, trace pyrite.	9	11T506935
CR-11-047-W1	E5338219	1115.56	1116.34	0.78	consecutive	Basalt with pyrrhotite in veins, trace pyrite.	6	11T506935
CR-11-047-W1	E5338220	1116.34	1116.84	0.50	consecutive	Wing sample, Diorite with trace pyrite.	5	11T506935
CR-11-047-W1	E5338221	960.60	961.60	1.00	not consecutive	Wing sample, contact sheared sediments mixed with Quartz Monzodiorite stringers.	40	11T506935
CR-11-047-W1	E5338222	961.60	962.60	1.00	consecutive	Partially bleached Basalt, microbrecciated, Quartz Monzodiorite stringer.	5	11T506935
CR-11-047-W1	E5338223	962.60	963.50	0.90	consecutive	Partially bleached Basalt, microbrecciated.	4	11T506935
CR-11-047-W1	E5338224	963.50	964.60	1.10	consecutive	Bleached and brecciated Basalt.	4	11T506935
CR-11-047-W1	E5338225	964.60	965.60	1.00	consecutive	Bleached and brecciated basalt with Quartz Monzodiorite stringer.	7	11T506935
CR-11-047-W1	E5338226	965.60	966.58	0.98	consecutive	Bleached and brecciated basalt with Quartz Monzodiorite stringer.	47	11T506935
CR-11-047-W1	E5338227	1149.00	1149.93	0.93	not consecutive	Character sample, green Basalt with high Kappa.	6	11T506935
CR-11-047-W1	E5338228	1149.93	1151.00	1.07	consecutive	Lamprophyre with 1% pyrite and high Kappa.	4	11T506935
CR-11-047-W1	E5338229	1151.00	1152.00	1.00	consecutive	Lamprophyre with 1% pyrite and high Kappa.	2	11T506935
CR-11-047-W1	E5338230	0.00	0.00	0.00	not consecutive	Standard PM 446 1,220 ppm	1253	11T506935
CR-11-047-W1	E5338231	1161.58	1162.08	0.50	not consecutive	Wing sample, very fine grained chloritic Basalt.	6	11T506935
CR-11-047-W1	E5338232	1162.08	1163.00	0.92	consecutive	Basalt with pyrrhotite as vein selvages,	6	11T506935
CR-11-047-W1	E5338233	1163.00	1163.82	0.82	consecutive	Basalt with pyrrhotite as vein selvages,	28	11T506935
CR-11-047-W1	E5338234	1163.82	1164.82	1.00	consecutive	Quartz monzodiorite with blebby pyrite and quartz carbonate fragments.	19	11T506935
CR-11-047-W1	E5338235	1194.27	1194.77	0.50	not consecutive	Wing sample, fine grained Gabbro.	7	11T506935
CR-11-047-W1	E5338236	1164.82	1165.60	0.78	not consecutive	Quartz monzodiorite with blebby pyrite and quartz carbonate fragments.	19	11T506935
CR-11-047-W1	E5338237	1165.60	1166.23	0.63	consecutive	Basalt with minimal traces of sulphides.	8	11T506935
CR-11-047-W1	E5338238	1166.23	1167.23	1.00	consecutive	Interflow sediments with carbonate overprinting and pyrrhotite replacement.	3	11T506935
CR-11-047-W1	E5338239	1167.23	1168.09	0.86	consecutive	Interflow sediments with increased pyrrhotite and magnetite.	78	11T506935
CR-11-047-W1	E5338240	1168.09	1169.50	1.41	consecutive	Quartz Monzodiorite with 1.5% pyrite and trace arsenopyrite.	45	11T506935

CONQUEST

Resources Limited

Sampling Record

CONQU	CONQUEST Resources Limited Sampling Record							CR-11-047-W1
HoleID	SampleID	From	То	Length	Consecutive	Description	Au ppb	Batch-Number
CR-11-047-W1	E5338241	1169.50	1171.00	1.50	consecutive	Quartz Monzodiorite with 1.5% pyrite and trace arsenopyrite.	92	11T506935
CR-11-047-W1	E5338242	1171.00	1171.78	0.78	consecutive	Quartz Monzodiorite with 1.5% pyrite and trace arsenopyrite.	486	11T506935
CR-11-047-W1	E5338243	1171.78	1172.28	0.50	consecutive	Wing sample, contact sheared Gabbro.	20	11T506935
CR-11-047-W1	E5338244	1194.77	1196.33	1.56	not consecutive	Deformation zone in Gabbro with pyrite, pyrrhotite and chalcopyrite.	8	11T506935
CR-11-047-W1	E5338245	1196.33	1196.83	0.50	consecutive	Wing sample, foliated Gabbro.	9	11T506935
CR-11-047-W1	E5338246	1200.03	1201.03	1.00	not consecutive	Wing sample, foliated Gabbro.	6	11T506935
CR-11-047-W1	E5338247	1201.03	1202.53	1.50	consecutive	Quartz Monzodiorite with 1.25% pyrrhotite.	23	11T506935
CR-11-047-W1	E5338248	1202.53	1204.03	1.50	consecutive	Quartz Monzodiorite with 1.25% pyrrhotite.	27	11T506935
CR-11-047-W1	E5338249	1204.03	1205.53	1.50	consecutive	Quartz Monzodiorite with 1.25% pyrrhotite.	764	11T506935
CR-11-047-W1	E5338250	0.00	0.00	0.00	not consecutive	Standard PM 442 620 ppm	650	11T506935
CR-11-047-W1	E5338251	1205.53	1206.59	1.06	not consecutive	Quartz Monzodiorite with 1.25% pyrrhotite.	86	11T506935
CR-11-047-W1	E5338252	1206.59	1207.09	0.50	consecutive	Wing sample, Coarse massive Gabbro.	4	11T506935
CR-11-047-W1	E5338253	1252.93	1253.43	0.50	not consecutive	Wing sample, Medium grained Gabbro.	3	11T506935
CR-11-047-W1	E5338254	1253.43	1254.43	1.00	consecutive	Monzodiorite with pyrrhotite and cordierite.	2	11T506935
CR-11-047-W1	E5338255	1278.25	1278.75	0.50	not consecutive	Wing sample, green fine grained Gabbro.	19	11T506935
CR-11-047-W1	E5338256	1254.43	1255.72	1.29	not consecutive	Monzodiorite with pyrrhotite and cordierite.	3	11T506935
CR-11-047-W1	E5338257	1255.72	1256.22	0.50	consecutive	Wing sample, Gabbro with biotite alteration at contact.	6	11T506935
CR-11-047-W1	E5338258	1278.75	1280.25	1.50	not consecutive	Quartz Monzodiorite with 0.25% pyrite and pyrrhotite each.	7	11T506935
CR-11-047-W1	E5338259	1280.25	1281.75	1.50	consecutive	Quartz Monzodiorite with 0.25% pyrite and pyrrhotite each.	100	11T506935
CR-11-047-W1	E5338260	1281.75	1283.37	1.62	consecutive	Quartz Monzodiorite with 0.25% pyrite and pyrrhotite each.	86	11T506935
CR-11-047-W1	E5338261	1283.37	1283.87	0.50	consecutive	Wing sample, green fine grained Gabbro	14	11T506935
CR-11-047-W1	E5338262	1424.78	1425.28	0.50	not consecutive	Wing sample, contact sheared Gabbro	103	11T506935
CR-11-047-W1	E5338263	1425.28	1426.78	1.50	consecutive	Quartz Monzodiorite with 1.5 % pyrite	12	11T506935
CR-11-047-W1	E5338264	1426.78	1428.28	1.50	consecutive	Quartz Monzodiorite with 1.5 % pyrite	17	11T506935
CR-11-047-W1	E5338265	1428.28	1429.78	1.50	consecutive	Quartz Monzodiorite with 1.5 % pyrite	13	11T506935
CR-11-047-W1	E5338266	1429.78	1431.28	1.50	consecutive	Quartz Monzodiorite with 1.5 % pyrite	9	11T506935
CR-11-047-W1	E5338267	1431.28	1432.28	1.00	consecutive	Quartz Monzodiorite with 1.5 % pyrite	25	11T506935
CR-11-047-W1	E5338268	1432.28	1433.28	1.00	consecutive	Quartz Monzodiorite with 1.5 % pyrite	85	11T506935
CR-11-047-W1	E5338269	1433.28	1434.00	0.72	consecutive	Wing sample, Diorite with biotite groundmass and 1% pyrite.	76	11T506935
CR-11-047-W1	E5338270	0.00	0.00	0.00	not consecutive	Standard PM 431 2.78 gm/t	2957	11T506935
CR-11-047-W1	E5338271	1443.00	1444.00	1.00	not consecutive	Character sample, Diorite with 2% fine disseminated pyrrhotite	19	11T506935
CR-11-047-W1	E5338272	1444.00	1445.00	1.00	consecutive	Diorite with 2% fine disseminated pyrrhotite	9	11T506935
CR-11-047-W1	E5338273	1445.00	1446.00	1.00	consecutive	Diorite with 2% fine disseminated pyrrhotite, high Kappa, mudstone chunks.	9	11T506935

SPT GYRO Survey Record

Hole ID	Station (m)	Azimuth	Dip (Degrees)
CR-11-047	0	12.20	-86.72
CR-11-047	25	24.21	-85.95
CR-11-047	50	28.01	-85.49
CR-11-047	75	34.28	-84.87
CR-11-047	100	36.80	-84.39
CR-11-047	125	38.34	-83.15
CR-11-047	150	39.64	-82.39
CR-11-047	175	39.78	-82.04
CR-11-047	200	39.37	-81.85
CR-11-047	225	37.76	-81.01
CR-11-047	250	37.36	-80.83
CR-11-047	275	36.76	-80.70
CR-11-047	300	36.77	-80.54
CR-11-047-W1	325	38.14	-78.32
CR-11-047-W1	350	39.69	-75.07
CR-11-047-W1	375	38.54	-73.15
CR-11-047-W1	400	36.18	-71.67
CR-11-047-W1	425	38.81	-70.89
CR-11-047-W1	450	38.29	-69.87
CR-11-047-W1	475	45.62	-64.28
CR-11-047-W1	500	48.98	-63.54
CR-11-047-W1	525	48.25	-62.37
CR-11-047-W1	550	49.74	-61.65
CR-11-047-W1	575	51.37	-60.89
CR-11-047-W1	600	52.95	-60.00
CR-11-047-W1	625	54.36	-59.09
CR-11-047-W1	650	54.18	-58.38
CR-11-047-W1	675	53.98	-57.60
CR-11-047-W1	700	54.20	-56.88
CR-11-047-W1	725	54.14	-56.36
CR-11-047-W1	750	54.13	-55.86
CR-11-047-W1	775	54.08	-54.79
CR-11-047-W1	800	54.58	-53.23
CR-11-047-W1	825	53.97	-52.91
CR-11-047-W1	850	53.47	-52.50
CR-11-047-W1	875	53.49	-52.09
CR-11-047-W1	900	53.78	-51.78

SPT GYRO Survey Record

Hole ID	Station (m)	Azimuth	Dip (Degrees)
CR-11-047-W1	925	53.72	-51.20
CR-11-047-W1	950	53.74	-51.13
CR-11-047-W1	975	53.61	-50.85
CR-11-047-W1	1000	54.22	-50.34
CR-11-047-W1	1025	53.97	-49.93
CR-11-047-W1	1050	54.44	-49.62
CR-11-047-W1	1075	54.57	-49.33
CR-11-047-W1	1100	54.73	-49.13
CR-11-047-W1	1125	55.17	-48.93
CR-11-047-W1	1150	55.35	-48.82
CR-11-047-W1	1175	55.56	-48.63
CR-11-047-W1	1200	56.65	-48.49
CR-11-047-W1	1225	56.51	-48.37
CR-11-047-W1	1250	57.05	-48.27
CR-11-047-W1	1275	56.72	-48.13
CR-11-047-W1	1300	57.36	-48.02

Conquest Resources Ltd.

Exploration Diamond Drill Log

CR-11-048

DRILL HOLE #	CR-11-048	LOCATION	Balmertown	, Balmer Tow	nship, Re	ed Lake Dist	rict, Ontario		
PROJECT #	Alexander	REFERENCE	Alexander			GEOLOGIST	Meckert		(RL 20519
GRID/ NAD-ZON	IE	NORTHING		EASTING			ELEVATION		GRID TYPE
GRID	Alexander RL	6+35 S		16+59 E			9999		М
UTM	NAD83 / 15U	5655400		451312			380		
COLLAR DIP	-70	GRID DIRECTION		5° W of gridN				AZ DIRECTION	24
NTS REF #	052N04	NTS SHEET NAME		Red Lake, O	ntario				
START DATE	25-Apr-11			FINISH DATE	1	5-Jul-11			
DEPTH (EOH)	1095m	TARGET & Zone De	pth						
PURPOSE	to follow up ne	ear surface breccia	in 1980 dril	ling for miner	alization	PIEC	E POINT of Target:	E	mELEV
CASING B	w <u>na</u>	CASING NW		18m				CASING HW	na
PLUG (@ <mark>na</mark>	PLUG @		na				PLUG @	na
START DTH	na	WEDGE @		na					
REDUCED @	na		REDUCED @	na na					
HOLE STATUS	completed, cas	ing left in hole, ca	pped						
DRILLING CONTR	RACTOR	Boart Longyea	Inc.						
RIG NO.	LY 50 4102							BXS.	248
				Reflex EZ-Sh	ot Surveys				
DE	PTH (m)	AZIMU	гн		DIP			Comments:	
3	80.00	24.20)		-70.20				
10	69.00	31.50)		-64.10				
2	52.00	34.20)		-62.60				
34	42.00	35.80)		-61.40		1st Target was	intersected betwee	on 231.23m and
46	62.00	39.20)		-59.40		244.73m. A she	ar and alteration	structure in the
52	22.00	41.60)		-57.40		footwall of the	"main" arm of Ga	bbro within the
55	52.00	42.10)		-57.10		Balmer Basalts.	A narrow zone o	f strong biotite
63	12.00	44.30)		-55.70		alteration at the	immediate contact	yielded an assay
64	42.00	44.80)		-55.10		of 1.02gr/t Au	over 0.57m. 2nd	Target A well
70	02.00	45.70)		-54.30		and 803 17m L	ithologies range fr	om Basalt with
73	32.00	45.80)		-53.40		irregular shaped	quartz carbonate st	ringers to planar
76	62.00	45.90)		-52.90		shearing with bi	otite and hornblen	de alteration of
82	22.00	48.20)		-51.00		the wall rock.	While mineralise	d with sulfides
8	52.00	48.40)		-50.80		throughout no as	say returned signifi	cant gold values.
88	82.00	50.10)		-50.30		Apart from th	e shear zones	several Quartz
9:	15.00	50.20)		-48.50		Monzodiorites si	now elevated gold	levels of up to
94	45.00	50.40)		-48.00		investigation.	1.2311 anu may	warrant further
97	75.00	50.70)		-47.70				
10	05.00	53.60)		-46.70		4		
10	35.00	53.80)		-46.50		4		
10	65.00	54.00)		-46.10				

Drill with 6m, double stablilized NQ core barrel

Planned hole depth is 1100m (3,600')

Core stored at Alexander Core Yard at UTM 0449935 5656595 UTM NAD83 15U

Water source: Beaver pond south of boundary

Drill type: LY-50

Major Lithologies

Hole Name	From	То	Length	Code	Description	Rep
CR-11-048	0.00	18.00	18.00	CAS	NW Casing into overburden and bedrock	
CR-11-048	18.00	35.45	17.45	I3A/SHR	Blueish grey coloured and fine grained to brownish green coloured and medium grained Gabbro. Blueish color associated with weathering that reaches about 6m into the bedrock. Overall the Gabbro exhibits typical features of contact shearing as observed in previous drill holes. It is well and evenly foliated. Flaky biotite / phlogopite is oriented along foliation planes. Shearing gradually disappears downwards.	
CR-11-048	35.45	231.23	195.78	I3A	Green grey coloured and medium to coarse grained Gabbro. Gabbro is massive and shows very subtle foliation locally. Quartz and quartz carbonate veins are few and far inbetween. From 195m to 207m Gabbro gets continuously coarser, yet the weak foliation is more obvious in the coarser section than before. Trace mineralisation with pyrite.	
CR-11-048	231.23	244.73	13.50	SHR	From 231.23m to 233.33m the Gabbro gradually gets more and more foliated as well as showing an increasing level of biotite alteration until it reaches about 5%. Between 233.33m and 238.23m the rock is brown coloured from up to 20% of biotite. Where there were basically no veins in the first part of the shear, here veining reaches 12 %. The veins are a mixture of planar, thin mm to cm wide veins and thicker stringers that are irregular broken up and boudinaged. The rock contains 3 to 5 % pervasive carbonate, but this gradually disappears downwards to 237m. This coincides with the decrease in biotite alteration as well as the decrease in mineralisation. Within this biotite altered section from 233.90m to 234.33m sits a section of Muddy, pyrrhotitic sediments, that is as carbonate overprinted as the surrounding rock. Past a 20cm quartz carbonate vein at 238.23m the biotite alteration and intensity of the shearing gradually wanes downward. The unit is well mineralised from 233.33m to 238.23m with the mineralisation being strongest between 234.33m and 236.12m in what has to be considered the center of the shear. Pyrrhotite reaches 2 % in places. Pyrite seems restricted to quartz carbonate veins and appears in similar fine grained streaks alongside pyrrhotite. Arsenopyrite can be found throughout the mineralised unit as well in cubic crystals, but dominantly in needle shape, reaching 0.1 %. It should be noted that the section between 233.33m and 238.23m could be biotite altered and sheared Gabbro, but the general look, the mineralisation and the presence of sediments makes it more likely that this is a strongly altered Basalt.	

Hole Name	From	То	Length	Code	Description	Rep
CR-11-048	244.73	245.40	0.67	S6D	First 20cm are thinly banded dark grey coloured silty Mudstones with thin streaks of pyrrhotite. The remaining 40 cm are a mixture of small Mudstone chunks, fine grained Gabbro and sausage shaped very fine grained masses of pyrrhotite, healed by quartz carbonate. It appears that the Mudstone was broken up and mixed in when the Gabbro intruded along a bed of interflow sediments. The source of the pyrrhotite is unclear. It looks more like vein replacement pyrrhotite than primary sedimentary due to its association with the quartz carbonate but the Mudstone is a likely source.	
CR-11-048	245.40	254.64	9.24	I3A	Medium green grey coloured and coarse to medium grained Gabbro. First 40 cm past the upper contact are well foliated and chloritic. Past that the intrusive is very massive and uniform downwards, showing only a very subtle orientation of the hornblende crystals along foliation planes. From 254.00m on the the Gabbro quickly becomes very fine grained and the last 20cm are contact sheared. However, the biotite alteration observed on other Gabbro - Basalt contacts is virtually absent. Contact is sharp and defined by the move from planar shearing to unsheared biotitic weathered looking rock. Lower contact is sharp at 57 degCA.	
CR-11-048	254.64	258.30	3.66	V3B/ATZ	Blotchy brown green grey coloured and fine grained Basalt. First few meters of Basalt at contact to Gabbro appear weathered, broken and ground up. May have been a breccia originally, that has served as a roll bearing between the Gabbro and the massive Basalt below. Basalt clasts in the alteration zone are chloritized in the center and show selvages of biotite. In a few places cm thick biotitic mini shear zones are noticeable. All the clasts are elongated and internally fractured. Primary quartz carbonate veining has been totally dismembered small granules of which can often be observed in the biotite between the clasts. There is less than 1 % later stage quartz carbonate veining which is fairly straight and always shows extension fractures which cannot be observed in the surrounding Basalt clasts. The unit shows very weak trace mineralisation with pyrite. The lower contact to the fine grained massive Basalt is broken. No gouge is present, but the contact is likely faulted.	

Hole Name	From	То	Length	Code	Description	Rep
CR-11-048	258.30	335.39	77.09	V3B	Medium to dark grey coloured and very fine grained Basalt. Basalt contains pillow selvages and amygdules and few signs of foliation. However in intervals 2 to 10cm thick bands of hornblende- chlorite alteration cross the core at 52 to 58 degCA, roughly following the expected local foliation pattern. The alteration often accompanies crudely boudinaged quartz carbonate veins. The core looks nicely polished underlining the very fine grained texture but also shows a consistent level of silicification that reaches 5 %. Quartz carbonate veining hovers around 5 % as well but may reach 12 % in places. Past 320m fine pervasive hornblende is starting to show up, picking up in intensity downwards. The Basalt shows trace mineralisation with pyrite and pyrrhotite at par with each other. The sulphides can be found in the veining but also within the Basalt.	
CR-11-048	335.39	337.90	2.51	SHR	Contact shear between Basalt and Gabbro. Du to the fine grained texture and pervasive hornblende alteration it cannot be determined with certainty whether the shear is basaltic or gabbroic in nature. It is not unlikely that this is a transition zone with alternating sections of both. Shearing is predominantly planar with slight undulation in places. The shear is well biotite altered to 10% on average, but this does not stand out as much due to the persisting 5 % silicification as in the previous unit. Veining in the shear is at 3%. The shear is well mineralised with very fine grained pyrite that is disseminated as well as in blebs and streaks to the tune of 1.25%. The mineralisation intensity picks up downwards.	
CR-11-048	337.90	349.70	11.80	I3A	Dark grey coloured and fine to medium grained Gabbro. When dry the Gabbro shows the same steely blue colour as the surrounding Basalt (due to the same level of silicification)making identifying the boundaries rather difficult. The Gabbro is medium grained from 342m to 345.50m. Here distinct mm size angular light blue crystals fragments give the Gabbro a distinct speckled look. Quartz carbonate veining is almost absent and not mineralised. Very fine grained pyrite is disseminated throughout but only in traces. The concentration is a bit higher within the first meter past the upper contact, at about 0.5%. Since the exact upper and lower contacts cannot be determined with certainty one can only say that they fall within the contact shear at the top, and the much weaker one at the bottom, which runs at 58 degCA.	

Hole Name	From	То	Length	Code	Description	Rep
CR-11-048	348.71	487.67	138.96	V3B	First few meters to 356m are similar in appearance to the Basalt encountered before the Gabbro, exhibiting the same level of silicification. Between 356m and 357m the silicification disappears. Now the Basalt is medium grey green coloured and fine to very fine grained. Green colour is due to a low level chloritisation. Locally blotchy pale green or buff coloured bleaching. Veining is low at 3 % and some stretches where the Basalt is massive instead of pillowed contain even less veining. The Basalt itself shows minimum trace sulphides in places and some of the veins and pillow selvages are weakly mineralised as well.	
CR-11-048	487.67	503.35	15.68	12J	Grey to grey-green-brown coloured fine to medium grained Diorite. Massive intrusive with weak to moderate foliation where medium grained. Here flaky biotite is oriented along the foliation planes. Locally traces of carbonate. Cubic pyrite to the tune of 0.2% average is present but the distribution is uneven. The upper contact is sharp at 70 degCA. The lower contact falls into spun core.	
CR-11-048	503.35	551.84	48.49	V3B	before the Diorite.	
CR-11-048	551.84	563.65	11.81	12G	Medium grey to buff coloured and fine to medium grained Quartz Monzodiorite. Intrusive is foliated exhibiting a few short sections that are sheared. Here the Rock is sericitised to 30%. Other wise the sericite content sits around 3%. Next to the sericite black thin streaks of biotite can be observed where the intrusive is coarser. The upper 2.5m contain sections of biotite altered but unmineralised Basalt. The Quartz Monzodiorite contains 0.5% of mostly cubic pyrite, which is unusual for this type of intrusive, based on previous drilling results. Arsenopyrite is present in traces. Contacts are sharp, upper at 61 degCA and lower at 63 degCA.	
CR-11-048	563.65	607.80	44.15	V3B	Medium green grey coloured and fine grained Basalt. 3% pervasive chloritisation and occasional section showing hornblende alteration. The latter stands out mostly in massive non pillowed flows and accompanying quartz carbonate veining. As compared to previously described Basalt intersections in this hole the veining has increased markedly to 8%. Thick stringers appear undeformed while the thinner veins are folded and dismembered. Mineralisation is at minimum trace level.	
CR-11-048	607.80	609.30	1.50	SHR	Moderate planar shear in Basalt, at 67 degCA. 7% biotite alteration and 5% quartz carbonate veining. Mineralisation with pyrite is at minimum trace level. Upper and lower contacts are gradual over 20cm.	
CR-11-048	609.30	640.33	31.03	V3B	Medium green grey coloured and fine grained Basalt as before the shear.	

Major Lithologies

Hole Name	From	То	Length	Code	Description	Rep
CR-11-048	640.33	653.90	13.57	12G	Dark grey coloured and fine grained Quartz Monzodiorite. Contains a section of Basalt from 642.48m to 645.58m, which contains a 55cm Quartz Monzodiorite stringer. Basalt is not altered. Section of Quartz Monzodiorite up to the Basalt is slightly coarser and less foliated but of similar composition as the Quartz Monzodiorite following the Basalt. Feldspars and quartz crystals are of equal size. In most other Quartz Monzodiorites encountered quartz crystals tend to be larger than the surrounding minerals and stand out very well. Here they blend into the background. The unit is well foliated and shows traces of sericite. However, the dominant alteration mineral is biotite with 3%. It shows up as little flakes, blebs and streaks, oriented along the foliation. The biotite content can also be credited with the unusual dark grey colour of the Quartz Monzodiorite. Intrusive is weakly mineralised with 0.2% pyrite and traces of arsenopyrite. The well foliation starts with 57 degCA near the top and gradually turns to 40 degCA downwards. Contacts are sharp, upper at 57 degCA and lower at 40 degCA, which reflects the foliation pattern.	
CR-11-048	653.90	733.76	79.86	I3A	Dark grey to blueish green grey coloured fine to coarse grained Gabbro. The intrusive is massive, showing no signs of foliation. Quartz carbonate veins cross the core roughly in 0.5m to 1m intervals and contain no mineralisation. The Gabbro itself shows the occasional grain of pyrite, but is for the most part devoid of any mineralisation.	
CR-11-048	733.76	738.79	5.03	12G	Medium brown to medium grey coloured and fine grained Quartz Monzodiorite. First 2m are slightly coarser with 50 % groundmass showing and only weakly foliated. The upper 2m also contain a 50cm section of foliated Gabbro. The lower 2.5m are well foliated, show some blotchy bleaching and traces of sericite and about 1 % black biotite. The intrusive is mineralised with pyrite to the tune of 0.2 %, which is disseminated throughout. Contacts are sharp, upper at 73 degCA and lower at 63 degCA.	
CR-11-048	738.79	760.83	22.04	I3A	Green-grey coloured and fine to coarse grained Gabbro. Intrusive is massive, not foliated and shows less than 0.5% veining. Sulphides are at minimum trace level.	
CR-11-048	760.83	764.46	3.63	I3A/SHR	Contact shear at base of Gabbro. Gabbro is dark grey in colour and very fine grained. Quartz carbonate veining is slightly elevated as compared to the Gabbro above at 3%. Veining and Gabbro contain NIL sulphides. Shear planes hover between 70 and 80 degCA which reflects the contact to the Basalt below at 75 degCA.	

Hole Name	From	То	Length	Code	Description	Rep
CR-11-048	764.46	784.00	19.54	V3B	Green grey to dark grey coloured fine to medium grained Basalt. Pervasive chloritisation and hornblende alteration throughout. In some sections the alteration was strong enough to obliterate any primary structute. Here the clusters of hornblende crystals have been elongated along the foliation planes. Basalt is for the most part very well foliated. Coarser hornblende sections only contain 02% veining while the less altered sections contain about 07% quartz carbonate veins. The veins range from angular fragments via folded to intact and straight. Some of the folded veins are well mineralized with very fine grained pyrrhotite, spaced 1.5m apart. The intact latest generation veins are not mineralised. The dismembered veins show some trace mineralisation. The Basalt itself is almost devoid of any sulphides.	
CR-11-048	784.57	787.35	2.78	I2G	Medium to dark grey coloured and fine grained Quartz Monzodiorite. Intrusive is foliated and shows traces of both sericite and biotite and is crossed by several thin quartz carbonate veins. A 5cm quartz carbonate - quartz - biotite vein is accompanied by a 5cm strongly silicified band of Quartz Monzodiorite on its upper wall but this shows no increase in mineralisation. Mineralised with pyrite to 0.1% and showing traces of arsenopyrite. Contacts are sharp, upper at 59 degCA and lower at 81 degCA.	
CR-11-048	787.35	791.32	3.97	SHR	<u>PO-PY mineralized, guartz carbonate veined, Shear Zone</u> hosted within a blue-green-grey coloured and fine grained Basalt. Very fine to fine grained hornblende throughout set in an equally fine dense and massive feldspar matrix. Occasional chlorite rich bands only containing minor hornblende. Shearing is not as strong as in unit below but there is a subtle difference between shear planes oriented 65 to 70 degCA. Sulphide mineralised veins are oriented 70 to 80 degCA. Quartz carbonate veining (15%) present throughout interval. The veins range from boudinaged - attenuated to folded and contorted to undeformed. For the most part mineralisation is associated with the contorted and folded veins. Attenuated and planar veins tend to show no mineralisation and appear later stage. Where sulphides are present in veins, the replacement may have been complete or they appear as large fine grained masses of pyrrhotite. Subsequently the pyrrhotite has been subject to spheroidal pyrite replacement. While the pyrrhotite is almost exclusively associated with veining, only the pyrite spheroids is found to persist into the wall rock. The unit contains 7% pyrrhotite and 4% pyrite. Apart from the sulphides the rock also contains 3% of magnetite that is fine grained, cubic and very evenly distributed throughout. The crystals tend to be larger (up to mm size) in chloritic bands and appear oxydised. However the oxydisation may be an artefact of drilling. The contact to the unit below is put where shearing and biotite alteration picks up and spheroidal pyrite and magnetite disappear.	

Conquest Resources Ltd. Diamond Drill Record **Major Lithologies**

CR-11-048 Rep

Hole Name	From	То	Length	Code	Description
CR-11-048	791.32	792.92	1.60	SHR	The following unit contains medium grained hornblende dominated sections and 8% biotite altered and well sheared sections that contain 1.5% pyrrhotite, very finely disseminated and as thin short streaks on the shear planes. Veining is folded and boudinaged, at 6% and not mineralised. The unit ends with24cm of Quartz Monzodiorite that is related to the intrusive between 784.57m and 787.34m. The contact to the unit below is gradual and is 23cm away from the first vein mineralised with very fine grained pyrrhotite.
CR-11-048	792.92	803.17	10.25	SHR	Poorly sulphide mineralized Shear Zone in Balmer Basalt. From 792.92 downwards the Basalt is evenly sheared. Biotite content reaches 4% but the distribution is quite uneven and concentrated on short sections where shearing has been most intense. Hornblende is fine to medium grained and more prominent than in upper part of shear. Biotite and chlorite crystal growth occurs crudely parallel in crystal orientation to the orientation of the pervasive shear fabric where the primary shear planes are spaced less than 3cm apart as defined by slip and the emplacement of quartz carbonate veins. As compared to the upper part of the shear there are much less folded and contorted veins. This due to the more intense nature of this part of the shear where veins have been strongly attenuated and even former fragments have been drawn out to long streaks. Veining is at about 15% and they are organized in groups interspersed with sections that show almost no veining. Where mineralisation in the veins is present it is quite different to the unit before. There are no masses of pyrrhotite but it is dust fine disseminated within the gauzt carbonate. Trace to 02% sulphides are very finely and irregularly disseminated within the Basalt host. Altogether pyrrhotite averages 7% with traces of pyrite and chalcopyrite. The groups of veins that show the strongest pyrrhotite mineralisation are situated in sections with the strongest hornblende-chlorite alteration. Here garnets appear as well that are absent otherwise. The lower contact of the shear is put at a 1cm thick hornblende-chlorite band, which is the "last" one to contain garnets. Here the clear shear planes have disappeared as have the pyrrhotite replacement veins.

Hole Name	From	То	Length	Code	Description	Rep
CR-11-048	803.17	822.26	19.09	V3B	Dark grey to dark green grey coloured and fine to medium grained Basalt. The Basalt is massive and not pillowed, strongly foliated and has been subject to a strong hornblende alteration that has completly obliterated the primary texture. Only from 814.60m to 816.50m and from 818.50m to 820.63m has the typical veining and fracture pattern of the Basalt been preserved. In those sections the Basalt contains 2% carbonate and shows a multitude of small mm long white streaks that are interpreted as being amygdules. Minor pyrrhotite mineralisation is present between 814.60m and 815.00m. The lower contact has been established at a10cm fractured carbonate overprinting zone where the foliated streaky hornblende pattern ends.	
CR-11-048	822.26	830.23	7.97	I3A	Dark grey to medium green grey and very fine to coarse grained Gabbro. Very fine grained gabbro at top of unit shows no foliation but several chloritic bands that may have been planes of movement. Downward the Gabbro gets coarser and greener from the increasing hornblende content. Between 827.66m and 828.75m dismembered quartz and quartz carbonate veins are mixed into the Gabbro. Some of the contorted planes visible in this ductile deformation zone show mineralisation with pyrrhotite. Below that the Gabbro is very evenly medium grained and weathered looking. the green hornblende standing out from the white feldspar in the groundmass gives this part of the intrusive a particular speckled look. The contacts are sharp and show intense microunulating shear planes over a few cm. Upper contact is at 78 degCA, and lower at 80 degCA.	
CR-11-048	830.23	833.83	3.60	V3B	Medium grey green and fine grained Basalt. Basalt is only vaguely foliated and the quartz carbonate veining is highly fragmented and boudinaged. Amygdules are present in clouds of thin white streaks. The last 27cm show a dense network of hairline fractures along which there has been buff bleaching and some carbonate over printing	
CR-11-048	833.83	837.06	3.23	I3A	Dark grey brown coloured and very fine grained Gabbro. Rust Brown colour from very fine pervasive Biotite to 5%. Between 834.55m to 835.27m the Gabbro groundmass has been completely replaced by carbonate. In this interval hornblende crystals are coarse and traces of pyrite can be found in the carbonate. The upper and lower contacts are difficult to grasp because the surrounding Basalt also has seen a significant hornblende alteration. Close to the upper contact a number of chloritic fractures indicate some contact shearing. The upper contact falls at the lower contact of a thin buff bleached band in the Basalt and the lower contact has been established on a piece of spun core.	
CR-11-048	837.06	838.17	1.11	V3B	Dark grey coloured and very fine to fine grained Basalt. Dark grey colour due to 3% biotite alteration. Pervasive hornblende alteration throughout. Quartz carbonate veins are thin and strongly dismembered, making up about 3% of the rock. Trace amounts of pyrite can be observed.	

Hole Name	From	То	Length	Code	Description	Rep
CR-11-048	838.17	842.55	4.38	SHR	Moderate shear with 7% biotite, Biotite richer bands alternating with hornblende dominated bands that show traces of garnet. Veins are thin (1cm or less) but the ratio has increased to 8%. The shear is mineralised with minimum traces of very fine grained pyrite. The upper contact is gradual over 10cm and the lower contact has been dyked out by a narrow Quartz Monzodiorite.	
CR-11-048	842.55	844.97	2.42	V3B	Dark grey coloured and very fine to fine grained Basalt as before the shear, but showing 5% of veining. Contact to Gabbro below is again questionable and put at another thin buff bleached band.	
CR-11-048	844.97	863.85	18.88	I3A	Medium grey green coloured and fine to medium grained Gabbro. Gabbro is massive and uniform to 855.30m, only showing similar chloritic fractures as in previous Gabbro. From 855.30 to 862.37m the intrusive is well foliated and contains a Quartz Monzodiorite between 857.04m and 860.65m. As before the contacts between Basalt and Gabbro are very subtle and difficult to pinpoint due to the similar grade of metamorphism the rocks have been subjected to. Upper contact at 69 degCA and lower at 72 degCA.	
CR-11-048	863.85	885.17	21.32	V3B	Dark grey to medium green-grey coloured fine grained Basalt. Well foliated sections with marginal biotite, quartz carbonate veining and amygdules alternating with massive unfoliated sections that are dominated by hornblende. Downwards the foliated sections are showing an increase in distinct strongly green coloured hornblende-chlorite alteration. Veining is at 6% with a high degree of folding and subsequent boudinage. A small number of vein fragments show mineralisation with very fine grained pyrite. The clouds of amygdules are drawn out into very thin carbonaceous streaks. Carbonate overprinting in a few spots. Foliated section tend to be mineralised with both pyrite and pyrrhotite. Pyrrhotite may reach 0.5% locally while pyrite is at trace level. Massive sections are unmineralised.	
CR-11-048	885.17	892.16	6.99	V3B/ATZ	Dark brown grey coloured and fine grained Basalt. Basalt is well foliated and contains up to 06% biotite. The biotite alteration gradually gets weaker in down hole direction. In contrast to the volcanics above there are very few thin, folded, and boudinaged veins nor are there any amygdules. Veining has increased in abundance to approximately 10% but the veins are wider and where fragmented, the fragments have not been drawn out or greatly deformed. Weak sulphide replacement within quartz carbonate veins as blebs, streaks and elongate rounded masses of fine grained pyrrhotite. Pyrrhotite is also finely disseminated in the biotite. Similar to the biotite the pyrrhotite mineralisation gradually weakens downwards (from 02% to trace). The lower contact is diffuse at Basalt below where alteration and sulphide mineralization is trace.	

Hole Name	From	То	Length	Code	Description	Rep
CR-11-048	892.16	898.38	6.22	V3B	Medium grey coloured and fine grained Basalt. Basalt is well foliated and contains 5% veining. The majority of the veins are oriented along the foliation plane and only 1 % appears dismembered and fragmented. Trace mineralisation with pyrrhotite.	
CR-11-048	898.38	899.60	1.22	FLT	Fault zone with multiple intrusives. Starting with a clearly defined narrow dyke of fine grained Gabbro, abundant biotite-bearing Diorite, and one one Quartz Monzodiorite dyke less than 10cm in thickness. Actual fault is at 899.40m consisting of 7cm of broken and slickensided core. Fault orientation is subparallel to local foliation at 70 degCA.	
CR-11-048	899.60	922.65	23.05	V3B	Medium green grey coloured and fine to very fine grained Basalt. Pillowed with a short massive section near the base. Pervasive hornblende alteration and minor biotite. Veins are dominated by carbonate and are mostly planar in nature. Veining is rather low at 2% average. Trace mineralised with pyrrhotite.	
CR-11-048	922.65	924.91	2.26	12G	Medium grey-brownish coloured and fine grained Quartz Monzodiorite. Intrusive is foliated and shows minor sericite and biotite alteration and pale green to buff coloured bleaching. Below 924.15m the Quartz Monzodiorite is brecciated and has been healed by quartz carbonate and biotite. In the upper solid section mineralisation sits at 0.1% pyrite. In the brecciated section 0.25% pyrite and traces of arsenopyrite are present, some of which is associated with the biotite inbetween the chunks of intrusive.	
CR-11-048	924.91	956.21	31.30	V3B	Medium to dark grey green coloured and fine grained Basalt. Foliated with pervasive very fine hornblende and chlorite. On average 5% veining that has been boudinaged and dismembered. Subsequent carbonate veining is fairly planar and undisturbed. Trace mineralisation with pyrrhotite. Below 941m the veining drops to 1% with long sections of no veining at all. The pervasive hornblende alteration intensifies downwards towards the contact with the Quartz Monzodiorite and the Basalt becomes medium grained while the original texture gets completely lost. NIL sulphides below 941m.	
CR-11-048	956.21	968.49	12.28	12G	Medium grey coloured and fine to medium grained Quartz Monzodiorite, Intrusive is well foliated and shows trace sericite and biotite as well as 8% silicification. An assimilated boulder of Basalt with interfingered contacts is 3% biotite altered but not mineralised. Quartz Monzodiorite shows few quartz veins and several biotite filled fractures with NIL sulphides. The intrusive itself shows traces of pyrite. The contacts are sharp, upper at 60 degCA and lower at 53 degCA.	

Hole Name	From	То	Length	Code	Description	Rep
CR-11-048	968.49	1014.05	45.56	V3B	Medium green grey coloured and very fine grained Basalt. Basalt is chloritic to 1% and contains 6% carbonate dominated veins. Veins are folded and dismembered to boudinaged, with a late generation set of veins that are fairly undeformed. More and more amygdules show up downwards and these are as deformed as the early generation veins. The unit contains NIL sulphides.	
CR-11-048	1014.05	1017.01	2.96	S/V3B	Alternating layers of mixed sediments and volcaniclastic material with single pillow Basalt flows. Sediments are dominated by dark grey mudstones that show 50% carbonate dominated veining. Mudstones contain pyrrhotite some of which has been remobilised into the veins. Several hornblende-chlorite rich sections with large clusters of garnet are interpreted as Volcaniclastic sediments. To a much lesser degree there are some distinct bands of light grey chert. The Basalt flows found within the sediments do not differ from the Basalt above the sediments. The high degree of carbonate veining is only found in the Mudstone and not in the other lithologies. Pyrrhotite is 2% primary and about 0.5% remobilised in carbonate veining.	
CR-11-048	1017.01	1053.98	36.97	I3A	Medium green grey coloured and very fine to fine grained Gabbro. First 3m are moderately conatct sheared. The contact shear shows traces of biotite within the first 20cm of the contact, but is entirely chloritic past that. Below 1020m the Gabbro is simply massive and contains only traces of veining and NIL sulphides.	
CR-11-048	1053.98	1061.00	7.02	12G	Dark brown grey coloured and fine grained Quartz Monzodiorite. Intrusive is weakly foliated and contains traces of biotite as well as sericite. Massive and homogeneous with minor late stage quartz veining. 90cm of Gabbro at 1056.44m is unaltered. Mineralised with pyrite to 0.25% and traces of very fine grained cubic arsenopyrite. Contacts are sharp, upper and lower both at 60 degCA.	
CR-11-048	1061.00	1070.30	9.30	I3A	Medium green grey coloured and fine grained Gabbro. Intrusive is evenly foliated and very uniform looking. Traces of planar veining with no mineralisation. The last meter shows an increasing amount of biotite downwards towards the contact with the Quartz Monzodiorite.	
CR-11-048	1070.30	1071.32	1.02	I2G	Medium brown grey coloured and fine grained Quartz Monzodiorite.Well foliated with 1% of sericite alteration. Light grey coloured blotches due to 3% silicification. Intrusive is mineralised with 0.5% of pyrit in the form of tiny blebs and streaks. Contacts are sharp, upper at 55 degCA and lower at 44 degCA.	
CR-11-048	1071.32	1072.27	0.95	I2H	Medium grey coloured and medium grained Monzodiorite. Intrusive shows moderate foliation based on crude orientation of small flaky biotite crystals and about 10% of sericite alteration. Mineralised with 0.25% of pyrite. Lower contact is uneven but roughly runs at 69 degCA.	
CR-11-048	1072.27	1072.54	0.27	S6D	Contorted, folded and sheared silty Bruce Channel Mudstone. Contains fragments of quartz carbonate veins with pyrite in fractures	

Hole Name	From	То	Length	Code	Description	Rep
CR-11-048	1072.54	1073.67	1.13	I2J	Dark grey coloured and fine grained Diorite. Diorite is massive and shows only weak signs of foliation. Contains 1% of biotite blebs. Trace mineralised with pyrite. Contacts are sharp, both at 63 degCA.	
CR-11-048	1073.67	1074.66	0.99	FLT	Slickensided shards of leached sulphidic mudstone and graphitic fault gauge. About 30% core loss.	
CR-11-048	1074.66	1094.99	20.33	S6D	Dark grey coloured silt laden Mudstone. Mudstone is well bedded and contains mm thin bands and streaks of primary pyrrhotite. Between 1077.90m and 1079m two 20cm sections of hornblende chlorite and garnet rich volcaniclastic material that are carboneaceous and contain fine grained masses of pyrrhotite on fractures. Close to the bottom of the hole a single event basaltic flow is intersected. Minor quartz carbonate veining following bedding planes for the most part, but some are boudinaged and show signs of folding. Late stage 3cm+ quartz veins also containe fine grained masses of pyrrhotite.	
CR-11-048	1094.99	1095.00	0.01	EOH	End of Hole is in Bruce Channel Formation. Hole ended 23 meters past the Balmer-Bruce Channel Unconformity. End of hole at 1095m on July 15, 2011. Hole is capped and accessible for further research. Core is stored at the Conquest Core Facility on the Alexander Property in 248 NQ trays in racks. 189 samples sent for Au fire assay (50g pulp) at AGAT Labs, Mississauga, ON.	

Minor Lithologies Record

	HoleID	From	То	Code	Description	REP
	CR-11-048	190.14	190.86	130	Dark grey coloured and fine grained Lamprophyre. Lamprophyre is massive, contains clusters of biotite and 1% off white feldspars. 3 % pervasive carbonate in groundmass. Contacts are sharp, upper at 68 degCA and lower at 65 degCA.	
-	CR-11-048	231.23	233.33	I3A/SHR	Gabbro getting finer grained and more and more foliated to sheared downward. Nil sulphides	
_	CR-11-048	233.33	233.90	V3B/SHR	Brown coloured Basalt with planar shearing, thin planar veins and gradually rising pyrrhotite content to 2 %. Arsenopyrite in traces.	
	CR-11-048	233.90	234.33	S6D	Pyrrhotitc Mudstones, sheared and carbonate overprinted. With quartz carbonate veins containing pyrrhotite and pyrite.	
-	CR-11-048	234.33	236.12	V3B/SHR	Center of shear with strong biotite, carbonate overprinting, quartz and quartz carbonate veining. Sulphides dominated by pyrrhotite, very fine grained pyrite in veins. Mostly needle shaped arsenopyrite within the biotite.	
	CR-11-048	236.12	238.23	V3B/SHR	In this section the biotite and mineralisation recedes downwards and so does the carbonate overprinting.	
	CR-11-048	238.23	243.00	I3A/SHR	Biotite alteration going from 5% at top to less than 1 % at base. Gabbro getting its typical greenish grey colour back. Trace mineralisation with sulphides.	
	CR-11-048	289.50	311.00	V3B	Section of Basalt that shows an increased amount of veining. Instead of 5 %, veining is now at 10 %. The veining is multiphasic without any significant amount of mineralisation. From 289.50m to 295m low angle undulating quartz carbonate veins cross the core at a rate of 1 every 50cm. The veins are up to 15cm wide but are not solid in themselves but are made up of tight groupings of braided thinner veins.	
	CR-11-048	391.00	404.00	V3B	Greenish grey coloured fine grained Basalt. Basalt in this section is massive and shows less than 1 % veining. Fine hornblende-chlorite alteration obliterating any primary texture.	
_	CR-11-048	406.43	408.13	12J	Medium grey coloured and fine to medium grained Diorite. Intrusive is massive with some minor biotite sprinkled in. Trace pyrite. Contacts are sharp, upper at 54 degCA and lower at 61 degCA.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-11-048	451.38	453.32	12G	Medium to light grey coloured and fine grained Quartz Monzodiorite with medium grained quartz crystals. Intrusive is well foliated and the light colour is due to 8% sericite alteration. Quartz Monzodiorite is mineralised with pyrite to 0.5%. The pyrite is disseminated as well as present as a thin film in the rotational shadow on quartz crystals. Arsenopyrite is present in traces. Contacts are sharp but a bit uneven, upper at 57 degCA and lower at 61 degCA.	
CR-11-048	543.00	551.84	V3B	Dark grey green coloured and fine grained Basalt. Massive Basalt flow with no pillowing and only 1% quartz catbonate veining. Pervasive hornblende alteration has obliterated any primary structure.	
CR-11-048	665.85	668.35	130	Dark grey coloured and fine to medium grained Lamprophyre. Unit is massive and not foliated. Carbonate in groundmass is increasing downwards reaching 10%. Trace mineralised with pyrite. Upper and lower contacts are sharp and accompanied by several quartz veins and minor shearing that reaches 20cm into the Gabbro. Upper contact at 78 degCA and lower at 76 degCA.	
CR-11-048	784.00	784.57	SHR	Medium to dark grey coloured and fine grained Basalt. Basalt itself is not strongly sheared, but this section contains two quartz carbonate stringers, 4 and 5cm thick that are well mineralised with pyrrhotite. Accompanying thinner veins with no mineralisation are attenuated and show small offsets on shear planes.	
CR-11-048	784.57	787.35	12G	Medium to dark grey coloured and fine grained Quartz Monzodiorite. Intrusive is foliated and shows traces of both sericite and biotite and is crossed by several thin quartz carbonate veins. A 5cm quartz carbonate - quartz - biotite vein is accompanied by a 5cm strongly silicified band of Quartz Monzodiorite on its upper wall but this shows no increase in mineralisation. Mineralised with pyrite to 0.1% and showing traces of arsenopyrite. Contacts are sharp, upper at 59 degCA and lower at 81 degCA.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-11-048	787.35	791.32	SHR	<u>PO-PY mineralized, quartz carbonate veined, Shear Zone</u> hosted within a blue-green- grey coloured and fine grained Basalt. Very fine to fine grained hornblende throughout set in an equally fine dense and massive feldspar matrix. Occasional chlorite rich bands only containing minor hornblende. Shearing is not as strong as in unit below but there is a subtle difference between shear planes oriented 65 to 70 degCA. Sulphide mineralised veins are oriented 70 to 80 degCA. Quartz carbonate veining (15%) present throughout interval. The veins range from boudinaged - attenuated to folded and contorted to undeformed. For the most part mineralisation is associated with the contorted and folded veins. Attenuated and planar veins tend to show no mineralisation and appear later stage. Where sulphides are present in veins, the replacement may have been complete or they appear as large fine grained masses of pyrrhotite. Subsequently the pyrrhotite has been subject to spheroidal pyrite replacement. While the pyrrhotite is almost exclusively associated with veining, only the pyrite spheroids is found to persist into the wall rock. The unit contains 7% pyrrhotite and 4% pyrite. Apart from the sulphides the rock also contains 3% of magnetite that is fine grained, cubic and very evenly distributed throughout. The crystals tend to be larger (up to mm size) in chloritic bands and appear oxydised. However the oxydisation may be an artefact of drilling. The contact to the unit below is put where shearing and biotite alteration picks up and spheroidal pyrite and	fol65to70,po-pyveins 70to80
CR-11-048	791.32	792.92	SHR	The following unit contains medium grained hornblende dominated sections and 8% biotite altered and well sheared sections that contain 1.5% pyrrhotite, very finely disseminated and as thin short streaks on the shear planes. Veining is folded and boudinaged, at 6% and not mineralised. The unit ends with24cm of Quartz Monzodiorite that is related to the intrusive between 784.57m and 787.34m. The contact to the unit below is gradual and is 23cm away from the first vein mineralised with very fine grained pyrrhotite.	same

Minor Lithologies Record

CR-11-048

REP

Description HoleID From То Code

CR-11-048	792.92	803.17	SHR	Poorly sulphide mineralized Shear Zone in Balmer Basalt. From 792.92 downwards the Basalt is evenly sheared. Biotite content reaches 4% but the distribution is quite uneven and concentrated on short sections where shearing has been most intense. Hornblende is fine to medium grained and more prominent than in upper part of shear. Biotite and chlorite crystal growth occurs crudely parallel in crystal orientation to the orientation of the pervasive shear fabric where the primary shear planes are spaced less than 3cm apart as defined by slip and the emplacement of quartz carbonate veins. As compared to the upper part of the shear there are much less folded and contorted veins. This due to the more intense nature of this part of the shear where veins have been strongly attenuated and even former fragments have been drawn out to long streaks. Veining is at about 15% and they are organized in groups interspersed with sections that show almost no veining. Where mineralisation in the veins is present it is quite different to the unit before. There are no masses of pyrrhotite but it is dust fine disseminated within the quartz carbonate. Trace to 02% sulphides are very finely and irregularly disseminated within the Basalt host. Altogether pyrrhotite averages 7% with traces of pyrite and chalcopyrite. The groups of veins that show the strongest pyrrhotite mineralisation are situated in sections with the strongest hornblende-chlorite alteration. Here garnets appear as well that are absent otherwise. The lower contact of the shear is put at a 1cm thick hornblende- chlorite band, which is the "last" one to contain garnets. Here the clear shear planes have disappeared as have the pyrrhotite replacement veins.	
CR-11-048	840.30	842.55	I2G	Dark brown-grey coloured and fine grained Quartz Monzodiorite. Rustbrown colour from 2% biotite. Also some streaky black biotite which gives the best indication of the foliation present. Minimum trace mineralisation with pyrite. Contacts are sharp, upper at 75 degCA and lower at 86 degCA.	
CR-11-048	857.04	860.65	I2G	Medium brown-grey coloured and fine grained Quartz Monzodiorite. Similar in look to the previously described one except for the slightly lighter colour. Minimum trace mineralisation with pyrite. Contacts are sharp, upper at 65 degCA and lower at 73 degCA.	
CR-11-048	934.08	934.96	12G	Medium brown-grey coloured and fine grained Quartz Monzodiorite. Similar in composition to the previously described Quartz Monzodiorite. Contacts are sharp, upper at 82 degCA and lower at 64 degCA.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-11-048	939.54	940.08	V3B/S	Basalt containing a short section of muddy and pyrrhotitic sediments. Carbonate dominated veining has increased to 25%, The veins contain about 1% remobilised pyrrhotite.	
CR-11-048	990.44	993.65	12G	Medium grey coloured and fine grained Quartz Monzodiorite. Intrusive is massive and weakly foliated. Trace sericite and 1% quartz carbonate veining with no mineralisation. Quartz Monzodiorite contains traces of pyrite. Contacts are sharp but uneven. Upper contact at 70 degCA and lower at 46 degCA.	
CR-11-048	1023.50	1027.11	12G	Medium brown grey coloured and fine grained Quartz Monzodiorite. Translucent brown colour due to 2% pervasive and very fine grained biotite. Sericite is visible in small reflective flakes that are not organised along the Weak foliation planes present. Mineralised with blebby and disseminated pyrite to 0.25%. Very fine cubic arsenopyrite in traces throughout. Contacts are sharp, upper at 72 degCA and lower at 70 degCA.	
CR-11-048	1031.04	1032.53	I2G	Dark brown grey coloured and fine grained Quartz Monzodiorite. Intrusive is weakly foliated and contains 0.1% pyrite. At 1032.29m about 8cm of Granodiorite clearly stand out due to the light colour and high primary quartz content. Contacts are sharp, upper at 46 degCA and lower at 61 degCA.	
CR-11-048	1074.77	1076.14	12J	Dark grey coloured and fine grained Diorite. Diorite has been sheared and shards of the surrounding mudstone have been mixed into the intrusive. Though sheared the Diorite has not been subject to any recognizeable alteration. Shear planes are discernible by elongate streaks of pyrrhotite.	
CR-11-048	1090.36	1091.11	S4B	Monomictic quartz pebble Conglomerate. Whitish grey in colour due to the quartz content. 90% of original carbonate matrix has been replaced by fine grained pyrrhotite. Conglomerate is coarsening downwards. Clasts are attenuated at 69 degCA.	
CR-11-048	1091.65	1094.62	V3B	Dark grey coloured and very fine grained Basalt. Consists of two pillows separated by 5 cm of muddy sediments. Massive and uniform and quite different in this appearance from much older Balmer Basalt. Clusters of garnets within first few cm of upper and lower contacts. The upper contact which falls within fractured and spun core seems to be gradual over a few cm. the lower contact to the sediments is dyked out by 10cm of dioritic intrusive and may have been subject to shearing as well. Basalt is mineralised with very fine grained pyrrhotite to 1.5%.	

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-11-048	E5338274	232.00	232.63	0.63		Wing sample, Sheared gabbro with trace biotite.	7	11T512890
CR-11-048	E5338275	281.00	282.00	1.00	not consecutive	Massive Basalt with fine carbonaceous fractures, 2% veining, trace pyrrhotite.	3	11T512890
CR-11-048	E5338276	232.63	233.33	0.70	not consecutive	Sheared gabbro with biotite increasing downwards.	46	11T512890
CR-11-048	E5338277	233.33	233.90	0.57	consecutive	Basalt with 20% biotite alteration, 1%+ pyrrhotite.	1020	11T512890
CR-11-048	E5338278	233.90	234.33	0.43	consecutive	Muddy sediments with pyrrhotite, carbonate overprinting.	147	11T512890
CR-11-048	E5338279	234.33	235.33	1.00	consecutive	Basalt with 20% biotite alteration, 1%+ pyrrhotite, 0.1% arsenopyrite, trace pyrite.	260	11T512890
CR-11-048	E5338280	235.33	236.12	0.79	consecutive	Basalt with 20% biotite alteration, 1%+ pyrrhotite, 0.1% arsenopyrite, trace pyrite.	11	11T512890
CR-11-048	E5338281	236.12	237.16	1.04	consecutive	Basalt with biotite, mineralisation, and carbonate gradually diminishing downwards.	57	11T512890
CR-11-048	E5338282	237.16	238.23	1.07	consecutive	Basalt with 5% biotite, no carbonate and trace mineralisation.	10	11T512890
CR-11-048	E5338283	238.23	239.23	1.00	consecutive	Gabbro with 5% biotite, starts with 20cm unmineralised quartz carbonate vein.	6	11T512890
CR-11-048	E5338284	239.23	240.00	0.77	consecutive	Wing sample, Gabbro with biotite receding to 1% downwards, trace sulphides.	4	11T512890
CR-11-048	E5338285	244.00	244.73	0.73	not consecutive	Wing sample, Foliated Gabbro with trace sulphides.	4	11T512890
CR-11-048	E5338286	244.73	245.40	0.67	consecutive	Mixed sediments with thin Gabbro stringers. 5% pyrrhotite in sediments	34	11T512890
CR-11-048	E5338287	245.40	246.00	0.60	consecutive	Wing sample, medium grained foliated Gabbro.	153	11T512890
CR-11-048	E5338288	254.14	254.64	0.50	not consecutive	Wing sample, fine grained Gabbro, partially sheared.	13	11T512890
CR-11-048	E5338289	254.64	255.90	1.26	consecutive	Deformed Basalt Breccia with trace sulphides.	6	11T512890
CR-11-048	E5338290	0.00	0.00	0.00	not consecutive	Standard PM 446 1.22 gm/t Au	1260	11T512890
CR-11-048	E5338291	255.90	257.10	1.20	not consecutive	Deformed Basalt Breccia with trace sulphides.	5	11T512890
CR-11-048	E5338292	257.10	258.30	1.20	consecutive	Deformed Basalt Breccia with trace sulphides.	7	11T512890
CR-11-048	E5338293	258.30	258.79	0.49	consecutive	Massive fine grained and grey Basalt.	9	11T512890
CR-11-048	E5338294	258.79	259.09	0.30	consecutive	Quartz carbonate vein with few blebs of pyrite.	20	11T512890
CR-11-048	E5338295	289.00	289.50	0.50	not consecutive	Wing sample, grey Basalt with amygdules, 5% veining.	7	11T512890
CR-11-048	E5338296	259.09	259.59	0.50	not consecutive	Wing sample, Massive Basalt with trace sulphides.	13	11T512890
CR-11-048	E5338297	269.00	270.00	1.00	not consecutive	Character Sample, Basalt with pyrrhotite in fractures and veins, 1% veining.	6	11T512890
CR-11-048	E5338298	270.00	271.00	1.00	consecutive	Character Sample, Basalt with pyrrhotite in fractures and veins, 1% veining.	3	11T512890
CR-11-048	E5338299	271.00	272.00	1.00	consecutive	Character Sample, Basalt with pyrrhotite in fractures and veins, 1% veining.	4	11T512890
CR-11-048	E5338300	289.50	290.50	1.00	not consecutive	Basalt with low angle quartz carbonate veins containing trace sulphides.	4	11T512890

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-11-048	E5338301	290.50	291.50	1.00	consecutive	Basalt with low angle quartz carbonate veins containing trace sulphides.	4	11T512890
CR-11-048	E5338302	291.50	292.50	1.00	consecutive	Basalt with no thick veinscrossing, minimum trace sulphides.	3	11T512890
CR-11-048	E5338303	292.50	293.50	1.00	consecutive	Basalt with low angle quartz carbonate veins containing trace sulphides.	5	11T512890
CR-11-048	E5338304	293.50	295.00	1.50	consecutive	Basalt with low angle quartz carbonate veins containing trace sulphides.	2	11T512890
CR-11-048	E5338305	295.00	295.50	0.50	consecutive	Wing sample, Grey Basalt with 1% veining, pillow selvage.	677	11T512890
CR-11-048	E5338306	334.39	335.39	1.00	not consecutive	Wing sample, Basalt with pervasive hornblende, trace pyrite.	15	11T512890
CR-11-048	E5338307	335.39	336.65	1.26	consecutive	Contact shear with biotite, silica, pyrite (0.75%)and trace pyrrhotite.	11	11T512890
CR-11-048	E5338308	336.65	337.90	1.25	consecutive	Contact shear as before but pyrite content increasing downwards to 1.25 %	130	11T512890
CR-11-048	E5338309	337.90	338.90	1.00	consecutive	Wing sample, fine grained gabbro, 0.25% pyrite.	15	11T512890
CR-11-048	E5338310	0.00	0.00	0.00	not consecutive	Standard PM 442 0.62 gm/t Au	539	11T512890
CR-11-048	E5338311	348.22	348.72	0.50	not consecutive	Wing sample, fine grained Gabbro, trace pyrite	12	11T512890
CR-11-048	E5338312	348.72	349.70	0.98	consecutive	Weakly sheared contact zone in Basalt below Gabbro contains 0.5% pyrrhotite.	11	11T512890
CR-11-048	E5338313	349.70	350.20	0.50	consecutive	Wing sample, dark grey massive Basalt, trace pyrrhotite.	6	11T512890
CR-11-048	E5338314	354.00	355.00	1.00	not consecutive	Character sample, silicified Basalt with trace pyrrhotite.	2	11T512890
CR-11-048	E5338315	322.00	323.00	1.00	not consecutive	Basalt with 7% veining, trace pyrrhotite.	8	11T512890
CR-11-048	E5338316	355.00	356.00	1.00	not consecutive	Silicified Basalt with trace pyrrhotite.	3	11T512890
CR-11-048	E5338317	356.00	357.00	1.00	consecutive	Basalt losing silicification and trace mineralisation downward.	7	11T512890
CR-11-048	E5338318	357.00	358.00	1.00	consecutive	Chloritic basalt with 1% veining.	6	11T512890
CR-11-048	E5338319	362.00	363.00	1.00	not consecutive	Wing sample, Basalt with 8% veining and minor bleaching.	4	11T512890
CR-11-048	E5338320	363.00	364.00	1.00	consecutive	Basalt with buff bleaching along hairline fractures	3	11T512890
CR-11-048	E5338321	364.00	365.00	1.00	consecutive	Basalt with buff bleaching along hairline fractures	3	11T512890
CR-11-048	E5338322	365.00	366.00	1.00	consecutive	Wing sample, grey basalt with 5% veining.	4	11T512890
CR-11-048	E5338323	414.00	415.00	1.00	not consecutive	Wing sample, chloritic basalt with 3% veining.	9	11T512890
CR-11-048	E5338324	415.00	416.00	1.00	consecutive	Basalt with 25cm broken up vein, minor bleaching, trace pyrrhotite.	5	11T512890
CR-11-048	E5338325	416.00	417.00	1.00	consecutive	Wing sample, Basalt with 20% bleaching, low angle fractures, trace pyrrhotite.	3	11T512890
CR-11-048	E5338326	450.88	451.38	0.50	not consecutive	Wing sample, Basalt with hornblende and minor biotite.	7	11T512890
CR-11-048	E5338327	451.38	452.38	1.00	consecutive	Quartz Monzodiorite with sericite 0.5% pyrite and trace arsenopyrite.	9	11T512890
CR-11-048	E5338328	452.38	453.32	0.94	consecutive	As 327, with fragments of Basalt and low angle quartz vein.	74	11T512890

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	tive Description Au_ppb Batch-I		Batch-Number
CR-11-048	E5338329	453.32	453.82	0.50	consecutive	Wing sample, Basalt with hornblende and minor biotite.	15	11T512890
CR-11-048	E5338330	0.00	0.00	0.00	not consecutive	PM 431 2.78gm/t	2510	11T512890
CR-11-048	E5338331	487.00	487.67	0.67	not consecutive	Wing sample, Grey-green Basalt with 3% veining.	3	11T512890
CR-11-048	E5338332	487.67	489.00	1.33	consecutive	Diorite, fine grained and massive with 1% biotite and 0.1% pyrite.	3	11T512890
CR-11-048	E5338333	489.00	490.00	1.00	consecutive	Diorite, fine grained and massive with 1% biotite and 0.1% pyrite.	3	11T512890
CR-11-048	E5338334	490.00	491.00	1.00	consecutive	Diorite, medium grained and foliated with 0.2% pyrite.	3	11T512890
CR-11-048	E5338335	502.00	503.00	1.00	not consecutive	Diorite with 0.1% pyrite and high Kappa.	4	11T512890
CR-11-048	E5338336	531.00	532.00	1.00	not consecutive	Character sample, Green basalt with 3% veining.	4	11T512890
CR-11-048	E5338337	532.00	533.00	1.00	consecutive	Character sample, Green basalt with 3% veining.	70	11T512890
CR-11-048	E5338338	533.00	534.00	1.00	consecutive	Character sample, Green basalt with 3% veining.	20	11T512890
CR-11-048	E5338339	551.34	551.84	0.50	not consecutive	Wing sample, fine grained Gabbro.	23	11T512890
CR-11-048	E5338340	551.84	553.34	1.50	consecutive	Quartz Monzodiorite with 0.5% pyrite, trace arsenopyrite.	38	11T512890
CR-11-048	E5338341	553.34	554.84	1.50	consecutive	As 40 with two sections of Basalt.	118	11T512890
CR-11-048	E5338342	554.84	556.34	1.50	consecutive	Quartz Monzodiorite with 0.5% pyrite, trace arsenopyrite.	79	11T512890
CR-11-048	E5338343	556.34	557.84	1.50	consecutive	Quartz Monzodiorite with 0.5% pyrite, trace arsenopyrite.	96	11T512890
CR-11-048	E5338344	557.84	559.34	1.50	consecutive	As 40 with higher sericite content.	192	11T512890
CR-11-048	E5338345	559.34	560.84	1.50	consecutive	Quartz Monzodiorite with 0.5% pyrite, trace arsenopyrite.	148	11T512890
CR-11-048	E5338346	560.84	562.34	1.50	consecutive	Quartz Monzodiorite with 0.5% pyrite, trace arsenopyrite.	182	11T512890
CD 11 049	FF220247	FC2 24	F62.6F	1 21		Quartz Monzodiorite with 0.5% pyrite, trace arsenopyrite with	249	117513900
CK-11-046	E3336347	502.54	202.02	1.51	consecutive	elevated sericite alteration	240	111512690
CR-11-048	E5338348	563.65	564.15	0.50	consecutive	Wing sample, Basalt with 5% biotite at contact.	7	11T512890
CR-11-048	E5338349	607.30	607.80	0.50	not consecutive	Wing sample, chloritic Basalt.	16	11T512890
CR-11-048	E5338350	0.00	0.00	0.00	not consecutive	Standard PM 442 0.62 gm/t Au	657	11T512890
CR-11-048	E5338351	607.80	609.30	1.50	not consecutive	Shear with 7% biotite, trace sulphides.	17	11T512890
CR-11-048	E5338352	609.30	609.80	0.50	consecutive	Wing sample, Basalt with fine hornblende.	6	11T512890
CR-11-048	E5338353	639.83	640.33	0.50	not consecutive	Wing sample, foliated Basalt.	9	11T512890
CR-11-048	E5338354	640.33	641.40	1.07	consecutive	Dark grey coloured Quartz Monzodiorite with light feldspars, blebby biotite, 0.2% pyrite, trace arsenopyrite.	15	11T512890
CR-11-048	E5338355	667.00	668.00	1.00	not consecutive	Lamprophyre with 10% carbonate, trace pyrite.	7	11T512890
CD 11 010	55333356	644.40	642.40	1.00		Dark grey coloured Quartz Monzodiorite with light feldspars,	20	447542000
CR-11-048	E5338356	641.40	642.48	1.08	not consecutive	blebby biotite, 0.2% pyrite, trace arsenopyrite.	20	111512890
CR-11-048	E5338357	642.48	643.51	1.03	consecutive	Basalt with fine hornblende.	18	11T512890
CR-11-048	E5338358	643.51	644.54	1.03	consecutive	Basalt with fine hornblende.	37	11T512890
CD 11 010	5500050	644 54	645 50	4.04		Half Basalt and half Quartz Monzodiorite with 0.2% pyrite, trace	445	447542000
CK-11-048	E5338359	044.54	645.58	1.04	consecutive	arsenopyrite, better foliated than before the Basalt.	115	111512890
CD 11 040	FF2282C0	645 59	647.00	1 50		Quartz Monzodiorite with 3 % biotite and 0.2% pyrite , trace	402	117513000
CR-11-048 E5338360		360 645.58 647 .		1.50	50 consecutive	arsenopyrite.	403	111215920

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-11-048	E5338361	647.08	648.58	1.50	consecutive	Quartz Monzodiorite with 3 % biotite and 0.2% pyrite , trace arsenopyrite.	304	11T512890
CR-11-048	E5338362	648.58	650.08	1.50	consecutive	Quartz Monzodiorite with 3 % biotite and 0.2% pyrite , trace arsenopyrite.	66	11T512890
CR-11-048	E5338363	650.08	651.58	1.50	consecutive	Quartz Monzodiorite with 3 % biotite and 0.2% pyrite , trace arsenopyrite.	62	11T512890
CR-11-048	E5338364	651.58	653.08	1.50	consecutive	Quartz Monzodiorite with 3 % biotite and 0.2% pyrite , trace arsenopyrite.	80	11T512890
CR-11-048	E5338365	653.08	653.90	0.82	consecutive	Quartz Monzodiorite with 3 % biotite and 0.2% pyrite , trace arsenopyrite.	58	11T512890
CR-11-048	E5338366	653.90	654.40	0.50	consecutive	Wing sample, Fine grained Gabbro with biotite alteration at contact.	22	11T512890
CR-11-048	E5338367	733.26	733.76	0.50	not consecutive	Wing sample, Gabbro with several unmineralised quartz carbonate veins near contact.	11	11T512890
CR-11-048	E5338368	733.76	735.00	1.24	consecutive	Quartz Monzodiorite with 1% biotite and 0.2% pyrite, section of assimilated Gabbro.	26	11T512890
CR-11-048	E5338369	735.00	736.25	1.25	consecutive	Quartz Monzodiorite with 1% biotite and 0.2% pyrite.	22	11T512890
CR-11-048	E5338370	0.00	0.00	0.00	not consecutive	Standard PM 442 0.62 gm/t Au	610	11T512890
CR-11-048	E5338371	736.25	737.50	1.25	not consecutive	Quartz Monzodiorite with 1% biotite and 0.2% pyrite.	900	11T512890
CR-11-048	E5338372	737.50	738.79	1.29	consecutive	Quartz Monzodiorite with 1% biotite and 0.2% pyrite.	18	11T512890
CR-11-048	E5338373	738.79	739.29	0.50	consecutive	Wing sample, Fine grained Gabbro.	7	11T512890
CR-11-048	E5338374	783.00	784.00	1.00	not consecutive	Wing sample, green-grey pillowed Basalt.	5	11T512890
CR-11-048	E5338375	776.00	777.00	1.00	not consecutive	Fine grained basalt with 10% veining with hornblende alteration halos, trace pyrrhotite.	4	11T512890
CR-11-048	E5338376	784.00	784.57	0.57	not consecutive	Basalt, not strongly sheared but contains two quartz carbonate stringers with pyrrhotite streaks and blebs.	4	11T512890
CR-11-048	E5338377	784.57	786.00	1.43	consecutive	Quartz Monzodiorite with 0.1% pyrite and trace arsenopyrite.	87	11T512890
CR-11-048	E5338378	786.00	787.35	1.35	consecutive	Quartz Monzodiorite with 0.1% pyrite and trace arsenopyrite.	14	11T512890
CR-11-048	E5338379	787.35	788.35	1.00	consecutive	Shear with pyrrhotite, spheroidal pyrite in veins and magnetite in host rock.	9	11T512890
CR-11-048	E5338380	788.35	789.35	1.00	consecutive	Shear with pyrrhotite, spheroidal pyrite in veins and magnetite in host rock.	15	11T512890
CR-11-048	E5338381	789.35	790.35	1.00	consecutive	Shear with pyrrhotite, spheroidal pyrite in veins and magnetite in host rock.	10	11T512890
CR-11-048	E5338382	790.35	791.32	0.97	consecutive	Shear with pyrrhotite, spheroidal pyrite in veins and magnetite in host rock.	6	11T512890
CR-11-048	E5338383	791.32	792.10	0.78	consecutive	More planar shearing, increasing biotite content and coarser hornblende, finely disseminated pyrrhotite, magnetite gone.	6	11T512890

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-11-048	E5338384	792.10	792.92	0.82	consecutive	Well sheared with 10% biotite and 1.5% pyrrhotite, 24cm Quartz Monzodiorite at base.	5	11T512890
CR-11-048	E5338385	792.92	794.00	1.08	consecutive	Shear with biotite and hornblende alteration, quartz carbonate veins with pyrrhotite mineralisation	9	11T512890
CR-11-048	E5338386	794.00	795.00	1.00	consecutive	Shear with biotite and hornblende alteration, quartz carbonate veins with pyrrhotite mineralisation.	5	11T512890
CR-11-048	E5338387	795.00	796.00	1.00	consecutive	Shear with biotite and hornblende alteration, quartz carbonate veins with pyrrhotite mineralisation.	4	11T512890
CR-11-048	E5338388	796.00	797.00	1.00	consecutive	Shear with biotite and hornblende alteration, quartz carbonate veins with pyrrhotite mineralisation.	7	11T512890
CR-11-048	E5338389	797.00	798.00	1.00	consecutive	Shear with biotite and hornblende alteration, quartz carbonate veins with pyrrhotite mineralisation.	7	11T512890
CR-11-048	E5338390	0.00	0.00	0.00	not consecutive	Standard PM 431 2.78 gm/t	3020	11T512890
CR-11-048	E5338391	798.00	799.00	1.00	not consecutive	Shear with biotite and hornblende alteration, quartz carbonate veins with pyrrhotite mineralisation.	6	11T512890
CR-11-048	E5338392	799.00	800.00	1.00	consecutive	Shear with biotite and hornblende alteration, quartz carbonate veins with pyrrhotite mineralisation.	13	11T512890
CR-11-048	E5338393	800.00	801.00	1.00	consecutive	Shear with biotite and hornblende alteration, quartz carbonate veins with pyrrhotite mineralisation. Number of veins greatly reduced.	6	11T512890
CR-11-048	E5338394	801.00	802.00	1.00	consecutive	Shear with biotite and hornblende alteration, quartz carbonate veins with pyrrhotite mineralisation. Number of veins greatly reduced.	9	11T512890
CR-11-048	E5338395	827.66	828.75	1.09	not consecutive	Ductile deformation zone in Gabbro with 0.25% pyrrhotite.	4	11T512890
CR-11-048	E5338396	802.00	803.17	1.17	not consecutive	Mineralised veining has all but disappeared, trace pyrrhotite in host Basalt	7	11T512890
CR-11-048	E5338397	803.17	804.00	0.83	consecutive	Wing sample, Basalt with few shear planes, hornblende-chlorite bands without garnets, 3% dismembered veins.	5	11T512890
CR-11-048	E5338398	837.67	838.17	0.50	not consecutive	Wing sample, Basalt with 3% veining.	8	11T512890
CR-11-048	E5338399	838.17	839.23	1.06	consecutive	Shear with biotite, hornblende, minimum trace pyrite.	4	11T512890
CR-11-048	E5338400	839.23	840.30	1.07	consecutive	Shear with biotite, hornblende, minimum trace pyrite.	7	11T512890
CR-11-048	E5338401	840.30	841.30	1.00	consecutive	Wing sample, Quartz Monzodiorite with minimum trace pyrite.	16	11T512890
CR-11-048	E5338402	863.35	863.85	0.50	not consecutive	Wing sample, fine grained Gabbro.	12	11T512890
CR-11-048	E5338403	863.85	865.05	1.20	consecutive	Basalt with boudinaged veins, 0.25% pyrrhotite, trace pyrite.	7	11T512890
CR-11-048	E5338404	865.05	866.20	1.15	consecutive	Basalt with boudinaged veins, 0.25% pyrrhotite, trace pyrite.	6	11T512890
CR-11-048	E5338405	866.20	867.27	1.07	consecutive	Basalt with boudinaged veins, 0.25% pyrrhotite, trace pyrite.	10	11T512890
CR-11-048	E5338406	867.27	867.77	0.50	consecutive	Wing sample, Basalt, partially massive with hornblende, no mineralisation.	8	11T512890

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-11-048	E5338407	884.17	885.17	1.00	not consecutive	Wing sample, Basalt with folded and boudinaged veins, amygdules, minimum trace sulphides.	5	11T512890
CR-11-048	E5338408	885.17	886.17	1.00	consecutive	Basalt with 6% biotite alteration, combined 2% pyrrhotite in veins and disseminated.	5	11T512890
CR-11-048	E5338409	886.17	887.17	1.00	consecutive	Basalt with 6% biotite alteration, no mineralised veins, 0.2% pyrrhotite.	7	11T512890
CR-11-048	E5338410	0.00	0.00	0.00	not consecutive	Standard PM 446 1.22 gm/t Au	1300	11T512890
CR-11-048	E5338411	887.17	888.16	0.99	not consecutive	Basalt with 6% biotite alteration, combined 2% pyrrhotite in veins and disseminated.	14	11T512890
CR-11-048	E5338412	888.16	889.16	1.00	consecutive	Basalt, biotite alteration down to 3%, less mineralised veins, 1% combined pyrrhotite.	5	11T512890
CR-11-048	E5338413	889.16	890.16	1.00	consecutive	Basalt, almost no mineralised veins, 0.5% disseminated pyrrhotite.	6	11T512890
CR-11-048	E5338414	890.16	891.16	1.00	consecutive	Basalt, almost no mineralised veins, 0.5% disseminated pyrrhotite.	4	11T512890
CR-11-048	E5338415	908.00	909.00	1.00	not consecutive	Basalt with hornblende-chlorite bands every 5 to 10cm, 3% veining, trace sulphides.	4	11T512890
CR-11-048	E5338416	891.16	892.16	1.00	not consecutive	Basalt, biotite alteration to 2%, disseminated pyrrhotite at 0.25%.	6	11T512890
CR-11-048	E5338417	892.16	893.16	1.00	consecutive	Basalt, biotite alteration to 2%, disseminated pyrrhotite at 0.25%.	6	11T512890
CR-11-048	E5338418	893.16	894.00	0.84	consecutive	Wing sample, Biotite 2%, disseminated pyrrhotite at 0.1%.	6	11T512890
CR-11-048	E5338419	916.26	916.76	0.50	not consecutive	Wing sample, dark grey coloured hornblende Basalt with hornblende-chlorite bands and trace pyrrhotite.	5	11T512890
CR-11-048	E5338420	916.76	917.30	0.54	consecutive	Basalt with 30% veining, hornblend-chlorite-garnet halos, disseminated and blebby pyrrhotite at 0.75%.	5	11T512890
CR-11-048	E5338421	917.30	917.80	0.50	consecutive	Wing sample, Foliated medium grey Basalt.	5	11T512890
CR-11-048	E5338422	922.15	922.65	0.50	not consecutive	Wing sample, Basalt with pervasive hornblende fine to medium grained.	10	11T512890
CR-11-048	E5338423	922.65	924.15	1.50	consecutive	Quartz Monzodiorite, trace biotite and sericite, 0.1% pyrite.	16	11T512890
CR-11-048	E5338424	924.15	924.91	0.76	consecutive	Brecciated Quartz Monzodiorite, quartz carbonate-biotite healed with 0.25% pyrite, trace arsenopyrite.	14	11T512890
CR-11-048	E5338425	924.91	925.41	0.50	consecutive	Wing sample, Basalt with 5% veining, amygdules.	27	11T512890
CR-11-048	E5338426	939.04	939.54	0.50	not consecutive	Wing sample, dark grey coloured Basalt with 3% veining.	6	11T512890
CR-11-048	E5338427	939.54	940.08	0.54	consecutive	Basalt with interflow sediments, 25% veining with remobilised pyrrhotite.	8	11T512890
CR-11-048	E5338428	940.08	940.58	0.50	consecutive	Wing sample, Dark grey coloured Basalt with 2% veining, 90% of which boudinaged.	9	11T512890
CR-11-048	E5338429	955.71	956.21	0.50	not consecutive	Wing sample, foliated pervasive hornblende Basalt.	9	11T512890

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-11-048	E5338430	0.00	0.00	0.00	not consecutive	Standard PM 431 2.78 gm/t	3040	11T512890
CR-11-048	E5338431	956.21	957.71	1.50	not consecutive	Quartz Monzodiorite with trace pyrite.	7	11T512890
CR-11-048	E5338432	957.71	959.21	1.50	consecutive	Quartz Monzodiorite with trace pyrite.	9	11T512890
CR-11-048	E5338433	959.21	960.71	1.50	consecutive	Quartz Monzodiorite with trace pyrite.	9	11T512890
CR-11-048	E5338434	960.71	962.21	1.50	consecutive	Quartz Monzodiorite with trace pyrite.	3	11T512890
CR-11-048	E5338435	979.00	980.00	1.00	not consecutive	Chloritic Basalt with 10% veining, hornblende-chlorite-garnet bands.	26	11T512890
CR-11-048	E5338436	962.21	963.55	1.34	not consecutive	Quartz Monzodiorite with trace pyrite.	2	11T512890
CR-11-048	E5338437	963.55	965.05	1.50	consecutive	Assimilated boulder of Basalt, contact biotite, no mineralisation.	14	11T512890
CR-11-048	E5338438	965.05	966.55	1.50	consecutive	Quartz Monzodiorite with interfingered Basalt contact, biotite filled fractures, trace pyrite.	6	11T512890
CR-11-048	E5338439	966.55	967.55	1.00	consecutive	Quartz Monzodiorite with trace pyrite.	51	11T512890
CR-11-048	E5338440	967.55	968.49	0.94	consecutive	Quartz Monzodiorite with trace pyrite.	20	11T512890
CR-11-048	E5338441	968.49	969.00	0.51	consecutive	Wing sample, Basalt with minor biotite at contact and 4% veining.	34	11T512890
CR-11-048	E5338442	1013.55	1014.05	0.50	not consecutive	Wing sample, Basalt with 10% veining	6	11T512890
CR-11-048	E5338443	1014.05	1015.55	1.50	consecutive	Interflow sediments with primary pyrrhotite, carbonate veining, thin Basalt flow.	11	11T512890
CR-11-048	E5338444	1015.55	1017.01	1.46	consecutive	Interflow sediments with primary pyrrhotite, carbonate veining, thin Basalt flow.	71	11T512890
CR-11-048	E5338445	1017.01	1017.51	0.50	consecutive	Wing sample, very fine grained chloritic Gabbro.	9	11T512890
CR-11-048	E5338446	1023.00	1023.50	0.50	not consecutive	Wing sample, very fine grained Gabbro.	5	11T512890
CR-11-048	E5338447	1023.50	1025.00	1.50	consecutive	Quartz Monzodiorite with 0.25% pyrite and trace arsenopyrite.	34	11T512890
CR-11-048	E5338448	1025.00	1026.00	1.00	consecutive	Quartz Monzodiorite with 0.25% pyrite and trace arsenopyrite.	12	11T512890
CR-11-048	E5338449	1026.00	1027.11	1.11	consecutive	Quartz Monzodiorite with 0.25% pyrite and trace arsenopyrite.	3	11T512890
CR-11-048	E5338450	0.00	0.00	0.00	not consecutive	Standard PM 442 0.62 gm/t	650	11T512890
CR-11-048	E5338451	1027.11	1027.61	0.50	not consecutive	Wing sample, very fine grained Gabbro.	5	11T512890
CR-11-048	E5338452	1053.48	1053.98	0.50	not consecutive	Wing sample, foliated Gabbro with 1% biotite.	11	11T512890
CR-11-048	E5338453	1053.98	1055.30	1.32	consecutive	Quartz Monzodiorite with 0.25% pyrite and trace arsenopyrite.	23	11T512890
CR-11-048	E5338454	1055.30	1056.44	1.14	consecutive	Quartz Monzodiorite with 0.25% pyrite and trace arsenopyrite.	5	11T512890
CR-11-048	E5338455	1056.44	1057.54	1.10	consecutive	Medium grained Gabbro.	13	11T512890
CR-11-048	E5338456	1057.54	1058.70	1.16	consecutive	Quartz Monzodiorite with 0.25% pyrite and trace arsenopyrite.	9	11T512890

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-11-048	E5338457	1058.70	1059.85	1.15	consecutive	Quartz Monzodiorite with 0.25% pyrite and trace arsenopyrite.	7	11T512890
CR-11-048	E5338458	1059.85	1061.00	1.15	consecutive	Quartz Monzodiorite with 0.25% pyrite and trace arsenopyrite.	42	11T512890
CR-11-048	E5338459	1061.00	1061.50	0.50	consecutive	Wing sample, Gabbro with 10% biotite at contact.	32	11T512890
CR-11-048	E5338460	1090.61	1091.11	0.50	not consecutive	Character sample. Quartz pebbel Conglomerate with pyrrhotite matrix.	5	11T512890
CR-11-048	E5338461	1091.11	1091.65	0.54	consecutive	Silt ladem Mudstone with primary pyrrhotite.	6	11T512890
CR-11-048	E5338462	1091.65	1092.15	0.50	consecutive	Basalt interflow with 1.5% finely disseminated pyrrhotite.	3	11T512890

Reflex Survey Record

Hole ID	Station (m)	Dip (Degrees)	Azimuth	MAG
CR-11-048	30	-70.20	24.20	5796
CR-11-048	169	-64.10	31.50	5783
CR-11-048	192	-63.70	31.70	5781
CR-11-048	222	-63.40	31.90	5781
CR-11-048	252	-62.60	34.20	5798
CR-11-048	282	-62.20	34.80	5792
CR-11-048	312	-61.70	35.50	5788
CR-11-048	342	-61.40	35.80	5781
CR-11-048	372	-61.20	36.00	5793
CR-11-048	402	-60.90	36.90	5808
CR-11-048	432	-59.40	38.60	5791
CR-11-048	462	-59.40	39.20	5775
CR-11-048	492	-58.10	40.30	5782
CR-11-048	522	-57.40	41.60	5781
CR-11-048	552	-57.10	42.10	5782
CR-11-048	582	-56.30	43.70	5785
CR-11-048	612	-55.70	44.30	5784
CR-11-048	642	-55.10	44.80	5789
CR-11-048	672	-54.70	45.30	5770
CR-11-048	702	-54.30	45.70	5771
CR-11-048	732	-53.40	45.80	5757
CR-11-048	762	-52.90	45.90	5762
CR-11-048	822	-51.00	48.20	5761
CR-11-048	852	-50.80	48.40	5765
CR-11-048	882	-50.30	50.10	5772
CR-11-048	915	-48.50	50.20	5763
CR-11-048	945	-48.00	50.40	5772
CR-11-048	975	-47.70	50.70	5778
CR-11-048	1005	-46.70	53.60	5704
CR-11-048	1035	-46.50	53.80	5712
CR-11-048	1065	-46.10	54.00	5746

Conquest Resources Ltd.

Exploration Diamond Drill Log

CR-11-049

DRILL HOLE #	CR-11-049	LOCATION	Balmertown	, Balmer Tow	nship, R	ed Lake Dist	rict, Ontario		
PROJECT #	Alexander	REFERENCE	Alexander			GEOLOGIST	Meckert	CLAIM	(RL20439
GRID/ NAD-ZONE	E	NORTHING		EASTING			ELEVATION		GRID TYPE
GRID	Alexander RL	6+50 S	-	15+45 E			10004	_	Μ
UTM	NAD83 / 15U	5655421	-	451203			385		
COLLAR DIP	-70	GRID DIRECTION		5° W of gridN				AZ DIRECTION	24
NTS REF #	052N04	NTS SHEET NAME		Red Lake, O	ntario				
START DATE	17-Jul-11			FINISH DATE	:	13-Aug-11			
DEPTH (EOH)	935.69	TARGET & Zone D	epth	Sulphide be	aring Sh	ear Zone at	855m		
PURPOSE	Test extension	of shear zone end	ountered in	CR-11-048		PIEC	E POINT of Target:	E	mELEV
CASING BW	v na	CASING NW		4.50			<u> </u>	CASING HW	na
PLUG @	na na	PLUG @		na				PLUG @	na
START DTH	na	WEDGE @		na					
REDUCED @	na		REDUCED @	na na					
HOLE STATUS	completed, cas	ing left in hole, ca	apped	· · · · · · · · · · · · · · · · · · ·					
DRILLING CONTR	ACTOR	Boart Longyea	r Inc.						
RIG NO.	LY 50 4102							BXS.	215
								—	
				Reflex EZ-Sh	ot Surveys				
DEP'	TH (m)	AZIMU	тн		DIP			Comments:	
18	3.00	23.8	0		-71.00				
10	8.00	26.0	0		-68.00				
16	8.00	30.1	0		-63.00				
22	8.00	30.6	0		-62.00		1		
28	8.00	30.6	0		-61.20				
34	8.00	31.7	0		-60.30				
40	8.00	33.4	0		-58.70				
46	8.00	33.4	0		-57.90		1st Target A she	ar zone comparab	le to the shear
52	8.00	36.3	0		-56.80		discovered in h	ole CR-11-048 w	as encountered
56	4.00	36.9	0		-56.20		between 854.90	m and 861.37m.	Irregular quartz
58	8.00	35.2	0		-55.70		carbonate string	ers well mineralise	ed with sulfides
61	8.00	36.1	0		-55.20		were more preva	lent than planar sl	hearing and wall
67	8.00	37.2	0		-54.20		rock alteration. A	ssays from within t	the zone did not
70	8.00	37.9	0		-53.60		return significant	gold values.	
73	8.00	37.7	0		-53.20				
76	8.00	38.6	0		-52.90				
79	8.00	39.3	0		-52.30		_		
82	8.00	40.3	0		-51.80		_		
85	8.00	46.4	0		-51.40		_		
88	8.00	41.4	0		-51.00		_		
91	8.00	42.1	0		-50.60				

Drill with 6m, double stablilized NQ core barrel

Planned depth is 930m (3,050')

Core stored at Alexander Core Yard at UTM 0449935 5656595 UTM NAD83 15U

Water source: Sump on CR-11-048 setup & beaver pond south of boundary

Drill type: LY-50

Major Lithologies

Hole Name	From	То	Length	Code	Description	Rep
CR-11-049	0.00	4.50	4.50	CAS	Casing in till overburden	
CR-11-049	4.50	75.20	70.70	V3B	Balmer Assemblage Basalt . Medium green coloured, fine grain textured, moderately foliated, massive to locally pillowed, hornblende-quartz-carbonate bearing, Basalt with trace pyrite disseminated throughout and weak local biotite and garnet alteration. Locally disseminated Magnetite and garnet within groundmass as contact metamorphism near mafic and intermediate intrusives. Biotite is present in trace concentrations within selvages of minor quartz-carbonate-(pyrite) veinlets (<01%). Pillowed intervals are 3 to 5 metres in thickness and contain 1 to 3mm scale quartz-carbonate amygdules. Lower contact is sheared and sharp at foliated wallrock and contains significant Magnetite over several metres with disseminated and whispy blebs of 02% pyrite and trace pyrrhotite.	
CR-11-049	75.20	77.50	2.30	SHR/FLT	Well healed hairline <u>Faults</u> within dark coloured, fine grained and silica-chlorite-(biotite) overprinted, strongly magnetic,05MT-02PO-01PY bearing <u>Sheared Contact</u> between Basalt and main Gabbro stock. Several quartz veins within silica healed sheared and faulted wallrock. Pyrite is found locally to cement irregular fractures.	
CR-11-049	77.50	260.68	183.18	I3A	Green-grey coloured, medium to coarse grained, hornblende-(silica-biotite-chlorite) Gabbro with local minor quartz carbonate veins. Mineralization is generally limited to disseminated Pyrite but occasionally is blebby in quartz carbonate vein selvages. Several low angle quartz- (carbonate) veins at low angle to core axis. Competent, well coring unit. Upper contact is sheared and faulted. Lower contact is sharp at 60degCA.	
CR-11-049	260.68	268.14	7.46	V3B	Balmer Assemblage Basalt. Massive, brown green coloured, biotite-chorite bearing (contact metamorphism) Basalt within Gabbro as xenolith. Upper contact is sharp and massive with fine irregular quartz carbonate veinlets of little consequence. Lower contact is well foliated and moderately sheared at 80degCA over 2 metres.	
CR-11-049	268.14	354.18	86.04	I3A	Green-grey coloured, medium to coarse grained, hornblende-(silica-biotite-chlorite) Gabbro as above. Locally very coarse grain textured.	
CR-11-049	354.18	379.16	24.98	V3B	Balmer Assemblage Basalt. Massive hornblende-silica Basalt flow with local silica charged poorly defined beds and locally pillowed sections with quartz carbonate-biotite-chlorite selvages. Fracturing is irregularly oriented and frequent throughout unit at 2-10 mm scale (width of filled fractures) with quartz-carbonate-biotite-chlorite fracture filling. Locally quartz-carbonate amygdular where pillowed on 1 metre scale.	
CR-11-049	379.16	380.16	1.00	DIS	Disseminated Grey Sulphides within abundant (25%) irregularly low angle quartz-carbonate veins in chlorite-bioitite altered Basalt. Upper and lower contact is gradational with abrupt change from sulphide bearing veins to barren veins.	

Hole Name	From	То	Length	Code	Description	Rep
CR-11-049	380.16	506.46	126.30	V3B	Pillowed to massive, pale green coloured Basalt similar to above. 05% Quartz-carbonate in pillow selvages with associated chlorite alteration and planar veins at 60degCA. Very hard and competent flow. Locally silica charged flow account for contrasting hard "fresh" looking basalt with carbonate filled fractures.	
CR-11-049	506.46	512.48	6.02	130	Dark grey green coloured and very fine grained Lamprophyre. Intrusive contains 3% carbonate and is clearly multiphasic with sections that contain irregular flakes of phlogopite oriented on crude foliation planes and massive sections without phlogopite but 1% chlorite instead. Lamprophyre contains traces of grainy pyrite locally. Upper contact falls into spun core. Lower contact is uneven at about 60 degCA.	
CR-11-049	512.48	517.36	4.88	V3B	Basalt is similar to the unit described before the Lamprophyre. However, due to being "sandwiched" between two intrusives the Basalt has seen a 2% pervasive biotite alteration. No mineralisation is associated with this.	
CR-11-049	517.36	531.87	14.51	12J	Grey to grey green brown coloured fine to medium grained Diorite. Massive intrusive with only very weak signs of foliation. Small flaky black coloured biotite is present thoughout are traces of chlorite and carbonate. Several quartz veins have led to silica flooding of the wall rock in turn also giving it a light grey colour. Cubic pyrite to the tune of 0.2% average is present but the distribution is uneven. Two short sections of Lamprophyre can be observed within the Diorite, which are similar to the one described 5m uphole. The upper contact of the Diorite is sharp at 73 degCA. The lower contact is sharp and undulating at 69 degCA.	
CR-11-049	531.87	540.80	8.93	V3B	Grey green coloured and very fine grained Basalt. Basalt contains 6% veining and several bands of cloudy looking carbonate overprinting, but there is no pervasive carbonate present otherwise. Towards the lower contact fine grained hornblende alteration obliterates the original basaltic texture completely. Basalt contains NIL sulphides.	
CR-11-049	540.80	553.52	12.72	12G	Medium grey coloured and fine grained Quartz Monzodiorite with medium grained quartz crystals. Intrusive is well foliated in general but contains several sections with strong foliation and sericite alteration. Sericite may reach 15% in these but on average sits at 6%. Quartz Monzodiotrite contains two short sections of Basalt and fragments of quartz carbonate veins. Traces of flaky biotite are accompanied by pyrite mineralisation. Pyrite is blebby but where the foliation is stronger the blebs have been drawn out to cm long streaks, reaching a concentration of 1%. Arsenopyrite is disseminated throughout in fine cubic crystals to the tune of 0.1%. Pyrrhotite (0.2%) is present as well as fracture fillings and in places with quartz carbonate fragments. Contacts are sharp, upper at 54 degCA and lower at 74 degCA.	

Hole Name	From	То	Length	Code	Description	Rep
CR-11-049	553.52	625.56	72.04	V3B	Medium green grey coloured and very fine to fine grained Basalt. Basalt is pillowed and shows a myriad of thin carbonaceous fractures but foliation is very weak if present at all. The Basalt is chloritized to 2% and to a lesser degree also shows hornblende alteration. Irregularly distributed pale green blotchy bleaching and associated carbonate overprinting. 10% quartz carbonate veining ranges from boudinaged to folded and dismembered to thicker carbonate dominated ones. Veining slowly decreases downwards. Veins and pillow selvedges do not contain sulphides, but locally, where hornblende is more prevalent the occasional grain of pyrite is visible.	
CR-11-049	625.56	627.30	1.74	SHR	Weak shear in Basalt is characterised by 3% biotite alteration and an average 10% carbonate overprinting. Quartz carbonate veining is strongly boudinaged and dismembered but there are no additional planar veins. The shear is weakly mineralized with equal traces of pyrite and pyrrhotite.	
CR-11-049	627.30	644.50	17.20	V3B	Medium grey green coloured and very fine grained Basalt. Basalt is chloritic and shows occasional spotty pale green bleaching associated with carbonate overprinting. This section is not foliated and only pillow selvedges give an indiccation of a crude bedding orientation. Quartz carbonate veining is at 8 % average. Sulphides are at minimum trace level.	
CR-11-049	644.50	646.36	1.86	SHR	Weak shear in Basalt is comparable to previous shear described. Biotite alteration is at 2% and carbonate overprinting at 6%. Few planar veins rather appear to be drawn out primary veins than contemporary with the deformation process. Veining is at 8%. The shear is unevenly mineralized with very fine grained pyrite to the tune of 0.1%	
CR-11-049	646.36	707.67	61.31	V3B	Basalt as before the shear but with increasing depth the spotty bleaching is increasing and the veining steadily increases to 12%. However, the mineralisation remains at minimum trace level.	
CR-11-049	707.67	753.25	45.58	I3A	First 70cm of Gabbro show typical contact shearing with flaky brown biotite alteration. Past the contact shear the Gabbro is medium green grey coloured, fine grained and massive. The core is crossed by few thin quartz veins. Gabbro shows traces of finely disseminated pyrite. The lower contact is sharp and shows no signs of alteration. Neither in the the Gabbro nor in the Basalt below. Lower contact is sharp at 56 degCA.	
CR-11-049	753.25	776.22	22.97	V3B	Medium green grey coloured and fine to medium grained Basalt. Pervasive hornblende alteration has partially obliterated the primary texture.Next to veining at 7% the Basalt also contains a large number of carbonaceous fractures. Minimum traces of sulphides are present.	

Hole Name	From	То	Length	Code	Description	Rep
CR-11-049	776.22	778.27	2.05	SHR	Moderate shear with minor biotite alteration to 2% average. Veining is at 8% not planar and carbonate dominated. The shear runs between 70 and 90%. Mineralisation is very weak with both pyrite and pyrrhotite being present in traces.	
CR-11-049	778.27	798.51	20.24	V3B	Medium green grey coloured and fine grained Basalt. Carbonaceous fractures and quartz carbonate veining is greatly reduced, the latter sitting at 3%. Pillow selvedges consist mostly of chlorite and hornblende. Foliation is weak and erratic in nature, not following a clear direction. Minimum traces of sulphides are present.	
CR-11-049	798.51	820.03	21.52	I3A	Medium green grey coloured and fine grained Gabbro. Intrusive is massive and uniform throughout, showing no signs of contact shearing or foliation. Quartz and quartz carbonate veining is at under 1%. Minimum traces of pyrite in places. The upper contact runs at 90 degCA and the lower contact is at 73 degCA.	
CR-11-049	820.03	854.90	34.87	V3B	Medium green grey coloured and fine to medium grained Basalt. First 2.5m are contact sheared and contain several short sections of interflow sediments in the form of dark grey sulphidic mudstones between 821.60m and 822.27m. Basalt is strongly hornblende altered which has obliterated almost all original texture, except for the occasional 20 to 30cm section that has escaped the alteration and still shows veining and fracture patterns as well as amygdules. By 833.25m the hornblende alteration has waned to the degree that it is now pervasive and fine grained, but does not disturb the general texture. This coincides with the veining increasing from 3% to 8%. While the hornblende dominated upper part contains only minimal traces of sulphides the lower part contains several quartz carbonate stringers that are well mineralised with pyrrhotite. The mineralised stringers are spaced well apart without a recognizeable pattern.	

Hole Name	From	То	Length	Code	Description	Rep
CR-11-049	854.90	858.44	3.54	SHR	Top part of shear to 856.26m is dominated by carbonate to quartz carbonate stringers 5cm apart and on average 5cm thick that in some cases have seen a complete replacement by pyrrhotite. The stringers are not planar and show irregular boundaries to the wall rock. The condition of the stringers ranges from intact to internally sheared and fragmented. The Basalt itself is medium green brown coloured and fine grained. The colour is due to a pervasive biotite and hornblende alteration (2% each). Traces of carbonate are encountered as well. Mineralisation is strongest in the stringers and consists to more than 99% of pyrrhotite. Pyrrhotite reaches 15% overall in this section. The Basalt is well mineralised as well with disseminated pyrrhotite and the occasional cluster of small pyrite crystals. Magnetite is finely disseminated to the tune of 0.2%. Chalcopyrite and grey sulphide are present in traces. Between 856.26m and 858.44m the Basalt is medium grey coloured. Hornblende remains at the same level but the biotite alteration has retreated to trace level. The stringers in this section are thinner and occur less frequent but the pyrrhotite replacement is as intense as before, reaching 7% overall. Magnetite has dissapeared by 858.44m.	
CR-11-049	858.44	861.37	2.93	SHR	Planar shear with 10 % hornblende and 1 % biotite. Hornblende is fine grained except on last 0.5m where it is coarse and set in chlorite. Veining sits at 5% but is anastomosing or dismembered. None of the veining is associated with the shearing. A handful of veins in this interval show very fine grained pyrrhotite replacement as compared to the massive fine grained pyrrhotite described in the unit before. Mineralisation gradually disappears downwards. Pyrrhotite is at 0.25% and pyrite is at 0.1%. The change into the next unit is lithologicaly gradual and put where significant mineralisation is no longer present.	
CR-11-049	861.37	867.40	6.03	V3B	Green grey coloured and fine to medium grained Basalt. Unit is well foliated and the 7% hornblende alteration has resulted in 90% of the primary texture being obliterated. Veining is low at 3% and sulphides are at trace level.	
CR-11-049	867.40	870.64	3.24	12G	Meium brown grey cloured and fine grained Quartz Monzodiorite. Intrusive is moderately foliated and the pervasive sericite alteration gives the intrusive its brown to buff hue. Around 870m about 40cm have been strongly bleached and silicified, which appears associated with a number of fractures that cross cut the core at 63 degCA. Contacts are sharp, upper at 67 degCA and lower at 76 degCA.	
CR-11-049	870.64	875.14	4.50	V3B	Medium green grey coloured and fine grained Basalt. Basalt is well foliated and hornblende altered to 7%. Veining is at 3%. Primary texture has been completely obliterated. The unit is not mineralised.	

Hole Name	From	То	Length	Code	Description	Rep
CR-11-049	875.14	885.08	9.94	I2G	Medium to light grey coloured and fine grained Quartz Monzodiorite. Intrusive contains a short section of Basalt near the top of the unit. Quartz Monzodiorite is weakly foliated but sections are brecciated and ground up. Healed by quartz and quartz carbonate with additional cross cutting veining and late stage biotite infilling of the remaining fractures. Intrusive is almost white bleached surrounding the broken up sections due to silica flooding. i% biotite stands out best in the light coloured sections. Outside of the silicified parts the unit is to 3% sericitised. The mineralisation with 0.5% pyrite and trace arsenopyrite was not affected by the brecciation or the silicification. Contacts are sharp, upper at 61 degCA and lower at 76 degCA.	
CR-11-049	885.08	925.24	40.16	V3B	Medium green grey coloured and medium grained Basalt. Grey colour from recrystalised feldspars and green colour from pervasive hornblende alteration. Unit is very well foliated for the most part and the hornblende alteration has obliterated most primary texture except the vein patterns. The upper part of the unit until 894m contains only 1% of veining. Past that, coinciding with the drop in grey feldspar blotches the veining picks up to 6%. Traces of pyrrhotite to 894m. Between 894m and 899.90m pyrrhotite is disseminated and can be observed replacing carbonate in some of the veins present. Average for pyrrhotite is 0.75%. Pyrite, chalcopyrite and arsenopyrite are present in traces. By 902m the foliation has become more inconsistent and subtle but the hornblende alteration persists.	
CR-11-049	925.24	925.70	0.46	FLT	Faultzone with 8% biotite alteration and tendency of core to break into slickensided poker chip pieces. Quartz carbonate veining is truncated at fault planes. Mineralised with trace pyrrhotite. Planes run between 70 and 80 degCA.	
CR-11-049	925.70	935.68	9.98	V3B	Dark green grey coloured and fine to medium grained Basalt. Pervasive hornblende alteration throughout. Sections with no primary texture alternate with sections that show pillow selvedges and amygdules. Quartz carbonate veining is at 5%. Traces of pyrrhotite and chalcopyrite in places.	
CR-11-049	935.68	935.69	0.01	EOH	End of Hole. Hole was terminated on August 13, 2011 at 935.7 metres after drilling 75 metres into the footwall of the targeted shear zone without encountering another major structure. Casing was left in the ground and capped allowing further investigation. 215 NQ core trays were used. The core is stored at Conquest's Alexander Core Yard on the property. 98 Samples were sent out to AGAT Laboratories for fire assay.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-11-049	40.20	44.54	121	Grey coloured, medium grain textured, 55degCA foliated, biotite-bearing Quartz Diorite sill with conformable upper and lower contacts at foliated Basalt. Trace pyrite disseminated throughout.	
CR-11-049	282.15	283.11	V3B	Sheared Block of biotite-chlorite bearing Basalt. Gabbro wallrock contains quenched fine grained crystal texture. Block foliation is 40degCA.	
CR-11-049	435.00	436.96	12J	Massive, dark grey green coloured, non magnetic, fine grained, disseminated trace pyrite bearing Diorite. Sharp upper and lower contacts at 65 and 55degCA respectively.	
CR-11-049	452.57	456.07	12G	Foliated, medium grey coloured, trace pyrite and arseno pyrite bearing Quartz Monzodiorite. Foliation parallel to contacts. Upper and lower contacts are planar at 64 and 60degCA respectively.	
CR-11-049	464.08	467.60	12G	Foliated, medium grey coloured, trace pyrite and arseno pyrite bearing Quartz Monzodiorite. Foliation parallel to contacts. Upper and lower contacts are planar at 65degCA.	
CR-11-049	578.28	579.50	12G	Medium brown grey coloured and fine grained Quartz Monzodiorite. Intrusive is foliated and contains traces of biotite and 1% sericite. Pyrite is present in small trace amounts. Contacts are sharp, upper at 67 degCA and lower at 75 degCA.	
CR-11-049	594.88	597.34	I2G	Medium grey coloured and fine grained Quartz Monzodiorite. As compared to previous Quartz monzodiorite this one shows less groundmass and more phenocrystals, hence lighter colour. Intrusive is foliated and sericitised locally. Blebby pyrite dominates but towards the base more and more pyrrhotite is showing, which might be connected to quartz carbonate vein fragments observed. associated with the pyrrhotite are a few flecks of chalcopyrite. 0.1% arsenopyrite present are distributed evenly throughout and do not seem affected by the distribution of either pyrite or pyrrhotite. Contacts are sharp, upper at 64 degCA and lower at 59 degCA.	
CR-11-049	666.80	667.91	12G	Medium grey coloured and fine grained Quartz Monzodiorite with coarse quartz eyes. Intrusive is well foliated and shows sericite alteration to 1%. Mineralised with pyrite at 1% and pyrrhotite at 0.2% and traces of arsenopyrite. Contacts are sharp. The upper one is uneven at roughly 75 degCA. Lower contact is planar at 69 degCA.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-11-049	706.20	707.06	SHR	Contact shear in Basalt contains 10% biotite on average, strongly boudinaged quartz carbonate veins and thin stringers of Gabbro and Quartz Monzodiorite. Minimum trace amounts of pyrite can be observed.	
CR-11-049	707.06	707.67	12G	Medium grey coloured fine grained Quartz Monzodiorite. Intrusive has exploited the contact between Basalt and Gabbro below and is very brittle due to a fair amount of shearing. Coarser quartz crystals are stressed and fractured and white opaque as compared to "normal" Quartz Monzodiorites where the quartz crystals tend to be solid and glassy in appearance. Mineralised with trace pyrite. Upper contact is broken. Lower contact is sharp at 63 degCA.	
CR-11-049	766.76	769.31	I2G	Light to dark grey coloured and fine grained Quartz Monzodiorite. Intrusive shows some blotchy bleaching and an average 2% sericite alteration. At 767.10m about 0.2m of brecciation and shear follow, but there is no associated increase in veining or mineralisation. Pyrite is present as small streaky masses to 0.5% and fine cubic arsenopyrite reaches 0.1%. The mineralisation is waning in the last meter towards the base. The upper contact is sharp at 68 degCA. The lower contact is interfingered over a distance of 12cm.	
CR-11-049	772.91	774.46	I2G	Medium grey coloured and fine grained Quartz Monzodiorite with milky, idiomorph quartz crystals. Intrusive is weakly foliated and contains minimum trace sulphides. Contacts are sharp, upper at 50 and lower at 51 degCA.	
CR-11-049	777.11	777.77	I2G	Creamy medium grey coloured and fine grained Quartz Monzodiorite. Thin intrusive at center of a moderate shear is sheared as well. While the surrounding shear is only trace mineralised the Quartz Monzodiorite contains 1.25% of blebby pyrite, often drawn out to streaks due to the shearing and 0.2% arsenopyrite in small granular masses. Contacts are sharp, upper at 77 degCA and lower at 69 degCA.	
CR-11-049	795.35	797.05	12G	Medium grey brown coloured and fine grained Quartz Monzodiorite. The intrusive is foliated and contains trace biotite and about 3% sericite. 7% quartz carbonate veining is mostly undeformed and not mineralised. The intrusive contains 1% blebby pyrite and 0.1% very fine grained cubic arsenopyrite. Contacts are sharp, upper at 65 degCA and lower at 79 degCA.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-11-049	832.60	833.25	12J	Medium grey coloured and medium grained Diorite. Intrusive is not foliated but shows flow or deformation patterns based on the orientation of up to 2% biotite crystals present. Minimal traces of pyrite are present. Upper contact is sharp at 58 degCA. The lower contact is sharp with large undulations, approximately at 35 degCA.	
CR-11-049	915.25	916.89	12G	Medium grey coloured and fine grained Quartz Monzodiorite. Intrusive is moderately foliated and sericitised to 1%. Contains 3% quartz and quartz carbonate veining that is almost undeformed. Traces of pyrite and a few crystals of arsenopyrite in places. Contacts are sharp upper at 70 degCA and lower at 74 degCA.	

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-11-049	E5338463	39.70	40.20	0.50		Upper Wing Sample: Massive Basalt with NIL sulphides	<1	11T521198
CR-11-049	E5338464	40.20	41.70	1.50	consecutive	Character Sample: Foliated Quartz Diorite with trace PY	<1	11T521198
CR-11-049	E5338465	41.70	43.20	1.50	consecutive	Character Sample: Foliated Quartz Diorite with trace PY	<1	11T521198
CR-11-049	E5338466	43.20	44.54	1.34	consecutive	Character Sample: Foliated Quartz Diorite with trace PY	2	11T521198
CR-11-049	E5338467	44.54	46.00	1.46	consecutive	Lower Wing Sample: Massive Basalt with NIL sulphides	4	11T521198
CR-11-049	E5338468	74.50	75.20	0.70	not consecutive	Upper Wing Sample: Massive Basalt with trace PY	2	11T521198
						Fault and Sheared 02% PY and 02%PO mineralized, 05% MT		
CR-11-049	E5338469	75.20	76.20	1.00	consecutive	bearing Contact. Well healed with silica. Boudinaged and	20	11T521198
						dismembered quartz veins.		
CR-11-049	E5338470	0.00	0.00	0.00	not consecutive	Standard Sample: PM431 2780 ppm	2970	11T521198
						Fault and Sheared 02% PY and 02%PO mineralized, 05% MT		
CR-11-049	E5338471	76.20	77.50	1.30	not consecutive	bearing Contact. Well healed with silica. Boudinaged and	91	11T521198
						dismembered guartz veins.		
	55000 470		=0.00	4 5 0		Lower Wing Sample: fine grained foliated Gabbro with 05% biotite	2	447504400
CR-11-049	E5338472	/7.50	79.00	1.50	consecutive	and NIL sulphides	3	111521198
						Character Sample: Single sample of Massive Basalt with up to 10%		
CR-11-049	E5338473	370.82	371.82	1.00	not consecutive	hairline to mm scale guartz carbonate filled fractures. NIL	6	11T521198
						Sulphides.		
	55000 47 4	075.40	076.40	4.00		Wing Sample: Massive Basalt with less than 2% quartz carbonate		447524400
CR-11-049	E5338474	375.40	376.40	1.00	not consecutive	veining and NIL sulphides	2	111521198
CD 11 010	55220475	276.40	277.20	0.00		Blank Sample: One 10cm wide bt-chl-cb-(PO) pillow selvage in	.1	447524400
CR-11-049	E5338475	376.40	377.30	0.90	consecutive	Basalt	<1	111521198
CR-11-049	E5338476	378.16	379.16	1.00	not consecutive	Upper Wing Sample: Massive Basalt with NIL sulphides	7	11T521198
						Low angle (20dagCA) guarta carbonata voing with Croy Sulphide in		
CR-11-049	E5338477	379.16	380.16	1.00	consecutive	Low angle (Souegca) qualiz-carbonate veins with Grey Sulphide in	6	11T521198
						veins and 05% PO disseminated in basalt wall fock		
						Lower Wing Sample: Miner (<01%) guartz carbonato in wallrock		
CR-11-049	E5338478	380.16	381.16	1.00	consecutive	Lower wing sample. Winor (<01%) quartz carbonate in wanock	4	11T521198
						continuing from above. Massive Basait. Nil sulphides.		
CR-11-049	E5338479	451.57	452.57	1.00	not consecutive	Upper Wing Sample: Basalt NIL sulphides	8	11T521198
CR 11 040	FF220400	452.57	454.00	1 4 2	concosutivo	Double Split Sample: Quartz Monzodiorite with trace Pyrite and	110	117521100
CR-11-049	E5338480	452.57	454.00	1.43	consecutive	trace APY	119	111521198
CR-11-049	E5338481	454.00	455.00	1.00	consecutive	Quartz Monzodiorite with trace Pyrite and trace APY	414	11T521198
CR-11-049	E5338482	455.00	456.07	1.07	consecutive	Quartz Monzodiorite with trace Pyrite and trace APY	117	11T521198
CR-11-049	E5338483	456.07	457.07	1.00	consecutive	Lower Wing Sample Basalt trace PO-PY	10	11T521198
CR-11-049	E5338484	463.00	464.08	1.08	not consecutive	Upper Wing Basalt NIL 5%QCBV	6	11T521198
CD 11 040	FF22040F	464.00	465.00	0.02	concoutive	Foliated trace PY APY bearing grey coloured Quartz Monzodiorite	2	117521100
CR-11-049 E5338485	38485 464.08	464.08 465.00		consecutive	with one very low angle 5cm quartz vein	2	111221198	

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-11-049	E5338486	465.00	466.10	1.10	consecutive	Foliated trace PY APY bearing grey coloured Quartz Monzodiorite	39	11T521198
CR-11-049	E5338487	466.10	467.60	1.50	consecutive	Foliated trace PY APY bearing grey coloured Quartz Monzodiorite	33	11T521198
CR-11-049	E5338488	467.60	468.66	1.06	consecutive	Lower Wing Sample: Basalt NIL sulphides and 5%QCBV	9	11T521198
CR-11-049	E5338489	540.30	540.80	0.50	not consecutive	Wing sample, Basalt with pervasive hornblende alteration.	8	11T521198
CR-11-049	E5338490	0.00	0.00	0.00	not consecutive	Standard PM 446 1.22 gm/t Au	1270	11T521198
CR-11-049	E5338491	540.80	542.30	1.50	not consecutive	Quartz Monzodiorite with 1% Pyrite and 0.2% pyrrhotite and 0.1% arsenopyrite.	123	11T521198
CR-11-049	E5338492	542.30	543.80	1.50	consecutive	Quartz Monzodiorite with 1% Pyrite and 0.2% pyrrhotite and 0.1% arsenopyrite.	20	11T521198
CR-11-049	E5338493	543.80	545.30	1.50	consecutive	Quartz Monzodiorite with 1% Pyrite and 0.2% pyrrhotite and 0.1% arsenopyrite.	147	11T521198
CR-11-049	E5338494	545.30	546.80	1.50	consecutive	Quartz Monzodiorite with 1% Pyrite and 0.2% pyrrhotite and 0.1% arsenopyrite.	146	11T521198
CR-11-049	E5338495	546.80		-546.80	consecutive		7	11T521198
CR-11-049	E5338496	546.80	548.30	1.50	not consecutive	Quartz Monzodiorite with 1% Pyrite and 0.2% pyrrhotite and 0.1% arsenopyrite.	56	11T521198
CR-11-049	E5338497	548.30	549.80	1.50	consecutive	Quartz Monzodiorite with 1% Pyrite and 0.2% pyrrhotite and 0.1% arsenopyrite. With 40cm section of Basalt.	86	11T521198
CR-11-049	E5338498	549.80	551.30	1.50	consecutive	Quartz Monzodiorite with 1% Pyrite and 0.2% pyrrhotite and 0.1% arsenopyrite. With 70cm section of Basalt.	122	11T521198
CR-11-049	E5338499	551.30	552.41	1.11	consecutive	Quartz Monzodiorite with 1% Pyrite and 0.2% pyrrhotite and 0.1% arsenopyrite.	47	11T521198
CR-11-049	E5338500	552.41	553.52	1.11	consecutive	Quartz Monzodiorite with 1% Pyrite and 0.2% pyrrhotite and 0.1% arsenopyrite.	89	11T521198
CR-11-049	E5338501	553.52	554.02	0.50	consecutive	Wing sample, foliated Basalt with Biotite alteration at contact.	86	11T521198
CR-11-049	E5338502	594.00	594.88	0.88	not consecutive	Wing sample, chloritic Basalt with 10% veining.	9	11T521198
CR-11-049	E5338503	594.88	596.11	1.23	consecutive	Quartz Monzodiorite with 1% pyrite, 0.25% pyrrhotite, 0.1% arsenopyrite and trace chalcopyrite.	36	11T521198
CR-11-049	E5338504	596.11	597.34	1.23	consecutive	Quartz Monzodiorite with 1% pyrite, 0.25% pyrrhotite, 0.1% arsenopyrite and trace chalcopyrite.	14	11T521198
CR-11-049	E5338505	597.34	59 <u>8</u> .00	0.66	consecutive	Wing sample, chloritic Basalt with 10% veining.	8	11T521198
CR-11-049	E5338506	625.06	625.56	0.50	not consecutive	Wing sample, Basalt with chloritic pillow selvedges, 3% veining.	3	11T521198
CR-11-049	E5338507	625.56	626.56	1.00	consecutive	Shear with carbonate overprinting and trace pyrite.	2	11T521198
CR-11-049	E5338508	626.56	627.30	0.74	consecutive	Shear with carbonate overprinting and trace pyrite.	3	11T521198

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-11-049	E5338509	627.30	627.80	0.50	consecutive	Wing sample, Basalt with chloritic pillow selvedges, no veining, trace carbonate.	6	11T521198
CR-11-049	E5338510	0.00	0.00	0.00	not consecutive	Standard PM 442 0.62 gm/t	646	11T521198
CR-11-049	E5338511	643.50	644.50	1.00	not consecutive	Wing sample, Basalt with pervasive hornblende alteration and weak biotite.	5	11T521198
CR-11-049	E5338512	644.50	645.50	1.00	consecutive	Weak shear with carbonate overprinting and 0.1% pyrite.	9	11T521198
CR-11-049	E5338513	645.50	646.36	0.86	consecutive	Weak shear with carbonate overprinting and 0.1% pyrite.	5	11T521198
CR-11-049	E5338514	646.36	647.00	0.64	consecutive	Wing sample, Basalt with pervasive hornblende alteration and carbonaceous fractures and 2% veining.	6	11T521198
CR-11-049	E5338515	675.00	676.00	1.00	not consecutive	Basalt, minor carbonate healed brecciation with minimum trace sulphides.	5	11T521198
CR-11-049	E5338516	766.26	766.76	0.50	not consecutive	Wing sample, chloritic Basalt with 7% veining.	5	11T521198
CR-11-049	E5338517	766.76	768.00	1.24	consecutive	Quartz Monzodiorite with 0.75% pyrite and 0.1% arsenopyrite.	80	11T521198
CR-11-049	E5338518	768.00	769.31	1.31	consecutive	Quartz Monzodiorite with 0.25% pyrite and trace arsenopyrite.	7	11T521198
CR-11-049	E5338519	769.31	769.81	0.50	consecutive	Wing sample, chloritic Basalt with 2% veining.	<1	11T521198
CR-11-049	E5338520	775.72	776.22	0.50	not consecutive	Wing sample, chloritic Basalt with 2% veining.	6	11T521198
CR-11-049	E5338521	776.22	777.11	0.89	consecutive	Shear with 2% biotite and trace pyrite.	11	11T521198
CR-11-049	E5338522	777.11	777.77	0.66	consecutive	Sheared Quartz Monzodiorite with 1.25% pyrite and 0.2% arsenopyrite.	79	11T521198
CR-11-049	E5338523	777.77	778.27	0.50	consecutive	Shear with 2% biotite and trace pyrite and trace pervasive carbonate.	15	11T521198
CR-11-049	E5338524	778.27	778.77	0.50	consecutive	Wing sample, chloritic Basalt with 5% veining, carbonaceous fractures.	2	11T521198
CR-11-049	E5338525	794.85	795.35	0.50	not consecutive	Wing sample, Foliated Basalt, last 10cm 20% biotite at contact.	30	11T521198
CR-11-049	E5338526	795.35	796.35	1.00	consecutive	Quartz Monzodiorite with 1% pyrite and 0.1% arsenopyrite.	47	11T521198
CR-11-049	E5338527	796.35	797.05	0.70	consecutive	Quartz Monzodiorite with 1% pyrite and 0.1% arsenopyrite.	111	11T521198
CR-11-049	E5338528	797.05	797.55	0.50	consecutive	Wing sample, contact shear in Basalt with 3% biotite.	9	11T521198
CR-11-049	E5338529	854.00	854.90	0.90	not consecutive	Wing sample, Basalt with fine grained pervasive hornblende, 4% veining and trace pyrrhotite.	<1	11T521198
CR-11-049	E5338530	0.00	0.00	0.00	not consecutive	Standard PM 431 2.78 gm/t	2830	11T521198
CR-11-049	E5338531	854.90	856.26	1.36	not consecutive	Shear with carbonate quartz stringers, 15% pyrrhotite and trace pyrite, chalcopyrite and grey sulphides. 0.2% disseminated magnetite.	16	11T521198
CR-11-049	E5338532	856.26	857.26	1.00	consecutive	Shear, less carbonate quartz stringers, 7% pyrrhotite. Trace sulphides as previous.	2	11T521198

Sampling Record

CR-11-049 E5338533 857.26 85.84.4 1.18 consecutive sulphilies as previous. 1 111521198 CR-11-049 E5338534 656.0 867.40 0.00 rescenters Planar shear with 0.25% pyrrhotte and 0.1% pyrite. 1 111521198 CR-11-049 E5338534 866.044 860.44 1.00 rescenters Planar shear with 0.25% pyrrhotte and 0.1% pyrite. 3 111521198 CR-11-049 E5338534 860.44 861.37 0.93 consecutive Planar shear with 0.25% pyrrhotte and 0.1% pyrite. 3 111521198 CR-11-049 E5338538 861.37 862.00 0.63 consecutive Quartz Monzolorite with 0.5% pyrite. 3 111521198 CR-11-049 E5338538 860.02 870.64 1.62 consecutive Quartz Monzolorite with 0.5% pyrite. 3 111521198 CR-11-049 E5338541 870.64 1.74 0.50 consecutive Wing sample, foilated hornblende Basalt. 9 111521198 CR-11-049 E5338544 875.64 877.55 1.70	HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
$ \begin{array}{c} \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	CR-11-049	E5338533	857.26	858.44	1.18	consecutive	Shear, less carbonate quartz stringers, 7% pyrrhotite. Trace sulphides as previous.	1	11T521198
CR-11-049 ES338535 866.90 867.40 0.50 net consecutive Wing sample, follated hornblende Basalt. 3 111521198 CR-11-049 ES338536 859.44 860.44 1.00 net consecutive Planar shear with 0.25% pyrthotite and 0.1% pyrite. 3 111521198 CR-11-049 ES338537 860.44 861.37 0.93 consecutive Base of Shear with tsronger hornblende. Mineralisation as before, but trace magnetite in veins not disseminated in host rock. 7 111521198 CR-11-049 ES338538 861.37 862.00 1.62 consecutive Wing sample, well follated Basalt with suphides. 3 111521198 CR-11-049 ES338540 869.02 1.62 consecutive Quartz Monzodiorite with 0.5% pyrite. 3 111521198 CR-11-049 ES338541 875.14 0.50 net consecutive Quartz Monzodiorite with 0.5% pyrite. 4 111521198 CR-11-049 ES338543 875.14 876.48 1.34 consecutive Quartz Monzodiorite with 0.5% pyrite, trace arsenopyrite and sericite. 4 111521198 CR-11-	CR-11-049	E5338534	858.44	859.44	1.00	consecutive	Planar shear with 0.25% pyrrhotite and 0.1% pyrite.	1	11T521198
CR-11-049 E5338536 859.44 860.44 1.00 not consecutive Planar shear with 0.25% pyrthetite and 0.1% pyrite. 3 111521198 CR-11-049 E5338537 860.44 861.37 0.93 consecutive Base of shear with stronger homblende. Mineralisation as before, but trace magnetite in veins not disseminated in host rock. 7 111521198 CR-11-049 E5338538 861.37 862.00 0.63 consecutive Wing sample, well follated Basalt with stuphides. 3 111521198 CR-11-049 E5338548 867.40 869.02 870.64 871.14 0.50 consecutive Wing sample, well follated homblende Basalt. 9 111521198 CR-11-049 E5338544 876.48 871.44 0.50 consecutive Wing sample, follated homblende Basalt. 25 111521198 CR-11-049 E5338544 876.48 877.65 1.17 consecutive Quart Monzodiorite with 0.5% pyrite, trace arsenopyrite and sericite. 47 111521198 CR-11-049 E5338546 879.15 1.50 consecutive Quart Monzodiorite with 0.5% pyrite, trace arsenopyrite	CR-11-049	E5338535	866.90	867.40	0.50	not consecutive	Wing sample, foliated hornblende Basalt.	3	11T521198
CR-11-049 E5338537 860.44 861.37 0.93 consecutive but trace magnetite in veins not disseminated in host rock. 7 117521198 CR-11-049 E5338538 861.37 862.00 0.63 consecutive but trace magnetite in veins not disseminated in host rock. 7 117521198 CR-11-049 E5338538 861.37 0.93 consecutive but trace magnetite in veins not disseminated in host rock. 7 117521198 CR-11-049 E5338540 860.02 870.64 1.62 consecutive wing sample, well foliated hornblende Basalt. 9 117521198 CR-11-049 E5338541 870.64 877.14 0.50 not consecutive wing sample, well foliated hornblende Basalt. 9 117521198 CR-11-049 E5338541 870.64 877.15 1.17 consecutive wing sample, well foliated hornblende Basalt. 48 117521198 CR-11-049 E5338544 876.48 877.65 1.17 consecutive enrice. Assimilated section of hornblende Basalt. 48 117521198 CR-11-049 E5338546 879.15 1.50 consecutive enrice. A	CR-11-049	E5338536	859.44	860.44	1.00	not consecutive	Planar shear with 0.25% pyrrhotite and 0.1% pyrite.	3	11T521198
CR-11-049 ES338538 861.37 862.00 0.63 consecutive Quart XM020diorite with 0.5% pyrite. 3 117521198 CR-11-049 ES338530 867.40 869.02 1.62 not consecutive Quart XM020diorite with 0.5% pyrite. 33 117521198 CR-11-049 ES338541 870.64 871.14 0.50 consecutive Quart XM020diorite with 0.5% pyrite. 47 117521198 CR-11-049 ES338541 870.64 877.14 0.50 not consecutive Wing sample, foliated hornblende Basalt. 25 117521198 CR-11-049 ES338544 876.48 877.65 1.70 consecutive Wing sample, foliated hornblende Basalt. 48 117521198 CR-11-049 ES338544 876.48 877.65 1.50 consecutive Quart Monzodiorite with 0.5% pyrite, trace arsenopyrite and sericite. 48 117521198 CR-11-049 ES338546 879.15 880.65 1.50 consecutive Quart Monzodiorite with 0.5% pyrite, trace arsenopyrite and sericite. 188 117521198 CR-11-049 ES	CR-11-049	E5338537	860.44	861.37	0.93	consecutive	Base of shear with stronger hornblende. Mineralisation as before, but trace magnetite in veins not disseminated in host rock.	7	11T521198
CR-11-049 ES338539 867.40 869.02 1.62 not consecutive Quartz Monzodiorite with 0.5% pyrite. 33 117521198 CR-11-049 ES338540 869.02 870.64 1.62 consecutive Quartz Monzodiorite with 0.5% pyrite. 33 117521198 CR-11-049 ES338540 869.02 870.64 871.14 0.50 consecutive Wing sample, follated hornblende Basalt. 9 117521198 CR-11-049 ES338541 870.64 875.14 0.50 not consecutive Wing sample, follated hornblende Basalt. 25 117521198 CR-11-049 ES338541 876.48 877.65 1.17 consecutive Assimilated section of hornblende Basalt. 48 117521198 CR-11-049 ES338546 879.15 1.50 consecutive Assimilated section of hornblende Basalt. 123 117521198 CR-11-049 ES338547 880.65 1.50 consecutive Quartz Monzodiorite with 0.5% pyrite, trace arsenopyrite and sericite. Blotchy bleaching. 123 117521198 CR-11-049 ES338547 883.65 </td <td>CR-11-049</td> <td>E5338538</td> <td>861.37</td> <td>862.00</td> <td>0.63</td> <td>consecutive</td> <td>Wing sample, well foliated Basalt with sulphides.</td> <td>3</td> <td>11T521198</td>	CR-11-049	E5338538	861.37	862.00	0.63	consecutive	Wing sample, well foliated Basalt with sulphides.	3	11T521198
CR-11-049 E5338540 869.02 370.64 1.62 consecutive Quartz Monzodiorite with 0.5% pyrite and bleached section. 47 117521198 CR-11-049 E5338541 870.64 871.14 0.50 consecutive Wing sample, foliated hornblende Basalt. 9 117521198 CR-11-049 E5338542 874.64 875.14 0.50 not consecutive Wing sample, foliated hornblende Basalt. 25 117521198 CR-11-049 E5338543 877.65 877.65 1.17 consecutive Assimilated section of hornblende Basalt. 47 117521198 CR-11-049 E5338546 877.65 879.15 1.50 consecutive Assimilated section of hornblende Basalt. 48 117521198 CR-11-049 E5338546 879.15 880.65 1.50 consecutive Quartz Monzodiorite with 0.5% pyrite, trace arsenopyrite and sericite. Biotchy bleaching. 102 117521198 CR-11-049 E5338547 880.65 882.15 1.50 consecutive Quartz Monzodiorite with 0.5% pyrite, trace arsenopyrite and sericite. Biotchy bleaching. Quartz Monzodiorite with 0.5% pyrit	CR-11-049	E5338539	867.40	869.02	1.62	not consecutive	Quartz Monzodiorite with 0.5% pyrite.	33	11T521198
CR-11-049 ES338541 870.64 871.14 0.50 consecutive Wing sample, well foliated hornblende Basalt. 9 117521198 CR-11-049 ES338542 874.64 875.14 0.50 not consecutive Wing sample, foliated hornblende Basalt. 25 117521198 CR-11-049 ES338543 875.14 876.48 1.34 consecutive Wing sample, foliated hornblende Basalt. 25 117521198 CR-11-049 ES338544 876.48 877.65 1.17 consecutive Assimilated section of hornblende Basalt. 47 117521198 CR-11-049 ES338546 877.65 877.15 860.65 1.50 consecutive Quartz Monzodiorite with 0.5% pyrite, trace arsenopyrite and sericite. Bitchy bleaching. 123 117521198 CR-11-049 ES338547 880.65 882.15 1.50 consecutive Quartz Monzodiorite with 0.5% pyrite, trace arsenopyrite and sericite. Bitchy bleaching. 117521198 CR-11-049 ES338548 882.15 883.65 1.50 consecutive Quartz Monzodiorite with 0.5% pyrite, trace arsenopyrite and sericite. Bitchy bleaching. <td< td=""><td>CR-11-049</td><td>E5338540</td><td>869.02</td><td>870.64</td><td>1.62</td><td>consecutive</td><td>Quartz Monzodiorite with 0.5% pyrite and bleached section.</td><td>47</td><td>11T521198</td></td<>	CR-11-049	E5338540	869.02	870.64	1.62	consecutive	Quartz Monzodiorite with 0.5% pyrite and bleached section.	47	11T521198
CR-11-049 E5338542 874.64 875.14 0.50 not consecutive Wing sample, foliated hornblende Basalt. 25 117521198 CR-11-049 E5338543 875.14 876.48 1.34 consecutive Quartz Monzolorite with 0.5% pyrite, trace arsenopyrite and sericite. 47 117521198 CR-11-049 E5338544 876.48 877.65 1.17 consecutive Assimilated section of hornblende Basalt. 48 117521198 CR-11-049 E5338546 879.15 1.50 consecutive Assimilated section of hornblende Basalt. 48 117521198 CR-11-049 E5338546 879.15 880.65 1.50 consecutive Quartz Monzolorite with 0.5% pyrite, trace arsenopyrite and sericite. Blotchy bleaching. 123 117521198 CR-11-049 E5338547 880.65 882.15 1.50 consecutive Quartz Monzolorite with 0.5% pyrite, trace arsenopyrite and sericite. Blotchy bleaching. Quartz Monzolorite with 0.5% pyrite, trace arsenopyrite and sericite. Blotchy bleaching. 117521198 CR-11-049 E5338548 882.15 1.50 consecutive Quartz Monzolorite with 0.5% pyrite, trace ar	CR-11-049	E5338541	870.64	871.14	0.50	consecutive	Wing sample, well foliated hornblende Basalt.	9	11T521198
CR-11-049 E5338543 875.14 876.48 1.34 consecutive sericite. Quartz Monzodiorite with 0.5% pyrite, trace arsenopyrite and sericite. 47 117521198 CR-11-049 E5338544 876.48 877.65 1.17 consecutive consecutive Assimilated section of hornblende Basalt. 48 1117521198 CR-11-049 E5338546 879.15 880.65 1.50 consecutive Assimilated section of hornblende Basalt. 48 1117521198 CR-11-049 E5338546 879.15 880.65 1.50 consecutive Consecutive Quartz Monzodiorite with 0.5% pyrite, trace arsenopyrite and sericite. Blotchy bleaching. 111521198 111521198 CR-11-049 E5338547 880.65 882.15 1.50 consecutive Quartz Monzodiorite with 0.5% pyrite, trace arsenopyrite and sericite. Blotchy bleaching. 111521198 CR-11-049 E5338548 882.15 1.50 consecutive Quartz Monzodiorite with 0.5% pyrite, trace arsenopyrite and sericite. Blotchy bleaching. 111521198 CR-11-049 E5338549 883.65 885.08 1.43 consecutive Quartz Monzodiorite with 0.5% pyrite, tr	CR-11-049	E5338542	874.64	875.14	0.50	not consecutive	Wing sample, foliated hornblende Basalt.	25	11T521198
CR-11-049 E5338544 876.48 877.65 1.17 consecutive Assimilated section of hornblende Basalt. 48 117521198 CR-11-049 E5338545 877.65 879.15 1.50 consecutive Quartz Monzodiorite with 0.5% pyrite, trace arsenopyrite and sericite. Partially brecciated. 123 117521198 CR-11-049 E5338546 879.15 880.65 1.50 consecutive Quartz Monzodiorite with 0.5% pyrite, trace arsenopyrite and sericite. Blotchy bleaching. 188 117521198 CR-11-049 E5338547 880.65 882.15 1.50 consecutive Quartz Monzodiorite with 0.5% pyrite, trace arsenopyrite and sericite. Blotchy bleaching. 117521198 CR-11-049 E5338547 882.15 883.65 1.50 consecutive carbonate veining. Quartz Monzodiorite with 0.5% pyrite, trace arsenopyrite and sericite. Blotchy bleaching, breciation and quartz / quartz 68 117521198 CR-11-049 E5338548 882.15 883.65 1.43 consecutive sericite. Blotchy bleaching, breciation and quartz / quartz 244 117521198 CR-11-049 E5338550 0.00 0.00 not consecutive Vi	CR-11-049	E5338543	875.14	876.48	1.34	consecutive	Quartz Monzodiorite with 0.5% pyrite, trace arsenopyrite and sericite.	47	11T521198
CR-11-049 E5338545 877.65 879.15 1.50 consecutive consecutive Quartz Monzodiorite with 0.5% pyrite, trace arsenopyrite and sericite. Partially brecciated. 123 11T521198 CR-11-049 E5338546 879.15 880.65 1.50 consecutive consecutive Quartz Monzodiorite with 0.5% pyrite, trace arsenopyrite and sericite. Blotchy bleaching. 188 11T521198 CR-11-049 E5338547 880.65 882.15 1.50 consecutive consecutive Quartz Monzodiorite with 0.5% pyrite, trace arsenopyrite and sericite. Blotchy bleaching. 11T521198 CR-11-049 E5338548 882.15 883.65 1.50 consecutive consecutive Quartz Monzodiorite with 0.5% pyrite, trace arsenopyrite and sericite. Blotchy bleaching, brecciation and quartz / quartz 244 11T521198 CR-11-049 E5338549 883.65 885.08 1.43 consecutive Quartz Monzodiorite with 0.5% pyrite, trace arsenopyrite and sericite. Blotchy bleaching, brecciation and quartz / quartz 244 11T521198 CR-11-049 E5338551 885.08 1.43 consecutive Ving sample, foliated hornblende Basalt with 1% veining. 12 11T521198 CR-11-049 E533	CR-11-049	E5338544	876.48	877.65	1.17	consecutive	Assimilated section of hornblende Basalt.	48	11T521198
CR-11-049 E5338546 879.15 880.65 1.50 consecutive consecutive Quartz Monzodiorite with 0.5% pyrite, trace arsenopyrite and sericite. Blotchy bleaching. 188 11T521198 CR-11-049 E5338547 880.65 882.15 1.50 consecutive consecutive Consecutive consecutive Quartz Monzodiorite with 0.5% pyrite, trace arsenopyrite and sericite. Blotchy bleaching, brecciation and quartz / quartz 68 11T521198 CR-11-049 E5338548 882.15 883.65 1.50 consecutive consecutive Quartz Monzodiorite with 0.5% pyrite, trace arsenopyrite and sericite. Blotchy bleaching, brecciation and quartz / quartz 68 11T521198 CR-11-049 E5338549 883.65 885.08 1.43 consecutive consecutive Quartz Monzodiorite with 0.5% pyrite, trace arsenopyrite and sericite. Blotchy bleaching, brecciation and quartz / quartz 244 11T521198 CR-11-049 E5338550 0.00 0.00 not consecutive Standard PM 440 1.62 gm/t 1600 11T521198 CR-11-049 E5338551 885.08 885.58 0.50 not consecutive Wing sample, foliated hornblende Basalt with 1% veining. 24 11T521198 <td< td=""><td>CR-11-049</td><td>E5338545</td><td>877.65</td><td>879.15</td><td>1.50</td><td>consecutive</td><td>Quartz Monzodiorite with 0.5% pyrite, trace arsenopyrite and sericite. Partially brecciated.</td><td>123</td><td>11T521198</td></td<>	CR-11-049	E5338545	877.65	879.15	1.50	consecutive	Quartz Monzodiorite with 0.5% pyrite, trace arsenopyrite and sericite. Partially brecciated.	123	11T521198
CR-11-049 E5338547 880.65 882.15 1.50 consecutive carbonate veining. Quartz Monzodiorite with 0.5% pyrite, trace arsenopyrite and sericite. Blotchy bleaching, brecciation and quartz / quartz 68 11T521198 CR-11-049 E5338548 882.15 883.65 1.50 consecutive carbonate veining. Quartz Monzodiorite with 0.5% pyrite, trace arsenopyrite and sericite. Blotchy bleaching, brecciation and quartz / quartz 244 11T521198 CR-11-049 E5338549 883.65 885.08 1.43 consecutive consecutive Quartz Monzodiorite with 0.5% pyrite, trace arsenopyrite and sericite. Blotchy bleaching, brecciation and quartz / quartz 244 11T521198 CR-11-049 E5338550 0.00 0.00 not consecutive Standard PM 440 1.62 gm/t 1600 11T521198 CR-11-049 E5338551 885.08 885.58 0.50 not consecutive Wing sample, foliated hornblende Basalt with 1% veining. 24 11T521198 CR-11-049 E5338552 893.00 894.00 1.00 not consecutive Wing sample, foliated Basalt with 0.75% pyrrhotite in veins and disseminated. Pyrite, chalcopyrite and arsenopyrite in traces. 2 11T521198	CR-11-049	E5338546	879.15	880.65	1.50	consecutive	Quartz Monzodiorite with 0.5% pyrite, trace arsenopyrite and sericite. Blotchy bleaching.	188	11T521198
CR-11-049 E5338548 882.15 883.65 1.50 consecutive consecutive Quartz Monzodiorite with 0.5% pyrite, trace arsenopyrite and sericite. Blotchy bleaching, brecciation and quartz / quartz 244 11T521198 CR-11-049 E5338549 883.65 885.08 1.43 consecutive consecutive Quartz Monzodiorite with 0.5% pyrite, trace arsenopyrite and sericite. 60cm quartz vein with late biotite fracture filling. 12 11T521198 CR-11-049 E5338550 0.00 0.00 not consecutive Standard PM 440 1.62 gm/t 1600 11T521198 CR-11-049 E5338551 885.08 885.58 0.50 not consecutive Wing sample, foliated hornblende Basalt with 1% veining. 24 11T521198 CR-11-049 E5338552 893.00 894.00 1.00 not consecutive Wing sample, hornblende Basalt with 1% veining. 24 11T521198 CR-11-049 E5338553 894.00 895.00 1.00 not consecutive Well foliated Basalt with 0.75% pyrrhotite in veins and disseminated. Pyrite, chalcopyrite and arsenopyrite in traces. 2 11T521198 CR-11-049 E5338554 895.00 896.00	CR-11-049	E5338547	880.65	882.15	1.50	consecutive	Quartz Monzodiorite with 0.5% pyrite, trace arsenopyrite and sericite. Blotchy bleaching, brecciation and quartz / quartz carbonate veining.	68	11T521198
CR-11-049 E5338549 883.65 885.08 1.43 consecutive consecutive Quartz Monzodiorite with 0.5% pyrite, trace arsenopyrite and sericite. 60cm quartz vein with late biotite fracture filling. 12 11T521198 CR-11-049 E5338550 0.00 0.00 not consecutive Standard PM 440 1.62 gm/t 1600 11T521198 CR-11-049 E5338551 885.08 885.58 0.50 not consecutive Wing sample, foliated hornblende Basalt with 1% veining. 24 11T521198 CR-11-049 E5338552 893.00 894.00 1.00 not consecutive Wing sample, hornblende Basalt with 1% veining. 24 11T521198 CR-11-049 E5338553 894.00 1.00 not consecutive Wing sample, hornblende Basalt with 0.75% pyrrhotite in veins and disseminated. Pyrite, chalcopyrite and arsenopyrite in traces. 2 11T521198 CR-11-049 E5338554 895.00 896.00 1.00 consecutive Well foliated Basalt with 0.75% pyrrhotite in veins and disseminated. Pyrite, chalcopyrite and arsenopyrite in traces. 2 11T521198 CR-11-049 E5338555 920.00 921.00 1.00 not conse	CR-11-049	E5338548	882.15	883.65	1.50	consecutive	Quartz Monzodiorite with 0.5% pyrite, trace arsenopyrite and sericite. Blotchy bleaching, brecciation and quartz / quartz carbonate veining.	244	11T521198
CR-11-049 E5338550 0.00 0.00 not consecutive Standard PM 440 1.62 gm/t 1600 11T521198 CR-11-049 E5338551 885.08 885.58 0.50 not consecutive Wing sample, foliated hornblende Basalt with 1% veining. 24 11T521198 CR-11-049 E5338552 893.00 894.00 1.00 not consecutive Wing sample, hornblende Basalt with trace sulphides. 3 11T521198 CR-11-049 E5338553 894.00 895.00 1.00 not consecutive Wing sample, hornblende Basalt with 0.75% pyrrhotite in veins and disseminated. Pyrite, chalcopyrite and arsenopyrite in traces. 2 11T521198 CR-11-049 E5338554 895.00 896.00 1.00 consecutive Well foliated Basalt with 0.75% pyrrhotite in veins and disseminated. Pyrite, chalcopyrite and arsenopyrite in traces. 2 11T521198 CR-11-049 E5338554 895.00 896.00 1.00 consecutive Well foliated Basalt with 0.75% pyrrhotite in veins and disseminated. Pyrite, chalcopyrite and arsenopyrite in traces. <1	CR-11-049	E5338549	883.65	885.08	1.43	consecutive	Quartz Monzodiorite with 0.5% pyrite, trace arsenopyrite and sericite. 60cm quartz vein with late biotite fracture filling.	12	11T521198
CR-11-049E5338551885.08885.580.50not consecutiveWing sample, foliated hornblende Basalt with 1% veining.2411T521198CR-11-049E5338552893.00894.001.00not consecutiveWing sample, hornblende Basalt with trace sulphides.311T521198CR-11-049E5338553894.00895.001.00consecutiveWell foliated Basalt with 0.75% pyrrhotite in veins and disseminated. Pyrite, chalcopyrite and arsenopyrite in traces.211T521198CR-11-049E5338554895.00896.001.00consecutiveWell foliated Basalt with 0.75% pyrrhotite in veins and disseminated. Pyrite, chalcopyrite and arsenopyrite in traces.211T521198CR-11-049E5338555920.00921.001.00not consecutiveHornblende Basalt with 5% veining.511T521198	CR-11-049	E5338550	0.00	0.00	0.00	not consecutive	Standard PM 440 1.62 gm/t	1600	11T521198
CR-11-049E5338552893.00894.001.00not consecutiveWing sample, hornblende Basalt with trace sulphides.311T521198CR-11-049E5338553894.00895.001.00consecutiveWell foliated Basalt with 0.75% pyrrhotite in veins and disseminated. Pyrite, chalcopyrite and arsenopyrite in traces.211T521198CR-11-049E5338554895.00896.001.00consecutiveWell foliated Basalt with 0.75% pyrrhotite in veins and disseminated. Pyrite, chalcopyrite and arsenopyrite in traces.211T521198CR-11-049E5338555920.00921.001.00not consecutiveHornblende Basalt with 5% veining.511T521198	CR-11-049	E5338551	885.08	885.58	0.50	not consecutive	Wing sample, foliated hornblende Basalt with 1% veining.	24	11T521198
CR-11-049E5338553894.00895.001.00consecutiveWell foliated Basalt with 0.75% pyrrhotite in veins and disseminated. Pyrite, chalcopyrite and arsenopyrite in traces.211T521198CR-11-049E5338554895.00896.001.00consecutiveWell foliated Basalt with 0.75% pyrrhotite in veins and disseminated. Pyrite, chalcopyrite and arsenopyrite in traces.211T521198CR-11-049E5338555920.00921.001.00not consecutiveHornblende Basalt with 5% veining.511T521198	CR-11-049	E5338552	893.00	894.00	1.00	not consecutive	Wing sample, hornblende Basalt with trace sulphides.	3	11T521198
CR-11-049E5338554895.00896.001.00consecutiveWell foliated Basalt with 0.75% pyrrhotite in veins and disseminated. Pyrite, chalcopyrite and arsenopyrite in traces.<111T521198CR-11-049E5338555920.00921.001.00not consecutiveHornblende Basalt with 5% veining.511T521198	CR-11-049	E5338553	894.00	895.00	1.00	consecutive	Well foliated Basalt with 0.75% pyrrhotite in veins and disseminated. Pyrite, chalcopyrite and arsenopyrite in traces.	2	11T521198
CR-11-049 E5338555 920.00 921.00 1.00 not consecutive Hornblende Basalt with 5% veining. 5 11T521198	CR-11-049	E5338554	895.00	896.00	1.00	consecutive	Well foliated Basalt with 0.75% pyrrhotite in veins and disseminated. Pyrite, chalcopyrite and arsenopyrite in traces.	<1	11T521198
	CR-11-049	E5338555	920.00	921.00	1.00	not consecutive	Hornblende Basalt with 5% veining.	5	11T521198

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-11-049	E5338556	896.00	897.00	1.00	not consecutive	Well foliated Basalt with 0.75% pyrrhotite in veins and disseminated. Pyrite, chalcopyrite and arsenopyrite in traces.	2	11T521198
CR-11-049	E5338557	897.00	898.00	1.00	consecutive	Well foliated Basalt with 0.75% pyrrhotite in veins and disseminated. Pyrite, chalcopyrite and arsenopyrite in traces.	2	11T521198
CR-11-049	E5338558	898.00	899.00	1.00	consecutive	Well foliated Basalt with 0.75% pyrrhotite in veins and disseminated. Pyrite, chalcopyrite and arsenopyrite in traces.	2	11T521198
CR-11-049	E5338559	899.00	899.90	0.90	consecutive	Well foliated Basalt with 0.75% pyrrhotite in veins and disseminated. Pyrite, chalcopyrite and arsenopyrite in traces.	4	11T521198
CR-11-049	E5338560	899.90	901.00	1.10	consecutive	Wing sample, foliated hornblende Basalt with 35cm Diorite.	18	11T521198

Reflex Survey Record

Hole ID	Station (m)	Dip (Degrees)	Azimuth	MAG
CR-11-049	18	-71.00	23.80	5798
CR-11-049	48	-70.10	24.50	5808
CR-11-049	78	-69.40	27.30	5888
CR-11-049	108	-68.00	26.00	5781
CR-11-049	138	-65.20	29.30	5788
CR-11-049	168	-63.00	30.10	5783
CR-11-049	198	-62.30	31.40	5788
CR-11-049	228	-62.00	30.60	5796
CR-11-049	258	-61.60	31.40	5798
CR-11-049	288	-61.20	30.60	5786
CR-11-049	328	-60.80	31.30	5798
CR-11-049	348	-60.30	31.70	5788
CR-11-049	378	-59.90	32.10	5792
CR-11-049	408	-58.70	33.40	5784
CR-11-049	438	-58.30	33.70	5787
CR-11-049	468	-57.90	33.40	5782
CR-11-049	498	-57.40	34.60	5806
CR-11-049	528	-56.80	36.30	5744
CR-11-049	564	-56.20	36.90	5762
CR-11-049	588	-55.70	35.20	5799
CR-11-049	618	-55.20	36.10	5791
CR-11-049	648	-54.80	36.70	5752
CR-11-049	678	-54.20	37.20	5773
CR-11-049	708	-53.60	37.90	5757
CR-11-049	738	-53.20	37.70	5764
CR-11-049	768	-52.90	38.60	5766
CR-11-049	798	-52.30	39.30	5790
CR-11-049	828	-51.80	40.30	5772
CR-11-049	858	-51.40	46.40	5689
CR-11-049	888	-51.00	41.40	5775
CR-11-049	918	-50.60	42.10	5783

Conquest Resources Ltd.

Exploration Diamond Drill Log

CR-11-050

DRILL HOLE # CR	-11-050	LOCATION	Balmertown	, Balmer Townsh	nip, Red Lake Di	strict, Ontario		
PROJECT # Ale	exander	REFERENCE	Alexander		GEOLOGIS	T Meckert	CLAIM	(RL20439
GRID/ NAD-ZONE		NORTHING		EASTING		ELEVATION		GRID TYPE
GRID Ale	exander RL	6+50 S		15+45 E		10004	_	Μ
UTM NA	D83 / 15U	5655421		451203		385		
COLLAR DIP -53	3	GRID DIRECTION		5° W of gridN			AZ DIRECTION	24
NTS REF # 052	2N04	NTS SHEET NAME		Red Lake, Onta	rio			
START DATE 1	15-Aug-11			FINISH DATE	28-Aug-11			
DEPTH (EOH)	876.00	TARGET & Zone De	epth	Shear at 850m				
PURPOSE Tes	st extension	of shear zone end	ountered in	CR-11-049	PI	ECE POINT of Target:	E	mELEV
CASING BW	na	CASING NW		4.5m			CASING HW	na
PLUG @	na	PLUG @		na			PLUG @	na
START DTH	na	WEDGE @		na				
REDUCED @	na		REDUCED @	<u>na</u>				
HOLE STATUS	mpleted, cas	ing left in hole, ca	ipped					
DRILLING CONTRACTO	R	Boart Longyea	r Inc.					
RIG NO.	Y 50 4102						BXS.	200
				Reflex EZ-Shot S	urveys			
DEPTH (m	n)	AZIMU	ТН	•	DIP		Comments:	
18.00		22.8	0	-5	1.20			
78.00		21.1	0	-4	9.80			
138.00)	22.2	0	-4	9.40			
198.00)	22.2	0	-4	9.10			
258.00)	23.0	0	-4	8.40			
318.00)	25.2	0	-4	9.00			
378.00)	26.0	0	-4	7.40	1st Target A sh	ear zone compara	ble to the one
408.00)	26.0	0	-4	6.90	encountered in l	holes CR-11-048 and	d CR-11-049 was
438.00)	26.0	0	-4	6.90	intersected betw	veen 795.91m and	812.38m. While
498.00)	27.5	0	-4	6.10	the quartz carb	onate veining and	d alteration are
528.00)	28.4	0	-4	5.70	favourable the	zone did not retur	n elevated gold
588.00)	28.7	0	-4	5.30	assays. A set of t	wo unusually thick	quartz carbonate
618.00)	29.0	0	-4	5.10	vein between 3	39.19m and 339.8	2m yielded and
648.00)	346.0	0	-4	4.80	investigation	/t Au anu may	warrant further
678.00)	30.0	ס	-4	4.40	investigation.		
708.00)	30.9	0	-4	3.90			
738.00)	31.5	0	-4	3.50			
768.00)	31.9	0	-4	3.50			
798.00)	28.4	0	-4	3.30			
828.00)	30.0	0	-4	3.10			
858.00)	30.2	0	-4	2.90			

Drill with 6m, double stablilized NQ core barrel

Planned hole depth is 875m (2,875')

Core stored at Alexander Core Yard at UTM 0449935 5656595 UTM NAD83 15U

Water source: Sump on CR-11-048 setup

Drill type: LY-50

Major Lithologies

Hole Name	From	То	Length	Code	Description	Rep
CR-11-050	0.00	4.50	4.50	CAS	NW Casing into overburden and bedrock	
CR-11-050	4.50	54.35	49.85	V3B	Medium grey green coloured and fine grained Basalt that is pillowed to massive. Leached and weathered to 9m. Unit is moderately foliated. Hornblende and weak biotite alteration in places with the occasional garnet showing. Average 7% quartz carbonate veining that is strongly dismembered and anastomosing. Trace mineralisation with pyrite and pyrrhotite. Basalt also contains traces of magnetite in places.	
CR-11-050	54.35	55.15	0.80	BRC	Bleached Breccia with epidote green coloured hue in places. Breccia is healed with quartz. Post brecciation low angle fractures contain quartz and quartz carbonate. While the Breccia itself does not show measurable sulphides the fractures are well mineralised with fine grained pyrite. Contacts are sharp and may indicate a fault Breccia.	
CR-11-050	55.15	62.81	7.66	V3B	Medium grey coloured and fine grained Basalt with alongside buff bleaching alongside fractures and quartz carbonate veins. Quartz carbonate veins at 3% but increasing to 8% at base. 2% pervasive carbonate in matrix throughout. Trace mineralised with pyrrhotite locally. As of 60.91m increased veining and fracturing giving the Basalt a pseudostockwork appearance. This as well as increased mineralisation is related to the interflow sediments below.	
CR-11-050	62.81	67.71	4.90	S	Mixed interflow sediments consist of Cherts, graphitic mudstones and banded siltstones. All the sediments are disturbed and show either intense microfracturing as in the cherts or contorted bedding in the less competent silts and mudstones. This appears related to deformation due to the weight of the Basalt flow over top of this comparatively thick stack of sediments at the time of formation. The sediments contain about 1% pyrrhotite which is considered primary. The last two meters contain thin stringers of Gabbro and the immediate contact to the main Gabbro below is gradual due to shards of mudstone being mixed into the short contact shear.	
CR-11-050	67.71	225.00	157.29	I3A	Medium green grey Gabbro. First 35cm are contact sheared and contain 3% biotite. Below that the Gabbro is evenly fine grained and massive to a depth of 79m. From here on downwards the Gabbro gets gradually coarser exhibiting no signs of foliation. Quartz carbonate veins are below 1% and may contain traces of pyrite. The immediate wall rock tends to contain trace pyrite as well, but otherwise the Gabbro is unmineralised.	
CR-11-050	225.00	228.23	3.23	SHR	Contact shear in Gabbro. Dark green grey coloured and fine grained. Shearing is not consistent. Some sections are massive and shear also contains assimilated chunks of Basalt. Where sheared it runs at 70 degCA. Contact to Basalt below is sharp at 66 degCA.	

Hole Name	From	То	Length	Code	Description	Rep
CR-11-050	228.23	240.41	12.18	V3B	Medium green grey and fine grained Basalt. Exhibiting pale green blotchy bleaching with associated 3% carbonate. Where Basalt is unbleached it only contains traces of carbonate. Veining is at 4% and folded and to a lesser degree dismembered. Basalt is trace mineralised with the occasional bleb of pyrrhotite.	
CR-11-050	240.41	242.00	1.59	SHR	Contact shear in Gabbro is well defined but not very strong. Biotite altered to 1%, but the alteration wanes quickly downwards. Contact to Basalt is sharp at 62 degCA, while the shear runs at 66 degCA.	
CR-11-050	242.00	330.28	88.28	I3A	Medium green grey and medium to coarse grained Gabbro is massive, but does show a very subtle foliation that hovers around 50 degCA. As of 298m the Gabbro is coarse grained and loses the subtle foliation as well as any trace mineralisation. Towards the base the Gabbro gets finer grained again past 320m. Lower contact is sharp and undulating roughly at 74 degCA.	
CR-11-050	330.28	339.19	8.91	V3B	Medium green grey coloured and fine grained Basalt. Contact sheared to 331.42 with 3 % biotite alteration. Basalt shoes blotchy pale green bleaching and carbonate overprinting in places. Pillow selvedges are dominated by chlorite and hornblende. Abundant amygdules and a net work of fine carbonaceous fractures throughout.	
CR-11-050	339.19	339.82	0.63	VEIN	Two thick quartz carbonate veins cross the Basalt at this depth. The upper one is very fine grained and shows several thin fault or shear planes. Mixed in with the quartz carbonate are traces of pyrite and pyrrhotite and some grey sulphides in small angular masses. The lower equally thick vein is dominated by coarser quartz crystals. Here a preexisting quartz vein has been brecciated and subsequently healed by quartz carbonate. Mineralisation in this vein is lower and no grey sulphides where observed.	
CR-11-050	339.82	379.16	39.34	V3B	Continuation of Basalt encountered before the vein.	
CR-11-050	379.16	384.12	4.96	I2G	Medium grey coloured and fine grained Quartz Monzodiorite. Intrusive is mineralised with 1% blebby and disseminated pyrite as well as minor disseminated pyrrhotite. Arsenopyrite is almost at 0.1% near the top but quickly wanes downwards. Contacts are sharp, both at 70 degCA.	
CR-11-050	384.12	433.08	48.96	V3B	Mostly medium grey coloured and very fine grained Basalt. Pale green bleaching and carbonate is not as prevalent as before, completely missing over several meters before blotches start showing again. Instead fine grained pervasive hornblende is getting stronger in places where the Basalt is better foliated. Abundant amygdules near pillow selvedges. Tight network of carbonaceous hairline fractures. Traces of pyrite and pyrrhotite locally.	
CR-11-050	433.08	444.40	11.32	I3A	Dark grey coloured and fine grained Gabbro. Intrusive is massive and shows no signs of foliation. Contacts are subtle. Upper contact undulating at 82 degCA. Lower contact is gradual over the course of 50cm where Basalt alternates with Gabbro.	
CR-11-050	444.40	468.64	24.24	V3B	Basalt as before the Gabbro.	

Hole Name	From	То	Length	Code	Description	Rep
CR-11-050	468.64	475.53	6.89	I3A	Dark grey coloured and fine grained Gabbro. Intrusive is massive and shows no signs of foliation. Pale green bleached in a couple of places but pattern is different to surrounding Basalt and no carbonate is present. Contacts are very subtle. Upper contact undulating at 74 degCA. Lower contact is sharp at 67 degCA.	
CR-11-050	475.53	495.19	19.66	V3B	Basalt as before the Gabbro. From 487m to 493m the Basalt is well foliated and a 10% hornblende alteration has obliterated fractures and amygdules. Quartz carbonate veins still follow "typical" pattern.	
CR-11-050	495.19	502.43	7.24	I3A	Dark grey coloured and fine grained Gabbro as before. Contacts are subtle but better defined than in previous intersections. Upper contact undulating at 63 degCA. Lower contact planar at 72 degCA.	
CR-11-050	502.43	508.21	5.78	V3B	Medium green grey coloured and fine grained Basalt. Blotchy pale green bleaching, carbonaceous fractures and veining weaker than in previous intervals. Trace mineralisation with pyrite and pyrrhotite remains the same.	
CR-11-050	508.21	509.65	1.44	VEIN	Two thick quartz carbonate veins cross the Basalt at this depth. Quartz carbonate is fine to medium grained and traces of turmaline are present. The immediate wall rock is hornblende and chlorite altered and most of the mineralisation present is tied to this wall rock alteration. The veins themselves only contain few traces of pyrite. The two veins make up about 75% of the interval.	
CR-11-050	509.65	553.82	44.17	V3B	Medium grey coloured and fine grained Basalt. Pale green bleaching is sparse near the top but picks up downwards towards the contact with the Diorite below. Carbonaeceous fractures are much reduced as compared to previous Basalt intervals. Pillow selvedges are dominated by chlorite and hornblende. Whereas quartz carbonate veining was chiefly made up of folded and dismembered veins in the 2cm range before, now there are more 4 to 5cm veins that are disturbed to a much lesser degree. However, the vein intensity has not changed and neither has the trace mineralisation with sulphides.	
CR-11-050	553.82	587.13	33.31	12J	Dark grey to grey-green-brown coloured fine to medium grained Diorite. Massive intrusive with only very weak signs of foliation. Small flaky black coloured biotite is present thoughout as are traces of chlorite and carbonate. A series of low angle fractures, some of which are calcite lined, between 567.70m and 567.95m led to the loss of circulation. Cubic pyrite to the tune of 0.25% average is present but the distribution is uneven and may reach more than 1% locally. Both contacts are sharp, upper at 64 degCA and lower at 65 degCA.	

Hole Name	From	То	Length	Code	Description	Rep
CR-11-050	587.13	627.80	40.67	V3B	Medium grey coloured and fine grained Basalt. Bleaching is absent from this unit, except for a few minor spots. Unit is weakly to moderately foliated and shows the occasional short section of chloritic hornblende alteration where the primary texture has be obliterated. Much reduced intensity of hairline carbonaceous fractures. Often exhibiting clounds of amygdules accompanying chlorite-hornblende pillow selvedges. Quartz carbonate veining at 5%, some of which contain trace sulphides.	
CR-11-050	627.80	634.25	6.45	12G	Medium grey brown coloured and fine to medium grained Quartz Monzodiorite. Intrusive is weakly foliated and shows a 1% sericite alteration on average. Several planar quartz carbonate veins are present but do not contain any mineralisation. Contains 0.1% disseminated pyrite as well as on fractures. Contacts are sharp, upper at 67 degCA and lower at 73 degCA.	
CR-11-050	634.25	686.05	51.80	V3B	Medium grey coloured and fine grained Basalt. Some pale green blotchy bleaching with associated carbonate past 652m. Unit only shows very subtle signs of foliation in some places. Some pervasive hornblende-chlorite alteration. 4 % quartz carbonate veining is dismembered and fragmented. Minimum trace sulphides locally.	
CR-11-050	686.05	689.29	3.24	12G	Dark grey coloured and fine grained Quartz Monzodiorite with medium grained quartz crystals. Intrusive is moderately foliated with traces of sericite and biotite. Contains very finely disseminated pyrite and the occasional small bleb at a concentration of 0.5%. Few cubic crystals of arsenopyrite can be observed as well. Contacts are sharp, upper and lower at 73 degCA.	
CR-11-050	689.29	714.42	25.13	I3A	Dark grey coloured and fine grained Gabbro. Intrusive is massive and shows no signs of foliation. Some low angle hairline fractures with bleached halos. Lower contact to Basalt is broken.	
CR-11-050	714.42	742.54	28.12	V3B	Medium grey green coloured and fine grained Basalt. Foliation is still quite weak for the most part but more readily recognizeable. Some sections with stronger hornblende alteration that tends to obliterate the primary basaltic texture. Traces of pale green coloured bleaching and carbonate. Several thin Quartz Monzodiorites cross the Basalt. These are only very weakly mineralised but have contributed to a low level biotite alteration, especially in the lower half of the unit. Quartz carbonate veining at 4% average. Between 736m and 738m some blebby pyrrhotite is present in vein selvedges and minor hornblende chlorite alteration. Mineralisation at trace level in general.	
CR-11-050	742.54	771.25	28.71	I3A	Medium to dark grey coloured and fine grained Gabbro. First 4m show some minor contact shearing. Past that massive with only traces of veining. Upper contact is sharp at 67 degCA. Lower contact is gradual over the course of 1m and put at the first "typical" quartz carbonate vein in Basalt.	

Hole Name	From	То	Length	Code	Description	Rep
CR-11-050	771.25	781.85	10.60	V3B	Medium green grey coloured and fine to medium grained Basalt. Pervasive hornblende alteration and chloritisation. Between 777m and 779.50m three 10 to 25cm sections of muddy interflow sediments. Basalt contains 4% quartz carbonate veins and NIL sulphides.	
CR-11-050	781.85	789.20	7.35	12G	Medium grey coloured and fine grained Quartz Monzodiorite. Intrusive is weakly foliated for the most part, with the foliation swinging back and forth running up and downhole. Minor pervasive sericite throughout. Exhibits unusually high Kappa measurements. Pyrite is very fine grained and disseminated unevenly averaging 0.25%. Very fine grained cubic arsenopyrite appears throughout in traces. Contacts are sharp, upper at 87 degCA and lower at 81 degCA.	
CR-11-050	789.20	795.91	6.71	V3B	Medium grey coloured and fine grained Basalt. Some minor bleaching with pervasive carbonatisation giving the Basalt a grey mottled look in those places. Foliation if present is weak. Striation is more connected to small slip planes and runs somewhat erratically, indicating a rotational element. 5% quartz carbonate veining on average. Traces of fine grained pyrrhotite.	
CR-11-050	795.91	812.38	16.47	SHR/ATZ	Shear/Alteration zone in Basalt. Pervasive carbonate in upper meter. Past that low level silicification replacing said carbonate. To 805.39m alteration is more prevalent than shearing. Bands of hornblende-chlorite alteration and bands that are biotite richer alternate. Moderate network of carbonaceous fractures. Quartz carbonate veining is not stronger than in surrounding Basalt. Pyrrhotite is the dominant sulphide only showing traces of pyrite replacement. The pyrrhotite appears as fine grained masses in the hornblende-chlorite bands, finely disseminated in biotite and as replacement in quartz carbonate. At a distinct dark grey hairline fracture the disseminated mineralisation changes to pyrite instead. Pyrrhotite is still present in some of the appearing carbonate quartz stringers but significantly reduced. Next to the appearance of the thicker stringers, carbonaceous fractures almost disappear and hornblende is now pervasive instead of in distinct bands. From 809m on pyrrhotite regains its dominance. This seems to coincide with the amount of quartz in the stringers picking up. The hornblende-chlorite bands slowly start showing again as well, however, they are not as strong or mineralised as before.	
CR-11-050	812.38	815.59	3.21	V3B	Medium grey coloured Basalt with minor carbonate overprinting as well as pervasive hornblende alteration. Small block of fairly normal Basalt with background level alteration in lower part of shear zone. Trace mineralisation with pyrrhotite.	
CR-11-050	815.59	818.00	2.41	SHR	Shearing picking up again. Bands of hornblende-chlorite alteration, biotite dominated bands and 1cm thick bands of broken and buff bleached Basalt. Intensity varies and so does the pyrrhotite mineralisation which averages at 0.75%, disseminated as well as in some of the few veins present.	

Hole Name	From	То	Length	Code	Description	Rep
CR-11-050	818.00	858.23	40.23	V3B	Medium grey coloured and fine grained Basalt alternating almost rhythmically with medium green grey coloured and medium grained Basalt. Fine grained sections exhibit the typical basaltic characteristics of dismembered quartz carbonate veining, carbonaceous fractures, pillow selvedges and amygdules. The medium grained sections have seen a strong hornblende overprinting that has obliterated all primary structure including quartz carbonate veins for the most part. The unit is trace mineralised with pyrite and pyrrhotite which is mostly but not exclusively tied to the Basalt showing primary texture.	
CR-11-050	858.23	860.34	2.11	I2G	Medium brown coloured and fine grained Quartz Monzodiorite with medium grained quartz crystals. Intrusive shows very fine grained pervasive biotite alteration to 2% that goes alongside silica flooding that gives it a translucent look. Contains 3% mineralised quartz carbonate veins. Sulphides are dominated by fine to medium grained arsenopyrite at 2%. Arsenopyrite is disseminated blebby, in veins and on fractures. Next to arsenopyrite only 0.1% of pyrite could be observed. Both contacts are sharp but a bit uneven, upper at 66 degCA and lower at 72 degCA.	
CR-11-050	860.34	875.99	15.65	V3B	Continuation of Basalt encountered before the Quartz Monzodiorite.	
CR-11-050	875.99	876.00	0.01	EOH	End of Hole. Hole was terminated on August 28, 2011 at 876 metres after drilling 58 metres into the footwall of the targeted shear zone without encountering another major structure. Casing was left in the ground and capped allowing further investigation. 200 NQ core trays were used. The core is stored at Conquest's Alexander Core Yard on the property. 102 Samples were sent out to AGAT Laboratories for fire assay.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-11-050	33.23	37.98	121	Medium grey to reddish-brown grey coloured and medium grained Quartz Diorite. Intrusive is moderatley foliated and contains trace biotite. Reddish colour due to potassium feldspar. Pervasive and uneven alteration throughout, but strongest around crossing quartz carbonate veins. Veins show thin selvedges of turmaline. Core is quite broken up, especially in upper half. Upper contact is broken up. Lower contact at 64 deg CA.	
CR-11-050	386.03	388.45	130	Medium to dark grey coloured and fine to medium grained Lamprophyre. Intrusive is massive and dense. Downwards biotite alteration and with it foliation is picking up. Carbonate in groundmass is between 1 and 2%. Trace mineralisation with very fine grained pyrite. Contacts are sharp, upper at 63 degCA and lower at 81 degCA.	
CR-11-050	389.45	390.58	12G	Medium grey coloured and fine grained Quartz Monzodiorite with mostly idiomorph but highly stressed coarse quartz crystals. Weakly foliated with trace biotite and about 1% sericite. Mostly blebby very fine grained pyrite is unevenly distributed to the tune of 0.25%. Dominating sulphide is fine grained cubic arsenopyrite that seems associated with a network of hairline fractures that is criss crossing the Intrusive. Arsenopyrite at 0.5%. Contacts are sharp, upper at 65 degCA and lower at 47 degCA.	
CR-11-050	390.58	393.74	130	Dark grey brown coloured and medium grained Lamprophyre. Intrusive is the continuation of the Lamprophyre encountered between 386.03 and 388.45. Biotite altered to 8% and well foliated. Mineralisation remains at trace very fine grained pyrite. Lower contact is subtle and partially broken up, roughly at 80 degCA.	
CR-11-050	424.70	426.74	13	Dark grey coloured and very fine grained mafic intrusive with little qualifying attributes Trace cubic pyrite. Contacts are sharp, both at 67 degCA.	
CR-11-050	476.94	479.21	12G	Medium to light grey coloured and fine grained Quartz Monzodiorite. Foliated and sericitized to 10% except for last 20cm that are not altered. 1% pyrite in elongate blebs and to a lesser degree finely disseminated. Very fine grained arsenopyrite at trace level throughout. Contacts are sharp, upper at 77 degCA and lower at 78 degCA.	
CR-11-050	515.23	516.46	12G	Dark grey coloured and fine to medium grained Quartz Monzodiorite is weakly foliated. Trace mineralised with pyrite. Contacts are sharp, upper at 60 degCA and lower at 69 degCA.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-11-050	537.69	540.16	12G	Dark grey coloured and fine grained Quartz Monzodiorite. Intrusive is weakly foliated and contains trace biotite. Mineralised with 1.25% blebby pyrite. Contacts are sharp, upper and lower at 59 degCA.	
CR-11-050	543.84	544.74	12J	Dark grey coloured and fine grained Diorite with traces of flaky biotite on crude foliation planes. Intrusive contains 0.25% cubic pyrite. Contacts are sharp, upper at 46 degCA and lower at 50 degCA.	
CR-11-050	620.68	621.79	12G	Medium grey brown coloured Quartz Monzodiorite. Contains 20cm section with strong sericite alteration. 0.25% fine grained pyrite is disseminated. A thin fracture contains several cubic crystals of arsenopyrite. Contacts are sharp, upper at 79 degCA and lower at 68 degCA.	
CR-11-050	719.89	721.51	130	Dark grey coloured and fine grained Lamprophyre. Intrusive contains 3% biotite and 1.5% carbonate in the groundmass. Lamprophyre is weakly foliated. Contacts are sharp, upper at 76 degCA and lower at 55 degCA.	
CR-11-050	730.75	731.81	12G	Dark grey coloured and fine grained Quartz Monzodiorite. Weakly foliated intrusive contains milky coloured quartz veining without mineralisation. Intrusive itself is almost devoid of any sulphides except for minimal traces of very fine grained pyrite. Contact are sharp, upper at 74 degCA and lower at 76 degCA.	

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-11-050	E5308561	32.73	33.23	0.50		Wing sample, Basalt with 1% veining, trace biotite.	7	11T529027
CR-11-050	E5308562	33.23	34.73	1.50	consecutive	Quartz Diorite with K-spar and trace pyrite and chalcopyrite.	15	11T529027
CR-11-050	E5308563	34.73	36.00	1.27	consecutive	Quartz Diorite with K-spar and trace pyrite and chalcopyrite.	2	11T529027
CR-11-050	E5308564	36.00	37.00	1.00	consecutive	Quartz Diorite with K-spar and trace pyrite and chalcopyrite.	4	11T529027
CR-11-050	E5308565	37.00	37.98	0.98	consecutive	Quartz Diorite as before but stronger K-spar around veins.	7	11T529027
CR-11-050	E5308566	37.98	38.48	0.50	consecutive	Wing sample, Basalt with 2% biotite.	6	11T529027
CR-11-050	E5308567	53.85	54.35	0.50	not consecutive	Wing sample, Basalt with minor buff bleaching and trace veining.	7	11T529027
CR-11-050	E5308568	54.35	55.15	0.80	consecutive	Basalt Breccia with trace pyrite.	3	11T529027
CR-11-050	E5308569	55.15	55.65	0.50	consecutive	Wing sample, Basalt with 3% veining and trace biotite.	6	11T529027
CR-11-050	E5308570	0.00	0.00	0.00	not consecutive	Standard PM 442 0.62gm/t Au	603	11T529027
CR-11-050	E5308571	60.41	60.91	0.50	not consecutive	Wing sample, Basalt with 5% veining.	22	11T529027
CR-11-050	E5308572	60.91	61.91	1.00	consecutive	Basalt with 8% veining and trace pyrite and pyrrhotite.	4	11T529027
CR-11-050	E5308573	61.91	62.81	0.90	consecutive	Basalt with 8% veining and trace pyrite and pyrrhotite.	8	11T529027
CR-11-050	E5308574	62.81	63.31	0.50	consecutive	Wing sample, Chert dominated interflow sediments.	15	11T529027
CR-11-050	E5308575	338.69	339.19	0.50	not consecutive	Wing sample, Basalt with pale green carbonaceous bleaching and	6	11T529027
	2000070	330.03	555.15	0.50		1% veining.	0	111029027
CR-11-050	E5308576	339.19	339.82	0.63	consecutive	Two thick quartz carbonate veins with pyrite pyrrhotite and grey sulphides.	612	11T529027
CR-11-050	E5308577	339.82	340.32	0.50	consecutive	Wing sample, Basalt with pale green carbonaceous bleaching and 5% veining.	41	11T529027
CR-11-050	E5308578	371.00	372.00	1.00	not consecutive	Wing sample, Foliated Basalt with trace pyrrhotite.	10	11T529027
CR-11-050	E5308579	372.00	373.00	1.00	consecutive	Foliated Basalt with 5% veining and coarse chlorite hornblende alteration containing fine grained masses of pyrrhotite.	4	11T529027
CR-11-050	E5308580	373.00	374.00	1.00	consecutive	Wing sample, Basalt with pale green carbonaceous bleaching and trace pyrrhotite.	7	11T529027
CR-11-050	E5308581	377.48	378.48	1.00	not consecutive	Wing sample, foliated hornblende Basalt with trace sulphides and 1% veining.	71	11T529027
CR-11-050	E5308582	378.48	379.16	0.68	consecutive	Contact altered Basalt with 1% pyrite and 0.25% arsenopyrite.	160	11T529027
CR-11-050	E5308583	379.16	380.16	1.00	consecutive	Quartz Monzodiorite with 1.5% pyrite and 0.25% arsenopyrite.	145	11T529027
CR-11-050	E5308584	380.16	381.16	1.00	consecutive	Quartz Monzodiorite with 1.5% pyrite and 0.25% arsenopyrite.	156	11T529027
CR-11-050	E5308585	381.16	382.16	1.00	consecutive	Quartz Monzodiorite with 1.5% pyrite and 0.25% arsenopyrite.	126	11T529027
CR-11-050	E5308586	382.16	383.16	1.00	consecutive	Quartz Monzodiorite with 1.5% pyrite and 0.25% arsenopyrite. With thin Diorite	33	11T529027

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-11-050	E5308587	383.16	384.12	0.96	consecutive	Quartz Monzodiorite with 1.5% pyrite and 0.25% arsenopyrite.	55	11T529027
CR-11-050	F5308588	384 12	384 62	0.50	consecutive	Wing sample Basalt with 7% veining and trace sulphides	9	11T529027
CR-11-050	E5308589	388.95	389.45	0.50	not consecutive	Wing sample, Foliated Basalt with NIL sulphides.	7	11T529027
CR-11-050	E5308590	0.00	0.00	0.00	not consecutive	Standard PM 440 1.62 gm/t Au	1660	11T529027
CR-11-050	E5308591	389.45	390.58	1.13	not consecutive	Quartz Monzodiorite with 0.5% arsenopyrite and 0.25% pyrite.	34	11T529027
CR-11-050	E5308592	390.58	391.08	0.50	consecutive	Wing sample, Lamprophyre with biotite and trace pyrite.	6	11T529027
CR-11-050	E5308593	450.00	451.00	1.00	not consecutive	Character sample, Basalt with pale green carbonaceous bleaching, 10% veining and trace pyrrhotite.	3	11T529027
CR-11-050	E5308594	451.00	452.00	1.00	consecutive	Character sample, Basalt with pale green carbonaceous bleaching, 10% veining and trace pyrrhotite.	3	11T529027
CR-11-050	E5308595	486.00	487.00	1.00	not consecutive	Basalt with hornblende-chlorite alteration and trace pyrite and pyrrhotite.	7	11T529027
CR-11-050	E5308596	452.00	453.00	1.00	not consecutive	Basalt with less bleaching, trace veining and trace pyrrhotite	2	11T529027
CR-11-050	E5308597	476.44	476.94	0.50	not consecutive	Wing sample, hornblende Basalt with 8% veining.	10	11T529027
CR-11-050	E5308598	476.94	478.00	1.06	consecutive	Quartz Monzodiorite with 1% pyrite and trace arsenopyrite.	158	11T529027
CR-11-050	E5308599	478.00	479.21	1.21	consecutive	Quartz Monzodiorite with 1% pyrite and trace arsenopyrite.	38	11T529027
CR-11-050	E5308600	479.21	479.71	0.50	consecutive	Wing sample, Basalt with biotite alteration at contact.	71	11T529027
CR-11-050	E5308601	507.71	508.21	0.50	not consecutive	Wing sample, Basalt with pillow selvedges, trace veining.	4	11T529027
CR-11-050	E5308602	508.21	509.65	1.44	consecutive	Thick veining with pyrite and pyrrhotite mostly in immediate wall rock.	3	11T529027
CR-11-050	E5308603	509.65	510.15	0.50	consecutive	Wing sample, Basalt with 5% veining and trace sulphides.	2	11T529027
CR-11-050	E5308604	537.19	537.69	0.50	not consecutive	Wing sample, chloritic Basalt with 3% veining.	5	11T529027
CR-11-050	E5308605	537.69	538.90	1.21	consecutive	Quartz Monzodiorite with 1.25% pyrite.	7	11T529027
CR-11-050	E5308606	538.90	540.16	1.26	consecutive	Quartz Monzodiorite with 1.25% pyrite.	10	11T529027
CR-11-050	E5308607	540.16	540.66	0.50	consecutive	Wing sample, hornblende Basalt with 10% veining and trace pyrite.	6	11T529027
CR-11-050	E5308608	602.00	603.00	1.00	not consecutive	Wing sample, Basalt with trace biotite and pyrite.	11	11T529027
CR-11-050	E5308609	603.00	603.72	0.72	consecutive	Moderately foliated Basalt with 2% biotite and 0.5% pyrite.	94	11T529027
CR-11-050	E5308610	0.00	0.00	0.00	not consecutive	Standard PM 442 0.62gm/t Au	602	11T529027
CR-11-050	E5308611	603.72	604.72	1.00	not consecutive	Wing sample, Basalt with hornblende-chlorite alteration and biotite with trace pyrite.	14	11T529027
CR-11-050	E5308612	627.30	627.80	0.50	not consecutive	Wing sample, Basalt with biotite alteration at contact.	5	11T529027
CR-11-050	E5308613	627.80	629.10	1.30	consecutive	Quartz Monzodiorite with 0.1% pyrite and trace arsenopyrite.	64	11T529027
CR-11-050	E5308614	629.10	630.40	1.30	consecutive	Quartz Monzodiorite with 0.1% pyrite and trace arsenopyrite.	4	11T529027
CR-11-050	E5308615	689.29	689.79	0.50	not consecutive	Wing sample, fine grained Gabbro.	4	11T529027
CR-11-050	E5308616	630.40	631.70	1.30	not consecutive	Quartz Monzodiorite with 0.1% pyrite and trace arsenopyrite.	7	11T529027
CR-11-050	E5308617	631.70	633.00	1.30	consecutive	Quartz Monzodiorite with 0.1% pyrite and trace arsenopyrite.	21	11T529027

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-11-050	E5308618	633.00	634.25	1.25	consecutive	Quartz Monzodiorite with 0.1% pyrite and trace arsenopyrite.	19	11T529027
CR-11-050	E5308619	634.25	634.75	0.50	consecutive	Wing sample, Basalt with hornblende-chlorite alteration and 3% veining.	8	11T529027
CR-11-050	E5308620	685.55	686.05	0.50	not consecutive	Wing sample, chloritic Basalt with 3% veining.	4	11T529027
CR-11-050	E5308621	686.05	687.67	1.62	consecutive	Quartz Monzodiorite with 0.5% pyrite and trace arsenopyrite.	191	11T529027
CR-11-050	E5308622	687.67	689.29	1.62	consecutive	Quartz Monzodiorite with 0.5% pyrite and trace arsenopyrite.	46	11T529027
CR-11-050	E5308623	735.00	736.00	1.00	not consecutive	Wing sample, chloritic Basalt with 4% veining.	5	11T529027
CR-11-050	E5308624	736.00	737.00	1.00	consecutive	Basalt with 0.1% blebby pyrrhotite.	3	11T529027
CR-11-050	E5308625	737.00	738.00	1.00	consecutive	Basalt with 0.1% blebby pyrrhotite.	6	11T529027
CR-11-050	E5308626	738.00	739.00	1.00	consecutive	Wing sample, chloritic Basalt with 10% veining and no mineralisation.	3	11T529027
CR-11-050	E5308627	781.35	781.85	0.50	not consecutive	Wing sample, chloritic hornblende Basalt.	4	11T529027
CR-11-050	E5308628	781.85	783.35	1.50	consecutive	Quartz Monzodiorite with 0.25% pyrite and trace arsenopyrite.	111	11T529027
CR-11-050	E5308629	783.35	784.85	1.50	consecutive	Quartz Monzodiorite with 0.25% pyrite and trace arsenopyrite.	30	11T529027
CR-11-050	E5308630	0.00	0.00	0.00	not consecutive	Standard PM 431 2.78 gm/t Au	2790	11T529027
CR-11-050	E5308631	784.85	786.35	1.50	not consecutive	Quartz Monzodiorite with 0.25% pyrite and trace arsenopyrite.	5	11T529027
CR-11-050	E5308632	786.35	787.35	1.00	consecutive	Quartz Monzodiorite with 0.25% pyrite and trace arsenopyrite.	9	11T529027
CR-11-050	E5308633	787.35	789.20	1.85	consecutive	Quartz Monzodiorite with 0.25% pyrite and trace arsenopyrite.	9	11T529027
CR-11-050	E5308634	789.20	789.70	0.50	consecutive	Wing sample, chloritic Basalt.	8	11T529027
CR-11-050	E5308635	795.00	795.91	0.91	not consecutive	Wing sample, Basalt with carbonate overprinting and trace pyrrhotite.	3	11T529027
CR-11-050	E5308636	795.91	797.00	1.09	consecutive	Basalt alteration zone with 3% veining and carbonate overprinting and 3% pyrrhotite.	2	11T529027
CR-11-050	E5308637	797.00	798.00	1.00	consecutive	Basalt with no carbonate overprinting and 0.5% pyrrhotite.	2	11T529027
CR-11-050	E5308638	798.00	799.00	1.00	consecutive	Basalt with no carbonate overprinting and 1.5% pyrrhotite.	2	11T529027
CR-11-050	E5308639	799.00	800.00	1.00	consecutive	Basalt with no carbonate overprinting and 1.5% pyrrhotite.	<1	11T529027
CR-11-050	E5308640	800.00	801.00	1.00	consecutive	Basalt with no carbonate overprinting and 2% pyrrhotite.	2	11T529027
CR-11-050	E5308641	801.00	802.00	1.00	consecutive	Basalt with no carbonate overprinting and 3% pyrrhotite.	2	11T529027
CR-11-050	E5308642	802.00	803.00	1.00	consecutive	Basalt with no carbonate overprinting and 2% pyrrhotite.	1	11T529027
CR-11-050	E5308643	803.00	804.00	1.00	consecutive	Basalt with no carbonate overprinting and 5% pyrrhotite.	<1	11T529027
CR-11-050	E5308644	804.00	805.39	1.39	consecutive	Basalt with no carbonate overprinting and 1.5% pyrrhotite.	<1	11T529027
CR-11-050	E5308645	805.39	806.39	1.00	consecutive	Basalt with carbonate quartz stringers, 2% pyrrhotite and 3% pyrite.	7	11T529027
CR-11-050	E5308646	806.39	807.39	1.00	consecutive	Basalt with carbonate quartz stringers, 3% pyrite.	2	11T529027

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-11-050	E5308647	807.39	808.39	1.00	consecutive	Basalt with carbonate quartz stringers, 4% pyrite.	8	11T529027
CR-11-050	F5308648	808 39	809 00	0.61	consecutive	Basalt with carbonate quartz stringers, 2% pyrite and 0.5%	Q	11T529027
en 11 050	23300040	000.55	005.00	0.01	consecutive	pyrrhotite.	5	111525027
CR-11-050	E5308649	809.00	810.00	1.00	consecutive	Basalt with carbonate quartz stringers, 2% pyrrhotite.	8	11T529027
CR-11-050	E5308650	0.00	0.00	0.00	not consecutive	Standard PM 442 0.62gm/t Au	610	11T529027
CR-11-050	E5308651	810.00	811.00	1.00	not consecutive	Basalt with carbonate quartz stringers, 3% pyrrhotite.	1	11T529027
CR-11-050	E5308652	811.00	812.38	1.38	consecutive	Basalt with less stringers and 1.5% pyrrhotite.	<1	11T529027
CR-11-050	E5308653	812.38	814.00	1.62	consecutive	Basalt with pervasive carbonate and trace pyrrhotite.	1	11T529027
CR-11-050	E5308654	814.00	815.59	1.59	consecutive	Basalt with hornblende-chlorite alteration.	4	11T529027
CR-11-050	E5308655	835.00	836.00	1.00	not consecutive	Massive Basalt with trace veining.	1	11T529027
CR-11-050	E5308656	815.59	816.75	1.16	not consecutive	Shear with 1% pyrrhotite.	12	11T529027
CR-11-050	E5308657	816.75	818.00	1.25	consecutive	Shear with 0.5% pyrrhotite.	9	11T529027
CR-11-050	E5308658	818.00	819.00	1.00	consecutive	Wing sample, foliated Basalt with 6% veining and trace pyrrhotite.	1	11T529027
CR-11-050	E5308659	857.23	858.23	1.00	not consecutive	Wing sample, Basalt with 5% veining and trace sulphides.	4	11T529027
CR-11-050	E5308660	858.23	859.23	1.00	consecutive	Quartz Monzodiorite with 2% arsenopyrite and trace pyrite.	350	11T529027
CR-11-050	E5308661	859.23	860.34	1.11	consecutive	Quartz Monzodiorite with 2% arsenopyrite and trace pyrite.	80	11T529027
CR-11-050	E5308662	860.34	861.34	1.00	consecutive	Wing sample, Basalt with 5% veining and trace sulphides.	4	11T529027

Reflex Survey Record

Hole ID	Station (m)	Dip (Degrees)	Azimuth	MAG
CR-11-050	18	-51.2	22.80	5978
CR-11-050	48	-50.4	21.50	5810
CR-11-050	78	-49.8	21.10	5814
CR-11-050	108	-49.7	22.60	5791
CR-11-050	138	-49.4	22.20	5796
CR-11-050	168	-49.1	21.30	5814
CR-11-050	198	-49.1	22.20	5815
CR-11-050	228	-49.1	23.00	5795
CR-11-050	258	-48.4	23.00	5797
CR-11-050	288	-48.2	24.20	5795
CR-11-050	318	-49.0	25.20	5793
CR-11-050	348	-47.8	25.70	5797
CR-11-050	378	-47.4	26.00	5795
CR-11-050	408	-46.9	26.00	5796
CR-11-050	438	-46.9	26.00	5757
CR-11-050	468	-46.5	26.80	5802
CR-11-050	498	-46.1	27.50	5807
CR-11-050	528	-45.7	28.40	5785
CR-11-050	558	-45.5	28.50	5790
CR-11-050	588	-45.3	28.70	5792
CR-11-050	618	-45.1	29.00	5799
CR-11-050	648	-44.8	346.00	5915
CR-11-050	678	-44.4	30.00	5793
CR-11-050	708	-43.9	30.90	5785
CR-11-050	738	-43.5	31.50	5788
CR-11-050	768	-43.5	31.90	5777
CR-11-050	798	-43.3	28.40	5902
CR-11-050	828	-43.1	30.00	5847
CR-11-050	858	-42.9	30.20	5879

Conquest Resources Ltd.

Exploration Diamond Drill Log

CR-11-051

DRILL HOLE #	CR-11-051	LOCATION Ba	Imertown	, Balmer Towns	hip, Red L	.ake Dist	rict, Ontario		
PROJECT #	Alexander	REFERENCE A	lexander		GE	OLOGIST	Meckert		(RL20439
GRID/ NAD-ZON	E	NORTHING		EASTING			ELEVATION		GRID TYPE
GRID	Alexander RL	6+69 S		14+18 E	_		10004		М
UTM	NAD83 / 15U	451102		5655453	-		385	_	
COLLAR DIP	-70	GRID DIRECTION		5° W of gridN	_			AZ DIRECTION	24
NTS REF #	052N04	NTS SHEET NAME		Red Lake, Onta	ario				
START DATE	3-Sep-11			FINISH DATE	<u>20-S</u>	ep-11			
DEPTH (EOH)	998.00	TARGET & Zone Depth		950m					
PURPOSE	Follow western	n extension of shear e	encounter	ed in CR-11-050)	PIEC	E POINT of Target:	E	mELEV
CASING BV	v <u>na</u>	CASING NW		12m	-			CASING HW	na
PLUG @	@ <mark>na</mark>	PLUG @		na	-			PLUG @	na
START DTH	na	WEDGE @		na					
REDUCED @	na		REDUCED @	na					
HOLE STATUS	completed, cas	sing left in hole, capp	ed						
DRILLING CONTR	ACTOR	Boart Longyear In	с.						
RIG NO.	LY 50 4102							BXS.	229
				Reflex EZ-Shot S	Surveys				
DEF	ንTH (m)	AZIMUTH		-	DIP		•	Comments:	
2	7.00	28.20		-(5 8.90				
9	0.00	29.70		-(5 8.10				
15	50.00	21.50		-(5 7.80				
24	10.00	32.80		-(56 .40		1st Target A s	near zone with g	uartz carbonate
30	00.00	34.70		-(56 .00		stringers and wa	Il rock alteration v	vas encountered
36	50.00	34.40		-(5 5.80		between 927.90r	m and 940.92m The	e assays did not
42	26.00	34.40		-(55 .50		return significant	t gold values. <u>2nd</u>]	<u>Farget</u> A second
48	30.00	35.30		-(5 4.80		less clearly defin	ed shear and alte	ration zone was
54	10.00	34.40		-(5 4.10		encountered bet	ween 966.63m and	976.30m. While
60	00.00	36.10		-(5 3.20		alteration and r	nineralisation look	ravourably the
66	50.00	35.90		-(5 2.70		Ouartz Monzodio	rite between 491.2	6m and 501.82m
69	90.00	35.70		-(5 2.50		is strongly shear	ed over the 10 me	tre interval. This
72	20.00	36.50		-(51 .50		shear zone betw	een 496.76m and 4	98.00m contains
75	50.00	36.80		-(51 .30		pyrite, pyrrhotite	and grey sulphides	and grades 17.5
78	30.00	36.40		-(51 .00		gr/t Au. The intru	sive overall grades	2.80 gr/t Au. This
81	LO.00	37.00		-(50.30		post Balmer Ass	emblage aged shea	ar zone shows a
84	19.00	37.60			59.90		investigated by d	rilling along strike a	nd depth
87	79.00	344.90		-(51 .30			and a strike at	
91	L2.00	37.80		-	59.00				
94	15.00	37.70		-	58.40				
97	75.00	45.20			58.00				

Drill with 6m, double stablilized NQ core barrel

Planned hole depth is 1000m (3,280')

Core stored at Alexander Core Yard at UTM 0449935 5656595 UTM NAD83 15U Water source: Sump on CR-11-048 Setup

Drill type: LY-50

Hole Name	From	То	Length	Code	Description	Rep
CR-11-051	0.00	4.00	4.00	CAS	NW Casing into overburden and bedrock. Casing reaches down to 12m due to deep erosion of bedrock.	
CR-11-051	4.00	52.56	48.56	V3B	Medium grey green coloured and fine to medium grained Basalt. Pillowed Basalt is moderately to well foliated. Pervasive hornblende and biotite alteration with preservation of primary texture is accompanied by traces of carbonate. Quartz carbonate veins are folded and often dismembered and make up about 5% of the rock. Occasional thicker carbonate dominated stringers are only weakly deformed. Trace mineralised with pyrrhotite and pyrite but the distribution is very uneven and mostly confined to quartz carbonate veins.	
CR-11-051	52.56	58.95	6.39	130	Dark grey coloured and fine grained Lamrpophyre with 4% carbonate in groundmass. Intrusive is massive and uniform for the most part. In places dark biotitic streaks indicate ductile deformation. In lower half thin quartz carbonate veins start to show up. Well mineralised with pyrite and pyrrhotite throughout. 1% pyrite and 0.25% pyrrhotite. Mineralisation is strongest in first meter where angular masses of pyrite containing blebs of pyrrhotite up to 0.5cm in size can be observed. Lower contact is difficult to establish because Basalt below also contains pervasive carbonate. It is put where elevated biotite indicates contact metamorphosis and the mineralisation with pyrite disappears. Upper contact is sharp at 83 degCA. Lower contact too uneven to measure.	
CR-11-051	58.95	68.50	9.55	V3B	Medium to dark grey coloured and fine grained Basalt. Basalt still contains pervasive hornblende but this is more subtle due to the fine grained nature. Pervasive carbonate is quite strong at 3% but slowly wanes downwards. At the same time veining picks up downwards. Veins are very fragmented and boudinaged or at least show extension fractures. Basalt also contains traces of garnets which tend to be organised in layers resembling a necklace. Traces of pyrite and pyrrhotite are present.	
CR-11-051	68.50	73.55	5.05	I2G	Medium grey to buff coloured and fine grained Quartz Monzodiorite. Intrusive is well foliated and contains about 5% sericite and 1% biotite. Quartz Monzodiorite is quartz rich but not overly silicified. Mineralisation is very weak with only minimal traces of pyrite in places. Upper contact is sharp at 56 degCA. Lower contact is strongly interfingered as the intrusive has pressed into small fractures but in general follows the direction of the upper contact.	

Hole Name	From	То	Length	Code	Description	Rep
CR-11-051	73.55	105.00	31.45	V3B	Medium grey green coloured and fine to medium grained Basalt. Pillowed Basalt is moderately to well foliated. Pervasive hornblende and biotite alteration with preservation of primary texture is accompanied by 2% of pervasive carbonate. Two kinds of quartz carbonate veins are present. Firstly thin veins that are folded and tend to blend into the background. Secondly thicker stringers that are fragmented and transposed and contain larger brownish coloured masses of quartz. The Basalt itself is devoid of sulphides. The thicker stringers may contain assimilated fragments of veins and wall rock with pyrite and magnetite.	
CR-11-051	105.00	119.14	14.14	V3B/ATZ	Medium grey green coloured and fine to medium grained Basalt. Basalt is well foliated, massive, not pillowed and strongly hornblende altered. Veins are thin and planar to folded and only make up only 1% of the rock. The unit is not mineralised.	
CR-11-051	119.14	121.12	1.98	S	Mixed sediments comprised of Chert and sulphidic Mudstones. The two sediments are separated by 70cm of chloritic Basalt. The sediments contain garnets but the Basalt does not. Primary pyrrhotite at 1% and chalcopyrite in traces. The Mudstone sitting right on top of the Gabbro is internally fractured and disturbed as well as containing a graphitic fault.	
CR-11-051	121.12	209.30	88.18	I3A	Medium grey green coloured and medium grained Gabbro. Well foliated to contact sheared to 142m. Past that the foliation gradually disappears. Occasional signs of ductile deformation. Veins are far and few inbetween. Minimal traces of sulphides in places. Lower contact follows shear.	
CR-11-051	209.30	211.00	1.70	SHR/BRC	Shear and brecciation zone in Gabbro. Shearing is planar to undulating with some of the veins showing signs of boudinage. Breccia healed with quartz carbonate. Minimal traces of sulphides.	
CR-11-051	211.00	274.85	63.85	I3A	Medium green grey coloured and fine to coarse grained Gabbro. Very weakly foliated where the Gabbro is fine grained. Medium and coarse grained sections are massive. Occasional quartz carbonate and and milky quartz veins. Mineralisation is at minimum trace level. Upper contact follows shear. Lower contact against Basalt is very subtle and interfingered.	
CR-11-051	274.85	283.64	8.79	V3B	Medium green grey coloured and very fine grained Basalt. Basalt is weakly chloritic and contains pervasive carbonate in places. From 282.28m contact sheared with some planar quartz carbonate veins. Basalt also contains two less than 20cm thick sections of interflow sediments. Only the contact shear shows traces of sulphides, otherwise the Basalt is devoid of mineralisation.	
CR-11-051	283.64	353.17	69.53	I3A	Medium green grey coloured and fine grained Gabbro. Massive and uniform throughout with occasional quartz carbonate vein and signs of ductile deformation. Minimal trace of pyrite in places.	

Hole Name	From	То	Length	Code	Description	Rep
CR-11-051	353.17	356.33	3.16	SHR	Planar shear in Gabbro. Shows 1% biotite on shear planes. 5% planar quartz carbonate veining as well as thicker quartz richer stringers. No mineralisation in veining but the wall rock contains minimal traces of pyrite.	
CR-11-051	356.33	395.25	38.92	I3A	Medium green grey coloured and fine grained Gabbro as before the shear. From 388.73m contact sheared and 1% biotite altered. Lower contact is very subtle and planar at 56 degCA.	
CR-11-051	395.25	397.39	2.14	S	Mixed interflow sediments mostly comprised of fine Siltstones and pyrrhotitic Mudstones. Due to the proximity of the Gabbro the sediments have been contact metamorphosed, which makes the Siltstone appear as massive Basalt except for very faint banding that is visible in places. The sediments do not contain garnets and are not silicified or carbonatised. Primary pyrrhotite is present in the multiple Mudstone layers in this unit. Some of the pyrrhotite has been remobilised and can be observed in fractures.	
CR-11-051	397.39	404.45	7.06	V3B	Medium green grey coloured and very fine grained Basalt. Basalt is massive and contains only 2% quartz carbonate veins. Mineralised to 0.1% with pyrrhotite, the source of which are likely the sediments described in previous unit.	
CR-11-051	404.45	405.14	0.69	VEIN	Brecciated opaque quartz vein that subsequently has been healed by fine grained quartz carbonate. No sulphides could be detected. Vein cuts core at low angle of 18 degCA but the lower very uneven contact runs almost perpendicular to core axis.	
CR-11-051	405.14	491.26	86.12	V3B	Medium green grey coloured and fine grained Basalt. To 430m continuation of Basalt encountered before the vein. It is massive, moderately foliated and contains only 1% of veining with traces of pyrrhotite. After 430m the Basalt is pillowed and more and more carbonaceous fractures show up downwards. Occasional pale green bleaching and carbonate overprinting. Veining increases to 6%, some of which show internal brecciation and blebby and streaky pyrrhotite. Pyrrhotite is also present in hornblende-chlorite dominated pillow selvedges but is almost absent from the Basalt itself.	

CONQUEST Resources Limited

Hole Name	From	То	Length	Code	Description	Rep
CR-11-051	491.26	501.82	10.56	I2G	Medium grey to buff coloured and fine grained Quartz Monzodiorite. Intrusive is well foliated and contains up to 10% sericite locally, 3% on average. Up to 496.76m quartz eyes are medium grained and the mineralisation consists of 0.25% pyrite in small angular masses and traces of very fine grained cubic arsenopyrite. Between 496.76m and 498m the intrusive is strongly sheared and biotite overprinted and moderately silicified. The alteration is strong and does seem to contain some assimilated chunks of Basalt. To about 497.47 m pyrite is dominating and can be observed on shear planes, again in small angular masses but now at 1.%. Alongside the pyrite grey sulphides are starting to show, picking up downwards. From 497.47m to 498m about 2% grey sulphides are present. Pyrite has retreated to 0.5% but now pyrrhotite sits at 1%. Below 498m the Quartz Monzodiorite contains 0.25% pyrite and 0.1% arsenopyrite. Quartz eyes are now coarse grained. Otherwise the intrusive is similar to the section above the shear/alteration zone. Contacts are sharp, upper and lower at 58 degCA.	
CR-11-051	501.82	524.83	23.01	V3B	Medium green brown grey coloured and fine grained Basalt. Basalt is foliated and shows pervasive hornblende as well as biotite alteration. Alteration is not even and sections of "normal" Basalt alternate with sections where the primary structure has been masked by the growth of hornblende. Veining at 3% is predominantly thin and not very disturbed, often following along foliation planes. Minimal trace pyrrhotite in places.	
CR-11-051	524.83	542.84	18.01	12J	Medium to dark grey coloured fine to medium grained Diorite. Massive intrusive with only very weak signs of undulating foliation. Small flaky black coloured biotite is present in places as are traces of carbonate. A 90 cm milky white coloured quartz vein is not mineralised. Cubic pyrite to the tune of 0.25% average is present but the distribution is uneven and may reach more than 1% locally. Both contacts are sharp, upper at 56 degCA and lower at 87 degCA.	
CR-11-051	542.84	562.74	19.90	V3B	Dark green grey coloured and fine grained Basalt. Basalt is moderately to well foliated and contains a tight network of fine carbonaceous fractures. Hornblende - chlorite dominated pillow selvedges are accompanied by clouds of amygdules. Better foliated sections show a minor biotite alteration. Traces of bleaching and carbonate. Quartz carbonate veining is dismembered for the most part but there is also a small percentage of planar veins. Veining at 6%. Traces of pyrrhotite in places, in veining and in Basalt itself.	

Hole Name	From	То	Length	Code	Description	Rep
CR-11-051	562.74	566.08	3.34	I2G	Medium to light grey coloured and fine grained Quartz Monzodiorite with medium grained quartz eyes. Intrusive is foliated in places and shows a moderate sericite alteration in these. Cross cut by a thin low angle fracture filled with flaky biotite. Quartz Monzodiorite contains 0.25% pyrite and traces of arsenopyrite. Contacts are sharp, upper at 51 degCA and lower at 54 degCA.	
CR-11-051	566.08	591.15	25.07	V3B	Medium to dark green grey coloured and fine grained Basalt. Basalt is moderately to well foliated and shows frequent blotchy pale green bleaching and carbonate overprinting. Better foliated sections also show a weak pervasive biotite alteration. Pillow selvedges are dominated by hornblende-chlorite. Quartz carbonate veining is folded and anastomosing and makes up about 6% of the rock. Apart from this the core is also crisscrossed by thin carbonaceous fractures. The occasional grain of pyrite or pyrrhotite can be observed.	
CR-11-051	591.15	592.26	1.11	VEIN	Two brecciated quartz veins that are healed by fine grained quartz carbonate cross the core. The veins also contain fragments of buff bleached Basalt and stongly chloritised shards as well. Both veins contain traces of pyrite and arsenopyrite.	
CR-11-051	592.26	596.10	3.84	SHR	Basalt to 594.20m shows no obvious signs of shearing except that the foliation has turned from around 60 degCA to 48 degCA. With planar foliation picking up downwards so does a moderate biotite alteration. Shear is strongest between 595.19m and 595.62m. Here the biotite reaches 4% and the rock shows 1% pervasive carbonate as well as a weak silicification to 2%. With it the mineralisation is strongest as well, as arsenopyrite reaches 0.25% and pyrite about 1%. Otherwise finely disseminated pyrite reaches 0.3% accompanied by traces of arsenopyrite. In general the mineralisation wanes away from the center described. Lower contact of shear is abrupt with the foliation swinging back to around 60 degCA.	
CR-11-051	596.10	734.84	138.74	V3B	Continuation of Basalt encountered before veining and shearing to 680m. Here hornblende alteration gets stronger sometimes obliterating primary structure in short sections. By 720m pervasive hornblende alteration has disappeared but hornblende chlorite pillow selvedges are more frequent as are chloritised fractures where core tends to spin and break.	680 mor hbl
CR-11-051	734.84	741.33	6.49	I2G	Dark grey to brown grey coloured and fine to very fine grained Quartz Monzodiorite. Intrusive is evenly foliated and in general shows a 1% sericite alteration. Pyrite in small streaks along foliation planes. Traces of cubic arsenopyrite. Contacts are sharp, upper at 71 degCA and lower at 67 degCA.	

Hole Name	From	То	Length	Code	Description	Rep
CR-11-051	741.33	764.50	23.17	V3B	Dark grey green coloured and fine grained Basalt. Basalt is massive with only subtle signs of foliation. Hornblende - chlorite pillow selvedges are absent. Instead on occasion pale green bleached spots and carbonate overprinting is starting to show up again. Dismembered quartz carbonate veining is at 5% average. Traces of pyrrhotite in places.	
CR-11-051	764.50	779.39	14.89	I3A	Dark grey coloured and fine to very fine grained Gabbro. Intrusive is massive and uniform. Contacts are very hard to grasp and are both gradual over 0.5m. Both are put where typical Basalt quartz carbonate veining ends and then kicks in again. The Gabbro is not mineralised.	
CR-11-051	779.39	872.00	92.61	V3B	Medium pale green coloured and fine grained Basalt. Basalt is very green when dry due to chloritisation to 2%. There is some pervasive hornblende alteration but due to the fine grained nature is difficult to discern. It tends to be more readily recognizeable close to frequent contacts with intrusives where hornblende is coarser grained. On top of the chloritisation pale green blotchy bleaching is gaining in intensity downwards. By 843m the chloritisation gets weaker and so does the blotchy green bleaching. Quartz carbonate veining at 5% average is folded and sometimes boudinaged. Traces of pyrrhotite may occur in some of the veins.	
CR-11-051	872.00	911.40	39.40	V3B/ATZ	Dark grey coloured and fine to very fine grained Basalt. Strong hornblende alteration has obliterated almost all primary texture including quartz carbonate veins which sometimes show up as diffuse ghost structures. Most fresh looking veins seem to postdate the hornblende alteration and tend to be not very strongly deformed. Veining sits at 3% average. Minimum traces of pyrrhotite in a few of the veins present.	
CR-11-051	911.40	915.41	4.01	V3B	Medium to dark grey coloured and fine grained Basalt. Contains much less hornblende that previous unit, leaving the primary texture intact. Trace chlorite and 0.5% carbonate overprinting as well as trace garnets locally. Typical 5% veining with folded and dismembered veins as well as planar undisturbed later stage veins. Trace pyrrhotite very finely disseminated in quartz carbonate veins.	
CR-11-051	915.41	920.42	5.01	12G	Medium grey coloured and fine grained Quartz Monzodiorite. Intrusive is moderately foliated following the same 63 degCA as observed in Basalt above. Trace sericite alteration at 917m where a thin Lamprophyre crosses the Quartz Monzodiorite and in the last 70cm towards the base. Quartz crystals are rounded and medium grained except for the last meter where mostly small shards casn be observed. Mineralised with 0.25% pyrite that can be disseminated or small streaky masses. Local traces of arsenopyrite predominantly where sericite is present. Contacts are sharp, upper at 60 degCA and lower at 44 degCA.	

Hole Name	From	То	Length	Code	Description	Rep
CR-11-051	920.42	927.90	7.48	V3B	Medium green grey coloured and medium grained Basalt. Pervasive hornblende alteration and regrowth of plagioclase has completely obliterated any basaltic texture including quartz carbonate veins, giving the Basalt an almost intrusive look. Unit is foliated with the hornblende crystals following the foliation in their growth. Quartz carbonate veins tend to be fairly intact and planar for the most part. Fractures often show thin platelets of pyrrhotite and chalcopyrite.	
CR-11-051	927.90	940.92	13.02	SHR/ATZ	Planar shear and alteration zone with varying intensity of quartz carbonate veining. Strongly pervasive hornblende altered, but in contrast to unit before some of the original basaltic texture has been preserved and the coarser hornblende-chlorite-garnet alteration is accompanying the quartz carbonate veins. This alteration halo itself is accompanied by bands that are diotite rich and about 1cm in thickness. Where veins are wider spaced the pervasive hornblende is dominating with the absense of chlorite. However, biotite is present here to about 1%. Quartz carbonate veins are predominantly 0.5 to 2cm thick but there are also a couple of 10cm plus stringers that are similar to the veins in nature. Veins tend to show in clusters with almost empty stretches inbetween. The zone is mineralised with pyrrhotite to an average of 1%. Most of the pyrrhotite is very finely disseminated in the quartz carbonate veins, but it also occurs as streaks and thin selvages in the same. Apart from that blebby pyrrhotite can be observed in the hornblende-chlorite-garnet alteration halos and finely disseminated in the biotite. The upper contact of the zone is gradual over 20cm. The lower contact is dyked out.	
CR-11-051	940.92	961.22	20.30	V3B	Basalt is continuation of the stack encountered between 920.42m and 927.90m where a complete reconstitution has taken place that obliterated any primary texture. Between 953.50m and 955.50m the strong alteration gradually disappears and the Basalt becomes very fine grained and riddled with fine carbonaceous fractures, since it has been subject to intense deformation. Amygdules, pillow selvedges and pale blotchy bleaching and carbonate overprinting return as well. Trace mineralised with blebs of pyrrhotite in quartz carbonate veins. Last meter taken up by sheared and biotite altered Diorite.	
CR-11-051	961.22	966.63	5.41	12G	Medium grey coloured and fine grained Quartz Monzodiorite is moderately foliated and shows traces of sericite. Intrusive is crossed by two 30cm thick milky quartz veins without mineralisation. Quartz Monzodiorite contains 0.25% pyrite in small grainy masses and traces of cubic arsenopyrite. Contacts are sharp, upper at 76 degCA and lower at 71 degCA.	

Hole Name	From	То	Length	Code	Description	Rep
CR-11-051	966.63	972.63	6.00	SHR	Shear gradually gradually phasing in in this interval. Here the Basalt is medium green grey coloured and fine grained. Green colour due to 10% pervasive hornblende alteration. Hornblende alteratively is accompanied by chlorite or by biotite. Chlorite richer bands will also contain garnets. Shearing in general is planar and so are 75% of the quartz carbonate veins. Veins are thin, rarely exceeding 1cm in thickness. A few thicker veins are lighter in colour and contain more carbonate. These are later stage as they cut the thinner veins that contain sulphides. Sulphides, chiefly pyrrhotite, is very finely disseminated in those first generation veins giving them a cloudy brownish colour. Some veins will also contain irregular grainy masses or streaks of pyrrhotite. Apart from that it occurs as blebs around garnets in hornblende-chlorite-garnet bands and disseminated where biotite is more prevalent.	
CR-11-051	972.63	975.30	2.67	SHR	Center of shear with the highest intensity of quartz carbonate veining, acombined 25%. These veins are folded to planar and boudinaged. About half the veins present are the later stage, lighter coloured "clean" looking ones described in the unit before. The Basalt itself is 90% coarsely hornblende-chlorite garnet altered with minor bands that are biotite rich and carbonate overprinted. As in the previous unit the sulphides are very finely disseminated in the first generation veins, but the ratio of streaks and blebs in the same is much higher. A few veins also contain small grainy masses of pyrite. Next to pyrrhotiteat 1.5% and trace pyrite minute traces of chalcopyrite and an uncertain amount of magnetite are present.	
CR-11-051	975.30	976.30	1.00	SHR	The high vein intensity quickly wanes downward and with it the strong hornblende-chlorite garnet alteration. Instead the biotite content in general trends to 3%, accompanied by a low level carbonate overprinting Hornblende is again fine grained pervasive as in the top part of the shear. Veining is reduced to 9% but the reduction is mostly due to the later stage lighter coloured veins being absent from this unit. Pyrrhotite sits at 1% due to the fact that the remaining veins are all mineralised and the biotite carries grade as well.	
CR-11-051	976.30	982.97	6.67	V3B	Medium green grey coloured and fine grained Basalt is strongly foliated, following the same 69 degCA as the shear above. 10% pervasive hornblende alteration with plagioclase reconstitution. Minor biotite and traces of carbonate. Few coarser hornblende-chlorite bands as halos around quartz carbonate veins contain trace garnets. Vein distribution is irregular and so is the amount of strongly boudinaged veins compared to "intact" veins. Vein average is 5%. Traces of pyrrhotite locally. Interval only contains one mineralised quartz carbonate vein.	

Hole Name	From	То	Length	Code	Description	Rep
CR-11-051	982.97	987.05	4.08	V3B/ATZ	Medium green grey coloured and fine grained Basalt. 10% pervasive hornblende alteration as before, but unit is crossed by groups of veins of irregular but crisp outlines that do not follow the local foliation pattern of 65 degCA but may be steeper or shallower and therefore appear to postdate the foliation. The sets of veins are accompanied by wide halos of coarse hornblende-chlorite garnet alteration as in the shear above. These offset veins are mineralised with very fine grained pyrrhotite, giving them a brownish colour. There is minor pyrrhotite in the alteration halos but for the most part the mineralisation is confined to the veins.	
CR-11-051	987.05	997.07	10.02	V3B	Medium green grey coloured and fine grained Basalt as before. Pervasive hornblende alteration and plagioclase reconstitution. Quartz carbonate veins are folded, anastomosing, and dismembered. Veining decreases downwards and sits at 5% average. Foliation is not as strong as before with core angles dropping towards 60 degCA downwards. Pillow selvedges are more readily recognizeable and dominated by hornblende and chlorite. Trace mineralised with pvrrhotite.	
CR-11-051	997.07	997.99	0.92	12G	Medium grey coloured and fine grained Quartz Monzodiorite. Intrusive is moderately foliated and contains disseminated traces of pyrite. Upper contact is sharp at 72 degCA.	
CR-11-051	997.99	998.00	0.01	EOH	End of Hole. Hole was terminated on September 20, 2011 at 998 metres after drilling 22 metres into the footwall of the targeted shear zone without encountering another major structure. Casing was left in the ground and capped allowing further investigation. 229 NQ core trays were used. The core is stored at Conquest's Alexander Core Yard on the property. 101 Samples were sent out to AGAT Laboratories for fire assay.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-11-051	49.42	50.00	S	Dark grey green coloured mixed interflow Sediments. Sediments consist of cherty bands, silicified mudstones and epidote rich tufaceous layers that are unsorted. Garnets and pervasive carbonate is associated with the tufaceous layers. Mineralised to 2% with blebby and disseminated pyrite and 0.25% of pyrrhotite. Bedding is disturbed by weight of lava flow covering it making contacts difuse.	
CR-11-051	101.96	102.41	S	Mixed sediments dominated by milky brown Chert. Next to Chert containing thin garnetiferous ash layers and Siltstone. Quartz carbonate overprinting. Fine disseminated pyrrhotite in the Chert and quartz carbonate. Pyrrhotite also remobilised in fractures alongside traces of Chalcopyrite.	
CR-11-051	513.77	515.65	12J	Medium to dark grey coloured and fine to medium grained Diorite. Minor flaky biotite and undulating patterns of crystal growth indicate ductile deformation. Mineralised with 0.25% cubic pyrite. Upper contact falls into spun core. Lower contact sharp at 83 degCA.	
CR-11-051	610.93	611.80	I2G	Medium grey coloured and fine grained Quartz Monzodiorite. Intrusive is moderatly foliated and weakly mineralised with 0.25% pyrite and traces of arsenopyrite. Both contacts sharp, upper and lower at 62 degCA.	
CR-11-051	633.94	635.68	12G	Medium grey coloured and fine grained Quartz Monzodiorite. Intrusive is moderatly foliated and weakly mineralised with 0.25% pyrite. Both contacts sharp, upper at 75 degCA and lower at 69 degCA.	
CR-11-051	716.66	717.66	12G	Medium grey coloured and fine grained Quartz Monzodiorite is partially foliated and contains minor sericite. Mineralised with 0.25% pyrite and minimal traces of arsenopyrite. Contacts are sharp, upper at 61 degCA and lower at 64 degCA.	
CR-11-051	750.59	761.12	121	Dark to medium grey coloured and very fine grained Diorite. Contains small feldspar plugs. Intrusive has been deformed and is crossed by a brecciated quartz vein. The thick fractures are healed by brown biotite. Minimal traces of pyrite in places. Upper contact is sharp at 85 degCA. Lower contact falls into broken core.	
CR-11-051	756.11	759.45	I3A	Dark green grey coloured and very fine grained Gabbro. Intrusive is massive and contains only traces of veins. Green colour due to chloritisation. Contacts are sharp. Upper is uneven but roughly runs at 80 degCA. Lower contact is undulating at 35 degCA.	

Minor Lithologies Record

HoleID	From	То	Code	Description	REP
CR-11-051	784.8	789.65	12G	Medium grey coloured and fine grained Quartz Monzodiorite. Contains 0.25% disseminated pyrite. Upper contact is broken. Lower contact is sharp at 56 degCA.	
CR-11-051	788.93	790.54	12G	Medium grey coloured and fine grained Quartz Monzodiorite. Intrusive is foliated and contains 0.25% disseminated pyrite and trace arsenopyrite. Contacts are sharp, upper at 69 degCA and lower at 65 degCA.	
CR-11-051	808.40	809.13	12G	Medium grey coloured and fine grained Quartz Monzodiorite. Intrusive is foliated and contains 0.25% disseminated pyrite and trace arsenopyrite. Contacts are sharp, upper at 67 degCA and lower at 54 degCA.	
CR-11-051	938.03	940.17	12G	Medium grey coloured and fine to medium grained Quartz Monzodiorite. Intrusive is weakly foliated and contains a few quartz carbonate and biotite filled fractures that are not mineralised. Short section of shear within the intrusive near base. Weakly mineralised with trace pyrite and arsenopyrite. Contacts are sharp, upper at 65 degCA and lower at 67 degCA.	
CR-11-051	940.35	940.92	130	Dark grey coloured and very fine grained Lamprophyre. Intrusive is massive and without other internal features. 1% carbonate in matrix. Intrusive is not mineralised. Contacts are sharp, upper at 84 degCA and lower at 68 degCA.	
CR-11-051	960.15	961.22	12J	Medium grey coloured and fine to medium grained Diorite is strongly sheared close to upper contact with Basalt. This has led to a locally very strong biotite alteration. The shearing wanes downwards towards the contact with a Quartz Monzodiorite. Contacts are sharp, upper at 77 degCA and lower at 76 degCA.	

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-11-051	E5308663	48.92	49.42	0.50		Wing sample, Basalt with pervasive hornblende and trace carbonate.	9	11T532378
CR-11-051	E5308664	49.42	50.00	0.58	consecutive	Mixed interflow sediments with pyrite, carbonate, epidote and primary pyrrhotite.	7	11T532378
CR-11-051	E5308665	50.00	50.50	0.50	consecutive	Wing sample, Basalt with pervasive hornblende and trace carbonate.	8	11T532378
CR-11-051	E5308666	52.06	52.56	0.50	not consecutive	Wing sample, Basalt with pervasive hornblende.	3	11T532378
CR-11-051	E5308667	52.56	53.56	1.00	consecutive	Lamprophyre with angular masses of pyrite.	1	11T532378
CR-11-051	E5308668	53.56	54.06	0.50	consecutive	Wing sample, Lamprophyre with disseminated pyrite.	3	11T532378
CR-11-051	E5308669	88.19	88.69	0.50	not consecutive	Wing sample, Medium grey carbonaceous hornblende Basalt.	5	11T532378
CR-11-051	E5308670	0.00	0.00	0.00	not consecutive	Standard PM 442 0.62 gm/t Au	537	11T532378
CR-11-051	E5308671	88.69	89.19	0.50	not consecutive	Basalt with two thick quartz carbonate stringers containing trace sulphides and magnetite.	3	11T532378
CR-11-051	E5308672	89.19	89.69	0.50	consecutive	Wing sample, Medium grey carbonaceous hornblende Basalt.	7	11T532378
CR-11-051	E5308673	99.91	100.41	0.50	not consecutive	Wing sample, hornblende Basalt with 5% veining.	8	11T532378
CR-11-051	E5308674	100.41	100.93	0.52	consecutive	Basalt with several quartz carbonate stringers one of which contains blebby pyrrhotite.	5	11T532378
CR-11-051	E5308675	282.00	283.00	1.00	not consecutive	Basalt, partially contact sheared with minimal traces of pyrite.	135	11T532378
CR-11-051	E5308676	100.93	101.91	0.98	not consecutive	Hornblende Basalt with 7% veining.	4	11T532378
CR-11-051	E5308677	101.91	102.41	0.50	consecutive	Interflow sediments with primary pyrrhotite and pyrrhotite - chalcopyrite in fractures.	8	11T532378
CR-11-051	E5308678	102.41	102.91	0.50	consecutive	Wing sample, Hornblende Basalt with 3% veining.	5	11T532378
CR-11-051	E5308679	403.95	404.45	0.50	not consecutive	Wing sample, Basalt with trace pyrrhotite in fractures.	2	11T532378
CR-11-051	E5308680	404.45	405.14	0.69	consecutive	Brecciated quartz vein healed by quartz carbonate, unmineralised.	<1	11T532378
CR-11-051	E5308681	405.14	405.64	0.50	consecutive	Wing sample, Basalt with trace pyrrhotite in fractures.	<1	11T532378
CR-11-051	E5308682	442.07	442.57	0.50	not consecutive	Wing sample, Pillowed Basalt with 2% veining.	3	11T532378
CR-11-051	E5308683	442.57	443.57	1.00	consecutive	Basalt with 20% veining and blebby-streaky pyrrhotite.	2	11T532378
CR-11-051	E5308684	443.57	444.25	0.68	consecutive	Basalt with 20% veining but less pyrrhotite than before.	3	11T532378
CR-11-051	E5308685	444.25	444.75	0.50	consecutive	Wing sample, Basalt with 1% veining.	1	11T532378
CR-11-051	E5308686	490.76	491.26	0.50	not consecutive	Wing sample, Basalt with biotite near contact.	28	11T532378
CR-11-051	E5308687	491.26	492.76	1.50	consecutive	Quartz Monzodiorite with 0.25% pyrite and trace arsenopyrite.	654	11T532378
CR-11-051	E5308688	492.76	494.26	1.50	consecutive	Quartz Monzodiorite with 0.25% pyrite and trace arsenopyrite.	61	11T532378

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-11-051	E5308689	494.26	495.76	1.50	consecutive	Quartz Monzodiorite with 0.25% pyrite and trace arsenopyrite.	384	11T532378
CR-11-051	E5308690	0.00	0.00	0.00	not consecutive	Standard PM 446 1.22 gm/t Au	1260	11T532378
CR-11-051	E5308691	495.76	496.76	1.00	not consecutive	Quartz Monzodiorite with 0.25% pyrite and trace arsenopyrite.	359	11T532378
CR-11-051	E5308692	496.76	497.47	0.71	consecutive	Sheared Quartz Monzodiorite with 1% pyrite and grey sulphides.	7230	11T532378
CR-11-051	E5308693	497.47	498.00	0.53	consecutive	Sheared Quartz Monzodiorite with 2% grey sulphides, pyrrhotite and pyrite.	31250	11T532378
CR-11-051	E5308694	498.00	499.30	1.30	consecutive	Quartz Monzodiorite with 0.25% pyrite and trace arsenopyrite.	434	11T532378
CR-11-051	E5308695	562.24	562.74	0.50	not consecutive	Wing sample, hornblende Basalt with 1% veining.	32	11T532378
CR-11-051	E5308696	499.30	500.60	1.30	not consecutive	Quartz Monzodiorite with 0.25% pyrite and trace arsenopyrite.	1420	11T532378
CR-11-051	E5308697	500.60	501.82	1.22	consecutive	Quartz Monzodiorite with 0.25% pyrite and trace arsenopyrite.	93	11T532378
CR-11-051	E5308698	501.82	502.32	0.50	consecutive	Wing sample, Basalt with hornblende-biotite.	20	11T532378
CR-11-051	E5308699	562.74	563.84	1.10	not consecutive	Quartz Monzodiorite with 0.25% pyrite and trace arsenopyrite.	51	11T532378
CR-11-051	E5308700	563.84	564.94	1.10	consecutive	Quartz Monzodiorite with 0.25% pyrite and trace arsenopyrite.	48	11T532378
CR-11-051	E5308701	564.94	566.08	1.14	consecutive	Quartz Monzodiorite with 0.25% pyrite and trace arsenopyrite.	65	11T532378
CR-11-051	E5308702	566.08	566.58	0.50	consecutive	Wing sample, Basalt with 3% veining.	19	11T532378
CR-11-051	E5308703	590.65	591.15	0.50	not consecutive	Wing sample, Basalt with pale green bleaching and carbonate.	<1	11T532378
CR-11-051	E5308704	591.15	592.26	1.11	consecutive	Brecciated quartz veins healed by quartz carbonate with trace pyrite and arsenopyrite.	3	11T532378
CR-11-051	E5308705	592.26	593.00	0.74	consecutive	Foliated Basalt with trace pyrite.	6	11T532378
CR-11-051	E5308706	593.00	594.00	1.00	consecutive	Well foliated Basalt with increasing biotite, trace pyrite and arsenopyrite.	5	11T532378
CR-11-051	E5308707	594.00	595.19	1.19	consecutive	Well foliated to sheared Basalt with planar veining, trace pyrite and arsenopyrite.	6	11T532378
CR-11-051	E5308708	595.19	595.62	0.43	consecutive	Sheared Basalt with 1% pyrite and 0.25% arsenopyrite.	80	11T532378
CR-11-051	E5308709	595.62	596.10	0.48	consecutive	Shearing wanes quickly, so does mineralisation back down to traces.	11	11T532378
CR-11-051	E5308710	0.00	0.00	0.00	not consecutive	Standard PM 431 2.78 gm/t Au	2780	11T532378
CR-11-051	E5308711	596.10	596.60	0.50	not consecutive	Wing sample, Basalt with hornblende, trace pyrite.	7	11T532378
CR-11-051	E5308712	734.34	734.84	0.50	not consecutive	Wing sample, Basalt with 7% veining.	5	11T532378

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-11-051	E5308713	734.84	736.34	1.50	consecutive	Quartz Monzodiorite with 0.25% pyrite and trace arsenopyrite.	49	11T532378
CR-11-051	E5308714	736.34	737.84	1.50	consecutive	Quartz Monzodiorite with 0.25% pyrite and trace arsenopyrite.	21	11T532378
CR-11-051	E5308715	851.00	852.00	1.00	not consecutive	Basalt with pale green bleaching and 8% veining.	3	11T532378
CR-11-051	E5308716	737.84	739.00	1.16	not consecutive	Quartz Monzodiorite with 0.25% pyrite and trace arsenopyrite.	18	11T532378
CR-11-051	E5308717	739.00	740.16	1.16	consecutive	Quartz Monzodiorite with 0.25% pyrite and trace arsenopyrite.	23	11T532378
CR-11-051	E5308718	740.16	741.33	1.17	consecutive	Quartz Monzodiorite with 0.25% pyrite and trace arsenopyrite.	4	11T532378
CR-11-051	E5308719	741.33	742.00	0.67	consecutive	Wing sample, Basalt with 3% veining.	2	11T532378
CR-11-051	E5308720	914.91	915.41	0.50	not consecutive	Wing sample, Basalt with 4% veining.	10	11T532378
CR-11-051	E5308721	915.41	916.91	1.50	consecutive	Quartz Monzodiorite with 0.25% pyrite and trace arsenopyrite.	116	11T532378
CR-11-051	E5308722	916.91	918.41	1.50	consecutive	Quartz Monzodiorite with 0.25% pyrite and trace arsenopyrite.	24	11T532378
CR-11-051	E5308723	918.41	919.41	1.00	consecutive	Quartz Monzodiorite with 0.25% pyrite and trace arsenopyrite.	63	11T532378
CR-11-051	E5308724	919.41	920.42	1.01	consecutive	Quartz Monzodiorite with 0.25% pyrite and trace arsenopyrite.	186	11T532378
CR-11-051	E5308725	920.42	920.92	0.50	consecutive	Wing sample, variolititc Basalt.	23	11T532378
CR-11-051	E5308726	927.40	927.90	0.50	not consecutive	Wing sample, Foliated hornblende Basalt.	3	11T532378
CR-11-051	E5308727	927.90	928.90	1.00	consecutive	Shear with 15% veining, 1% disseminated pyrrhotite.	6	11T532378
CR-11-051	E5308728	928.90	929.90	1.00	consecutive	Shear with 15% veining, 1% disseminated pyrrhotite.	1	11T532378
CR-11-051	E5308729	929.90	930.90	1.00	consecutive	Shear with 10% veining, 1% disseminated pyrrhotite.	<1	11T532378
CR-11-051	E5308730	0.00	0.00	0.00	not consecutive	Standard PM 446 1.22 gm/t Au	1280	11T532378
CR-11-051	E5308731	930.90	931.90	1.00	not consecutive	Shear with 4% veining and 0.5% pyrrhotite.	4	11T532378
CR-11-051	E5308732	931.90	932.90	1.00	consecutive	Shear with with two 10cm+ mineralised stringers and cluster of mineralised veins. 1.5% pyrrhotite.	4	11T532378
CR-11-051	E5308733	932.90	933.90	1.00	consecutive	Shear with 4% veining and 0.5% pyrrhotite.	2	11T532378
CR-11-051	E5308734	933.90	934.90	1.00	consecutive	Shear with 1% veining and trace pyrrhotite.	5	11T532378
CR-11-051	E5308735	960.72	961.22	0.50	not consecutive	Wing sample, Diorite with biotite alteration.	3	11T532378
CR-11-051	E5308736	934.90	935.90	1.00	not consecutive	Shear with 9% veining, 1% pyrrhotite.	7	11T532378
CR-11-051	E5308737	935.90	936.90	1.00	consecutive	Shear with 7% veining, 1% pyrrhotite.	6	11T532378
CR-11-051	E5308738	936.90	938.03	1.13	consecutive	Shear with 5% veining, 0.5% pyrrhotite.	4	11T532378
CR-11-051	E5308739	938.03	939.00	0.97	consecutive	Quartz Monzodiorite with trace pyrite and arsenopyrite.	101	11T532378
CR-11-051	E5308740	939.00	940.17	1.17	consecutive	Quartz Monzodiorite as before with two 30cm sections of sheared Basalt.	200	11T532378

Sampling Record

HoleID	SampleID	From	То	Length	Consecutive	Description	Au_ppb	Batch-Number
CR-11-051	E5308741	940.17	940.92	0.75	consecutive	Wing sample, 20cm of unmineralised contact altered Basalt and unmineralised Lamprophyre.	11	11T532378
CR-11-051	E5308742	961.22	962.72	1.50	not consecutive	Quartz Monzodiorite with 0.25% pyrite and trace arsenopyrite.	43	11T532378
CR-11-051	E5308743	962.72	964.22	1.50	consecutive	Quartz Monzodiorite with 0.25% pyrite and trace arsenopyrite.	200	11T532378
CR-11-051	E5308744	964.22	965.72	1.50	consecutive	Quartz Monzodiorite with 0.25% pyrite and trace arsenopyrite.	143	11T532378
CR-11-051	E5308745	965.72	966.63	0.91	consecutive	Quartz Monzodiorite with 0.25% pyrite and trace arsenopyrite. Containing thick milky quartz veins with late biotite filling.	22	11T532378
CR-11-051	E5308746	966.63	967.63	1.00	consecutive	Shear with low vein intensity and minor pyrrhotite in veins and fractures.	6	11T532378
CR-11-051	E5308747	967.63	968.63	1.00	consecutive	Shear with mostly carbonate dominated later unmineralised veins.	3	11T532378
CR-11-051	E5308748	968.63	969.63	1.00	consecutive	Shear with mostly carbonate dominated later unmineralised veins.	<1	11T532378
CR-11-051	E5308749	969.63	970.63	1.00	consecutive	Shear, hornblende-chlorite-garnet alteration around veins getting stronger, so does pyrrhotite mineralisation.	6	11T532378
CR-11-051	E5308750	0.00	0.00	0.00	not consecutive	Standard PM 431 2.78 gm/t Au	2970	11T532378
CR-11-051	E5308751	970.63	971.63	1.00	not consecutive	Shear, hornblende-chlorite-garnet alteration around veins getting stronger, so does pyrrhotite mineralisation.	6	11T532378
CR-11-051	E5308752	971.63	972.63	1.00	consecutive	Shear, hornblende-chlorite-garnet alteration around veins getting stronger, so does pyrrhotite mineralisation.	3	11T532378
CR-11-051	E5308753	972.63	973.63	1.00	consecutive	Shear with 25% veining, 1.5% pyrrhotite.	3	11T532378
CR-11-051	E5308754	973.63	974.63	1.00	consecutive	Shear with 25% veining, 1.5% pyrrhotite.	<1	11T532378
CR-11-051	E5308755	982.47	982.97	0.50	not consecutive	Wing sample, hornblende Basalt with trace pyrrhotite.	2	11T532378
CR-11-051	E5308756	974.63	975.30	0.67	not consecutive	Shear with 25% veining, 1.5% pyrrhotite.	1	11T532378
CR-11-051	E5308757	975.30	976.30	1.00	consecutive	Shear with 9% veining, 1% pyrrhotite.	2	11T532378
CR-11-051	E5308758	976.30	977.00	0.70	consecutive	Wing sample, hornblende Basalt with trace pyrrhotite.	3	11T532378
CR-11-051	E5308759	982.97	984.00	1.03	not consecutive	Basalt with clusters of veins, mineralised with 0.5% pyrrhotite	3	11T532378
CR-11-051	E5308760	984.00	985.00	1.00	consecutive	Basalt with clusters of veins, mineralised with 0.5% pyrrhotite	6	11T532378
CR-11-051	E5308761	985.00	986.00	1.00	consecutive	Well foliated Basalt, traces of pyrrhotite	4	11T532378
CR-11-051	E5308762	986.00	987.05	1.05	consecutive	Basalt with clusters of veins, mineralised with 0.5% pyrrhotite	3	11T532378
CR-11-051	E5308763	987.05	987.55	0.50	consecutive	Wing sample, well foliated Basalt with pervasive hornblende alteration.	8	11T532378

Reflex Survey Record

Hole ID	Station (m)	Dip (Degrees)	Azimuth	MAG
CR-11-051	27	-68.90	28.20	5844
CR-11-051	60	-68.50	29.10	5824
CR-11-051	90	-68.10	29.70	5841
CR-11-051	120	-68.00	33.10	5865
CR-11-051	150	-67.80	21.50	Not Measured - Tool Error
CR-11-051	210	-66.60	32.10	5801
CR-11-051	240	-66.40	32.80	5815
CR-11-051	270	-66.20	33.00	5807
CR-11-051	300	-66.00	34.70	5844
CR-11-051	330	-66.00	34.10	5810
CR-11-051	360	-65.80	34.40	5822
CR-11-051	390	-65.70	34.40	5811
CR-11-051	426	-65.50	34.40	5811
CR-11-051	450	-65.10	35.00	5791
CR-11-051	480	-64.80	35.30	5794
CR-11-051	510	-64.30	34.80	5797
CR-11-051	540	-64.10	34.40	5807
CR-11-051	570	-63.60	37.10	5793
CR-11-051	600	-63.20	36.10	5791
CR-11-051	630	-62.90	35.40	5783
CR-11-051	660	-62.70	35.90	5795
CR-11-051	690	-62.50	35.70	5811
CR-11-051	720	-61.50	36.50	5804
CR-11-051	750	-61.30	36.80	5807
CR-11-051	780	-61.00	36.40	5795
CR-11-051	810	-60.30	37.00	5798
CR-11-051	849	-59.90	37.60	5809
CR-11-051	879	-61.30	344.90	9311
CR-11-051	912	-59.00	37.80	5807
CR-11-051	945	-58.40	37.70	5803
CR-11-051	975	-58.00	45.20	5794

APPENDIX: Maps

LEGEND FOR SIMPLIFIED GEOLOGY (BY ROCK CODE)

Casing Arc Cuttings Lost Core

Fault Quartz Vein Shear Zone Breccia Alteration Zone Iron Formation Solid Sulphide Zone (70-100%) Near Solid Sulphide Zone (50-70%) Well Mineralized Zone (20-50%) Disseminated Sulphide Zone (5-20%)

Felsic Intrusives Intermediate Intrusives Mafic Intrusive Mafic Lamprophyre Ultramafic Intrusive

Felsic Volcanic Intermediate Volcanic Mafic Volcanic Ultramafic Volcanic

Metasediments

Marble Schist

Figure 15: Simplified Geology Legend for Location Map and Vertical Cross Sections

INT age

Hgure 18: Totall Vagretic Intensity Interpretation IVap (from Barre, 2003)

Hgure 19: VLI-LIVIandi Vegnetic Survey Lata Interpretation Basel Vep (from Boniveli, 2005)

Figure 20: Central Sulphide Shear Zone Trench Map (2010)

Figure 21: Trenching Location and Geology Map No. 1 (2004)

Figure 22: Trenching Location and Geology Map No. 2 (2004)

APPENDIX: Vertical Cross Sections

All cross sections are oriented vertically and are cut along planes corresponding to the 2002 local grid oriented of 029°. Sections are cut in a direction "looking" 331 AZ at regular 100 metre line spacing. Each cross section is 100 metre in thickness.

Sections are plotted at 1:7,500 scale.

500 m AMSL	010.0 E	290.0 N	510.0 E	2300.0 N
400 m AMSL 9	452(2022	CR-04-013 CR-04-012 CR-04	2000
300 m AMSL				
200 m AMSL				
100 m AMSL				
0 m AMSL				
-100 m AMSL				
-200 m AMSL				
-300 m AMSL				
-400 m AMSL				
-500 m AMSL				
-600 m AMSL				
-700 m AMSI				
800 m AMSL				
900 m AMSL				
-1000 m AMSL				
-1100 m AMSL				
-1200 m AMSL				
-1300 m AMSL				
-1400 m AMSL				
-1500 m AMSL				
-1600 m AMSL				
-1700 m AMSL				
-1800 m AMSL				
-1900 m AMSL				
-2000 m AMSL				
-2100 m AMSL				
-2200 m AMSL	~ ~			z
-2300 m AMSL	0 UTM ml	E M M M M M M	-100 0 100 200	
448500	565500	448000	Scale 1:7500	447500 565450

Vertical Section 2400E		
May 28, 2011 Drawn by: Batson Section Cut at 029 AZ		CONQUES I Resources Limited
Viewport Looking 331 AZ	Conquest Alexander Gold Project - Red Lake Mining District	
best efforts basis by CAD georeferencing historic local grids	Balmertown, Balmer Township, Ontario	
and held observations. Drilling conducted during period 2003 through 2011 have been surveyed using modern techniques and are accurate within 3 metres.	Head Office: Suite 700 - 220 Bay Street, Toronto, Ontario, Canada I	M5J 2W5

500 m AMSL 2 0 400 m AMSL 2	51930.0 E	25340.0 N	55840.0 N	52430.0 E	56340.0 N
300 m AMSL	46,46		<u>Ğ</u>	4	ů G
200 m AMSL					
100 m AMSL					
0 m AMSL					
-100 m AMSL					
-200 m AMSL					
-300 m AMSL					
-400 m AMSL					
-500 m AMSL					
-600 m AMSL					
-700 m AMSL					
-800 m AMSL					
-900 m AMSL					
-1100 m AMSL					
-1200 m AMSL					
-1300 m AMSL					
-1400 m AMSL					
-1500 m AMSL					
1600 m AMSL					
-1700 m AMSL					
-1800 m AMSL					
-1900 m AMSL					
-2000 m AMSL					
-2100 m AMSL					
-2200 m AMSL	M M M M M	ے بور پر		A mE	
-2300 m AMSL		448000 U	-100 0 100 Scale 1:7500		

Verti	ical Secti	on 2300E		
May 28, 2011	Drawn by: Batson	Section Cut at 029 AZ	Consult Alexander Cold Designt Ded Lake Mining District	CONQUESI Resources Limited
Notes: Drill h	nole collars for histor	ic drilling are located on a	Conquest Alexander Gold Project - Red Lake Mining District	
best efforts l	basis by CAD georefe	erencing historic local grids	Balmertown, Balmer Township, Ontario	
2003 through	h 2011 have been su nd are accurate with	rveyed using modern nin 3 metres.	Head Office: Suite 700 - 220 Bay Street, Toronto, Ontario, Canada	M5J 2W5

500 m AMSL 2 400 m AMSL 2	51840.0 E	223300.0 V	228300.0 N	52340.0 E	263300.0 N
300 m AMSL				4	<u>ю</u> <u></u>
200 m AMSL					
100 m AMSL					
0 m AMSL					
-100 m AMSL					
200 m AMSL					
-300 m AMSL					
-400 m AMSL					
-500 m AMSL					
-600 m AMSL					
-700 m AMSL					
-800 m AMSL					
-900 m AMSL					
-1000 m AMSL					
-1100 m AMSL					
-1200 m AMSL					
-1300 m AMSL					
1400 m AMSL					
-1500 m AMSL					
-1600 m AMSL					
-1700 m AMSL					
-1800 m AMSL					
-1900 m AMSL					
-2000 m AMSL					
-2100 m AMSL					
2200 m AMSL	<u></u>	ш		i	<u>z</u>
-2300 m AMSL	00 UTM r	۵ ۲ ۲	-100 0 100	200 D	
44850	56550	44800	Scale 1:7500	44750	460 460

Verti	ical Secti	ion 2200E	VERTICAL CROSS SECTION	
May 28, 2011	Drawn by: Batson	Section Cut at 029 AZ		Resources Limited
Notes: Drill h	ole collars for histor	ric drilling are located on a	Conquest Alexander Gold Project - Red Lake Mining District	
best efforts l	basis by CAD georefe	erencing historic local grids	Balmertown, Balmer Township, Ontario	
2003 through	h 2011 have been su	irveyed using modern	Head Office: Suite 700 - 220 Bay Street, Toronto, Ontario, Canada	M5J 2W5
techniques a	nd are accurate with	hin 3 metres.		

500 m AMSL 2000 400 m AMSL 2000	451670.0 E	€ 2554 90.0 N	0.00 0.00 0.00	452170.0 E	656490.0 N
300 m AMSL			<u>م</u>		<u>и</u>
200 m AMSL					
_ 100 m AMSL					
0 m AMSL					
-100 m AMSL					
200 m AMSL					
300 m AMSL					
-400 m AMSL					
-500 m AMSL					
-600 m AMSL					
-700 m AMSL					
-800 m AMSL					
-900 m AMSL					
-1000 m AMSL					
-1100 m AMSL					
-1200 m AMSL					
-1300 m AMSL					
-1400 m AMSL					
-1500 m AMSL					
-1600 m AMSL					
-1700 m AMSL					
-1800 m AMSL					
-1900 m AMSL					
-2000 m AMSL					
-2100 m AMSL					
-2200 m AMSL	z E	<u>ب</u>			2
-2300 m AMSL	000 UTM	00 E	-100 0 100	200 70 G	
4485	5655	4480	Scale 1:7500	4475i	

Vert	ical Secti	ion 2000E	VERTICAL CROSS SECTION	
May 28, 2011	Drawn by: Batson	Section Cut at 029 AZ	Consultation Could Discipate Dad Lake Mining District	Resources Limited
Notes: Drill h	nole collars for histor	ic drilling are located on a	Conquest Alexander Gold Project - Red Lake Mining District	
best efforts	basis by CAD georefe	erencing historic local grids	Balmertown, Balmer Township, Ontario	
2003 through	h 2011 have been su	rveyed using modern	Head Office: Suite 700 - 220 Bay Street, Toronto, Ontario, Canada	M5J 2W5
techniques a	nd are accurate with	hin 3 metres.		

500 m AMSL		7			7
400 m AMSL 999	451580.0 F	2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2856040.0	452080.01	5656540.0
300 m AMSL			. 12		
200 m AMSL					
100 m AMSL					
0 m AMSL					
-100 m AMSL					
-200 m AMSL					
-300 m AMSL					
-400 m AMSL					
-500 m AMSL					
-600 m AMSL					
-700 m AMSL					
-900 m AMSL					
-1000 m AMSL					
-1100 m AMSL					
-1200 m AMSL					
-1300 m AMSL					
1400 m AMSL					
-1500 m AMSL					
-1600 m AMSL					
-1700 m AMSL					
-1800 m AMSL					
-1900 m AMSL					
-2000 m AMSL					
-2100 m AMSL					
-2200 m AMSL 臣 돋	M MTU	۳ ۳ ۲		E E E E E E E E E E E E E E E E E E E	
-2300 m AMSL ⊃	5655000 (448000 U	-100 0 100 Scale 1:7500	200 200	000000

Vertical Section 1900E		
May 28, 2011 Drawn by: Batson Section Cut at 029 AZ		CONQUES I Resources Limited
Viewport Looking 331 AZ	Conquest Alexander Gold Project - Red Lake Mining District	
best efforts basis by CAD georeferencing historic local grids	Balmertown, Balmer Township, Ontario	
2003 through 2011 have been surveyed using modern techniques and are accurate within 3 metres.	Head Office: Suite 700 - 220 Bay Street, Toronto, Ontario, Canada I	M5J 2W5

500 m AMSL		7		z	
400 m AMSL	451490.01	800 8222300 82222300	,	5656090.0 h 451990.0 h	26656530.0
300 m AMSL		CRIO			
200 m AMSL					
100 m AMSL					
0 m AMSL					
-100 m AMSL					
-200 m AMSL					
-300 m AMSL					
-400 m AMSL		CR-115			
-600 m AMSI					
-700 m AMSL					
-800 m AMSL					
-900 m AMSL					
-1000 m AMSL					
-1100 m AMSL					
-1200 m AMSL					
-1300 m AMSL					
-1400 m AMSL					
-1500 m AMSL					
-1600 m AMSL					
-1700 m AMSL					
-1900 m AMSL					
-2000 m AMSL					
-2100 m AMSL					
-2200 m AMSL	<u>۲</u>				
-2300 m AMSL	000 UTM n		-100	0 100 200	00 UTM m 500 UTM n
4485	5655(448U	Scale 1:7500	4475 5654

Vertical Section 1800E	VERTICAL CROSS SECTION	
May 28, 2011 Drawn by: Batson Section Cut at 029 AZ Viewport Looking 331 AZ	Conquest Alexander Gold Project - Red Lake Mining District	Resources Limited
Notes: Drill hole collars for historic drilling are located on a best efforts basis by CAD georeferencing historic local grids	Balmertown, Balmer Township, Ontario	
and field observations. Drilling conducted during period 2003 through 2011 have been surveyed using modern techniques and are accurate within 3 metres.	Head Office: Suite 700 - 220 Bay Street, Toronto, Ontario, Canada M	5J 2W5

500 m AMSL 2000 000 400 m AMSL 2000 400 m AMSL 2000	451410.0 E	655640.0 N		656140.0 N	451910.0 E	656640.0 N
300 m AMSL	CF.OF 80	- Ū		ត្		ů O
200 m AMSL						
100 m AMSL						
<mark>0</mark> m AMSL						
-100 m AMSL						
-200 m AMSL						
-300 m AMSL						
-400 m AMSL						
-500 m AMSL						
-600 m AMSL						
-700 m AMSL						
-800 m AMSL						
-900 m AMSL						
-1000 m AMSL						
-1100 m AMSL						
-1200 m AMSL						
-1300 m AMSL						
-1400 m AMSL						
-1500 m AMSL						
-1600 m AMSL						
-1700 m AMSL						
-1800 m AMSL						
-1900 m AMSL						
-2000 m AMSL						
-2100 m AMSL						
-2200 m AMSL	2 E		ЭЕ		ш	z E
-2300 m AMSL	55000 UTM			0 100 2 Scale 1:7500	7500 UTM n	54500 UTM
448	565		44		447	20

Vertical Section 1700E		
May 28, 2011 Drawn by: Batson Section Cut at 029 AZ		CONQUES I Resources Limited
Notes: Drill hole collars for historic drilling are located on a	Conquest Alexander Gold Project - Red Lake Mining District	
best efforts basis by CAD georeferencing historic local grids	Balmertown, Balmer Township, Ontario	
and neid observations. Drilling conducted during period 2003 through 2011 have been surveyed using modern techniques and are accurate within 3 metres.	Head Office: Suite 700 - 220 Bay Street, Toronto, Ontario, Canada I	M5J 2W5

	51230.0 E	56240.0 N	56740.0 N
300 m AMSL	CROP 18		Ğ Ğ
200 m AMSL			
100 m AMSL			
0 m AMSL			
-100 m AMSL			
-200 m AMSL			
-300 m AMSL			
-400 m AMSL			
-500 m AMSL			
-600 m AMSL			
-700 m AMSL			
-800 m AMSL			
-900 m AMSL			
-1000 m AMSL			
-1100 m AMSL			
-1200 m AMSL			
-1300 m AMSL			
-1400 m AMSL			
-1500 m AMSL			
-1600 m AMSL			
-1700 m AMSL			
-1800 m AMSL			
1900 m AMSL			
2100 m AMSL			
2200 m AMSL			
	TM m M m M m		
44 88 00 00 00 00 00 00 00 00 00 00 00 00	5655000 448000 L	Scale 1:7500	

Vertical Section 1500E	VERTICAL CROSS SECTION	
May 28, 2011 Drawn by: Batson Section Cut at 029 AZ Viewport Looking 331 AZ	Conquest Alexander Gold Project - Red Lake Mining District	Resources Limited
Notes: Drill hole collars for historic drilling are located on a best efforts basis by CAD georeferencing historic local grids	Balmertown, Balmer Township, Ontario	
and field observations. Drilling conducted during period 2003 through 2011 have been surveyed using modern techniques and are accurate within 3 metres.	Head Office: Suite 700 - 220 Bay Street, Toronto, Ontario, Canada M5	5J 2W5

500 m AMSL 2 400 m AMSL 2 2000	451150.0 E	N 0'06	656290.0 N 451650.0 E	656790.0 N
300 m AMSL		8369	A Str.	
200 m AMSL	CR-20-042	•		
_ 100 m AMSL	Ŭ			
0 m AMSL				
-100 m AMSL				
-200 m AMSL				
-300 m AMSL				
-400 m AMSL				
-500 m AMSL				
-600 m AMSL				
-700 m AMSL				
-800 m AMSL				
-900 m AMSL				
-1000 m AMSL				
-1100 m AMSL				
-1200 m AMSL				
-1300 m AMSL				
-1400 m AMSL				
-1500 m AMSL				
1600 m AMSL				
1700 m AMSL				
-1800 m AMSL				
2000 m AMSL				
-2100 m AMSI				
-2200 m AMSL				
-2300 m AMSL	UTM mZ	L L L	u -100 0 100 200 ☐	전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전
448500	5655000	448000	Scale 1:7500	565450

Vertical Section 1400E		
May 28, 2011 Drawn by: Batson Viewport Looking 321 AZ		CONQUES I Resources Limited
Notes: Drill hole collars for historic drilling are located on a	Conquest Alexander Gold Project - Red Lake Mining District	
best efforts basis by CAD georeferencing historic local grids	Balmertown, Balmer Township, Ontario	
2003 through 2011 have been surveyed using modern techniques and are accurate within 3 metres.	Head Office: Suite 700 - 220 Bay Street, Toronto, Ontario, Canada I	M5J 2W5

500 m AMSL 2 400 m AMSL 2	1 060.0 E	555840.0 N	556340.0 N	451560.0 E	556840.0 N
300 m AMSL	87	<u><u><u>k</u></u></u>	L	11-03	Ū
200 m AMSI					
	``\				
_ 100 m AMSL					
0 m AMSL					
-100 m AMSL					
-200 m AMSL					
-300 m AMSL					
-400 m AMSL					
-500 m AMSL					
-600 m AMSL					
-700 m AMSL					
-800 m AMSL					
-900 m AMSL					
-1000 m AMSL					
-1100 m AMSL					
-1200 m AMSL					
-1300 m AMSL					
-1400 m AMSL					
-1500 m AMSL					
-1600 m AMSL					
-1700 m AMSL					
-1800 m AMSL					
-1900 m AMSL					
-2000 m AMSL					
-2100 m AMSL					
-2200 m AMSL					z
-2300 m AMSI	MTU	A A A A A A A A A A A A A A A A A A A	-100 0 100	₩ ₩ 200	MTU C
44850	5655000	448000	Scale 1:7500	447500	5654500

Vertical Section 1300E		
May 28, 2011 Drawn by: Batson Section Cut at 029 AZ		CONQUES I Resources Limited
Notes: Drill hole collars for historic drilling are located on a	Conquest Alexander Gold Project - Red Lake Mining District	
best efforts basis by CAD georeferencing historic local grids	Balmertown, Balmer Township, Ontario	
2003 through 2011 have been surveyed using modern techniques and are accurate within 3 metres.	Head Office: Suite 700 - 220 Bay Street, Toronto, Ontario, Canada N	15J 2W5

400 m AMSL	₩0010.0 1		556390.0 N	2268990.0 N
300 m AMSL	Contraction of the second seco	Act	ho.	2
200 m AMSL				
100 m AMSL				
0 m AMSL				
-100 m AMSL				
200 m AMSL				
-300 m AMSL				
-400 m AMSL				
-500 m AMSL				
-600 m AMSL				
-700 m AMSL				
-800 m AMSL				
-900 m AMSL				
-1000 m AMSL				
-1100 m AMSL				
-1200 m AMSL				
-1300 m AMSL				
-1400 m AMSL				
-1500 m AMSL				
-1600 m AMSL				
-1700 m AMSL				
-1800 m AMSL				
-1900 m AMSL				
-2000 m AMSL				
-2100 m AMSL				
2200 m AMSL		щ.	щ. щ.	2 E
-2300 m AMSL	55000 UTM 1	8000 UTM 3	-100 0 100 200	554500 UTM
44	20	44	4	26

Vertical Section 1200E		
May 28, 2011 Drawn by: Batson Section Cut at 029 AZ Viewport Looking 331 AZ	Conquest Alexander Gold Project - Red Lake Mining District	Resources Limited
Notes: Drill hole collars for historic drilling are located on a best efforts basis by CAD georeferencing historic local grids	Balmertown, Balmer Township, Ontario	
and field observations. Drilling conducted during period 2003 through 2011 have been surveyed using modern techniques and are accurate within 3 metres.	Head Office: Suite 700 - 220 Bay Street, Toronto, Ontario, Canada M5J 2	W5

500 m AMSL 2 0.00000000000000000000000000000000000	0890.0 E	940.0 N	1440.0 N	330.0 E	3940.0 N
400 m AMSL	5 03V	OF REAL PROPERTY	992	45	2020
300 m AMSL	CR.Or	.0 ¹⁸			
200 m AMSL		2 ³			
100 m AMSL					
0 m AMSL					
-100 m AMSL					
-200 m AMSL					
-300 m AMSL					
-400 m AMSL					
-500 m AMSL					
-600 m AMSL					
-700 m AMSL					
-800 m AMSL					
-900 m AMSL					
-1000 m AMSL					
-1100 m AMSL					
-1200 m AMSL					
-1300 m AMSL					
-1400 m AMSL					
-1500 m AMSL					
-1600 m AMSL					
-1700 m AMSL					
-1800 m AMSL					
-1900 m AMSL					
-2000 m AMSL					
-2100 m AMSL					
-2200 m AMSL	<u>z</u>	<u> </u>			2
-2300 m AMSL	00 UTM		-100 0 100	200 D	
448500	56550	44800	Scale 1:7500	44750	0000

Verti	ical Secti	ion 1100E	VERTICAL CROSS SECTION	
May 28, 2011	Drawn by: Batson	Section Cut at 029 AZ Viewport Looking 331 AZ	Conquest Alexander Cold Drojest - Ded Lake Mining District	CONQUES I Resources Limited
Notes: Drill h best efforts l	nole collars for histor basis by CAD georefe	ic drilling are located on a erencing historic local grids	Balmertown. Balmer Township. Ontario	
and field obs 2003 through	ervations. Drilling on h 2011 have been su	onducted during period irveyed using modern	Head Office: Suite 700 - 220 Bay Street, Toronto, Ontario, Canada	M5J 2W5

500 m AMSL		z	z	U U	z
400 m AMSL 402	450800.01	20.00 20.000	5656490.01	451300.01	5656990.0 h
300 m AMSL	CR-04	Lo A			
200 m AMSL					
100 m AMSL					
0 m AMSL					
-100 m AMSL					
-200 m AMSL					
-300 m AMSL CR-11-044					
-400 m AMSL					
-500 m AMSL					
-600 m AMSL					
-700 m AMSL					
-800 m AMSL					
-900 m AMSL					
-1000 m AMSL					
-1100 m AMSL					
-1200 m AMSL					
-1300 m AMSL					
-1400 m AMSL					
-1500 m AMSL					
-1600 m AMSL					
-1700 m AMSL					
-1800 m AMSL					
-1900 m AMSL					
-2000 m AMSL					
-2100 m AMSL					
-2200 m AMSL	2 2	ш		ш,	2 E
-2300 m AMSL	00 UTM r		-100 0 100	200 A	
448500	565500	448000	Scale 1:7500	447500	565455

Verti	ical Secti	ion 1000E	VERTICAL CROSS SECTION	
May 28, 2011	Drawn by: Batson	Section Cut at 029 AZ		Resources Limited
Notes: Drill h	ole collars for histor	ic drilling are located on a	Conquest Alexander Gold Project - Red Lake Mining District	
best efforts l	basis by CAD georefe	erencing historic local grids	Balmertown, Balmer Township, Ontario	
2003 through	n 2011 have been su	inveyed using modern	Head Office: Suite 700 - 220 Bay Street, Toronto, Ontario, Canada	M5J 2W5

500 m AMSL	ш.	z	Z	z
400 m AMSL 88 CP 11-0447 4	450720.0	3000 00 00	45 1220.0 45 1220.0	56557040.0
300 m AMSL	8° *		AU AU AR AU	
200 m AMSL				
100 m AMSL				
0 m AMSL				
-100 m AMSL				
-200 m AMSL				
-300 m AMSL				
-400 m AMSL				
-500 m AMSL		CR-12-046		
-600 m AMSL				
-700 m AMSL				
-800 m AMSL				
-900 m AMSL				
-1000 m AMSL				
-1100 m AMSL				
-1200 m AMSL				
-1300 m AMSL				
-1400 m AMSL				
-1500 m AMSL				
-1600 m AMSL				
-1700 m AMSL				
-1800 m AMSL				
-1900 m AMSL				
-2000 m AMSL				
-2100 m AMSL				
-2200 m AMSL				2
-2300 m AMSI	UTM m	E E E E	-100 0 100 200	D UTM mt
44850 000	5655000	448000	Scale 1:7500	5654500

Vert	tical Sect	tion 900E	VERTICAL CROSS SECTION	
May 28, 2011	Drawn by: Batson	Section Cut at 029 AZ		Resources Limited
Notos: Drill k	olo collars for histor	Viewport Looking 331 AZ	Conquest Alexander Gold Project - Red Lake Mining District	
best efforts t	basis by CAD georefe	erencing historic local grids	Balmertown, Balmer Township, Ontario	
2003 through	ervations. Drilling o n 2011 have been su nd are accurate with	onducted during period irveyed using modern bin 3 metres	Head Office: Suite 700 - 220 Bay Street, Toronto, Ontario, Canada	a M5J 2W5

500 m AMSL		7	7		7
400 m AMSL 20	0.000 4200830.045	2929030.0	0.0 h	451130.0 6	5657090.0 h
300 m AMSL		- Ko			
200 m AMSL					
100 m AMSL					
0 m AMSL					
-100 m AMSL					
-200 m AMSL					
-300 m AMSL					
-400 m AMSL					
-500 m AMSL					
-600 m AMSL					
-700 m AMSL					
-800 m AMSL					
-900 m AMSL					
-1000 m AMSL					
-1100 m AMSL					
-1200 m AMSL					
-1300 m AMSL					
-1400 m AMSL					
-1500 m AMSL					
-1600 m AMSL					
-1700 m AMSL					
-1800 m AMSL					
-1900 m AMSL					
-2000 m AMSL					
-2100 m AMSL					
-2200 m AMSL	<u>z</u>				2
-2300 m AMSL	00 UTM m	0 TU MTU ME	-100 0 100		
4 4850	56550	44800	Scale 1:7500	44750	0000

Vert	tical Sect	tion 800E	VERTICAL CROSS SECTION	
May 28, 2011	Drawn by: Batson	Section Cut at 029 AZ		Resources Limiter
Notes: Drill h	ole collars for histor	ic drilling are located on a	Conquest Alexander Gold Project - Red Lake Mining District	
best efforts l	pasis by CAD georefe	erencing historic local grids	Balmertown, Balmer Township, Ontario	
2003 through	n 2011 have been su	nveyed using modern	Head Office: Suite 700 - 220 Bay Street, Toronto, Ontario, Canada	a M5J 2W5

500 m AMSL 2 400 m AMSL 2	450540.0 E	6561 40.0 N	556640.0 N	451040.0 E	657140.0 N
300 m AMSL		Lo.	u)		<u>ی</u>
200 m AMSL					
100 m AMSL					
0 m AMSL					
-100 m AMSL					
200 m AMSL					
300 m AMSL					
-400 m AMSL					
-500 m AMSL					
-600 m AMSL					
-700 m AMSL					
-800 m AMSL					
-900 m AMSL					
-1000 m AMSL					
-1100 m AMSL					
-1200 m AMSL					
-1300 m AMSL					
-1400 m AMSL					
-1500 m AMSL					
-1600 m AMSL					
-1700 m AMSL					
-1800 m AMSL					
-1900 m AMSL					
-2000 m AMSL					
-2100 m AMSL					
-2200 m AMSL	2 E				
-2300 m AMSL	3000 UTM		-100 0 100	200	
4485	5655	4480	Scale 1:7500	4475	

Vert	tical Sect	tion 700E	VERTICAL CROSS SECTION	
May 28, 2011	Drawn by: Batson	Section Cut at 029 AZ	VERTICAL CROSS SECTION	
Noto: Drill k	olo collars for histor	Viewport Looking 331 AZ	Conquest Alexander Gold Project - Red Lake Mining District	
best efforts t	basis by CAD georefe	erencing historic local grids	Balmertown, Balmer Township, Ontario	
2003 through	ervations. Drilling o n 2011 have been su	irveyed using modern	Head Office: Suite 700 - 220 Bay Street, Toronto, Ontario, Canada	M5J 2W5

500 m AMSL 2 400 m AMSL 2	450460.0 E	8561 90.0 N	N 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	450960.0 E	857190.0 N
300 m AMSI	CRIO		No		Ũ
200 m AMSL					
100 m AMSL					
0 m AMSL					
-100 m AMSL					
-200 m AMSL					
-300 m AMSL					
-400 m AMSL					
-500 m AMSL					
-600 m AMSL					
-700 m AMSL					
-800 m AMSL					
-900 m AMSL					
-1000 m AMSL					
-1100 m AMSL					
-1200 m AMSL					
-1300 m AMSL					
-1400 m AMSL					
-1500 m AMSL			•		
-1600 m AMSL			CR:10:040.W1		
-1700 m AMSL			•		
-1800 m AMSL					
-1900 m AMSL					
-2000 m AMSL					
-2100 m AMSL					
-2200 m AMSL	2	Щ. Ч		Ш	
-2300 m AMSL	00C		-100 0 100 200	00 UTM -	
4485(5655(44800	Scale 1:7500	4475(5654

Vert	ical Sect	tion 600E	VERTICAL CROSS SECTION	
May 28 2011	Drawn by: Batson	Section Cut at 029 AZ		CONQUEST
N 1 20, 2011	brawn by. Batson	Viewport Looking 331 AZ	Conquest Alexander Gold Project - Red Lake Mining District	Resources Limited
best efforts b	ole collars for histor	erencing historic local grids	Balmertown, Balmer Township, Ontario	
and field obs 2003 through	ervations. Drilling o 2011 have been su	conducted during period Irveyed using modern bin 3 metres	Head Office: Suite 700 - 220 Bay Street, Toronto, Ontario, Canada	a M5J 2W5

500 m AMSL	l III	7	7	LUI	7
400 m AMSL 999	450370.01	5656240.01	5000740.01	450870.0	5657240.0 h
300 m AMSL			Cr.		
200 m AMSL				•	
100 m AMSL					
0 m AMSL					
-100 m AMSL					
-200 m AMSL					
-300 m AMSL					
-400 m AMSL					
-500 m AMSL					
-600 m AMSL					
-700 m AMSL					
-800 m AMSL					
-900 m AMSL					
-1000 m AMSL					
1100 m AMSL					
-1200 m AMSL		-8-10-040 W1			
-1300 m AMSL		0.			
-1400 m AMSL					
-1500 m AMSL					
-1600 m AMSL					
-1700 m AMSL					
-1800 m AMSL					
-1900 m AMSL					
-2000 m AMSL					
-2100 III AIVISL					
-2200 m AMSI	MTU MTU		-100 0 100 200	Ш Ш Ц	е М П П
	5655000		Scale 1:7500	447500 L	5654500

Vert	tical Sect	tion 500E	VERTICAL CROSS SECTION	
May 28 2011	Drawn by: Batson	Section Cut at 029 AZ		CONQUEST
IVIAY 20, 2011	brawn by: batson	Viewport Looking 331 AZ	Conquest Alexander Gold Project - Red Lake Mining District	Nesources Limited
best efforts b	basis by CAD georefe	erencing historic local grids	Balmertown, Balmer Township, Ontario	
2003 through	ervations. Drilling o 2011 have been su	inveyed using modern	Head Office: Suite 700 - 220 Bay Street, Toronto, Ontario, Canada	a M5J 2W5

500 m AMSL	L L	7	7		
400 m AMSL	450280.01	³ 00 ⁴ 00 ²⁰⁰ 0	5656790.01	450780.0	5657290.01
300 m AMSL	- Br	Cr. Cr.	Cero ho	64.03	
200 m AMSL			•	•	
100 m AMSL					
0 m AMSL					
-100 m AMSL					
-200 m AMSL					
-300 m AMSL					
-400 m AMSL					
-500 m AMSL					
-600 m AMSL					
-700 m AMSL					
-800 m AMSL					
-900 m AMSL	ර	R-10-040-1N1			
-1000 m AMSL					
-1100 m AMSL					
-1200 m AMSL					
-1300 m AMSL					
-1400 m AMSL					
-1500 m AMSL					
-1600 m AMSL					
-1700 m AMSL					
-1800 m AMSL					
-1900 m AMSL					
-2000 m AMSL					
-2100 m AMSL					
-2200 m AMSL	2 E		Ĕ	Щ. Ч	
-2300 m AMSL	00 UTM		-100 0		
44850	56550		Scal	le 1:7500 05244	5654!

Vert	tical Sect	tion 400E	VERTICAL CROSS SECTION	
May 28, 2011	Drawn by: Batson	Section Cut at 029 AZ	VENTICAL CROSS SECTION	CONQUES I Resources Limited
Notes Drill k	ale collers for histor	Viewport Looking 331 AZ	Conquest Alexander Gold Project - Red Lake Mining District	
best efforts t	basis by CAD georefe	erencing historic local grids	Balmertown, Balmer Township, Ontario	
2003 through	1 2011 have been su	onducted during period rveyed using modern	Head Office: Suite 700 - 220 Bay Street, Toronto, Ontario, Canada	M5J 2W5

500 m AMSL		Z	Z	ш	Z
400 m AMSL 99	450200.0	56556340.C	5656840.C	450700.0	2657340.C
300 m AMSL				es S	
200 m AMSL				CR-031	
100 m AMSL					
0 m AMSL					
-100 m AMSL					
-200 m AMSL					
-300 m AMSL					
-400 m AMSL	12				
-500 m AMSL					
-600 m AMSL					
-700 m AMSL					
-800 m AMSL	-10-040				
-900 m AMSL					
-1000 m AMSL					
-1100 m AMSL					
-1200 m AMSL					
-1300 m AMSL					
-1400 m AMSL					
-1600 m AMSL					
-1700 m AMSI					
-1800 m AMSL					
-1900 m AMSL					
-2000 m AMSL					
-2100 m AMSL					
-2200 m AMSL	~ ~				z
-2300 m AMSL	00 UTM mI		ш ы ы ы ы ы ы ы ы ы ы ы ы ы ы ы ы ы ы ы	200 D	00 MTM M
448500	56550(Scale 1:7500	447500	56545

Vert	tical Sect	tion 300E	VERTICAL CROSS SECTION	
May 28 2011	Drawn by: Batson	Section Cut at 029 AZ		CONQUEST
N 1 20, 2011	brawn by. Batson	Viewport Looking 331 AZ	Conquest Alexander Gold Project - Red Lake Mining District	Resources Limited
best efforts b	basis by CAD georefe	erencing historic local grids	Balmertown, Balmer Township, Ontario	
and field obs 2003 through	ervations. Drilling on 2011 have been su	conducted during period urveyed using modern	Head Office: Suite 700 - 220 Bay Street, Toronto, Ontario, Canada	a M5J 2W5

-1900 m AMSL				
-2000 m AMSL				
-2100 m AMSL				
-2200 m AMSI				
	M M M M	E S		
-2300 m AMSL	5000 U			
4488	565	448	Scale 1:7500 4 1	

Vert	tical Sect	tion 200E	VERTICAL CROSS SECTION	
May 28, 2011	Drawn by: Batson	Section Cut at 029 AZ		CONQUES I Resources Limited
Notes Drill b	ale collers for histor	Viewport Looking 331 AZ	Conquest Alexander Gold Project - Red Lake Mining District	
best efforts b	basis by CAD georefe	erencing historic local grids	Balmertown, Balmer Township, Ontario	
2003 through	ervations. Drilling o n 2011 have been su	onducted during period irveyed using modern	Head Office: Suite 700 - 220 Bay Street, Toronto, Ontario, Canada	M5J 2W5

500 m AMSL	020.0 E	N 0.0 N	40.0 N	520.0 E	140.0 N
400 m AMSL 8	4500	292	22	4505	26574
300 m AMSL					
200 m AMSL					
100 m AMSL					
0 m AMSL					
-100 m AMSL					
-200 m AMSL					
-300 m AMSL					
-400 m AMSL					
-500 m AMSL					
-600 m AMSL	x 10-039-W 1				
-700 m AMSL					
-800 m AMSL					
-900 m AMSL					
1000 m AMSL					
-1100 m AMSL					
-1200 m AMSL		CR-10039			
1300 m AMSL					
-1400 m AMSL					
-1500 m AMSL					
-1600 m AMSL					
-1700 m AMSL					
-1800 m AMSL					
-1900 m AMSL					
-2000 m AMSL					
-2100 m AMSL					
2200 m AMSL	Z F		1	щ.	2 E
-2300 m AMSL	00 UTM r		-100 0 100		0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
44850	56550	448001	Scale 1:7500	44750	56545

Vert	tical Sect	tion 100E	VERTICAL CROSS SECTION	
May 28, 2011	Drawn by: Batson	Section Cut at 029 AZ		Resources Limited
Notes: Drill h	ole collars for histor	ric drilling are located on a	Conquest Alexander Gold Project - Red Lake Mining District	
best efforts t	basis by CAD georefe	erencing historic local grids	Balmertown, Balmer Township, Ontario	
2003 through	2011 have been su	arveyed using modern	Head Office: Suite 700 - 220 Bay Street, Toronto, Ontario, Canada	M5J 2W5

-1900 m AMSL				
-2000 m AMSL				
-2100 m AMSL				
-2200 m AMSL				
-2300 m AMSL	0 UTM m		-100 0 100 200 0	
448500	565500	448000	Scale 1:7500	

Ver	rtical Sec	tion 0W	VERTICAL CROSS SECTION	
May 28 2011	Drawn by: Batson	Section Cut at 029 AZ		
1010 y 20, 2011	brawn by: batson	Viewport Looking 331 AZ	Conquest Alexander Gold Project - Red Lake Mining District	
Notes: Drill h best efforts l	basis by CAD georefe	erencing historic local grids	Balmertown, Balmer Township, Ontario	
2003 through	ervations. Drilling c h 2011 have been su nd are accurate with	onducted during period rveyed using modern bin 3 metres	Head Office: Suite 700 - 220 Bay Street, Toronto, Ontario, Canada	a M5J 2W5

Verti	cal Secti	ion 100W	VERTICAL CROSS SECTION	
av 28 2011)rawn by: Batson	Section Cut at 029 AZ	VERTICAL CROSS SECTION	
idy 20, 2011	brawn by . Batson	Viewport Looking 331 AZ	Conquest Alexander Gold Project - Red Lake Mining District	rtesterces Emiliou
Notes: Drill ho best efforts ba	le collars for histor sis by CAD georefe	ic drilling are located on a erencing historic local grids	Balmertown, Balmer Township, Ontario	
2003 through 2	2011 have been su	onducted during period rveyed using modern	Head Office: Suite 700 - 220 Bay Street, Toronto, Ontario, Canada	M5J 2W5

500 m AMSL	9760.0 E	92200 V	0260.0 R	N
400 m AIVISE 20 AV	4 01		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2 2 2 2
300 m AMSL	Ct.D	E.		
200 m AMSL	••			
100 m AMSL				
0 m AMSI				
5 ⁶				
-100 m AMSL				
-200 m AMSL				
-300 m AMSL				
-400 m AMSL				
-500 m AMSL				
-600 m AMSL				
-700 m AMSL				
-800 m AMSL				
-900 m AMSL				
-1000 m AMSL				
-1100 m AMSL				
-1200 m AMSL				
-1300 m AMSL				
-1400 m AMSL				
-1500 m AMSL				
1600 m AMSL				
-1700 m AMSL				
-1800 m AMSL				
-1900 m AMSL				
-2000 m AMSL				
-2100 m AMSL				
-2200 m AMSL	<u> </u>			
ے -2300 m AMSL	0 UTM		-100 0 100 200	
448500	565500	448000	Scale 1:7500	565450

Vert	ical Secti	ion 200W	VERTICAL CROSS SECTION		
May 28, 2011	Drawn by: Batson	Section Cut at 029 AZ		Resources Limited	
Notosi Drill hala sal		Viewport Looking 331 AZ	Conquest Alexander Gold Project - Red Lake Mining District		
Notes: Drin hole collars for nixoric drilling are located on a best efforts basis by CAD georeferencing historic local grids and field observations. Drilling conducted during period 2003 through 2011 have been surveyed using modern techniques and are accurate within 3 metres.			Balmertown, Balmer Township, Ontario		
			Head Office: Suite 700 - 220 Bay Street, Toronto, Ontario, Canada M5J 2W5		

500 m AMSL 400 m AMSL 90	₹ <mark>\$1</mark> 9680.0 E	5656640.0 N	5657140.0 N	450180.0 E	5657640.0 N
♀ ² 300 m AMSL	A.				
200 m AMSL 550					
100 m AMSL					
0 m AMSL					
100 m AMSL					
-200 m AMSL					
-300 m AMSL					
-400 m AMSL					
-500 m AMSL					
-600 m AMSL					
-700 m AMSL					
-800 m AMSL					
-900 m AMSL					
-1000 m AMSL					
-1100 m AMSL					
-1200 m AMSL					
-1300 m AMSL					
-1400 m AMSL					
-1500 m AMSL					
-1600 m AMSL					
-1700 m AMSL					
-1800 m AMSL					
-1900 m AMSL					
-2000 m AMSL					
-2100 m AMSL					
-2200 m AMSL	N N N N N N N N N N N N N N N N N N N	ш Е		E E	
-2300 m AMSL	655000 UTN	48000 UTM	-100 0 100 Scale 1:7500	200 MTU 00575	
4	<u>د</u>	4		4 0	

Vert	ical Secti	ion 300W	VERTICAL CROSS SECTION		
May 28, 2011	Drawn by: Batson	Section Cut at 029 AZ		Resources Limited	
Notes: Drill hole collars for historic drilling are located on a best efforts basis by CAD georeferencing historic local grids			Conquest Alexander Gold Project - Red Lake Mining District		
			Balmertown, Balmer Township, Ontario		
2003 through 2011 have been surveyed using modern			Head Office: Suite 700 - 220 Bay Street, Toronto, Ontario, Canada M5J 2W5		
techniques a	nd are accurate with	hin 3 metres.			

500 m AMSL	590.0 E	0.000000000000000000000000000000000000	0.00)390.0	0.068
400 m AMSL	4496		2021	4200	26570
300 m AMSL					
200 m AMSL 05635					
100 m AMSL					
0 m AMSL					
-100 m AMSL					
-200 m AMSL					
-300 m AMSL					
-400 m AMSL					
-500 m AMSL					
-600 m AMSL					
-700 m AMSL					
-800 m AMSL					
-900 m AMSL					
-1000 m AMSL					
-1100 m AMSL					
-1200 m AMSL					
-1300 m AMSL					
-1400 m AMSL					
-1500 m AMSL					
-1600 m AMSL					
-1700 m AMSL					
-1800 m AMSL					
-1900 m AMSL					
-2000 m AMSL					
-2100 m AMSL					
-2200 m AMSL	2			Z	
-2300 m AMSL	0 UTM		-100 0 100		
44850	56550	44800	Scale 1:7500	44750	

Vert	ical Secti	ion 400W	VERTICAL CROSS SECTION		
May 28, 2011	Drawn by: Batson	Section Cut at 029 AZ Viewport Looking 331 AZ	Conquest Alexander Gold Project - Red Lake Mining District	Resources Limiter	
Notes: Drill hole collars for historic drilling are located on a best efforts basis by CAD georeferencing historic local grids			Balmertown, Balmer Township, Ontario		
and field obs 2003 through techniques and	ervations. Drilling on 2011 have been su	onducted during period rveyed using modern	Head Office: Suite 700 - 220 Bay Street, Toronto, Ontario, Canada M5J 2W5		