NI 43-101 Technical Report on Resources Brewery Creek Project Yukon, Canada

Prepared for:

Northern Tiger Resources Suite 200, 9797 – 45 Avenue N.W. Edmonton, Alberta Canada T6E 5V8

Project Number: GU-000394-0001-01TTO

Effective Date: June 1, 2013 Report Date: January 10, 2014

Prepared by:

274 Union Boulevard, Suite 450 Lakewood, CO 80228

Endorsed by:

Donald Hulse, P.E., SME-RM M. Claiborne Newton, III, Ph.D., SME-RM Michael J. Lechner, P. Geo. James F. Barr, P.Geo. Joe Keane, P.E.

Table of Contents

1	SUMN	MARY (ITEM 1)	1-1
	1.1	Property Description and Location	1-2
	1.2	Ownership	1-2
	1.3	Geology and Mineralization	1-3
	1.4	Exploration Status	1-3
	1.5	Development and Operations	
	1.6	Mineral Resource Estimate	1-4
	1.7	Conclusions and Recommendations	1-8
2	INTRO	ODUCTION (ITEM 2)	2-1
_	2.1	Terms of Reference and Purpose of the Report	
	2.2	Qualifications of Consultants	
		2.2.1 Details of Inspection	
	2.3	Sources of Information	
	2.4	Effective Date	
	2.5	Units of Measure	
3	RELIA	ANCE ON OTHER EXPERTS (ITEM 3)	3-1
4		PERTY DESCRIPTION AND LOCATION (ITEM 4)	
-	4.1	Property Description and Location	
	4.2	Mineral Titles	
		4.2.1 Nature and Extent of Issuer's Interest	
	4.3	Royalties, Agreements and Encumbrances	
		4.3.1 Alexco	
		4.3.2 Energold Royalty	
		4.3.3 Franco-Nevada Royalty	
	4.4	Environmental Liabilities	
		4.4.1 Environmental Liabilities from Past Mining Activities	4-10
		4.4.2 Current Environmental Liabilities	
	4.5	Permits	4-11
		4.5.1 Class IV Mining Land Use Permit –Exploration	
		4.5.2 Quartz Mining License	
		4.5.3 Type A Water Use Permit	4-12
		4.5.4 Type B Water Use Permit	4-12
	4.6	Other Significant Factors and Risks	
5	ACCE	ESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE	AND
PHYS		APHY (ITEM 5)	
	5.1	Topography, Elevation and Vegetation	
	5.2	Climate and Length of Operating Season	
	5.3	Sufficiency of Surface Rights	
	5.4	Accessibility and Transportation to the Property	5-2
	5.5	Infrastructure Availability and Sources	
		5.5.1 Power	5-5
		5.5.2 Water	5-5
		5.5.3 Personnel	5-5

		5.5.4	Tailings Storage Areas	5-5
		5.5.5	Waste Disposal Areas	5-6
		5.5.6	Heap Leach Pad Areas	5-6
		5.5.7	Processing Plant Sites	
6	HIST	ORY (ITE	EM 6)	6-1
Ū	6.1		wnership	
	6.2		ploration and Development Results	
	0.2	6.2.1	Geologic Mapping	
		6.2.2	Soil Sampling Surveys	
		6.2.3	Geophysical Surveys	
	6.3	Drilling		
	0.0	6.3.1	Norex (1989)	
		6.3.2	Loki / Viceroy (1990 – 1999)	
		6.3.3	Spectrum (2004)	
		6.3.4	Alexco (2006)	
	6.4		cal Mineral Resource Estimates	
	6.5		cal Production	
7	GEO		L SETTING AND MINERALIZATION (ITEM 7)	
•	7.1	Region	al Geology	7-1
	7.2		nd Property Geology	
	7.3		aphy	
	7.0	7.3.1	Intrusive Rocks	7-8
	7.4		ral Geology	
		7.4.1	Thrust Faults	
		7.4.2	High-Angle Faults	
	7.5		ant Mineralized Zones	
		7.5.1	Kokanee	
		7.5.2	Golden	
		7.5.3	Pacific	
		7.5.4	Blue	
		7.5.5	Lucky	
		7.5.6	Bohemian-Schooner	
		7.5.7	Canadian-Fosters	7-16
		7.5.8	West and East Big Rock	7-16
		7.5.9	Classic	
		7.5.10	Lone Star	7-18
		7.5.11	North Slope	7-18
		7.5.12	Sleeman	
8	DEP	OSIT TYF	PES (ITEM 8)	
•	8.1		Deposit	
	8.2		ical Model	
9	FXPI	_	DN (ITEM 9)	
•	9.1		nt Exploration Work	
	9.2		s and Investigations	
	~· -	9.2.1	Magnetic Survey	
		9.2.2	Soil Sampling Survey	
			, ,	

		9.2.3	IP Survey	9-6
	9.3		ant Results and Interpretation	
10	DRILI	LING (IT	EM 10)	10-1
	10.1		nd Extent	
		10.1.1	Diamond Drilling (2009)	
		10.1.2	RC Drilling (2010)	
		10.1.3	Diamond Drilling (2010)	
		10.1.4	RC Drilling (2011)	
		10.1.5		10-4
		10.1.6		
		10.1.7	Diamond Drilling (2012)	10-5
	10.2	Summa	ary of All Drilling Data	
	10.3	Interpre	etation and Relevant Results	10-7
11	SAME	PLE PRE	PARATION, ANALYSIS AND SECURITY (ITEM 11)	11-1
	11.1		Collection Methods	
		11.1.1	Historical Sampling by Norex (1989)	
		11.1.2		
		11.1.3		
		1	, , , , , , , , , , , , , , , , , , , ,	,
		11.1.4	AMB's Core Sampling (2009-2012)	11-2
		11.1.5	AMB's RC Sampling (2010-2011)	11-3
		11.1.6	AMB's RC Sampling (2012)	
	11.2	Sample	Analytical Methods	11-4
		11.2.1	Historical Analytical Methods by Norex (1989)	11-4
		11.2.2	Historical Analytical Methods by Loki, and Viceroy (1990 11-4	– 1999
		11.2.3	Historical Analytical Methods by Spectrum (2004)	11-4
		11.2.4	Historical Analytical Methods by Alexco (2006)	
		11.2.5	AMB's Analytical Methods (2009)	
		11.2.6	AMB's Analytical Methods (2010)	
		11.2.7	AMB's Analytical Methods (2011)	
		11.2.8	AMB's Analytical Methods (2012)	
	11.3		Security Measures	
	11.4		Samples	
		11.4.1	Standards	
		11.4.2	Blanks	11-7
		11.4.3	Duplicates	11-10
	11.5	Opinior	n on Adequacy	
12	DATA	VERIFI	CATION (ITEM 12)	12-1
	12.1		erification by EBA	
		12.1.1	Verification of Historical Data	
			Verification of Drilling Methods	
			Verification of Collar Data	
			EBA Statement on Historical Data Verification	
		12.1.5		
	12.2	_	erification by RMI	

			Verification of Drilling Methods by RMI	. 12-10
		12.2.2	RMI's Verification of AMB Drill Data	
	12.3	Data Ve	erification by Gustavson	. 12-19
		12.3.1	Verification of Historical Data	
		12.3.2	Verification of Drill Data	. 12-20
		12.3.3	Gustavson Site Visit	
		12.3.4	Gustavson's Statement on Data Adequacy	. 12-21
13	MINE	RAL PRO	OCESSING AND METALLURGICAL TESTING (ITEM 13)	13-1
	13.1	MLI Job	No. 3619 Current Metallurgical Testwork	13-1
		13.1.1	Head Assay Analyses	
		13.1.2	Screen Analyses	
		13.1.3	Bottle Roll Testing	
		13.1.4	Locked Cycle Column Leach Testing	
		13.1.5	Prediction of Industrial Gold Production	
		13.1.6		
	13.2		No. 3618 Reprocessing of Original Heap	
		13.2.1	Reprocessed Material Sample Preparation	
		13.2.2		
	13.3		al Gold Extraction and Reagent Consumption	
	13.4		r Work Index and Abrasion	
	13.5		al Mine Pits	
	13.6		mendations	
14				
14	wiiin⊏i 14.1		SOURCE ESTIMATE (ITEM 14)	
	14.1	14.1.1	ee, Golden, Pacific, Blue, and Lucky Deposits	
		14.1.1	Deposit Geology Pertinent to Resource Estimation	
			Data Used for Estimation	
		14.1.3	Bulk Density	
		14.1.4	Methodology	
		14.1.5	Capping of Assays	
		14.1.6	Compositing	
		14.1.7	Variography	
	440	14.1.8	Estimation	
	14.2		ian, Schooner, Lower Fosters, West Big Rock, East Big	
	Classi	•	one Star Deposits	
		14.2.1	Deposit Geology Pertinent to Resource Estimation	
		14.2.2	Data Used for Estimation	
		14.2.3	Bulk Density	
		14.2.4	Methodology	
		14.2.5	Capping of Assays	
		14.2.6	Compositing	
		14.2.7	Estimation	
	14.3		al Heap Leach Pad	
	14.4	North S	Slope and Sleeman Deposits	
		14.4.1	Deposit Geology Pertinent to Resource Estimation	
		14.4.2	Data Used for Estimation	
		14.4.3		

			14-	
			14-	
			14-	
			14-	
	14.5		14-	
			c, Blue, and Lucky Deposits14-	
			ower Fosters, West Big Rock, East I	
			posits14-	
		•	ad14-	
			n Deposits14-	
	14.6		14-	
15	ADJA	CENT PROPERTIES (ITEM 23)	15	5-1
16	OTHE	R RELEVANT DATA AND INFOR	RMATION (ITEM 24)16	6-1
17	INTE	RPRETATION AND CONCLUSION	NS (ITEM 25)17	7-1
	17.1		17	
	17.2		es17	
		17.2.1 Royalties		7-2
		17.2.2 Exploration		7-2
		17.2.3 Mineral Resource Estima	ate17	7-2
18	RECO	MMENDATIONS (ITEM 26)		8-1
	18.1	Recommended Work Programs		8-1
		18.1.2 Costs		8-2
19	REFE	RENCES		9-1
20	GLOS	SARY	20	0-1
	20.1		20	
	20.2	Mineral Reserves	20	0-2
	20.3		20	
	20.4		20	

Illustrations

FIGURE 4-1 SITE LOCATION MAP	4-2
FIGURE 4-2 AREAS OF MINERAL CLAIMS AND MINING LEASES	
FIGURE 4-3 ROYALTY BOUNDARIES	4-7
FIGURE 4-4 BREWERY CREEK PROJECT SITE PLAN.	
FIGURE 5-1 GENERAL SITE LAYOUT	
FIGURE 5-2 EXISTING INFRASTRUCTURE	
FIGURE 6-1 SOIL SAMPLING RESULTS - GOLD.	
FIGURE 6-2 TRENCH AND DRILLHOLE LOCATIONS	
FIGURE 7-1 REGIONAL GEOLOGY MAP	
FIGURE 7-2 REGIONAL GEOLOGY LEGEND	7-3
FIGURE 7-3 PROPERTY GEOLOGY MAP	7-5
FIGURE 7-4 PROPERTY GEOLOGY LEGEND	7-6
FIGURE 7-5 SIGNIFICANT MINERALIZED ZONES	
FIGURE 8-1 GEOLOGICAL MODEL SCHEMATIC	
FIGURE 9-1 2011 MAGNETIC SURVEY RESULTS	
FIGURE 9-2 SOIL SAMPLING SURVEY	9-4
FIGURE 9-3 1988-2011 SOIL SAMPLING	9-5
FIGURE 10-1 DRILLING LOCATIONS	10-2
FIGURE 11-1 BLANK GOLD ASSAY DATA, IF DETECTED 5-TIMES ABOVE RL	11-8
FIGURE 11-2 BLANK GOLD ASSAY DATA, IF DETECTED 5-TIMES ABOVE RL	
FIGURE 11-3 DUPLICATE SAMPLE RESULTS	
FIGURE 12-1 DECILE-DECILE PLOT OF AMB AND HISTORICAL CORE DRILLING DATA	
FIGURE 12-2 DECILE-DECILE PLOT FOR RC AND CORE DRILLING DATA	12-4
FIGURE 12-3 DECILE-DECILE PLOT FOR RC AND CORE DRILLING DATA BY VICEROY AND LOKI	12-5
FIGURE 12-4 PLOT COMPARING DIAMOND CORE AND RC SAMPLES (BOHEMIAN DEPOSIT)	
FIGURE 12-5 QQ PLOT COMPARING DIAMOND CORE AND RC SAMPLES (CLASSIC DEPOSIT)	
FIGURE 12-6 QQ PLOT COMPARING AMB DIAMOND CORE AND VICEROY RC SAMPLES (BOHEMIAN D	
FIGURE 12-7 QQ PLOT COMPARING AMB DIAMOND CORE AND LOKI RC SAMPLES (FOSTERS DEPOSI	т) 12-13
FIGURE 12-8 QQ PLOT COMPARING AMB DIAMOND CORE AND VICEROY RC SAMPLES	,
FIGURE 12-9 QQ PLOT COMPARING AMB RC AND VICEROY RC SAMPLES	
FIGURE 12-10 QQ PLOTS OF RC AND CORE GOLD GRADES	
FIGURE 13-1 BOTTLE ROLL HEAD ASSAYS	
FIGURE 13-2 BOTTLE ROLL GOLD EXTRACTION RESULTS	
FIGURE 13-3 WEST BIG ROCK COLUMN LEACH GOLD EXTRACTION	
FIGURE 13-4 EAST BIG ROCK COLUMN LEACH GOLD EXTRACTION	
FIGURE 13-5 LOWER FOSTERS COLUMN LEACH GOLD EXTRACTION	13-14
FIGURE 13-6 BOHEMIAN COLUMN LEACH GOLD EXTRACTION	13-15
FIGURE 13-7 SCHOONER COLUMN LEACH GOLD EXTRACTION	13-15
FIGURE 14-1 LOCATION OF ALL RESOURCE AREA BLOCK MODELS	14-2
FIGURE 14-2 LUCKY AREA CONTACT PLOT	14-6
FIGURE 14-3 KOGD AREA RAW AU SAMPLE CUMULATIVE PROBABILITY PLOT	
FIGURE 14-4 PAIRWISE RELATIVE EXPERIMENTAL VARIOGRAMS WITHIN HORIZONTAL AND VERTICAL D	IRECTIONS
FOR ALL SAMPLES WITHIN SDMN1	
FIGURE 14-5 PAIRWISE RELATIVE EXPERIMENTAL VARIOGRAMS WITHIN HORIZONTAL AND VERTICAL D	IRECTIONS
FOR ALL SAMPLES WITHIN SDMN2	14-10

	$^{\circ}$ Validation Section A-A' of Kokanee Block Model (See Figure 14-8 for Location) $$	
	$^\prime$ Validation Section B-B of Golden Block Model (See Figure 14-8 for Location)	
FIGURE 14-8	B DETAILED DRILL HOLE LOCATIONS OF KOGD AND LOCATION OF CROSS SECTIONS A-A' AND	B-B'
	Θ VALIDATION SECTION C-C' OF PACIFIC BLOCK MODEL (SEE FIGURE 14-11 FOR LOCATION)	
	10 VALIDATION SECTION D-D' OF BL BLOCK MODEL (SEE FIGURE 14-11 FOR LOCATION)	
FIGURE 14-	11 DETAILED DRILL HOLE LOCATIONS OF PABL AND LOCATION OF CROSS SECTIONS C-C' AND) D-D'
	12 VALIDATION SECTION E-E' OF LUCKY BLOCK MODEL (SEE FIGURE 14-13 FOR LOCATION)	
	13 DETAILED DRILL HOLE LOCATIONS OF LU AND LOCATION OF CROSS SECTION E-E'	
	14 Au Solubility vs. Logged Oxidation (BH Intrusives)	
	15 Au Solubility vs. Logged Oxidation (SC Intrusives)	
	16 Au Probability Plot – (Bohemian Intrusives)	
	17 Au Grade Correlogram – (Oxidized Bohemian Intrusives)	
	18 Au Grade Correlogram – (Oxidized Schooner Intrusives)	
	19 Au Grade Correlogram – (Oxidized Lower Fosters Intrusives)	
	20 Au Grade Correlogram – (Oxidized West Big Rock Intrusives)	
	21 0.2 g/t Au Indicator Correlogram – (Oxidized Bohemian Intrusives)	
	22 0.2 G/T AU INDICATOR CORRELOGRAM – (OXIDIZED SCHOONER INTRUSIVES)	
	23 0.2 g/t Au Indicator Correlogram – (Oxidized Lower Fosters Intrusives)	
	24 0.2 g/t Au Indicator Correlogram – (Oxidized West Big Rock Intrusives)	
	25 BOHEMIAN BLOCK MODEL SECTION A-A' (SEE FIGURE 14-27 FOR LOCATION)	
	26 SCHOONER BLOCK MODEL SECTION B-B' (SEE FIGURE 14-27 FOR LOCATION)	
	27 LOCATION OF BOHEMIAN (A-A') AND SCHOONER (B-B') CROSS SECTIONS	
	28 Lower Fosters Block Model Section C-C' (See Figure 14-29 for Location)	
	29 LOCATION OF LOWER FOSTERS (C-C') CROSS SECTION	
	30 West Big Rock Block Model Section D-D' (See Figure 14-32 for Location)	
	31 EAST BIG ROCK BLOCK MODEL SECTION E-E' (SEE FIGURE 14-32 FOR LOCATION)	
FIGURE 14-3	32 LOCATION OF WEST BIG ROCK (D-D') AND EAST BIG ROCK (E-E') CROSS SECTIONS	.14-50
	33 CLASSIC BLOCK MODEL SECTION F-F' (SEE FIGURE 14-34 FOR LOCATION)	
	34 LOCATION OF CLASSIC (F-F') CROSS SECTION	
	35 BOHEMIAN GOLD SWATH PLOT BY ELEVATION LEVELS	
	36 SCHOONER GOLD SWATH PLOT BY ELEVATION LEVELS	
	37 LOWER FOSTERS GOLD SWATH PLOT BY ELEVATION LEVELS	
	88 WEST BIG ROCK GOLD SWATH PLOT BY ELEVATION LEVELS	
	39 EAST BIG ROCK GOLD SWATH PLOT BY ELEVATION LEVELS	
FIGURE 14-4	10 CLASSIC GOLD SWATH PLOT BY ELEVATION LEVELS	.14-56
	11 LONE STAR GOLD SWATH PLOT BY ELEVATION LEVELS	
	12 PLAN VIEW OF VICEROY HEAP LEACH PAD SHOWING SONIC HOLES	
	3 HEAP LEACH CROSS SECTION A-A'	
	14 SPECIFIC GRAVITY DETERMINATION BY ROCK TYPE	
FIGURE 14-4	15 OBLIQUE SECTION OF NORTH SLOPE GOLD GRADE MODEL (40 METRE WIDE)	.14-67
FIGURE 14-4	16 OBLIQUE SECTION OF SLEEMAN GOLD GRADE MODEL (25 METRE WIDE)	.14-68
FIGURE 14-4	17 GRADE TONNAGE CURVE FOR THE NORTH SLOPE DEPOSIT	.14-70
	18 GRADE TONNAGE CURVE FOR THE SLEEMAN DEPOSIT	
	19 LEGEND FOR GRADE-TONNAGE CURVE LINE TYPES	
	50 CUMULATIVE PROBABILITY PLOT FOR NORTH SLOPE DEPOSIT	
FIGURE 14-	51 CUMULATIVE PROBABILITY PLOT FOR SLEEMAN DEPOSIT	.14-74

List of Tables

TABLE 1-1 SUMMARY OF MINERAL RESOURCES	1-6
TABLE 6-1 SUMMARY OF HISTORICAL DRILLING	6-6
TABLE 6-2 HISTORICAL BREWERY CREEK INDICATED RESOURCES, 0.5 G/T AU CUTOFF	6-9
TABLE 6-3 HISTORICAL NORTH SLOPE INFERRED RESOURCE, 0.5 G/T AU CUTOFF	6-9
TABLE 10-1 SUMMARY OF DRILLING CONDUCTED BY AMB	10-1
Table 10-2 Summary of Drilling for Resource Estimate Areas	10-6
TABLE 10-3 DISTRIBUTION OF SIGNIFICANT HIGH-GRADE	10-7
TABLE 11-1 HISTORICAL ANALYTICAL LABORATORIES	
TABLE 11-2 SUMMARY OF AVAILABLE STANDARD SAMPLE RESULTS	11-7
TABLE 11-3 SUMMARY OF BLANK SAMPLE RESULTS	11-8
TABLE 11-4 SUMMARY OF DUPLICATE SAMPLES	11-10
TABLE 12-1 DRILLHOLES USED FOR HISTORICAL DATA VERIFICATION	12-2
TABLE 12-2 INDEPENDENT DRILL CORE SAMPLES COLLECTED BY EBA	12-8
TABLE 12-3 DRILL CORE SAMPLES EXAMINED BY RMI	12-18
TABLE 12-4 DRILLHOLE ASSAY SAMPLES VERIFIED BY RMI	12-18
TABLE 12-5 INDEPENDENT SAMPLE RESULTS	12-21
TABLE 13-1 DRILL CORE COMPOSITES GOLD HEAD ASSAY RESULTS	13-2
TABLE 13-2 DRILL CORE COMPOSITES HEAD SCREEN ANALYSES	
TABLE 13-3 DRILL CORE COMPOSITES BOTTLE ROLL TESTS	
TABLE 13-4 DRILL CORE COMPOSITES COLUMN LEACH TESTS PHYSICAL CHARACTERISTICS	
TABLE 13-5 DRILL CORE COMPOSITES COLUMN LEACH TESTS	
TABLE 13-6 INDUSTRIAL HEAP LEACH DESIGN PARAMETERS	13-16
TABLE 13-7 COLUMN LEACH TESTS AND MODELED GOLD EXTRACTION	
TABLE 13-8 INDUSTRIAL HEAP LEACH METAL RECOVERY ESTIMATES	
TABLE 13-9 WEIGHTED AVERAGE FOR LIME AND CEMENT FROM COLUMN TESTS	13-18
TABLE 13-10 SODIUM CYANIDE CONSUMPTION	13-19
TABLE 13-11 REPROCESSED MATERIAL PHYSICAL CHARACTERISTICS	13-22
TABLE 13-12 REPROCESSED MATERIAL COLUMN LEACH TESTS	
TABLE 13-13 REPROCESSING PARAMETERS	
TABLE 13-14 WEIGHTED AVERAGE REAGENT CONSUMPTION	
TABLE 13-15 WORK INDEX AND ABRASION RESULTS	
TABLE 14-1 SAMPLE GOLD ASSAY STATISTICS (GOLD GRADES REPORTED IN G/T)	
TABLE 14-2 BLOCK MODEL PARAMETERS	
TABLE 14-3 GOLD CAP VALUES	
TABLE 14-4 COMPOSITE GOLD ASSAY STATISTICS (GOLD GRADES REPORTED IN G/T) ZONE	14-8
TABLE 14-5 BLOCK ESTIMATION PARAMETERS	
TABLE 14-6 STRUCTURAL DOMAIN ESTIMATION PARAMETERS	
TABLE 14-7 DESCRIPTIVE STATISTICS FOR GOLD IN COMPOSITE SAMPLES AND MODEL	
TABLE 14-8 ID3 AND NN MODEL COMPARISON	
TABLE 14-9 DRILLHOLE DATA	
TABLE 14-10 DRILLHOLE ASSAY STATISTICS – GOLD FIRE ASSAYS BY AREA	
TABLE 14-11 DRILLHOLE ASSAY STATISTICS – GOLD FIRE ASSAYS BY SAMPLE TYPE	
TABLE 14-12 DRILLHOLE ASSAY STATISTICS – GOLD FIRE ASSAYS BY MAJOR ROCK TYPE	
TABLE 14-13 DRILLHOLE ASSAY STATISTICS – GOLD FIRE ASSAYS BY LOGGED OXIDATION	
TABLE 14-14 DRILLHOLE ASSAY STATISTICS - CYANIDE SOLUBLE GOLD ASSAYS BY AREA	14-31

TABLE 14-15 DE	RILLHOLE ASSAY STATISTICS – GOLD PREG ROB ASSAYS BY AREA	4-32
TABLE 14-16 Bu	ULK DENSITY FOR BH, SC, FS, WB, AND EB MODELS1	4-33
	LOCK MODEL EXTENTS1	
TABLE 14-18 G	OLD GRADE CAPPING LIMITS BY AREA1	4-35
TABLE 14-19 G	OLD GRADE ESTIMATION CONSTRAINTS1	4-41
TABLE 14-20 G	OLD GRADE ESTIMATION PARAMETERS1	4-41
TABLE 14-21 G	LOBAL BIAS CHECK – INVERSE DISTANCE VS. NEAREST NEIGHBOR GRADES1	4-53
TABLE 14-22 DE	ESCRIPTIONS FOR MAJOR ROCK TYPES USED IN GEOLOGIC MODEL	4-60
TABLE 14-23 DE	RILLHOLES BY DEPOSIT USED IN THE MINERAL RESOURCE ESTIMATE1	4-62
TABLE 14-24 SF	PECIFIC GRAVITY VALUES USED FOR NORTH SLOPE AND SLEEMAN1	4-63
TABLE 14-25 BL	LOCK MODEL ORIGINS AND DIMENSIONS1	4-64
TABLE 14-26 HI	IGH GRADE CAPS APPLIED TO COMPOSITES1	4-65
TABLE 14-27 St	UMMARY DESCRIPTIVE STATISTICS FOR RAW ASSAY AND 2M UNCAPPED COMPOSITE SAMPLE	ES
	1	4-65
TABLE 14-28 St	UMMARY OF VARIOGRAM PARAMETERS1	4-66
TABLE 14-29 St	UMMARY OF SEARCH ELLIPSE PARAMETERS1	4-66
TABLE 14-30 R	ESOURCE BLOCK MODEL COMPARATIVE STATISTICS1	4-72
TABLE 14-31 O	XIDE PIT PARAMETERS1	4-76
TABLE 14-32 St	UMMARY OF TOTAL MINERAL RESOURCES1	4-78
TABLE 20-1 GLO	OSSARY	20-2
TABLE 20-2 ABE	BREVIATIONS	20-3

List of Appendices

Appendix A	CERTIFICATE OF AUTHORS	A-1
APPENDIX B	CLAIMS LIST	B-1
APPENDIX C	DRILLING DATA	C-1

1 Summary (Item 1)

As commissioned by Americas Bullion Royalty Corp. (AMB), a publicly traded company on the Toronto Stock Exchange (TSX: AMB), Gustavson Associates, LLC, (Gustavson) prepared an NI 43-101 Technical Report on Resources for the Brewery Creek Project in the Yukon Province of Canada which was published on SEDAR in October of 2013. Upon closing of the transaction between AMB and Northern Tiger Resources Inc., a publicly traded company on the Toronto Stock Exchange (TSX: NTR), NTR will acquire 100% ownership of the Brewery Creek Project and has commissioned Gustavson to reissue the report in its name.

In early 2013 Golden Predator Corp. changed its name to Americas Bullion Royalty Corp. and in the process bundled the Canada-based assets into Golden Predator Canada Corporation (Golden Predator), which exists as a wholly owned subsidiary of AMB.

On December 17, 2013, Northern Tiger Resources Inc. and Redtail Metals Corp announced that they have agreed with AMB to expand the terms of the previously announced Northern Tiger and Redtail merger (News Release October 28, 2013) to include the acquisition by Northern Tiger of AMB's Brewery Creek Project. Under the terms of the amended and restated business combination agreement among the parties and concurrent with the Merger, Northern Tiger will acquire the balance of AMB's Yukon mineral properties including Brewery Creek and AMB's accumulated tax losses for a purchase price payable in cash or shares and grant by Northern Tiger to AMB a royalty interest in each of the mineral properties including Brewery Creek. This report is required as part of the transaction and will be filed on behalf of Northern Tiger.

The Brewery Creek Project was a producing heap leach gold mining operation as Viceroy Resource Corporation mined seven near-surface oxide deposits from 1996 through 2002, after which the mine shut down primarily due to low gold prices. In 2009, AMB optioned the Brewery Creek property from Alexco Resource Corporation. In February 2012 AMB signed a purchase agreement with Alexco to acquire a 100% interest in the project and all outstanding quartz claims subject to a 2% net smelter return royalty in favor of Alexco. In September of 2012 the purchase was completed and AMB became the 100% owner of the Brewery Creek project.

In June 2012, AMB published an NI 43-101 Technical Report on Resources, which was then Amended and Reissued on January 17th, 2013. On October 23rd, 2013, AMB published an updated NI 43-101 Technical Report on Resources to update the January 17th 2013 resource estimate to include new data for existing resource areas and

additional exploration targets. The current Technical Report is a Reissue in Northern Tiger's name of the October 2013 Technical Report.

This report was prepared to comply with public reporting obligations for Canadian National Instrument 43-101 Standards of Disclosure for Mineral Projects (NI 43-101), NI 43-101 Form F1, and Canadian Institute of Mining, Metallurgy and Petroleum (CIM) "Best Practices and Reporting Guidelines", following a press release for updated resources dated September 15, 2013. The mineral resource estimate and interpretations and conclusions reported here are based on technical data available prior to the effective date of this report, June 1, 2013.

1.1 Property Description and Location

The Brewery Creek property consists of an area of 181 square kilometres (km²), located in northwestern Yukon, approximately 55 kilometres (km) due east of Dawson City. The property is centered at Latitude 64.041887° N and Longitude 138.206389° W or UTM NAD83 Zone 7N at 636,401 metres (m) E; 7,104,673 m N.

The Property is located in the Ogilvie Mountains immediately north of the Klondike River and west of Lee Creek. Elevations on the Property range from approximately 450 metres (1,500 feet) to 1,200 metres (4,000 feet). Relief on the property varies from moderately flat terraces or benches in the southwest corner of the property to moderately steep for the majority of the Property. The area was not glaciated during the last glaciation period resulting in relatively steep V-shaped valleys incised by the creeks that cross the property. Natural bedrock exposure is generally less than 1% and is restricted to the higher elevation ridges within the Property area.

Located at approximately 64° north latitude, the Property is subject to a subarctic climate with average temperatures ranging from 15°C (60°F) in July to -26°C (-16°F) in January with temperatures commonly reaching above 30°C (86°F) in the summer and below -40°C (-40°F) in the winter. Average annual precipitation at Brewery Creek is approximately 325 mm and there are annually approximately 110 frost free days.

Field operations generally happen from March through October of each calendar year, depending on weather. This is consistent with the duration of past mining operations.

1.2 Ownership

Upon completion of the transaction, NTR will hold a 100% interest in all 1,075 quartz claims, 93 of which have been converted to mining leases. The area where NTR will hold the surface rights is the same as the claim areas. The claims are currently 100% listed in the name of Golden Predator Canada Corporation. Gustavson notes that the

surface rights are sufficient for foreseeable exploration activities and are expected to be sufficient for mining operations.

1.3 Geology and Mineralization

The Brewery Creek property is located within the foothills of the Ogilvie Mountains along the northeastern boundary of the Tintina Trench. The Tintina Trench forms a 15-kilometre wide erosional valley that delineates the northwest-striking Mesozoic to Tertiary Tintina Fault. In the vicinity of the Brewery Creek Project, the Tintina Fault juxtaposes Selwyn Basin stratigraphy on the northeast and the accreted terranes of the Canadian Cordillera on the southwest. Selwyn Basin stratigraphy is composed of Late Proterozoic and Paleozoic marginal basin deposits of ancient North America. The Cordillera rocks are dominantly composed of Klondike Schist and other allied rocks of the Yukon-Tanana Terrain, an allochthonous terrain of primarily volcanic arc rocks that evolved in mid to late Paleozoic time.

The Brewery Creek Project is in Selwyn Basin rocks northeast of the Tintina Trench. The Selwyn Basin stratigraphy consists of late Proterozoic to Paleozoic marginal basinal and platformal clastic and pelitic lower greenschist facies metasedimentary rocks. The provenance of the protoliths was the North American Craton. The stratigraphy includes thick sequences of Lower Proterozoic Hyland Group, Cambrian-Ordovician Road River Group and Devonian-Mississippian Earn Group sedimentary rocks.

The Selwyn Basin rocks have been polydeformed and imbricated by the Jura-Cretaceous Dawson, Tombstone and Robert Service Thrusts. The Hyland, Road River and Earn Group rocks are cut by Cretaceous intrusives (Tombstone Plutonic Suite) that form a northwest-trending belt of widely spaced intermediate to siliceous stocks and plutons that closely parallels the Tintina Trench. In the Brewery Creek area, these igneous rocks are monzonites and quartz monzonites that primarily intruded along the thrust faults and formed sill-like geometries. The majority of the gold mineralization at Brewery Creek is hosted within or adjacent to these felsic intrusive rocks.

Gold is associated with carbonate/clay, quartz and pyrite/arsenopyrite alteration of monzonite/quartz monzonite intrusive rocks and adjacent siliciclastic rocks. Resources are reported for fourteen deposits and also for the former heap leach pile. The fourteen deposits are Pacific, Blue, Lower Fosters, Kokanee, Golden, Lucky, Big Rock West, Big Rock East, Bohemian, Schooner, North Slope, Sleeman, Classic and Lone Star.

1.4 Exploration Status

AMB undertook an airborne magnetic survey, induced polarization (IP) survey, and soil sampling in 2011 and 2012. AMB utilized exploration results to guide drilling activities.

AMB has conducted exploration drilling at the Brewery Creek Project area since 2009. A total of 2,608 drillholes consisting of 198,829 metres, have been completed in the Bohemian, Schooner, Fosters, West and East Big Rock, Classic, Moosehead, Lone Star, Kokanee, Golden, Lucky, Pacific, Blue, North Slope, and Sleeman deposits. Drilling has been completed using reverse circulation and core drilling methods. Additional sonic drilling was completed in the former heap leach pile. Review of the drilling data shows that adequate data exist to support a resource estimate for these deposits.

1.5 Development and Operations

Loki / Viceroy constructed the mine 1995-1996 and began operation in 1996. From 1996 through 2002, approximately 280,000 ounces of gold were produced from seven near-surface oxide deposits (i.e., Pacific, Blue, Moosehead, Upper Fosters, Canadian, Lucky, Golden), which are located along strike within the historically termed "Brewery Creek Reserve Trend" (BCRT). The first gold pour at Brewery Creek Project was completed on November 15, 1996 with 10,175 ounces being produced prior to commencement of full commercial production in May of 1997. During 1997, a total of 72,387 ounces of gold were produced. In 1998 production totaled 79,396 ounces. Production in 1999 fell to 48,164 ounces. That year Viceroy suspended seasonal mining operations earlier than planned and hired an independent consulting company to study recovery processes in an effort to improve recoveries. In 2000. Vicerov concentrated on selectively mining the mineralized bodies which were well oxidized and contained the highest grade gold. Production in 2000 fell to 48,048 ounces of gold and mining ceased in 2001, but heap leaching continued with production of 18,542 ounces of gold. Studies on heap leach recoveries, undertaken in the year 2000, showed a recovery of 65% for uncrushed material.

Between 2002 and 2008 various reclamation activities occurred throughout the mine site. Gustavson notes that AMB is fulfilling permit requirements for monitoring and reporting to Agencies and no significant environmental liabilities from past mining operations were identified in its review of the most recent annual report.

1.6 Mineral Resource Estimate

Indicated and inferred resource estimates have been produced for fourteen deposits plus the former heap leach pile. Resources are reported for both oxide and sulfide material. Indicated oxide resources (including historical heap leach pad) total 577,000 troy ounces of contained gold in 14,152,000 tonnes of material at 1.27 g/t Au. Inferred oxide resources (including historical heap leach pad) total 279,000 troy ounces of contained gold in 9,309,000 tonnes of material at 0.93 g/t Au. Indicated sulfide resources total 142,000 troy ounces of contained gold in 3,459,000 tonnes of material at

1.28 g/t Au. Inferred sulfide resources total 546,000 troy ounces of contained gold in 12,408,000 tonnes of material at 1.37 g/t Au.

All mineral resource estimates are summarized in Table 1-1 below. Gustavson knows of no environmental, permitting, legal, title, taxation, socio-economic, marketing, political, or other factors that could materially affect the mineral resource.

Mineral resources are not mineral reserves and do not demonstrate economic viability. The quantity and grade of inferred resources reported herein are uncertain in nature and exploration completed to date is insufficient to define these Mineral Resources as indicated or measured. There is no guarantee that further exploration will result in the inferred Mineral Resources being upgraded to an indicated or measured mineral resource category. There is no certainty that all or any part of the mineral resource will be converted to mineral reserves. Mineral Resources are not mineral reserves and may be materially affected by environmental, permitting, legal, socio-economic, marketing, political, or other factors. Quantity and grade are estimates and are rounded to reflect the fact that the resource estimate is an approximation. The effective date of this Mineral Resources Report is June 1st, 2013.

Table 1-1 Summary of Mineral Resources

Oxide Mineral Resources										
Resource Area	Au Cutoff	Indicated Oxide Resources			Inferred Oxide Resources			Constrained by \$1250 LG	QP	Estimated with Capped
	(g/t)	Tonnes (000)	Au (g/t)	Au Ozs (000)	Tonnes (000)	Au (g/t)	Au Ozs (000)	Pit?	Responsible	Composites?
Kokanee	0.54	1,201	1.19	46	279	1.19	11	Yes	Don Hulse	Yes
Golden	0.54	1,070	1.38	47	247	1.25	10	Yes	Don Hulse	Yes
Pacific	0.53	373	1.01	12	131	0.91	4	Yes	Don Hulse	Yes
Blue	0.53	250	1.29	10	29	0.98	1	Yes	Don Hulse	Yes
Lucky	0.54	2,394	1.36	105	236	1.27	10	Yes	Don Hulse	Yes
Bohemian	0.49	1,491	1.31	63	134	1.49	6	Yes	Mike Lechner	Yes
Schooner	0.51	1,108	1.99	71	243	2.65	21	Yes	Mike Lechner	Yes
Lower Fosters	0.51	1,090	1.61	56	492	1.52	24	Yes	Mike Lechner	Yes
West Big Rock	0.45	722	1.27	29	38	0.75	1	Yes	Mike Lechner	Yes
East Big Rock	0.48	596	1.10	21	21	0.87	1	Yes	Mike Lechner	Yes
Classic	0.54	-	-	-	3,711	0.81	97	No	Mike Lechner	Yes
Lone Star	0.54	-	-	-	1,522	0.88	43	No	Mike Lechner	Yes
North Slope	0.50	756	1.15	28	412	1.05	14	No	James Barr	Yes
Sleeman	0.50	124	1.14	5	132	0.84	4	No	James Barr	Yes
Historical Viceroy Pad	0.30	2,977	0.88	84	1,682	0.60	32	No	Mike Lechner	No
Total		14,152	1.27	577	9,309	0.93	279			

Table 1-1 (cont.)

Sulfide Mineral Resources										
Resource Area	Au Cutoff		Indicated Sulfide Resources		Inferred Sulfide Resources			Constrained by \$1250 LG	QP	Estimated with Capped
Resource Area	(g/t)	Tonnes (000)	Au (g/t)	Au Ozs (000)	Tonnes (000)	Au (g/t)	Au Ozs (000)	Pit?	Responsible	Composites?
Kokanee	0.70	-	-	-	1,547	1.33	66	No	Don Hulse	Yes
Golden	0.70	-	-	-	649	1.20	25	No	Don Hulse	Yes
Pacific	0.70	-	-	-	707	1.45	33	No	Don Hulse	Yes
Blue	0.70	-	-	-	1,358	1.31	57	No	Don Hulse	Yes
Lucky	0.70	-	-	-	1,783	1.36	78	No	Don Hulse	Yes
Bohemian	0.70	-	-	-	973	1.58	50	No	Mike Lechner	Yes
Schooner	0.70	-	-	-	313	1.42	14	No	Mike Lechner	Yes
Lower Fosters	0.70	-	-	-	883	1.45	41	No	Mike Lechner	Yes
West Big Rock	0.70	-	-	-	381	1.28	16	No	Mike Lechner	Yes
East Big Rock	0.70	-	-	-	170	1.00	5	No	Mike Lechner	Yes
Classic	0.70	-	-	-	-	-	-	No	Mike Lechner	Yes
Lone Star	0.70	-	-	-	-	-	-	No	Mike Lechner	Yes
North Slope	0.70	2,122	1.26	86	2,686	1.36	118	No	James Barr	Yes
Sleeman	0.70	1,337	1.30	56	958	1.40	43	No	James Barr	Yes
Total		3,459	1.28	142	12,408	1.37	546			

1.7 Conclusions and Recommendations

It is Gustavson's conclusion from review of the information provided in this report that the Brewery Creek project has potential and warrants continuing development toward becoming a producing gold mine.

Exploration on the Project is advanced and has involved drilling, soil sampling and geophysical surveying. These exploration results guided drilling activities and helped to define the intrusion-related gold mineralization within the Project. Continued observations and exploration will better define the mineralization system and refine how targets are selected. The magnetic survey delineated a magnetic high, likely an intrusive body from the tombstone plutonic suite, in the southwest portion of the project area. Adjacent to this high are abrupt magnetic lows over the reserve trend mineralization. The IP survey identified a resistivity low near the surface which may indicate the location of the structure associated with mineralizing fluid flow.

Based on field observations and a review of AMB's QA/QC programs, Gustavson considers that the assay database supports the use of the data in estimation of a CIM-compliant mineral resource. Gustavson is of the opinion that the selected base case cutoffs discussed in Section 14.6 are reasonable based on noted parameters.

Gustavson is of the opinion that the exploration is being conducted properly to provide adequate information for the current mineral resource estimate. Further exploration should aim to add to the geological understanding of the mineralizing system in addition to spatially defining known deposits and identifying new targets. The little understood Classic deposit is an area of opportunity and requires further work.

A better understanding of the mineralizing system (intrusive-related versus epithermal) may help to refine modeling methods. As with any mineral resource estimate, there exists the opportunity both positive and negative results when additional drilling is undertaken.

Gustavson recommends continued exploration work at Lone Star and Classic to elevate resources from inferred to indicated status. Metallurgical holes should be drilled at Lucky, Kokanee and Golden to enable estimation of reserves.

Gustavson recommends that exploration drilling should continue, particularly targeting the deeper portions of known deposits and closing up drill spacing to potentially upgrade inferred to indicated resources. The estimated cost of this exploration is \$2,240,000. Gustavson also recommends that additional engineering studies and an economic analysis be completed, leading to finalization of the preliminary feasibility study. A technical report including reserves should then be published. The estimated cost of this work is \$625,000. The total estimated cost for the tasks recommended above is \$2,865,000.

2 Introduction (Item 2)

2.1 Terms of Reference and Purpose of the Report

As commissioned by Northern Tiger Resources Inc. (NTR), a publicly traded company on the Toronto Stock Exchange (TSX: NTR), Gustavson Associates, LLC, (Gustavson) has prepared an NI 43-101 Technical Report on Resources for the Brewery Creek Project in the Yukon Province of Canada to be reissued in NTR's name.

The Brewery Creek Project was a producing heap leach gold mining operation as Viceroy Resource Corporation mined seven near-surface oxide deposits from 1996 through 2002, after which the mine shut down primarily due to low gold prices. In 2009, AMB optioned the Brewery Creek property from Alexco Resource Corporation. In February 2012 AMB signed a purchase agreement with Alexco to acquire a 100% interest in the project and all outstanding quartz claims subject to a 2% net smelter return royalty in favor of Alexco. In September of 2012 the purchase was completed and AMB became the 100% owner of the Brewery Creek project.

In June 2012, AMB published an NI 43-101 Technical Report on Resources, which was then Amended and Reissued on January 17th, 2013. On October 23rd, 2013, AMB published an updated NI 43-101 Technical Report on Resources to update the January 17th 2013 resource estimate to include new data for existing resource areas and additional exploration targets. The current Technical Report is a Reissue in Northern Tiger's name of the October 2013 Technical Report.

This report was prepared to comply with public reporting obligations for Canadian National Instrument 43-101 Standards of Disclosure for Mineral Projects (NI 43-101), NI 43-101 Form F1, and Canadian Institute of Mining, Metallurgy and Petroleum (CIM) "Best Practices and Reporting Guidelines" following a press release for updated resources dated September 15, 2013. The mineral resource estimate and interpretations and conclusions reported here are based on technical data available prior to the effective date of this report, June 1, 2013.

Items 15 through 22 of Form 43-101F1 (Mineral Reserve Estimates, Mining Methods, Recovery Methods, Project Infrastructure, Market Studies and Contracts, Environmental Studies, Permitting and Social or Community Impact, Capital and Operating Costs, and Economic Analysis, respectively) are not required for a Technical Report on Resources and are not included in this report.

2.2 Qualifications of Consultants

The Qualified Persons (QP), as defined by NI 43-101, responsible for this report are:

- Mr. Donald Hulse, P.E., SME-RM, Vice President, Gustavson
- Dr. M. Claiborne Newton, III, Ph.D., SME-RM, Chief Geologist, Gustavson
- Mr. Michael J. Lechner P.Geo.., President, Resource Modeling Inc. (RMI)
- Mr. P. James F. Barr, P. Geo., Senior Geologist, EBA Engineering Consultants Ltd. (EBA)
- Mr. Joe Keane, P.E., Keane Mineral Engineering LLC

Dr. Newton is specifically responsible for Sections 1 through 12.3, 15 through 20, the overall content of the report, and served as the project manager. Mr. Hulse is responsible for Sections 14.1, 14.5, and 14.6. Mr. Lechner is responsible for Sections 12.2, 14.2, 14.3, 14.5, and 14.6. Mr. Barr is responsible for Sections 12.1, 14.4, 14.5, and 14.6. Mr. Keane is responsible for Section 13.

2.2.1 Details of Inspection

Dr. Newton visited the site on June 4 and 5, 2013. During the site visit, he examined rocks in the Lucky, Golden, Kokanee and Pacific pits, took structural measurements, collected three independent grab samples for gold assay, examined and photographed drill sites and examined drill core and cuttings, referencing mineralized intervals to corresponding intervals in the drillhole database.

Mr. Lechner, RMI geologist and Independent QP, conducted a site visit between October 16 and October 18 2012. The purpose of the visit was to become familiar with the site layout and facilities, review core drilling procedures, review core logging/sample handling procedures, examine drill core and review electronic data collection practices. Mr. Lechner was accompanied by AMB Senior Geologist Bruce Otto and Project Geologist Tyler Bourne.

While on site, Mr. Lechner examined two diamond drill rigs that were operating in the Classic-Lone Star areas. The first drill rig that was visited was an A5 drill operated by Matrix Diamond Drilling Inc. (drillhole BC12-580). The hole was approximately 250 metres deep at the time of the visit. The drill site was clean and the core was correctly handled at the site. The second drill rig that was visited was operated by Kluane Drilling Ltd. (drillhole BC12-576). Both drill rigs appeared to be delivering nearly 100% recovery. Both drills were using NQ tools with 10-foot-long core barrels.

Portions of three recent and two older diamond drillholes were examined by Mr. Lechner while on site. Selected drillhole intervals from specified holes were compared against the original drill logs. Table 12-3 lists the holes and intervals that Mr. Lechner examined.

Mr. Barr conducted a site visit on March 19-21 and May 30-31, 2012: during this time, he reviewed core logging, sample handling procedures, reviewed drill core and collected core samples for independent analysis.

2.3 Sources of Information

The information, opinions, conclusions, and estimates presented in this report are based on the following:

- Information and technical data provided by AMB;
- Observations made by Qualified Persons on site;
- Review and assessment of previous investigations;
- Assumptions, conditions, and qualifications as set forth in the report; and
- Review and assessment of data, reports, and conclusions from other consulting organizations and previous property owners.

Gustavson sourced information from referenced documents as cited in the text and those summarized in Section 20, References, of this report.

In 2012 the Company commissioned a Prefeasibility Study (PFS), which is still in progress, and an updated resource estimate on the Brewery Creek Project. The PFS has investigated a mine plan based on an anticipated resource size; however, due to a larger than anticipated oxide resource, the mine plan requires further engineering on pit designs, waste dump sites and scheduling to accommodate an enhanced operation. The Company intends to complete a mine plan and resulting PFS and publish a subsequent NI 43-101 Technical Report once engineering studies have been finalized. Gustavson notes that these mining studies were performed prior to the completion of resource estimates for 5 deposits (Kokanee-Golden, Pacific-Blue, and Lucky) that are included in this Report, and as such, the mining assumptions used for design in the PFS may need to be updated. Gustavson notes that mining production and infrastructure should be evaluated following completion of the project resource estimate.

For completeness, the studies that have been used through the Effective Date of this Report are listed below.

- 2012 Geotechnical Site Investigation & Geotechnical Pre-Feasibility Study for Six Proposed Pits, by EBA, dated December 2012.
- Capital Cost Estimate, Brewery Creek Prefeasibility Study Owner Operated Crushing, by K D Engineering, dated March 2013.
- Conceptual Study: Connection to Yukon Energy Corporation Network, by BBA, dated November 19, 2012.

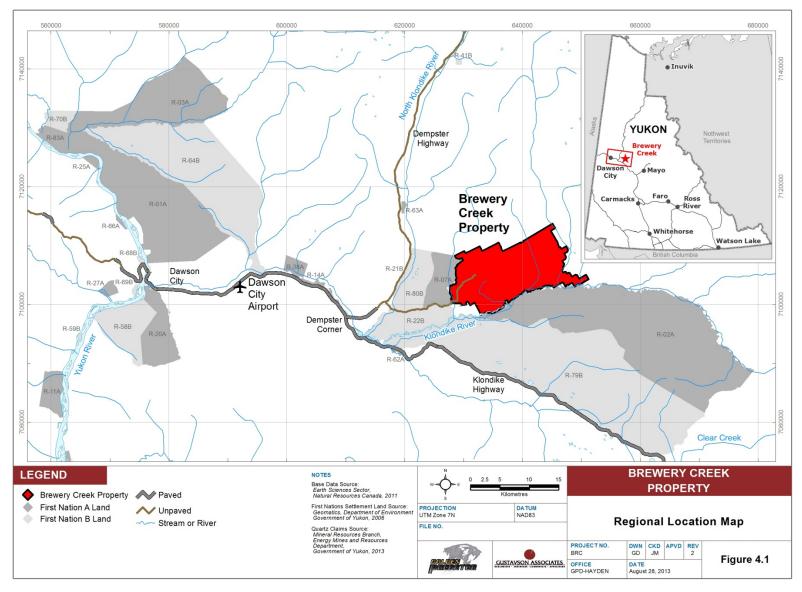
- Design Criteria, Brewery Creek Prefeasibility Study, by SGS Metcon / KD Engineering, dated April 8, 2013
- Design Memo regarding Lower Foster Pit, Small Ephemeral Drainage Tributary Diversion – Conceptual Design, by EBA, dated December 20, 2012.
- Electrical Load Study, by KD Engineering, dated February 6, 2013
- Equipment List, by K D Engineering, dated January 2013.
- Heap Leach Facility Pre-Feasibility Design Cells 8, 9, & 10, by Tetra Tech, dated April 2013.
- Lower Foster Pit, Small Ephemeral Drainage Tributary Diversion Conceptual Design, by EBA, dated December 20, 2012
- Memorandum regarding Brewery Creek Reprocessing Existing Heap Leach, by K D Engineering, dated November 5, 2012.
- Quote for Golden Predator to Provide a Complete Contracted Crushing, Screening, and Conveying Operation System at Brewery Creek Mine, by Nuway Crushing Ltd, dated January 12, 2013.
- Operating Cost Estimate, by K D Engineering, dated April 2013.
- Technical Memorandum regarding Brewery Creek Preliminary Heap Leach Facility Water Balance, by Tetra Tech, dated January 14, 2013.
- Technical Memorandum regarding Brewery Creek Mine Haul Roads, by EBA, dated January 2, 2013
- Waste Rock Deposition Sites, Preliminary Options and Volume Estimates, by Tetra Tech, dated December 2012.

2.4 Effective Date

This report was completed based upon information available at the effective date of this report. June 1, 2013.

2.5 Units of Measure

Unless stated otherwise, all measurements reported here are in metric units, tonnes are metric, and currencies are expressed in constant 2Q 2013 US dollars. Precious metal content is reported in gram per metal per metric tonne (g/t).


3 Reliance on Other Experts (Item 3)

The Qualified Persons relied in good faith on information provided by AMB regarding mineral tenure and royalty information (Sections 4.2 and 4.3). The Qualified Persons have not independently verified status of the property ownership or mineral tenure, which was based on information provided to Gustavson from AMB.

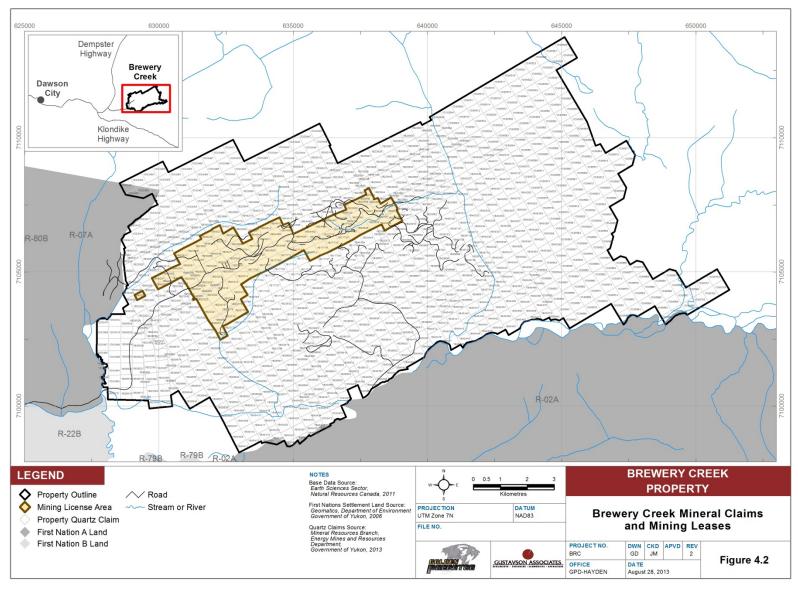
4 Property Description and Location (Item 4)

4.1 Property Description and Location

The Brewery Creek Project consists of an area of 181 square kilometres (km²), located in the northwestern Yukon, approximately 55 kilometres (km) due east of Dawson City (Figure 4-1). The property is centered at Latitude 64.041887° N and Longitude 138.206389° W or UTM NAD83 Zone 7N at 636,401 metres (m) E; 7,104,673 m N.

Source: AMB (2013)

Figure 4-1 Site Location Map


4.2 Mineral Titles

The Property consists of a total of 1,075 quartz claims, 93 of which have been converted to mining leases. Areas of claims and leases are shown on Figure 4-2. The list of mining claims is provided in Appendix B.

In 2012, AMB and Tr'ondëk Hwëch'in First Nation (THFN) signed an Amended and Restated Socio Economic Accord with respect to the Brewery Creek project. The Amended and Restarted Socio Economic Accord updated the previous agreement from 1996 to 2012. Key aspects of the agreement include:

- THFN support for the Project;
- THFN endorsement for the Company's permitting applications, with a clear process for THFN to review and provide input prior to filing, and a mechanism to expeditiously address and resolve any concerns THFN may have;
- A consistent and clear process for communication on all matters pertaining to the Brewery Creek Project and resolving any disputes that may arise;
- Preferential employment and economic development opportunities for THFN businesses and citizens;
- THFN acquiring an equity interest in the Company, and participating in profit sharing from operations beyond the original Viceroy mine plan;
- Funding for training and scholarships for THFN citizens; and
- An annual grant to a community legacy project for the broader community of Dawson

Gustavson has not independently verified the legal status or title of the claims, and has not investigated the legality of any of the underlying agreement(s) that may exist concerning the Brewery Creek Project.

Source: AMB (2013)

Figure 4-2 Areas of Mineral Claims and Mining Leases

4.2.1 Nature and Extent of Issuer's Interest

AMB holds 100% interest in all 1,075 quartz claims and mining leases.

4.3 Royalties, Agreements and Encumbrances

4.3.1 Alexco

In February 2012, AMB signed a Purchase Agreement with Alexco Resource Corp whereby AMB would acquire a 100% interest in the Brewery Creek Project; the purchase was finalized in September of 2012. . For the first 600,000 ounces of gold produced from 793 claims, AMB will pay a 2% net smelter return (NSR) to Alexco. For additional gold produced in excess of 600,000 ounces, AMB is obligated to a 2.75% NSR to Alexco. The SSR is effectively capped at \$860,640 if gold is greater than \$499.99 per ounce AMB has the right to repurchase 0.625% of the increased royalty by paying Alexco \$2,000,000. Royalty boundaries are shown in Figure 4-3.

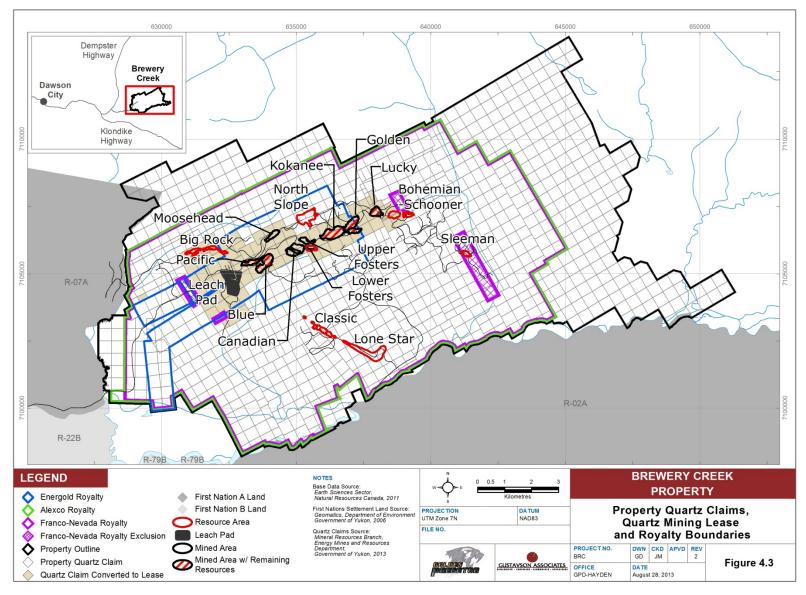
4.3.2 Energold Royalty

AMB is obligated to a 5% NPR to Energold for gold produced from 781 claims, in accordance with Noranda (1989) and Alexco (2005). Royalty boundaries are shown in Figure 4-3.

4.3.3 Franco-Nevada Royalty

AMB is obligated to a sliding scale royalty (SSR) to Franco-Nevada for gold produced from 135 claims, in accordance with Hemlo (1993) and Newmont (2007). Hemlo (1993) called for SSR for 300,000 ounces of gold. To date, 278,484 ounces of gold have been produced, and as such, AMB is obligated to SSR for the next 21,516 ounces of produced gold. Royalty boundaries are shown in Figure 4-3.

The amount of SSR to be paid is based on the price of gold, as follows:

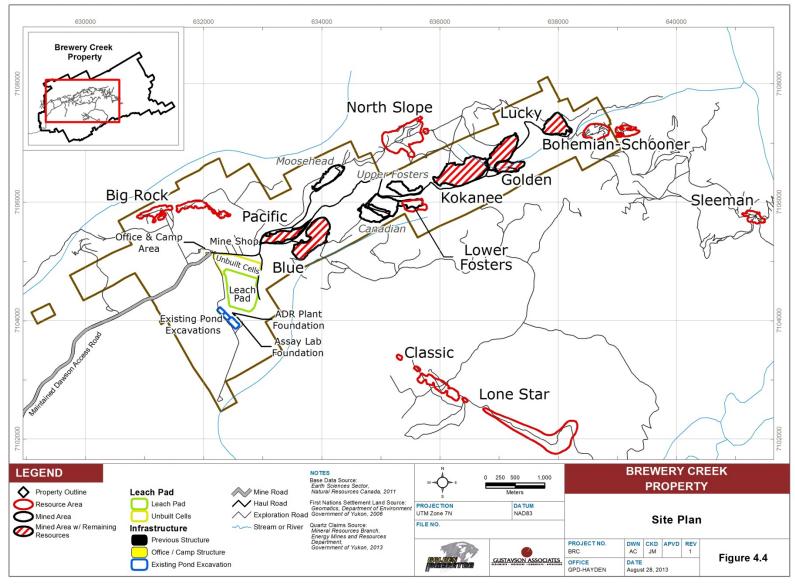

- \$10/oz if the Average Gold Price¹ is \$349.99 per ounce gold, or less;
- \$20/oz if the Average Gold Price is greater than \$349.99 and equal to or less than \$399.99 per ounce of gold;
- \$30/oz if the Average Gold Price is greater than \$399.99 and equal to or less than \$449.99 per ounce of gold;
- \$40/oz if the Average Gold Price is greater than \$449.99 per ounce of gold.

1

¹ Average Gold Price means the average of the London Bullion Market Association P.M. Gold Fixes in United States dollars for the Quarter, calculated by dividing the sum of all such prices reported in the Quarter by the number of days in the Quarter for which such prices were reported.

4.3.4 Americas Bullion Royalty Corp.

In the December 2013 agreement with NTR, AMB is to receive a 0.5% NSR on production from all deposits and the tailings pile at Brewery Creek.



Source: AMB (2013)

Figure 4-3 Royalty Boundaries

4.4 Environmental Liabilities

A site plan showing the Brewery Creek Project area is provided on Figure 4-4.

Source: AMB (2013)

Figure 4-4 Brewery Creek Project Site Plan

4.4.1 Environmental Liabilities from Past Mining Activities

Potential environmental impacts from past mining operations are managed under the Quartz Mining License held by AMB (see more information in Section 4.5.1). The Quartz Mining License cites requirements for site reclamation and closure, which have been completed. As part of the Quartz Mining License, AMB is required to conduct routine monitoring and submit an annual report to Yukon Energy, Mines and Resources. The report for 2012 was filed.

Gustavson notes that AMB is fulfilling permit requirements for monitoring and reporting to Agencies and no significant environmental liabilities from past mining operations were identified in its review of the most recent annual report (Golden Predator, 2013b).

4.4.2 Current Environmental Liabilities

There are no significant outstanding environmental liabilities remaining from the former mining operation. A final monitoring bond is place of approximately \$750,000. AMB's onsite activities are managed by the Yukon Water Board water permits and Yukon Energy, Mines and Resources mining permits (see Section 4.5). During 2012, AMB conducted reclamation activities of various drill pads and drill roads at the Brewery Creek Project area.

In October 2012, the Government of Yukon's Environment, Water Resources Branch conducted an inspection of the Brewery Creek Project area. As stated in the Inspection Report, the reclamation is successful, the former pits and rock dumps appear stable; site conditions were found to be in general compliance with permit requirements.

During Gustavson's review of permit and associated reports submitted to agencies pursuant to report requirements, Gustavson concludes that AMB's environmental liabilities are well-managed and conducted generally in accordance with permit requirements. AMB is in good standing with regulatory agencies for environmental compliance.

AMB has commissioned additional environmental studies that have been completed as of the Effective Date of this report.

- Memorandum regarding Brewery Creek Surface Water Hydrology. Prepared by Access Consulting Group, dated December 28, 2012.
- Heritage Resource Overview Assessment for the Brewery Creek Property.
 Prepared by Matrix Research Ltd., dated June 2012.
- Draft Brewery Creek Mine Reactivation Project, Terrestrial and Aquatic Resources – Existing Conditions Report. Prepared by Access Consulting Group, dated December 2012.

- Socio-Economic Assessment 2012. Prepared by Ecofor Consulting BC Ltd, dated January 7, 2013.
- Memorandum regarding Geochemical Characterization Program, Bohemian/ Schooner (BS) Proposed Preliminary Pit Area. Prepared by Access Consulting Group, dated June 5, 2012.
- Memorandum regarding Geochemical Characterization Program, Lower Foster South East (LF-SE) Proposed Preliminary Pit Area. Prepared by Access Consulting Group, dated June 5, 2012.
- Memorandum regarding Geochemical Characterization Program, Lower Foster Zone. Prepared by Access Consulting Group, dated May 1, 2012.
- Memorandum regarding Brewery Creek Site Meteorological Data Summary, Lower Foster Zone. Prepared by Access Consulting Group, dated January 12, 2013.
- Technical Memo regarding Brewery Creek Late Winter Moose Survey Golden Predator. Prepared by Laberge Environmental Services, dated May 7, 2012.
- Letter from EBA to Golden Predator Corp. regarding Hydrogeological Baseline Assessment, Big Rock deposits, Brewery Creek Mine, Yukon. Dated November 29, 2012.
- Technical Memo regarding Groundwater Inflow to Proposed Open Pits (Conceptual Model). Prepared by EBA, dated December 31, 2012.
- Letter from Vista Tek Limited to Golden Predator regarding September 2012 Engineering Inspection Brewery Creek Mine, dated October 3, 2012.

4.5 Permits

Permits held by AMB are listed in this section. From discussion with AMB and based on documents reviewed by Gustavson, permits are in good standing with their respective regulatory agencies.

4.5.1 Class IV Mining Land Use Permit - Exploration

AMB holds a Class IV Mining Land Use permit LQ00364 that authorizes surface disturbances related to exploration activities such as drill road construction, drill pads, fuel storage, trenching and a 120 person camp. The permit expires on July 5, 2022.

The permit requires submittal of an annual report by March 31 of each year, summarizing activities performed in the preceding calendar year. Gustavson notes that such a report was submitted (Golden Predator, 2013b), and believes the license is in good standing.

4.5.2 Quartz Mining License

AMB holds a Quartz Mining License (QML) No. LQ00364 permitted by Yukon Energy, Mines and Resources. The QML covers mine production and closure, monitoring and inspections among others issues. The Quartz Mining License expires on December 31, 2021 (YEMR, 2012b).

The permit requires submittal of an annual report by March 31 of each year, summarizing activities performed in the preceding calendar year. Gustavson notes that such a report was submitted (Golden Predator, 2013b), and believes the license is in good standing.

4.5.3 Type A Water Use Permit

AMB holds a Type A Water Use License (WUL) No. QZ96-007 permitted by Yukon Water Board: the Type A Water Use License expires on December 31, 2021.

The Type A WUL consists of requirements for mine production and closure, mine and camp water use and waste disposal, water management and monitoring and others. The current WUL authorizes water extraction rate of up to 2,824 m³ per day for mining use.

The permit requires submittal of an annual report by February 28 of each year, summarizing activities performed in the preceding calendar year. Gustavson notes that such a report was submitted (Golden Predator, 2013b), and believes the license is in good standing.

4.5.4 Type B Water Use Permit

AMB holds a Type B Water Use License (WUL) MN12-038 permitted by Yukon Water Board: this permit expires in July 5, 2022. The Type B Water Use License allows for operation of a septic system for up to 120 persons and extraction of up to 50 m³ of water per day for domestic use. This permit is in good standing.

4.6 Other Significant Factors and Risks

Gustavson notes no significant factors or risks that may affect access, title, or right or ability to perform work on this property.

5 Accessibility, Climate, Local Resources, Infrastructure and Physiography (Item 5)

5.1 Topography, Elevation and Vegetation

The Property is located in the Ogilvie Mountains immediately north of the Klondike River and west of Lee Creek. Elevations on the property range from approximately 450 metres (1,500 feet) to 1,200 metres (4,000 feet). Relief on the property varies from moderately flat terraces or benches in the southwest corner of the property to moderately steep for the majority of the Property. The area was not glaciated during the last glaciation period resulting in relatively steep V-shaped valleys incised by the creeks that cross the property. Natural bedrock exposure is generally less than 1% and is restricted to the higher elevation ridges within the property area.

Vegetation on the property consists of four main types. The higher elevations (above 1,050 metres) consist of rounded hills covered with sub-alpine shrubs, grasses and widely spaced coniferous trees. Steep north facing slopes and narrow valley floors are covered with thick blankets of moss with thickets of slope alder and stunted spruce. Steep south facing slopes have two distinct styles of vegetation; coniferous trees with abundant undergrowth and areas of deciduous aspen, poplar and birch with little or no undergrowth.

EBA undertook a surficial terrain study on the Brewery Creek property in 2012. The results of the study show that all north facing slopes and valley bottoms can be influenced by permafrost. Permafrost in the study area is discontinuous and is probable on lowermost slopes and floors of the moderately steep (50% to 70% gradient) v-shaped stream valleys.

Areas of gentle topography, especially NW facing slopes, and gullies contain loess (fine wind-blown silt) up to 17 metres thick. Observed geomorphological processes include slow soil creep on the middle to lower slopes of some stream valleys and minor sloughing along some eroded stream banks. There were no indications of active rapid mass movement processes observed during the field visit.

5.2 Climate and Length of Operating Season

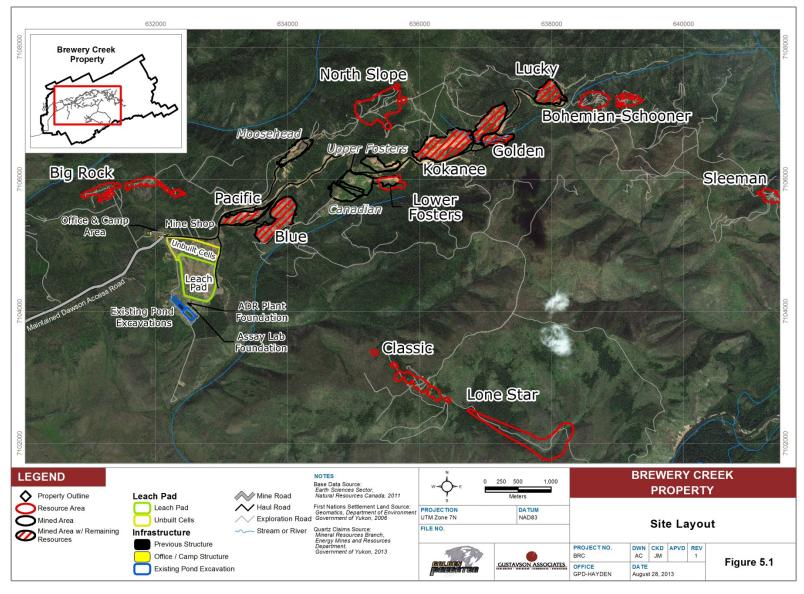
Located at approximately 64° north latitude, the property is subject to a subarctic climate with average temperatures ranging from 15°C (60°F) in July to -26°C (-16°F) in January with temperatures commonly reaching above 30°C (86°F) in the summer and below -40°C (-40°F) in the winter. Average annual precipitation at the Brewery Creek Project is approximately 325 mm and annually there are approximately 110 frost-free days.

AMB's field operations generally happen from March through October of each calendar year, depending on weather. This is consistent with the duration of past mining operations.

5.3 Sufficiency of Surface Rights

The area where AMB holds the surface rights is the same as the claim areas. Gustavson notes that the surface rights are sufficient for foreseeable exploration activities, and they are expected to be sufficient for mining operations.

5.4 Accessibility and Transportation to the Property


The site is accessible year-round from the Klondike Highway connecting Whitehorse and Dawson City, Yukon, Canada. From Dawson City, the drive is approximately 40 kilometres along Klondike Highway (YT-2 South) in the easterly direction, then 7 kilometres north on the all-weather Dempster Highway and then approximately 20 kilometres along the North Fork all-weather access road to the Brewery Creek Project site.

Alternatively, from Whitehorse, Yukon, Canada, the drive is approximately 490 kilometres along Klondike Highway (YT-2 North) in the northwesterly direction, then 7 kilometres north on the all-weather Dempster Highway and then approximately 20 kilometres along the North Fork all-weather access road to the Brewery Creek Project site.

5.5 Infrastructure Availability and Sources

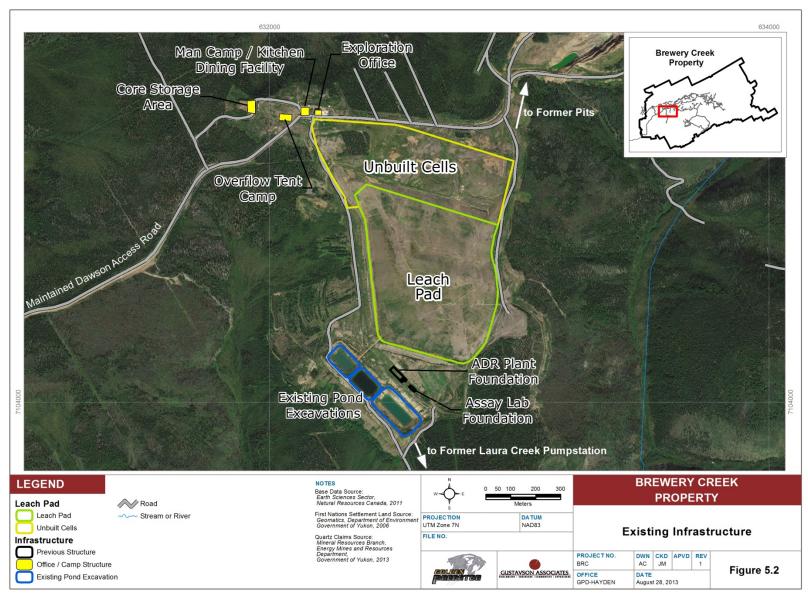

A generalized map showing site layout is provided on

Figure 5-1. A more detailed map showing the former heap leach pad area is provided on Figure 5-2.

Source: AMB (2013)

Figure 5-1 General Site Layout

Source: AMB (2013)

Figure 5-2 Existing Infrastructure

As shown on Figure 5-2, the former maintenance shop (labeled Exploration Office) was partially dismantled after closure of the previous mining operations and is currently being used as offices and exploration core logging facilities. Accommodations include mobile living quarters in the form of prefabricated trailers and temporary tent structures. There is capacity for approximately 50 people in these current facilities.

5.5.1 Power

Power is currently supplied by a diesel generator (145 kW) as the site is not connected to the Yukon power grid.

The existing power supply is not expected to be sufficient to support potential future mining operations. AMB has commissioned an independent conceptual study by BBA, an independent Canadian consulting engineering firm, to estimate the cost of connecting the Brewery Creek Project to the Yukon Energy Corporation (YEC) network. BBA has evaluated conceptual engineering designs and costs which include a tap point substation, transmission and distribution line, and a Brewery Creek Project substation. A potential power line route following existing roadways is approximately 27 km. from the tap point on the main distribution grid to the Brewery Creek Project site.

5.5.2 Water

AMB holds a Type A Water Use License to obtain and use up to 2,824 m³ per day of water from various sources on site. The Type A Water Use Permit is sufficient for current and future exploration activities and for potential future mining operations.

In addition, AMB holds a Type B Water Use License to obtain and use up to 50 m³ per day for domestic purposes for 120 person camp and to dispose of the waste water in the approved septic system. Water supply for operations from the Type B Water Use Permit is sufficient for current and future exploration and mining activities.

5.5.3 Personnel

Skilled labor is available in the nearby B.C. province and Alaska. For future mining operations, the availability of personnel with applicable skills in the Yukon is limited; however, it is expected that skilled workers will gravitate into the area for employment.

5.5.4 Tailings Storage Areas

During past mining operations, material was treated by heap leach, as further described in Section 5.5.6 below. Future mining is expected to utilize heap leaching as the means for processing, and as such, no tailings storage areas are expected.

5.5.5 Waste Disposal Areas

Existing waste disposal infrastructure consists of a secure dumpster for waste disposal, an incinerator for solid waste, and sewage disposal system. The existing solid waste disposal methods are sufficient.

5.5.6 Heap Leach Pad Areas

During previous mine operations, material was treated by heap leach. The facility was designed and permitted for a capacity of approximately 15 million tonnes of material within 10 cells. Capacity for Cells 1 through 6 has been reached and approximately 1 million tonnes of capacity is estimated to remain on Cell 7. In total, Cells 1 to 7 contain approximately 9.5 million tonnes of leached run of mine material. The existing Cells 1 to 7 are lined, with a main solution collection ditch along the west edge of the leach pad with flow to process ponds, and are surrounded by a containment dike constructed along the south and west edges of the leach pad.

The permitted area for the remaining three cells (i.e., Cells 8, 9, and 10) is 190,000 m², with remaining permitted capacity of 5.5 million tonnes. AMB commissioned Tetra Tech to design the 3 remaining cells, which has been completed (Tetra Tech, 2013b). Tetra Tech also prepared a preliminary heap leach water balance which called for 21,510 m³ of water during Year 1 of operations (Tetra Tech, 2013a), a quantity that is well within the water supply permitted under the Type A water permit (see Section 4.5.3).

5.5.7 Processing Plant Sites

The processing plant from former mining operations was removed and sold. To accommodate mining operations, an ADR building is expected to be located on the approximate same foundation as the previous ADR building.

Infrastructure facilities at the site were examined by Gustavson and appear to be in good shape and adequate for supporting continuing exploration activities.

6 History (Item 6)

6.1 Prior Ownership

The initial claims for the Brewery Creek Project were staked by Noranda Exploration (Norex) in 1987 to cover a reconnaissance geochemical anomaly. Further claims were staked in subsequent years to cover possible extensions of gold mineralization.

In 1989, Norex entered into an agreement with Total Erickson Resources Limited (TERL). TERL provided Norex with \$300,000 for exploration, and, in return, TERL earned a 5% NPR on 52 of the Brewery Creek Project area claims. In October 1992, TERL assigned all of its interests, rights, and title to Energold Minerals, Inc.

In September 1992, Hemlo Gold Mines, Inc. (Hemlo) acquired all of Norex's right, title, and interest to the Brewery Creek Project property area, including obligations to TERL. In 1993, Loki Gold Corporation entered into an assignment agreement with Hemlo, thus acquiring all of Hemlo's rights, title, and interest.

In May 1996 Loki and Baja Gold, Inc. joined to form a new company under the name Viceroy Minerals Corporation (Viceroy). Mine commissioning, production, closure and reclamation occurred under Viceroy ownership.

On May 1, 2003, an agreement among Viceroy, 650399 BC Ltd., Spectrum Gold Inc., and NovaGold Canada Inc. (NovaGold) was established in which Viceroy would allow 650399 BC Ltd an option to purchase mineral properties of, other rights to, and assets of the Brewery Creek Project. At this time, 650399 BC Ltd. (BC) was a wholly owned subsidiary of Spectrum Gold Inc. (Spectrum).

A small drilling program was conducted by 650399 BC Ltd. in 2004. Later that year, NovaGold acquired all of the outstanding shares of SpectrumGold and thus the option for assets of the Brewery Creek Project.

In April 2005, NovaGold relinquished the option for Brewery Creek Project claims and mining leases to Alexco Resource Corporation (Alexco) with a back-in clause following the completion of \$700,000 of exploration expenditures by Alexco. NovaGold elected not to participate with this back-in option.

In 2009, Golden Predator signed an option agreement with Alexco whereby Golden Predator had the option to acquire up to 75% interest in 793 quartz claims and mining leases covering 127 km². A Purchase Agreement was signed between Golden Predator and Alexco in February 2012 and the sale was completed in September of 2012 by which Golden Predator purchased 100% ownership in the property.

In early 2013 Golden Predator Corp. changed its name to Americas Bullion Royalty Corp. (AMB) and in the process bundled the Canada based assets into Golden Predator Canada Corporation (Golden Predator), which exists as a wholly owned subsidiary of AMB.

Northern Tiger Resources Inc. and Redtail Metals Corp announced on December 17, 2013 that they have agreed with Americas Bullion Royalty Corp (AMB) to expand the terms of the previously announced Northern Tiger and Redtail merger (News Release October 28, 2013) to include the acquisition by Northern Tiger of AMB's Brewery Creek Project.

6.2 Past Exploration and Development Results

Historical exploration surveys conducted at Brewery Creek Project between 1988 and 2006 included geologic mapping, extensive grid soil sampling, ground and airborne geophysical studies, mechanized surface trenching, and extensive core and reverse-circulation drilling.

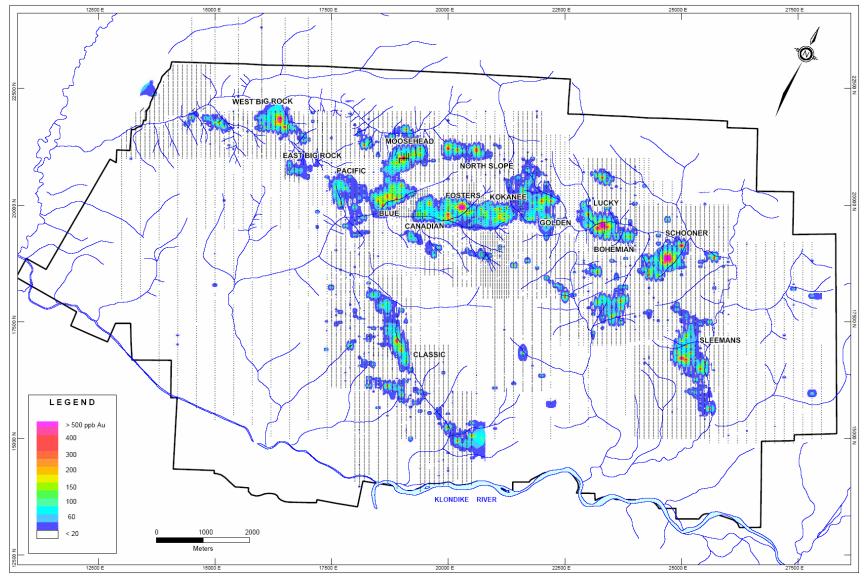
6.2.1 Geologic Mapping

Due to rare exposure of the local bedrock, geologic mapping on the site has been restricted primarily to trench and road cut exposures. Scree and soil mapping was also utilized outboard from main exploration zones to develop a coherent and regionally consistent geology map.

A Ph.D. thesis titled *The Structural and Hydrothermal Evolution of Intrusion-Related Gold Mineralization at the Brewery Creek Mine, Yukon, Canada*, authored by Mark Lindsay was submitted to the James Cook University, North Queensland, Australia, in May 2006. The work presents a detailed account of mineralogy, alteration and structural implications at the Brewery Creek Project. The geologic mapping is discussed in Section 7.2 of this report.

6.2.2 Soil Sampling Surveys

As reported in Diment (2009), over 24,000 soil samples have been collected on the property to date.


- Between 1988 and 1992, more than 8,000 soil samples were collected at 50 metre intervals on 100 metre and 200 metre spaced lines over the mineralized zones. Lines were spaced at 400 metres over the remainder of the property. The samples were analyzed for gold, silver, antimony, arsenic and mercury; two-thirds of these samples were submitted for ICP analysis.
- Between 1994 and 1996, more than 10,500 soil samples were collected across previously sampled portions of the exploration grid. Anomalies were extended south of the Classic zone and west of the Big Rock zones. Soil

samples were collected at 25 metre intervals in areas of moderate topographic relief or at 12.5 metre intervals in subdued relief on 100 metre spaced lines. Bedrock and surficial geology were mapped at each sample site.

 In 1997, approximately 6,000 soil samples, at 25 metre intervals on 100 metre spaced lines, were collected to better define anomalous trends in the South Canadian zone.

Soil sampling results through 2009 are provided on Figure 6-1. The hydrothermal system at the Brewery Creek Project is anomalous in gold, arsenic, antimony and mercury. Silver is weakly anomalous and erratic; it is associated with zinc in the sedimentary rocks and gold in the epithermal system.

Gold-in-soil anomalies have assisted in discovery of all the known mineralized zones and exploration targets.

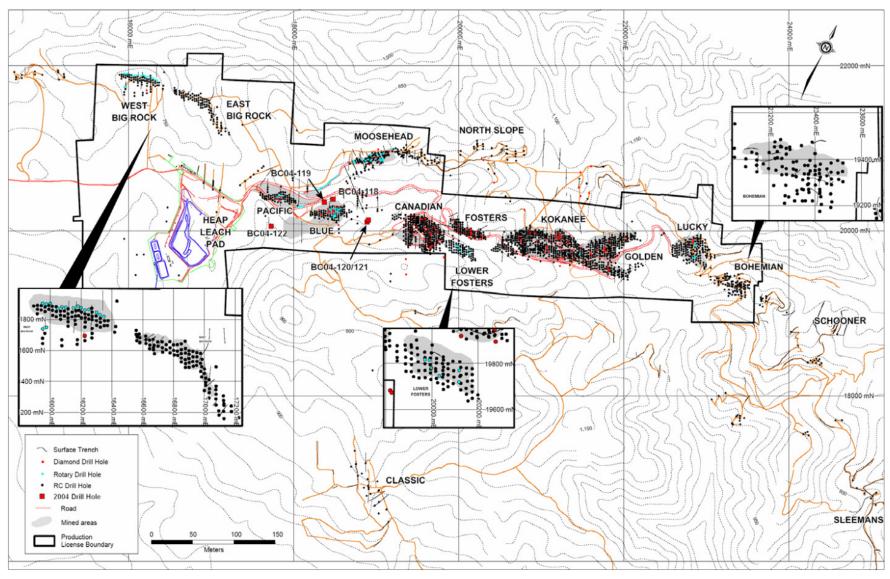
Source: Diment (2009)

Figure 6-1 Soil Sampling Results - Gold

6.2.3 Geophysical Surveys

Geophysical surveys consisted of ground magnetometer and IP surveys conducted between 1989 and 1992 by Norex. In 1998 an airborne magnetometer and radiometric survey was also conducted covering the entire property and adjacent R-7A and R-2A Tr'ondek Hwech'in settlement land. During 2004, 28 km of Induced Polarization (IP) geophysical survey were completed. Results of the 1998 magnetometer and radiometric survey and 2004 IP geophysical survey were not made available to Gustavson.

Although the airborne and ground magnetometer surveys were useful in delineating Tombstone Suite intrusive centers and their adjacent hornfelsed aureoles, mineralized zones typically lie outboard of or flank these magnetic anomalies. The oxidized, auriferous sills that make up most of the Reserve Trend deposits exhibited a relatively flat magnetic response.


Results of the 2004, twenty-eight kilometre IP geophysical survey clearly defined two chargeability domains (west-high and east-low) that are separated by a major northwest trending fault. The trace of this structure passes from the Classic Zone to just west of the Pacific production pit. A strong magnetic-high is coincident with the high chargeability anomaly. Sulfide-bearing intrusive bodies and/or hornfelsed, pyrrhotite-bearing strata may possibly explain the high chargeability features whereas the low chargeability terrain to the east may reflect widespread sulfide destruction linked to the main mineralizing event over the mine trend.

6.3 Drilling

A summary of historical drilling conducted from 1989 to 2004 is provided in Table 6-1. Trench and drillhole locations are shown on Figure 6-2.

Table 6-1 Summary of Historical Drilling

Drill Series	Year Drilled	Operator	Drill Type	No. DHs	Total Metres Drilled
RC89	1989	Norex	RC	14	1,704
DD89	1989	Norex	Core	9	1,097
RC90	1990	Loki	RC	309	14,838
DD90	1990	Loki	Core	16	1,090
PQ90	1990	Loki	Core	5	198
RC91	1991	Loki	RC	348	18,007
DD91	1991	Loki	Core	34	1,645
RC92	1992	Loki	RC	19	1,236
RC93	1993	Loki	RC	151	8,542
RC94	1994	Loki	RC	242	10,891
RC95	1995	Loki	RC	317	14,981
DD95	1995	Loki	Core	25	1,200
RC96	1996	Viceroy	RC	271	14,458
DD96	1996	Viceroy	Core	23	2,992
RC97	1997	Viceroy	RC	367	23,045
RC98	1998	Viceroy	RC	219	13,960
DD98	1998	Viceroy	Core	10	662
RC99	1999	Viceroy	RC	53	4,244
BC04	2004	Spectrum	Core	5	770
BC06	2006	Alexco	Core	9	1,171
Total				2,445	136,731

Source: Diment (2009)

Figure 6-2 Trench and Drillhole Locations

6.3.1 Norex (1989)

Norex completed 13 reverse circulation (RC) holes, totaling 1,704 metres, near the current Upper Fosters, Canadian, Blue and Kokanee areas, and 9 diamond drill holes, totaling 1,096.8 metres, near the current Upper Fosters, Canadian and Moosehead areas that were completed by Norex in 1989.

The drilling targeted anomalous soil samples and were generally oriented to the north, across dip of geology. Materials intersected in these holes with significant grades have been removed by previous Viceroy mining operations and are not considered to be relevant to the mineral resource estimate presented in this report.

6.3.2 Loki / Viceroy (1990 - 1999)

AMB's drill database has records for a total of 2,296 RC holes drilled between 1989 and 1999 amounting to a total of 124,201.6 metres and a total of 113 core holes drilled between 1989 and 1999 amounting to a total of 7,787.7 metres.

The programs were designed as early exploration programs followed by delineation drilling programs for Viceroy resource and reserve development.

Drilling by Loki and Viceroy was generally conducted in combination of vertical and inclined drilling at 25 to 30 metres spacing along fences offset at 20 to 40 metres across the development areas of interest.

Core recovery was inherently low in many of the core holes due to poor integrity of the wall rock sedimentary rocks. As RC drilling was used as the preferred method for deposit delineation, the limited core drilling post 1989 was restricted to geotechnical drilling for pit wall stability studies, deeper sulfide drilling, and twinning of significant RC hole intercepts for grade and thickness comparisons.

6.3.3 Spectrum (2004)

Following mine closure, core drilling was resumed in 2004 by Spectrum Gold to provide adequate information for structural interpretation during this renewed phase of exploration. Diamond drilling in 2004 tested targets at Blue, Blue East and South Pacific. A total of 5 core holes totaling 770 metres were completed.

6.3.4 Alexco (2006)

Alexco completed a diamond drilling program in 2006, managed by geological personnel from NovaGold. The drill program consisted of 9 HQ core holes for 1,171.53 metres. The drilling was carried out by E. Caron Diamond Drilling Ltd. of Whitehorse, Yukon. Caron supplied the program with two skid mounted Longyear 38 drills with drill pipe sloops, water tank and a water truck, and a D-7 cat for rig moves.

The drilling was completed between March 20 and May 1, 2006 at Bohemian, Classic, Blue as well as IP anomalies along a major NW-striking fault extending from the Classic to the Pacific Zone.

6.4 Historical Mineral Resource Estimates

The historical resource estimates described in this section are taken from various historical records. These resource estimates have not been verified, and are not considered reliable. In historical reporting, the term "resource" is not necessarily used according to current NI 43-101 definitions. The resource estimates are disclosed here for historical completeness only. These resources were not used as a basis for the current resource estimate.

A Technical Report for the Brewery Creek Project was prepared for Viceroy in 2003 (Diment and Simpson, 2003). It is unclear if these Mineral Resources are NI 43-101 compliant. The Mineral Resources therein for the West Big Rock, East Big Rock, Bohemian, and Lower Fosters were estimated using SURPAC software by Geosim Services and are shown below in Table 6-2.

The report is dated May 16th, 2003. No effective date for the resource was provided in the report.

Total In-situ Tonnes Grade **Recovery Grade Estimated** Zone >Cutoff (g/t Au) Oz Recovered Oz (g/t Au) West Big Rock 815,800 1.133 0.764 29,700 20,000 East Big Rock 1,017,400 0.907 0.577 29,700 19,000 Bohemian 1,180,900 42,900 18,000 1.387 0.576 **Lower Fosters** 961,900 1.387 0.576 42,900 18,000 3,975,900 145,000 83,000 Total 1.135 0.652

Table 6-2 Historical Brewery Creek Indicated Resources, 0.5 g/t Au Cutoff

A hand-calculated, sectional resource was also presented for the North Slope resource area, and is shown in Table 6-3.

Table 6-3 Historical North Slope Inferred Resource, 0.5 q/t Au Cutoff

Zone	Tonnes >Cutoff	Grade (g/t Au)	Total Oz
North Slope	2,214,000	2.01	143,000

6.5 Historical Production

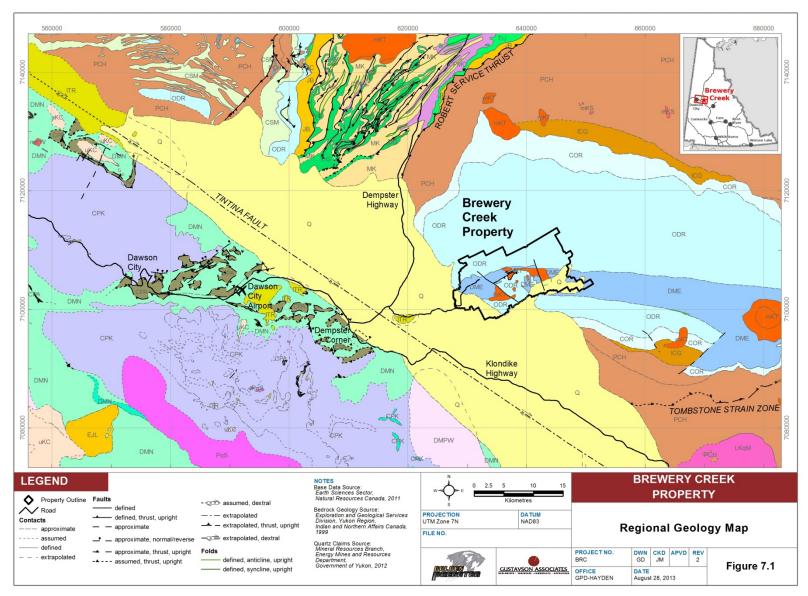
The description of the historical production found below has been extracted and modified from Diment and Simpson (2009).

Loki / Viceroy constructed the mine from 1995 to 1996 and began operation in 1996. From 1996 through 2002, approximately 280,000 ounces of gold were produced from seven near-surface oxide deposits (i.e., Pacific, Blue, Moosehead, Fosters, Canadian), occurring along strike within the historically termed "Brewery Creek Reserve Trend" (BCRT). A silver credit was included within the doré shipped from site. The first gold pour at the Brewery Creek mine was completed on November 15, 1996 with 10,175 ounces being produced prior to commencement of full commercial production in May of 1997. During 1997, a total of 72,387 ounces of gold were produced. In 1998 production totaled 79,396 ounces. Production in 1999 fell to 48,164 ounces. Viceroy suspended seasonal mining operations in 1999 earlier than planned and hired an independent consulting company to study recovery processes in an effort to improve recoveries. In 2000, Viceroy concentrated on selectively mining the mineralized bodies which were well oxidized and contained the highest grade. Production in 2000 fell to 48,048 ounces of gold. Mining ceased in 2001, but heap leaching continued with production of 18,542 ounces of gold.

During 2002, Viceroy undertook and completed approximately 50% of the mine area reclamation related to re-contouring and re-vegetation of pits and dumps. A heap detoxification program was also initiated bringing cyanide and metal levels of heap effluent to water license discharge levels, excluding selenium, by September, 2002. An amendment to the water license was approved by government regulatory agencies at this time, allowing land application of heap effluent of up to 200,000 m³ per year. Recirculation of effluent to the heap ceased in October, 2002 excluding 450 l/min that was applied to the heap over the winter (2002/2003) for snow making purposes. A final closure and decommissioning plan was prepared and submitted as required, to the regulatory agencies, and the primary elements of the plan were adopted and water license amendments were granted in April 2005.

Historical studies undertaken in the year 2000, on heap leach recoveries had shown a recovery of 65% for uncrushed material. Discussions were raised at the time on the merits of crushing for which studies had shown a potential increase of 10% for the recoveries, at a stated cost of \$2.50 per tonne at the time. It should be noted that the recoveries estimated in the preproduction study undertaken in 1995 were 78%.

7 Geological Setting and Mineralization (Item 7)


7.1 Regional Geology

The northern Cordillera consists of five physiographic domains composed of deformed metasedimentary rocks, allochthonous terranes and associated magmatic rocks (Figure 7-1, legend Figure 7-2). From west to east these domains are referred as; Insular, Coast, Intermontane, Omineca and Foreland belts. Within the northern Cordillera, the Tintina Fault generally marks the boundary between the ancient North American craton on the northeast to the allochthonous (accreted) terrains, composed of younger and varying rock types, to the southwest. The Tintina Fault, is interpreted as a Paleogeneaged dextral strike-slip fault with an estimated displacement of at least 450 km, but may be up to 1200 km (Hart, 2011). The fault is marked by the Tintina Trench, a broad valley approximately 15 km wide in the Project area which also extends throughout the Yukon as the northern extension of the Rocky Mountain Trench. Volcanic rocks were deposited in the Tintina Trench about 55 Ma and it is filled with young unconsolidated sediments.

The Brewery Creek Project is situated in the Omineca Belt, east of the Tintina Fault in the central northern Cordillera, and is characterized by large mountain ranges and plateaus composed of folded and variably metamorphosed sedimentary and volcanic strata intruded by felsic plutons. The property lies in the foothills of the Ogilvie Mountains, on the northern Stewart Plateau.

The Property is located on the western edge of the epicratonic Selwyn Basin, which is bound on the southwest by the Tintina Fault and on the north by the Dawson Thrust Fault (Gordey and Makepeace, 2001). The Selwyn Basin stratigraphy consists of late Proterozoic to Paleozoic marginal basinal and platformal clastic and pelitic lower greenschist grade metasedimentary rocks whose protoliths were derived from the North American Craton. Because metamorphic grade is low and original sedimentary features are readily identifiable, the prefix "meta" will commonly be left off in rock descriptions in the rest of this Report. Various aged volcanic and intrusive rocks are stratabound within the sedimentary rocks. During the Proterozoic and again in the late Devonian, the basin was subjected to rifting. This rifting was accompanied by the emplacement of the volcanics and emplacement of thick sills of intrusive rocks.

By late Jurassic, the rocks of the Intermontane Belt of the Cordillera collided with the passive margin of the North America Shelf, causing compressive tectonics (Murphy, 1997). This resulted in crustal shortening, tight folding, and thrusting. Three regionally stacked thrust panels were formed separated by the Robert Service, Tombstone and Dawson thrust faults (from oldest to youngest) (Murphy, 1997). This thrusting has mainly affected the Intermontane and Omineca belts.

Source: AMB (2013)

Figure 7-1 Regional Geology Map

Legend

QUATERNARY

0: 011

Q: QUATERNARY: unconsolidated glacial, glaciofluvial, glaciolacustrine deposits; fluviatile silt, sand, and gravel, and local volcanic ash, soil and organics

LOWER TERTIARY, MOSTLY(?) EOCENE

ITR: ROSS: brown, thin bedded, claystone, siltstone, shale and coal; arkosic or chert rich, thick bedded micaceous sandstone; to massive pebble to boulder, chert-quartz conglomerate, and light coloured felsic quartz feldspar porphyry and rhyolite; crystal lithic tuff and ignimbrite

LATE CRETACEOUS

📂 LKqM: MCQUESTON SUITE: medium- to coarse-grained, locally porphyritic and K-feldspar megacrystic biotite muscovite granite and quartz monzonite;

MID-CRETACEOUS

mKqT: TOMBSTONE SUITE: medium- to coarse-grained, locally porphyritic biotite homblende, granite, quartz monzonite and granodiorite (Tombstone Suite)

mKyS: SELWYN SUITE: mainly homblende and hornblende-biotite syenite, commonly porphyritic (potassium feldspar phenocrysts), uneven textured,

mostly medium grained, locally fine or coarse grained; minor diorite; hornblende syenite (Selwyn Suite)

UPPER CRETACEOUS

uKC: CARMACKS: augite olivine basalt; homblende feldspar porphyry andesite lows; agglomerate and associated epiclastic rocks (Carmacks Gp., Little Ridge Volcanics, Casino Volcanics). Acid crystal, lapilli, and welded tuff; felsic volcanic flows and quartz feldspar porphyries; (Carmacks Gp., Donjek Volcanics).

JURASSIC

B: BUG CREEK: grey argillite, slate, and phyllite, commonly graphitic, thin-bedded dark grey quartzite; minor phyllite and limy quartzite (Lower Schist)

MIDDLE TO UPPER TRIASSIC

Tr.l: JONES LAKE: brown to buff weathering, calcareous fine grained sandstone, argillite and shale; extensive ripple cross-lamination and bioturbation; massive,light grey weathering, fine crystalline, dark grey limestone; minor orange weathering platy limestone (Jones Lake)

TRIASSIC

TrG: GALENA SUITE: massive, medium-grained homblende diorite and gabbro sills; massive chloritic and locally serpentinized greenstone (diorite, gabbro, and altered equivalents) sills; minor occurrences of possible mid- to Late Paleozoic age

MIDDLE PERMIAN

PqS: SULPHUR CREEK SUITE: moderately to strongly foliated biotite quartz monzonite gneiss, coarse grained, homogeneous, homblende-biotite-bearing granite, granodiorite and quartz-monzonite with narrow foliated and mylonitic zones of the Ram Stock (Sulphur Creek Orthogneiss, Ram Stock)

CARBONIFEROUS AND PERMIAN

CPK: KLONDIKE SCHIST: tan to rusty and black weathering muscovitic and/or chloritic quartzite and quartz-muscovite-chlorite schist; quartz and/or feldspar augen-bearing quartz-muscovite (chlorite) schist; augen gneiss and amphibolite (Klondike Schist) and white marble with a ductile flow fabric (Klondike Schist)

LATE DEVONIAN TO MISSISSIPPIAN

DMqPW: PELLY GNEISS SUITE - SOUTHWEST: foliated equigranular medium-grained muscovite quartz monzonite; moderately to strongly foliated K-feldspar augen-bearing quartz monzonitic to granitic gneiss (S. Fiftymile Batholith, Mt. Burnham Orthogneiss.)

DEVONIAN, MISSISSIPPIAN AND(?) OLDER

DMN: NASINA: dark grey to black, fine grained graphitic quartzite, grey micaceous quartzite and quartz muscovite schist, locally garnetiferous; minor graphitic stretched metaconglomerate (Nasina assem.). Marble. Quartzite, quartz muscovite (chlorite; feldspar augen) schist, and minor metaconglomerate

CARBONIFEROUS TO PERMIAN

CPA: ANVIL: altered and foliated, augite-phyric basalt (local pillows), greenstone, and amphibolite; siliceous argillite or siltstone, greywacke, tuff, and limestone. Dunite, peridotite, gabbro, pyroxenite, harzburgite and diorite, hornblendite and diabase; serpentinite, and carbonatized ultramafic rocks

CPMC: MOUNT CHRISTIE: burrowed, interbedded greenish grey cherty shale and green shale; thin to medium bedded, light grey-green to black chert; black siliceous slate and siltstone; minor quartzite, limestone and dolostone; locally abundant, large grey barite nodules (Mount Christie)

MISSISSIPPIAN

MK: KENO HILL: massive to thick bedded quartz arenite; thin to medium bedded quartz arenite interstratified with black shale or carbonaceous phyllite; local scour surfaces and shale intraclasts; locally foliated and lineated (Keno Hill Quartzite)

DEVONIAN AND MISSISSIPPIAN

DME: EARN: thin bedded, laminated slate with thin to thickly interbedded fine to medium grained chert-quartz arenite and wacke; thick members of chert pebble conglomerate; black siliceous siltstone; nodular and bedded barite; rare limestone (Earn Gp., Portrait Lake and Prevost)

ORDOVICIAN TO LOWER DEVONIAN

ODR: ROAD RIVER - SELWYN: black shale and chert overlain by orange siltstone or buff platy limestone; locally contains beds as old as Middle Cambrian; correlations with basinal strata in Richardson Mountains include: ODR with CDR (Road River Gp.)

CAMBRIAN TO SILURIAN

CSM: MARMOT: massive brown to green, basic lapilli tuff, breccias, flows, sills, and dykes; intraclast breccia and conglomerate; brown weathering, green to grey, medium to thick bedded volcaniclastic sandstone, dark grey weathering, massive, locally pillowed, dark grey-green basalt, tuff and breccia (Menzie)

UPPER CAMBRIAN AND ORDOVICIAN

COR: RABBITKETTLE: thin bedded, wavy banded, silty limestone and grey lustrous calcareous phyllite; limestone intraclast breccia and conglomerate; massive to laminated, grey quartzose siltstone and chert and rare black slate; local mafic flows, breccia, and tuff (Rabbitkettle)

LOWER CAMBRIAN

ICG: GULL LAKE: shale, siltstone and mudstone, locally bioturbated, with minor quartz sandstone; rare green-grey chert; local basal limestone and limestone conglomerate; phyllite to quartz-muscovite-biotite schist (garnet sillimanite staurolite andalusite) (Gull Lake)

UPPER PROTEROZOIC TO LOWER CAMBRIAN

PCH: HYLAND; thin to thick bedded, brown to pale green shale, fine to coarse grained quartz-rich sandstone, grit, and quartz pebble conglomerate; minor argillaceous limestone; phyllite, quartzofeldspathic and micaceous psammite, gritty psammite and minor marble (Hyland Gp., Yusezyu)

PCH: HYLAND: grey weathering, dark grey to grey white, thin to thick bedded, very fine crystalline limestone, locally sandy, calc-silicate and marble; may locally include carbonate members(Hyland Gp., Algae Lake, limestone member of Yusezyu)

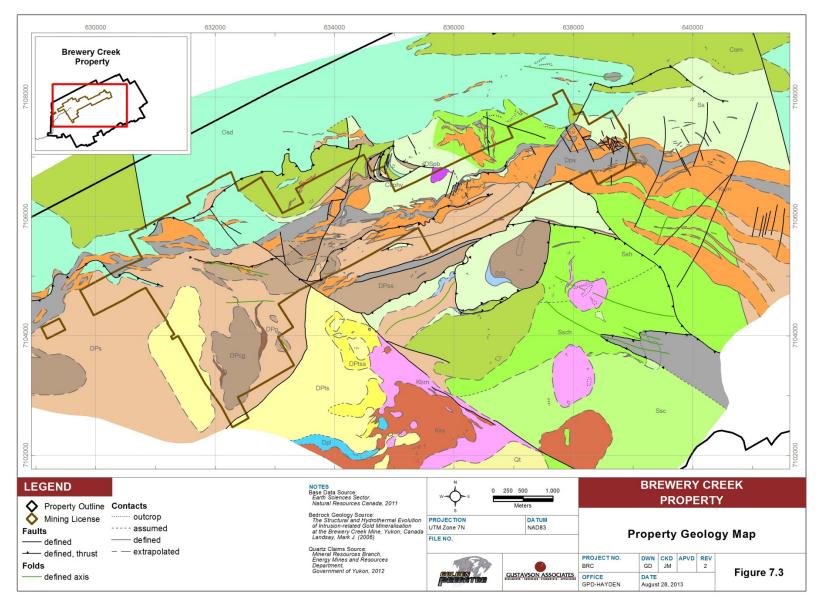
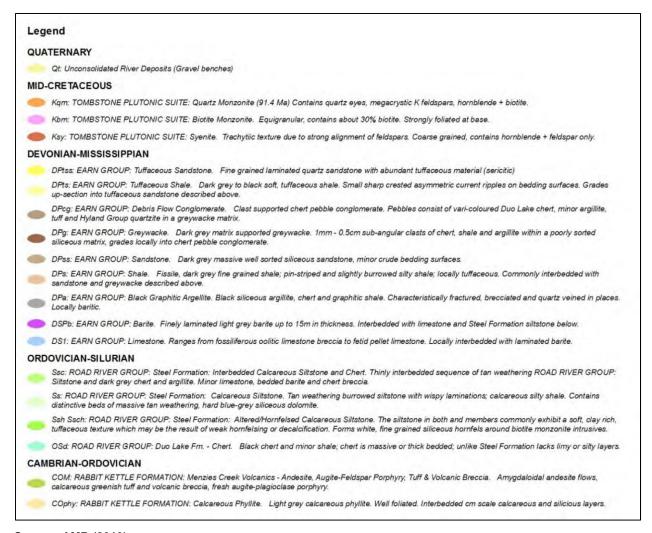

Source: AMB (2013)

Figure 7-2 Regional Geology Legend

7.2 Local and Property Geology


Metasedimentary rocks within the property boundary are composed of Rabbitkettle Formation (Cambrian-Ordovician) calcareous phyllite overlain by Road River Group (Ordovician-Silurian) volcanic rocks and off-shelf sedimentary rocks and Earn Group (Lower Devonian) siliciclastic rocks. Throughout most of the property, Cretaceous monzonite and quartz monzonite intrudes Earn Group and Road River Group stratigraphy as a series of semi-conformable sills along a 15 km strike length. Cretaceous (91 Ma), Tombstone Suite biotite monzonite and syenite stock-like bodies occur locally in the south-central part of the property. Sill emplacement is primarily controlled by a tectonized, graphitic argillite at the contact between the Earn and Road River Groups. This contact is also the locus of NNE-directed thrust faulting that has placed thin (<150 metres thick) sequences of Silurian siltstone against Devonian siliciclastic rocks. The age of thrusting is probably related to the earliest Cretaceous movement on the Tombstone Thrust.

A property geology plan and a legend are shown respectively in Figure 7-3 and Figure 7-4.

Source: AMB (2013)

Figure 7-3 Property Geology Map

Source: AMB (2013)

Figure 7-4 Property Geology Legend

7.3 Stratigraphy

Rabbitkettle Formation

The Rabbitkettle Formation consists of tightly folded calcareous phyllites and calcareous siltstones. The unit is thinly laminated, and is locally interbedded with chert and mudstone. This unit crops out in the Moosehead and North Slope zones in the north-central portion of the property. Though no age indicators have been identified in this formation on the property, it has been interpreted to be as old as Cambro-Ordovician (Gordey, 1981; Thompson et al., 1992) and as young as mid-Ordovician (Gordey and Anderson, 1993). The Rabbitkettle Formation was likely deposited in an area of tectonic stability which received dominantly shallow water sediments deposited

at low energy. Lindsey (2006) observed local cross-lamination and graded bedding suggesting the formation is upright.

Menzie Creek Volcanics

The Menzie Creek Volcanics consist of medium grained, chlorite and carbonate altered dolerite and basalt, hyaloclastic breccias and mafic volcaniclastic rocks. The Menzie Creek rocks lie unconformably over the Rabbitkettle Formation, and are overlain by the Steel Formation. Though no determination of age has been made for the Menzie Creek Volcanics, Diment and Craig (1999) suggest a late Cambrian to early Ordovician age.

Road River Group

This stratigraphic unit is exposed throughout the Project area and is typically found along the northern portion of the property. It is made up of wispy laminated calcareous siltstones and massive chert conformably overlying the Rabbitkettle Formation. The Group is subdivided into the older Duo Lake Formation and the younger Steel Formation (Cecile, 1982).

Steel Formation

The Steel Formation is seen throughout the Property. This unit defines the top of the Road River group, and, may have acted as a focus of intrusion emplacement between overlying Earn Group rocks and underlying Road River rocks. The Steel Formation consists of wispy laminated siltstone with burrow marks, and interbeds of graphitic shales. Conodont assemblages in the Steel Formation have been identified as Silurian to early Devonian in age (Norford and Poulton, 1995). The formation also contains what appear to be turbidite sequences, or storm shelf debris flows which may have been formed during a period of rifting.

Earn Group

The youngest package of sedimentary rocks on the property is the Earn Group which unconformably overlies the Road River Group and represents platform, or shelf, marine sediments. The package is the primary host to the BCRT. This unit is composed of graphitic argillites, graphitic siltstones and argillite with lesser amounts of sandstone, greywacke, and chert-pebble conglomerate. Interbedded within the Earn Group, are black limestones and barite horizons. No age determinations have been made for the Earn Group strata, but Campbell (1967) suggests that deposition of this unit extended from the Devonian through the early Carboniferous. It is likely that the Earn Group was formed in an area of tectonic stability during periods of ocean transgressions and regressions.

7.3.1 Intrusive Rocks

The majority of the gold mineralization at the Brewery Creek Project is hosted within mid-Cretaceous, felsic intrusive rocks of the Tombstone Plutonic Suite. The intrusive rocks are exposed along an east-northeasterly striking structural zone over a distance of 15 km along strike and 0.5-2.0 km perpendicular to strike. Several compositional and textural phases have been mapped in drill core and drill cuttings. The older intrusive phases are emplaced parallel, or sub-parallel, to sedimentary bedding and along thrust faults often resulting in sill-like geometries, while the younger intrusive phases are present as dikes and small stocks distinctly discordant to the country rock. The sill complexes are the main host for gold mineralization, while the younger discordant intrusives host lower grade gold mineralization. The thickness of the individual sills and the entire sill complex varies across the property from 100's of metres in the southeast (Sleeman area) to 10's of metres in the northwest (Pacific area). Some thicker sill complexes host volumetrically greater amounts of gold mineralization (Kokanee-Golden; Bohemian-Schooner areas).

The oldest intrusive rocks in the area are a series of monzonite and quartz monzonite sills. These rocks are fine to medium grained with textures ranging from equigranular to porphyritic. Phenocryst assemblages are comprised of variable amounts of biotite (5-30%), orthoclase (40-55%), plagioclase (30-40%) with minor quartz and hornblende. Biotite and orthoclase are commonly euhedral with phenocrysts ranging from 1-3 mm for biotite and 3-20 mm in diameter for orthoclase. Large, zoned megacrysts of orthoclase with biotite inclusions are common in the southeastern portion of the property. Plagioclase is commonly subhedral with phenocrysts ranging from 3-10 mm in diameter. Xenoliths of black argillite are common in these rocks.

Sedimentary rocks on the margins of the sills are commonly strongly sheared suggesting that the sills followed older, low-angle structures. Locally, clasts of monzonite are incorporated into the shear zones defining a component of post-sill emplacement deformation. U/Pb isotopic dating of zircon from these monzonites yield an age of $91.4 \text{ Ma} \pm 0.2$, similar to other Tombstone Suite intrusions in the region.

In the Sleeman area, younger monzonite dikes cut the older intrusions. The dikes are biotite bearing with no free quartz or hornblende and have a much finer grained texture than the older intrusive rocks. Where these dikes are altered, the feldspars have been converted to clay and biotite has been converted to white mica/clay.

South of the main sill complex are small stocks of biotite monzonite and syenite that intrude Road River Group and Earn Group sedimentary rocks. These intrusions are relatively coarse-grained with equigranular to porphyritic/pegmatitic textures. The stocks crosscut sedimentary bedding and local tremolite-epidote-diopside-garnet-skarn

is developed marginal to the intrusive rocks. These intrusions host gold mineralization in the Classic area.

7.4 Structural Geology

Paleozoic metasedimentary strata at the Brewery Creek Project form a homoclinal sequence that strikes approximately 070° azimuth and dips moderately southeast. The sequence displays tectonic fabrics and geometries that indicate polyphase deformation including thrust faults that strike approximately parallel to stratigraphy and accompanying folds. Earlier workers describe multiple generations and orientations of folding (Lindsay, 2006; Diment and Simpson, 2009); work completed by AMB has not verified these features. At least three orientations of high-angle faults formed subsequent to thrust faulting. Many of the fault sets described below, influence or control the distribution of mineralization.

7.4.1 Thrust Faults

Stratigraphic repetitions best define the positions of thrust faults at the Brewery Creek Project. Many were mapped by earlier workers along the main area of mineralization (Diment and Simpson, 2009). The faults generally strike east-northeast (±070° AZ), dip moderately southeast, and commonly place siltstone of the Steele formation above variably graphitic and locally baritic argillite of the Earn group. Graphitic argillite typically occurs within and along the fault zones and defines the zone of displacement. The argillites typically display well developed tectonic fabrics.

Regional work by Murphy (1997) shows that thrust faulting took place between late Jurassic and mid-Cretaceous time based on the age of the youngest stratigraphy cut by the thrust faults and a 142 ±6 ma date on muscovite in the Tombstone Strain Zone, a cross cutting structural feature. The Jurassic date is consistent with thrust faults mapped regionally in the Brooks Range (Plafker, 1994).

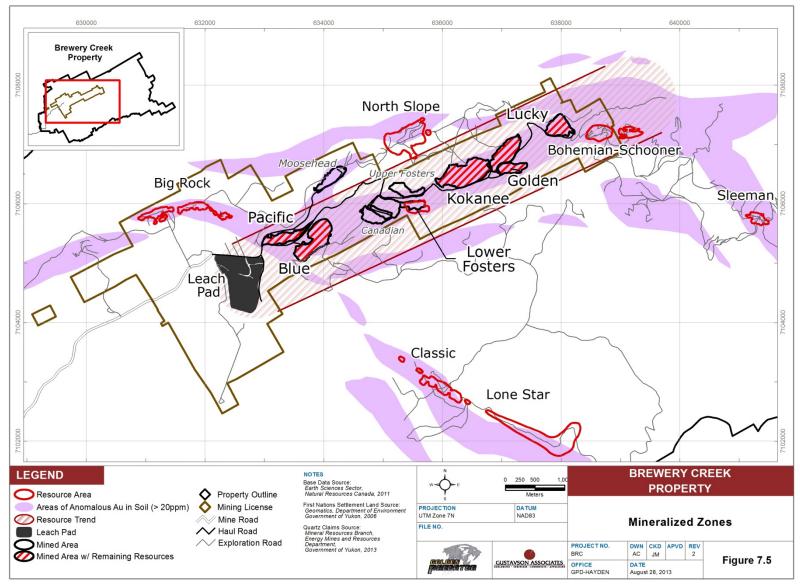
The Brewery Creek Project sill complex intrudes and lies concordant within proximity to the thrust faults but shows no evidence of thrust faulting. Apparently, these sills are younger than the latest movement on the faults and appear to have utilized them as an intrusive plumbing system.

7.4.2 High-Angle Faults

At least three orientations of high-angle faults occur at the Brewery Creek Project, one set strikes northeast, another strikes northwest, and the other east-northeast; all are steeply dipping. The northeast and northwest striking sets show a strong component of strike displacement and commonly displace mineralization. The east-northeast striking structures show primarily normal displacement.

Northwesterly striking structures generally have a strike azimuth of approximately 330° and are near vertically dipping. Relations visible in the Kokanee open pit, show dextral displacement of mineralization. They commonly have local displacements of 3-10 metres; however, field relations suggest overall displacement up to a few hundred metres. Lindsay (2006) suggests dextral movement along the 300° striking Classic Fault could have produced 1.5 km of dextral displacement.

North-easterly striking structures have azimuths of 020° to 030° and are generally near vertical dip. Fault fabrics indicate that the primary sense of displacement is strike-slip. Where confirmed by local outcrop relations, they show sinistral displacement. The magnitude of total displacement is difficult to interpret since they generally strike semi-parallel to the lithologies and mineralized zones.


East-Northeast striking faults occur throughout the district. They generally have an azimuth of 070° and dip steeply to the northwest. Outcrop relationships in the Kokanee open pit show that they are normal faults that displace rocks down to the northnorthwest. Displacement is generally small; where observed in outcrop, less than 10m. Closely spaced joint sets commonly parallel these faults.

Tectonic fabrics within fault zones exposed in outcrop demonstrate that the northeast and northwest structures were co-active, and their strikes are consistent with a conjugate set. These faults cut the sill complex representing the most recent movement subsequent to sill intrusion at approximately 90 to 92 MA. Minor and small-scale quartz-sulfide veinlets and stockworks with 330° azimuths were observed in the hanging wall of a northeast-striking fault in the Golden deposit, suggesting that the 330° AZ orientation was active during mineralization. No major mineralized zones, except Classic and possibly Lone Star, follow the northwest orientation, indicating that, though active, it was not strongly dilatant during mineralization. Several large deposits and mineralized zones, including parts of the Kokanee and Golden deposits, follow mapped northeast-striking faults, indicating that the northeast orientation was active and strongly dilatant during mineralization. The northwest-striking faults show the greatest amount of post-mineralization displacement.

7.5 Significant Mineralized Zones

Historical production on the property occurred along the historical BCRT. The Brewery Creek District consists of numerous deposits, mineralized zones and past producing deposits both along this trend as well as within peripheral mineralized areas. Past producing areas within the BCRT include the Pacific, Blue, Canadian, Upper Fosters, and Kokanee, Golden and Lucky deposits. Additional to these, Mineral Resources have been defined for the Big Rock West, Big Rock East, Lower Fosters, Bohemian and Schooner deposits along the BCRT; the North Slope deposit north of the BCRT;

Sleeman deposit east of the BCRT, and the Classic and Lone Star deposits south of the BCRT. Mineralized areas peripheral to the BCRT, including Moosehead, have not been considered for the purposes of this report. Figure 7-5 shows the locations of the significant mineralized zones.

Source: AMB (2013)

Figure 7-5 Significant Mineralized Zones

7.5.1 Kokanee

The Kokanee deposit was mined by Viceroy from four pits; all pits were partially backfilled. The southern two pits remain mostly open while the northern two are almost entirely backfilled and reclaimed. The deposit is centrally located along the BCRT and formed in the thickest and most extensive part of the Cretaceous quartz monzonite sill complex. The deposit is defined by 31 core holes and 506 RC holes, totaling 29,654 metres. The deposit is ~1100 metres in length, ~40 metres wide, and ~190 metres down dip.

Mineralized material at Kokanee occurs primarily in the quartz monzonite sill complex and subordinately in siltstone and argillite. Observations of mineralized material exposed in pit walls shows millimetre-scale veinlets with iron-oxide ± quartz fillings. The mineralized quartz monzonite typically contains several percent of evenly disseminated oxidized pyrite.

Drill logs indicate alteration of the K-feldspar component of quartz monzonite to white clay. Locally developed auriferous sheeted quartz veins were noted in pit highwalls. Pervasive silicification occurs locally, but is not common.

7.5.2 Golden

The Golden deposit lies immediately east of Kokanee and may be a faulted offset of Kokanee. It was mined by Viceroy from 4 pits; three were backfilled and reclaimed, the lowest and farthest south pit was not backfilled and remains in its fully mined state. The deposit is defined by 19 core holes and 363 RC holes, totaling 21,251 metres. The deposit is ~950 metres in length, ~30 metres wide, and ~150 metres down dip.

Golden, like Kokanee, is hosted by the thickest and most extensive part of the Cretaceous quartz monzonite sill complex. It is a nearly identical system structurally, and the styles of alteration identical. Both of these resource areas show a bi-directionality to the strike direction of the highest grade material, one northeast and the other northwest trending, forming a conjugate pattern.

The K-feldspar component of quartz monzonite, both phenocryst and groundmass are altered to white clay. Locally developed auriferous sheeted quartz veins and seams filled with oxidized Fe were noted in pit highwalls. Pervasive silicification occurs locally, but is not common. The most pervasively developed alteration occurs along faults with orientations similar to the distribution of higher grade material, suggesting that these structures were hydrothermal fluid conduits.

7.5.3 Pacific

The Pacific deposit was mined by Viceroy; the pit was not backfilled, and remains in its fully mined state. Pacific lies along the Reserve Trend, immediately east of the Classic Fault. The deposit is defined by 17 core holes and 80 RC holes, totaling 6,966 metres. The deposit is ~500 metres in length, ~50 metres wide, and ~300 metres down dip.

Pacific is the only deposit in the district that is hosted primarily by lower Paleozoic siltstone. Mineralization is generally tabular and follows a combination of shallow south dipping bedding and high-angle BCRT-parallel faults. Higher grade parts of the deposit are steeper along these faults. The deposit has been segmented by several post-mineralization northwest-trending dextral faults.

Observations of mineralized material exposed in pit walls shows millimetre-scale veinlets with iron-oxide ±quartz fillings. One occurrence was noted of a pervasively silicified breccia at the intersection of a northeast-trending and a northwest-trending set of faults. The breccia contains angular fragments of silicified siltstone in a quartz matrix.

7.5.4 Blue

The Blue deposit was mined by Viceroy, and the pit was partially backfilled and reclaimed. Blue lies directly east of the Pacific deposit along the BCRT. A fault separates the two deposits; one possible restoration of displacement suggests that the two deposits may have been a single mineralizing system. The deposit is defined by 26 core holes and 113 RC holes, totaling 8,149 metres. The deposit is ~560 metres in length, ~45 metres wide, and ~200 metres down dip.

Blue is hosted primarily by Cretaceous quartz monzonite and subordinately by lower Paleozoic siltstone. Mineralization is generally tabular and follows the strike and dip of the sill complex. Unlike Pacific, the primary strike of the deposit lies along a series of northeast-trending faults. A strong discontinuity in stratigraphy, sill development, and mineralization occurs at the eastern end of the deposit. An area of poorly defined mineralization occurs immediately southeast of the deposit, suggesting a possible post-mineralization offset of the deposit along a northwest trending fault.

Drill logs indicate that alteration of the quartz monzonite includes strong white clay development after K-feldspar phenocrysts and groundmass, and locally developed auriferous sheeted quartz veins. Pervasive silicification is noted locally, but is not common.

7.5.5 Lucky

The Lucky pit was mined by Viceroy, partially backfilled and reclaimed. The deposit occupies the northeastern-most segment of the BCRT. It is situated immediately west of the Bohemian-Schooner deposits and northeast of the Golden deposit. The Lucky

deposit is defined by 169 RC drillholes and 3 diamond drillholes, totaling 11,240 m. The deposit is ~550 metres in length, ~50 metres wide, and ~360 metres down dip.

Altered Cretaceous quartz monzonite that intrudes lower Earn Group sedimentary rocks host mineralized material at Lucky, similar to that at Bohemian-Schooner. Dominant mineralized trends typically strike 035° or 060° and dip moderately (-25 to -45) to the southeast. Mineralized material in the hanging wall is abruptly terminated to the northwest by Steel-formation sedimentary rocks at the footwall contact of a major 040° trending fault.

7.5.6 Bohemian-Schooner

The Bohemian-Schooner deposit and surrounding mineralized area was originally discovered by soil sampling, trenching and drilling in the 1990's by Viceroy. The area remains unmined and is defined by 129 reverse-circulation drillholes and 122 core drillholes, totaling 23,385 metres. A linear distance of approximately 7 km separates the zone from the old heap leach pad. The Bohemian deposit is ~520 metres in length, ~50 metres wide, and ~160 metres down dip. The Schooner deposit is ~450 metres in length, ~50 metres wide, and ~160 metres down dip.

A sill complex at Bohemian/Schooner hosts the majority of mineralization. It intrudes a section of siltstones of the Steele Formation and interleaved, structurally dismembered carbonaceous argillite of unknown affinity. The composite strike length of the sill complex is over 1 km oriented east-west, dipping 5° to 10° to the south. A prominent high-angle east-west striking structural zone traverses the entire length of the area. Sills occur on both sides of the structure and are displaced down to the north across it. The sills are thickest along the structure, indicating that it may have localized the intrusions. Higher grade parts of the resource also align along this structure.

A large fault with a 330° strike azimuth lies between the Bohemian-Schooner resource area and the formerly mined Lucky deposit to the west. Sporadic mineralization and isolated drill intercepts in the intervening area between these two areas indicates that they may have been contiguous prior to faulting. If so, the fault would have a total displacement of over 250 metres. Alternatively, if the fault displaced farther, the Bohemian/Schooner resource could have aligned with the eastern extension of the Big Rock - North Slope trend. Much of the section at Bohemian/Schooner consists of siltstone of the Steel Formation, also suggesting a possible affinity with the North Slope mineralized zone.

Gold mineralization at Bohemian/Schooner occurs primarily in clay-altered quartz monzonite sills and subordinately in adjacent siltstone. It occurs most commonly in association with strong argillic altered and locally silicified quartz monzonite. Sheeted and stockwork mm- to cm-scale quartz-pyrite-arsenopyrite veins, commonly forming conjugate patterns in detail, cut the altered intrusion and occur in association with higher grade zones.

7.5.7 Canadian-Fosters

The Fosters mineralized resource area includes only the un-mined Lower Fosters deposit which lies approximately 3.5 km from the current heap leach pad. The Upper Fosters and Canadian deposits have been mined historically and are not part of this Mineral Resource. The area is defined by 392 reverse-circulation drillholes and 40 core holes, totaling 19,550 metres of drilling. Numerous blastholes were drilled within the historical pits for which location and analytical data exists. The Lower Fosters deposit (the only part of the complex reported in this study) is ~550 metres in length, ~30 metres wide, and ~260 metres down dip.

A large sill complex extends throughout the Fosters-Canadian area and hosts most of the known mineralization. It has a strike length of at least 1.2 km and a down-dip extent of at least 500 metres. It strikes 070° azimuth and dips approximately 20° southeast. The sill complex contains large interleaves of sedimentary strata and splits into a complex array of individual sills along strike and dip.

Several faults traverse the area. Modeling shows that a 330° AZ fault offsets the western extension of the Canadian deposit, and a 020° AZ Fault separates the Canadian deposit from the Lower Foster's deposit. Logged gouge zones in several holes along the northernmost known extent of the sill complex indicates that a major 070° AZ fault may offset the down dip continuation below the Lower Fosters resource.

Logs of reverse circulation drillholes indicate that mineralization is associated with clay alteration, presumably from the destruction of K-feldspar minerals. According to Diment and Simpson (2009), mineralization is associated with pervasive phyllic and locally intense argillic alteration. The feldspars alter to an assemblage of sericite, illite and kaolinite. Fine pyrite and arsenopyrite occur in association with secondary quartz. Gold occurs primarily in the limonite-altered quartz monzonite and subordinately in sedimentary strata that lie adjacent to the intrusions.

7.5.8 West and East Big Rock

The West and East Big Rock deposits are the farthest west known occurrence in the district and are located approximately 1.2 km from the current heap leach pad. They were discovered in the early 1990's by Viceroy Gold by soil sampling and trenching. The two zones were first drilled in 1991; most of the drilling was carried out between 1994 and 1998. The deposits are defined by 213 reverse-circulation rotary holes, and 69 core holes, totaling 22,288 metres of drilling. The West Big Rock deposit is ~650

metres in length, ~30 metres wide, and ~220 metres down dip. The East Big Rock deposit is ~640 metres in length, ~30 metres wide and ~180 metres down dip.

Mineralization occurs primarily in limonite-altered quartz monzonite sills and subordinately in adjacent siliciclastic sedimentary strata. Big Rock sills strike 070° azimuth and dip between 40 and 45 degrees southeast and have a drill-defined strike length of approximately 1.5 km. The eastern part of the sill complex and deposit are truncated by the Classic fault, or a splay. Lindsay (2006) suggests that Big Rock mineralization is a westerly continuation of the BCRT that is displaced approximately 1.5 km to the northwest by the Classic Fault. An alternate interpretation is that these deposits represent the westerly continuation of a mineralized trend which parallels the BCRT to the northwest, between the Big Rock resources and the North Slope mineralized zones. No other faults were mapped or modeled in the Big Rock resource area.

The reverse-circulation drilling chip logs show that gold mineralization occurs primarily in clay-altered quartz monzonite. Much of the zone is oxidized, and the location of oxidation from surface down suggests that it resulted from supergene processes. The distribution of elevated gold values with respect to sill-form intrusions suggest that lithology, and perhaps rock rheology was a primary control on mineralization.

7.5.9 Classic

The Classic deposit is located approximately 3 km south of the main BCRT, 7 km west of the Sleeman deposit and 4 km south of the old heap leach pad. Discovered originally in 1991 (Hemlo Gold Mines Inc.-Loki Gold Corporation) through a southern grid expansion, the Classic Zone was then being classified as an isolated, arsenic gold anomaly. To date, the Classic deposit remains poorly understood with current interpretations based on the underlying pluton and faulting. It is currently defined by 52 reverse-circulation drillholes and 17 core holes, totaling 13,478 metres. The currently identified mineralization lies entirely on the southwest side of the Classic fault. The deposit is ~1400 metres in length, ~30 metres wide, and ~240 metres down dip.

Predominant rock units hosting mineralization contain variable percentages of syenite (alkali) and biotite monzonite (increasing plagioclase). Mineralization is found to exist within centimetre-scale sheeted quartz veinlets. Structurally, the Classic zone is open at depth and in both directions along strike. Cutting across the eastern portion is the northwest trending and steeply south west dipping Classic fault which is mapped to be post intrusion and post mineralization. A similar intrusive complex which displays altered mineralization akin to the Classic is mapped within the footwall of the Classic fault with a dextral offset of 1.5 km (Lindsay, 2006) to the southeast.

7.5.10 Lone Star

The Lone Star mineralized area lies along the northeast side of the Classic fault, southeast of and adjacent to the Classic Zone. Surface mineralization was first recognized by soil sampling in the 1990's but the area remained untested until 2012. Drilling in 2012 consists of 17 core holes and 12 RC holes, totaling 6,147 metres. The deposit is ~1100 metres in length, ~20 metres wide, and ~220 metres down dip.

The same alkalic suite of intrusions that host Classic also host Lone Star. The suite intruded along a zone with an azimuth of 290°, centered on and sub parallel to the post-mineralization Classic fault. The suite contains syenite, biotite monzonite, monzodiorite, diorite, and gabbro; syenite is the most abundant. The more mafic compositions intrude the syenite and the most mafic lithologies were last to intrude. The biotite monzonite intrusions commonly form very well developed, course-grained skarn halos where adjacent to limestone.

Alteration includes development of a propylitic mineral assemblage of chlorite, calcite and pyrite, and local development of sheeted quartz-carbonate-pyrite-arsenopyrite ±chalcopyrite veins. Three styles of mineralization occur at Lone Star; elevated Au associated with skarns, disseminations in syenite, and auriferous sheeted quartz veins. The geometry of the system is poorly understood; it remains open in both strike directions and at depth.

7.5.11 North Slope

The North Slope deposit lies approximately 1 km north of the deposits of the BCRT, and approximately 4 km from the heap leach pad. The zone lies conformably within a lower stratigraphic section than the BCRT. It was initially discovered by soil sampling, trenching and drilling carried out by mine personnel during the 1990's by Viceroy Minerals. AMB renewed exploration efforts by drilling core holes in 2009, and continued core and RC drilling in 2011. The deposit is defined by 108 reverse-circulation rotary holes, and 32 core holes, totaling 24,221 metres of drilling.

The mineralized zone occurs in clay-altered quartz monzonite and siltstone of the Steele Formation, lower in the stratigraphic section than most of the mineralization along the BCRT. The current drilled extent of the structure and sill complex at North Slope is 750 metres along strike and approximately 450 metres down dip, with mineralization intersected at up to 700 metres down dip. The mineralization is ~40 metres wide. It strikes 070° azimuth and dips approximately 40° southeasterly. The mineralized sills and structural zone remain unconfined along both strike directions.

Geologic observations in core suggest that mineralization occurs within and along a continuous and through-going breccia zone that strikes and dips parallel to the

structures in the BCRT. This breccia zone may define a thrust fault that was later intruded by the sills.

Gold mineralization is spatially associated with carbonate/clay + quartz alteration in both siltstone and intrusive lithologies. Multiple stages of arsenic-poor pyrite and marcasite are present in the mineralized zones and arsenopyrite is present as discreet crystals on the surface of the earlier pyrite. Visible gold has not been observed, but may be associated with the later arsenopyrite mineralization.

7.5.12 Sleeman

The Sleeman deposit is located to the east of the BCRT and may possibly demarcate the easternmost extent of the trend. It was discovered by mapping, soil sampling and trenching, and was first drilled in 1992. The zone is currently defined by 7 reverse-circulation drillholes and 58 core drillholes, totaling 11,374 metres. A linear distance of approximately 9 km separates the zone from the heap leach pad. The deposit is ~500 metres in length, ~25 metres wide, and ~220 metres down dip.

Mineralization at Sleeman is associated with an altered tabular-shaped quartz monzonite intrusion that cuts siltstone of the Steel formation and graphitic argillite of unknown affinity. The intrusion strikes 120° azimuth and dips 65° southwest. It has a known strike length of 500 metres and is open in both strike directions and at depth. A secondary trend of mineralization oriented approximately 060° azimuth and dips approximately 45° to the southeast is noted in the western hanging wall to the main tabular body. A poorly constrained fault may displace the southeast portion of the sill down to the southeast.

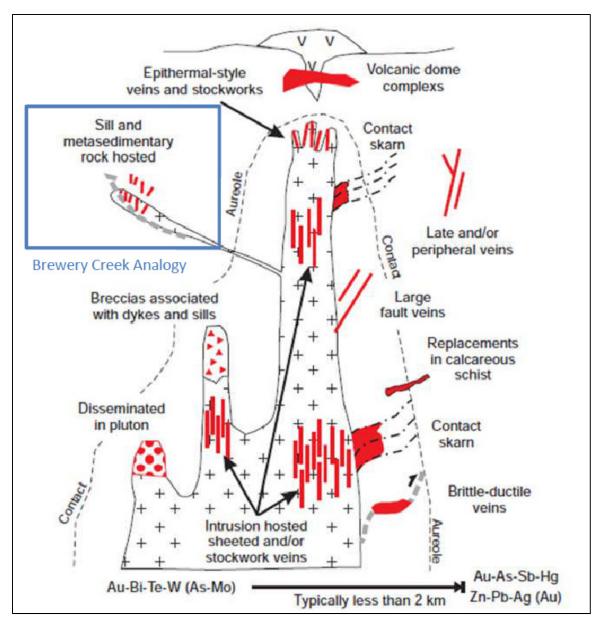
Alteration at Sleeman includes locally intense clay development after feldspars and texture destructive silicification. All mineralization is associated with the altered and veined areas. Hairline to millimetre-scale quartz-pyrite stockworks and planar 2-10 millimetre-scale quartz-pyrite veins with illite selvages occur within the alteration envelope. The planar quartz veins are paragenetically younger than the stockworks.

The style of veining and alteration at Sleeman is similar to the other deposits found within the BCRT with the exception of the presence of elevated base metal concentrations, particularly lead and zinc.

8 Deposit Types (Item 8)

8.1 Mineral Deposit

The Brewery Creek Project deposit exhibits characteristics of both intrusion-related and epithermal type deposits. It is generally considered to be an alkalic intrusion-associated gold deposit, as most of the mineralization is concentrated within or proximal to the monzonites. Geological, geochemical, petrographic and fluid inclusion data indicates that original sill emplacement, first stage alteration and associated mineralization occurred at a relatively low temperature and high level within the crust. However, the presence of wispy-textured quartz veinlets, related to later shear zone deformation, indicates deposition at moderate to deep levels (Dunne, 1995), a common characteristic of epithermal type deposits (Poulsen, 1996).


An epithermal, depositional environment is supported by the following factors: 1) the gold, arsenic, antimony, mercury association within veins and breccias, 2) very low base metal concentrations and a relatively high gold: silver ratios of 3:1, 3) the absence of contact metamorphism in sedimentary rocks around sill contacts, 4) euhedral, coarse grained quartz with primary growth zones, 5) open space textures such as comb and cockade textured quartz and chalcedony, and 6) the presence of trace amounts of CO2, low salinities (<7% NaCl) and low homogenization temperatures (< 300 °C) within fluid inclusions.

The mineralization delineated to date consists of fracture-controlled quartz stockwork in siliciclastic and intrusive rocks; however, the presence of local decalcification and silica replacement in the calcareous Steel Formation suggests that an epithermal type model may be more appropriate at the Brewery Creek Project.

8.2 Geological Model

The geological model applied to the Brewery Creek Project gold mineralization and associated alteration is closely related to high-level felsic intrusive rocks intruding deep marine sedimentary rocks. Gold and associated arsenic and antimony mineralization is hosted by both intrusive and sedimentary lithologies as depicted in Figure 8-1.

This model is very similar to gold deposits described for the ACMA-Lewis Deposit at Donlin Creek, Alaska, where significant resources of sulfide related gold mineralization are currently being evaluated by NovaGold. The mineralization style, alteration characteristics, age and scale of the mineralized zones seen at the Brewery Creek Project are similar to those described by Hanson et al (2009).

Note: The Brewery Creek Project deposit is attributed to the sill and meta-sedimentary rock hosted style as shown in this schematic

Source: Modified from Lindsay (2006)

Figure 8-1 Geological Model Schematic

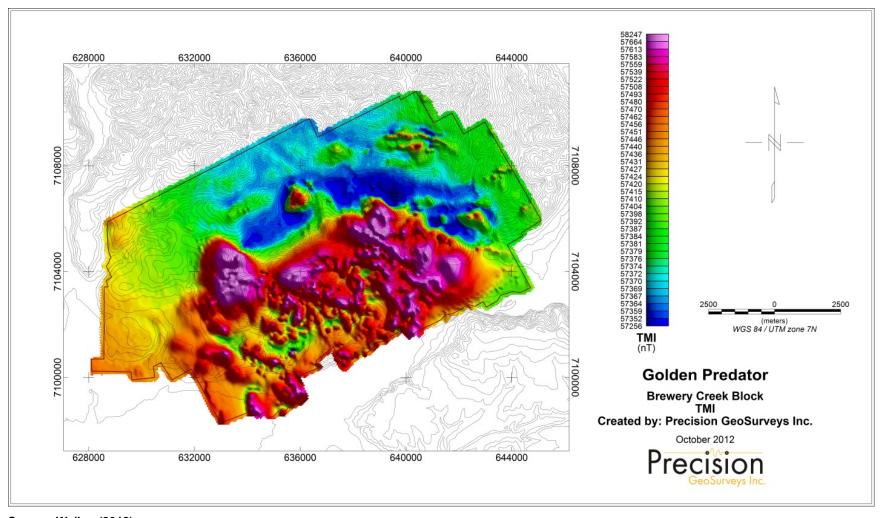
9 Exploration (Item 9)

9.1 Relevant Exploration Work

Northern Tiger has not carried out any exploration to date on the property.

Exploration conducted by AMB includes geophysical surveys, soil sampling surveys and an extensive drilling campaign. These surveys were undertaken to extend known mineralized zones, reveal new mineralized zones, and provide information on parts of the property which had not been tested.

9.2 Surveys and Investigations


9.2.1 Magnetic Survey

In 2012, Precision GeoSurveys Inc. of Vancouver, BC was contracted to fly an airborne magnetic survey. This was done in order to better define the magnetic signatures in know areas of mineralization and to investigate these same signature in unexplored areas.

Lines were located at 100 metre spacing's oriented east-west, and tie lines were flown at 1 kilometre spacing's oriented north-south. The nominal height was 35 to 37 metres above the ground. Test flights prior to the survey were flown at an altitude where there is no ground effect in order to perform magnetic compensation. The computer program PEIComp was used to create a model for the survey to remove noise induced by aircraft movement. The results of the 2011 and 2012 magnetic surveys are shown on Figure 9-1.

The magnetic survey delineates a magnetic high, likely an intrusive body from the tombstone plutonic suite, in the southwest portion of the project area. Adjacent to this high are abrupt magnetic lows over the reserve trend mineralization. The mineralization at Classic and Lone Star appear to be associated with a magnetic high that may be a result of elevated magnetite and or pyrrhotite content.

The resulting data obtained from this survey has highlighted several areas for future exploration.

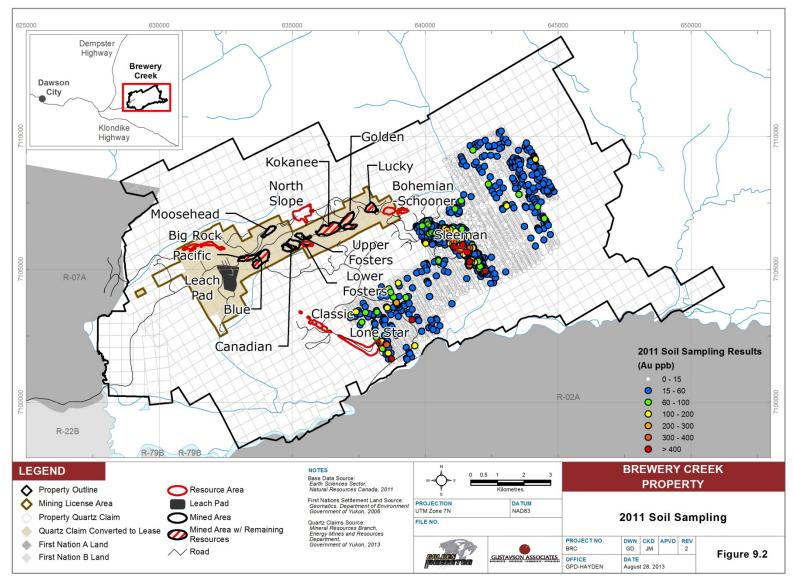

Source: Walker (2012)

Figure 9-1 2011 Magnetic Survey Results

9.2.2 Soil Sampling Survey


The 2011 soil sampling survey (Figure 9-2) was conducted at the southern portion of the property, and the eastern claim extension including the Sleeman zone. The sample program was an in-fill program to obtain closer spaced data points in between earlier soil sampling events. Samples were collected at 50 metres spacing's with soil lines being 100 metres apart and lines over the Sleeman main zone being 50 metres apart. The southern soil survey covered approximately 9 km², and the Sleeman/claim extension covered approximately 7.4 km². Procedures were in place for collecting in areas of great talus cover, and duplicate samples were taken to ensure sample quality. A total of 4,305 samples were collected over the area including duplicates.

The combined results of all the soil sampling programs (Figure 9-3) refined the Lone Star area anomaly, refined scattered anomalies between Lone Star and Sleeman and highlighted some low level anomalies east of the reserve trend.

Source: AMB (2013)

Figure 9-2 Soil Sampling Survey

Source: AMB (2013)

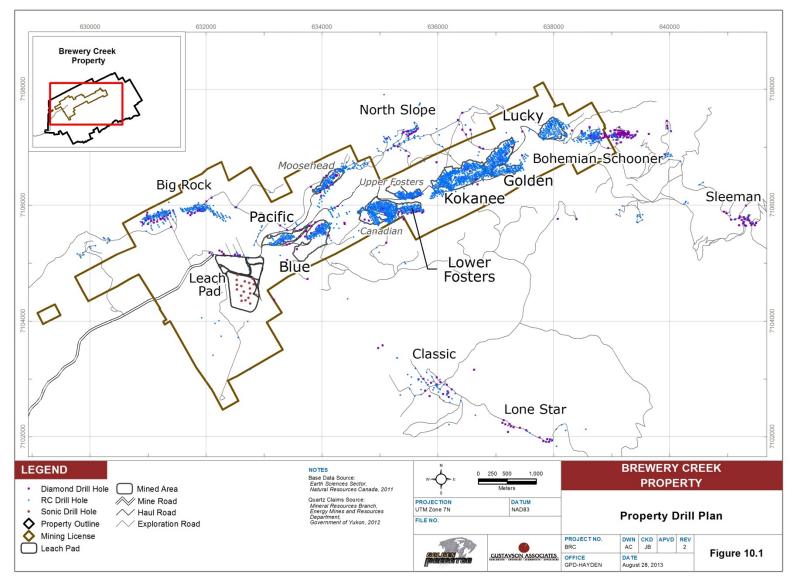
Figure 9-3 1988-2011 Soil Sampling

9.2.3 IP Survey

During 2011, Aurora Geosciences of Whitehorse, YT was contracted to conduct an induced polarization (IP) survey was undertaken over the Sleeman zone at the eastern portion of the property.

The IP survey conducted by Aurora Geoscience covered a line distance of 19.8 kilometres and covered an area of approximately 4.3 km² over the Sleeman Zone. Lines were cut and picketed using handheld GPS units, which were also used to mark electrode and current injection points. Modified pole dipole arrangement of the electrodes was used for this survey with dipole spacing at 50 metres on all lines. The survey started with 50 metre – 10 conductor cables until the temperature dropped below -10 degrees Celsius. From there, the survey was done with a 10 channel – 500 metre wire bundle until the terrain became too steep and the snow too deep. The survey was then finished with 50 metres – 6 conductor cables with a 4 channel – 200 metre wire bundle.

9.3 Significant Results and Interpretation


AMB utilized the exploration results to guide drilling activities. The magnetic survey delineates a magnetic high, likely an intrusive body from the tombstone plutonic suite, in the southwest portion of the project area. Adjacent to this high are abrupt magnetic lows over the reserve trend mineralization. The IP survey identified a resistivity low near the surface which may indicate the location of the structure associated with mineralizing fluid flow.

10 Drilling (Item 10)

The summary information of the Brewery Creek Project drilling is presented in Table 10-1 and Figure 10-1 below. For drillhole locations by resource area, see Section 14. AMB's drilling was conducted from 2009 through October 2012.

Table 10-1 Summary of Drilling Conducted by AMB

Drill Series	Year Drilled	Operator	Drill Type	No. DHs	Total Metres Drilled
BC09	2009	AMB	Core	30	4,981
BC10	2010	AMB	Core	13	2,413
RC10	2010	AMB	RC	16	2,352
BC11	2011	AMB	Core	209	31,054
RC11	2011	AMB	RC	135	24,196
BCS	2011	AMB	Sonic	18	266
BC12	2012	AMB	Core	197	22,227
RC12	2012	AMB	RC	79	9,623
Total				697	97,111

Source: AMB (2013)

Figure 10-1 Drilling Locations

10.1 Type and Extent

10.1.1 Diamond Drilling (2009)

Core drilling in 2009 was completed by Kluane Drilling of Whitehorse, YT, using a KDHT-1000 rig drilling NTW diameter core (56.23 mm). Core was drilled in 3m runs, collected and placed in labeled boxes, and delivered to the on-site core shack at each shift change. AMB staff conducted geotechnical logging, geologic logging and sampling on-site. Downhole surveys were completed with a Reflex-EZ shot tool at 16m intervals. Collars surveys were completed by a professional land surveyor.

10.1.2 RC Drilling (2010)

RC drilling in 2010 was conducted by Orbit-Garant of High River, AB, using an 11.4 cm (4½in) diameter bit and interchange system. All sampling was conducted at 1.52 metres (5 ft) intervals and drilling was conducted dry (without added water) until groundwater was encountered. A riffle splitter was used to reduce dry cuttings to a preferred 12.5% split for each interval. A hydraulic rotary splitter was used for sampling if/when wet drilling conditions occurred. Wet sample splits were targeted at the same 12.5% of cuttings as with dry sample splits. Hubco® Sentry II sample bags were used to allow water to escape while retaining fines. Reject material (remaining 87.5%) was also collected for the purpose of future evaluation, assay checks or metallurgical testing.

An on-site geo-technician ensured the splitter was cleaned properly between runs and that sampling was conducted to AMB standards. Additionally, geo-technicians collected a small representative sub sample from each reject bag, washed and placed the representative pieces into plastic chip trays for logging purposes. Detailed geological logs were completed for all holes using a binocular microscope.

Collars were monumented and surveys were completed by a professional land surveyor.

10.1.3 Diamond Drilling (2010)

Core drilling in 2010 was completed by Peak Drilling of Courtenay, BC. Peak used an EF-50 rig drilling HQ diameter core (63.5 mm). Core was drilled in 3 metres runs, each of which was oriented when possible, and placed appropriate, labeled core boxes. Boxed core was delivered to the on-site core shack, where AMB staff conducted geotechnical logging, geologic logging and sampling. Downhole surveys were completed with a Reflex-EZ shot tool every 16 m. Collars were monumented and surveys were completed by a professional land surveyor.

10.1.4 RC Drilling (2011)

RC drilling in 2011 was conducted by Boart Longyear of Calgary, AB, and Midnight Sun Drilling Inc. of Whitehorse, YT, using an 11.4 cm (4 ½ in) diameter bit and interchange

system. All sampling was conducted at 2 metres intervals and drilling was conducted dry (without added water) until groundwater was encountered. A riffle splitter was used to reduce dry cuttings to a preferred 12.5% split for each interval. A hydraulic rotary splitter was used for sampling if/when wet drilling conditions occurred. Wet sample splits were targeted at the same 12.5% of cuttings as with dry sample splits. Field duplicates were generated by halving the 12.5% split sample material. Tyvek® sample bags were used to allow water to escape while retaining fines.

All drill crew samplers were trained by AMB staff members on sampling. Geotechnicians also collected samples and ensured that proper order was kept during the sampling procedure. The drill crew collected small representative sub-samples from each sample bag, washed them, and inserted them into plastic chip trays for logging purposes. Detailed geological logs were completed for all holes using a binocular microscope.

Collars were monumented and surveys were completed by either a professional land surveyor or by AMB staff using a survey-grade DGPS instrument.

10.1.5 Diamond Drilling (2011)

Core drilling in 2011 was conducted by Kluane Drilling or Whitehorse, YT and Peak Drilling of Courtenay, BC. Kluane Drilling used the KDHT-1000 described above, and a KD600, which also drilled NTW core but only with the capacity of 350 metres deep holes. Peak drilling used a Hydracore 2000 and an EF-50. Peak's EF-50 drilled HQ size core (63.5 mm) which had the capacity to drill to 760 metres. Boxed core was delivered to the on-site core shack, where AMB staff conducted geotechnical logging, geologic logging and sampling. Downhole surveys were completed with a Reflex-EZ shot tool at 16 metres intervals. Collars were monumented and surveys were completed by either a professional land surveyor or by AMB staff using a survey-grade DGPS instrument.

10.1.6 Sonic Drilling (2011)

In July of 2011 AMB completed an 18 hole, sonic drilling campaign on the reclaimed leach pad. This program was designed to acquire information on the metallurgical characteristics of heap leach material as well as to collect data for a heap leach reactivation. The drilling was completed by Boart-Longyear out of Calgary, AB using a track mounted sonic drill. The machine drilled a 10 cm diameter hole by sonically advancing the core barrel followed by casing. Samples were extracted from the core barrel into PVC piping of the same diameter. Sonic sampling occurred at 1.52 metres (5 ft) intervals.

10.1.7 Diamond Drilling (2012)

In 2012, drilling was conducted by Kluane Drilling of Whitehorse, YT with a KDHT-1000, and by Matrix Diamond Drilling Inc of Kimberly, BC with an A5 drill. Boxed core was delivered to the onsite core shack, where AMB staff conducted geotechnical logging, geologic logging and sampling.

Downhole surveys were completed with a Reflex-EZ shot tool at 16m intervals. Collars were monumented and surveys were completed by AMB staff using a survey-grade DGPS instrument.

10.2 Summary of All Drilling Data

Table 10-2 summarizes all drilling that has been conducted for target areas through the Effective Date of the report.

Table 10-2 Summary of Drilling for Resource Estimate Areas

		Core D	rilling	RC Dr	illing	Total	Total Drilling		
Area	Operator	No. DHs	Metres	No. DHs	Metres	No. DHs	Metres	Percentage of Data	
	Loki	0	0	11	642	11	642	5%	
	Viceroy	0	0	96	7,287	96	7,287	55%	
Bohemian	Alexco	3	410	0	0	4	410	3%	
	AMB	38	4,263	6	713	44	4,976	37%	
	Subtotal	41	4,673	113	8,642	154	13,315	100%	
	Viceroy	0	0	11	1,248	11	1,248	12%	
Schooner	AMB	81	8,394	5	428	86	8,822	88%	
	Subtotal	81	8,394	16	1,676	97	10,070	100%	
	Norex	5	640	3	432	8	1,072	5%	
Fosters	Loki	13	586	371	14,899	384	15,485	79%	
(Upper and	Viceroy	2	274	9	365	11	639	3%	
Lower)	AMB	20	1,729	13	692	33	2,421	12%	
	Subtotal	40	3,230	396	16,388	436	19,618	100%	
	Loki	0	0	25	1,592	25	1,592	11%	
West Big	Viceroy	1	141	45	2,412	46	2,553	18%	
Rock	AMB	59	6,068	30	3,644	89	9,712	70%	
	Subtotal	60	6,209	100	7,648	160	13,857	100%	
	Loki	0	0	14	744	14	744	8%	
East Big	Viceroy	0	0	80	4,736	80	4,736	50%	
Rock	AMB	17	1,925	20	1,981	37	3,906	42%	
	Subtotal	17	1,925	114	7,461	131	9,386	100%	
	Loki	0	0	11	1,099	11	1,099	8%	
	Viceroy	0	0	11	1,634	11	1,634	12%	
Classic	Alexco	2	308	0	0	2	308	2%	
	AMB	15	3,780	30	6,658	45	10,438	77%	
	Subtotal	17	4,088	52	9,391	69	13,478	100%	
Lone Star	AMB	17	3,865	12	2,283	29	6,147	100%	
	Norex	0	0	4	386	4	386	0.4%	
	Loki	29	1,379	482	24,795	511	26,174	55.6%	
Kokanee- Golden	Viceroy	14	1,366	377	20,326	391	21,692	42.5%	
Colucii	AMB	7	1,721	6	933	13	2,653	1.4%	
	Subtotal	50	4,466	869	46,440	919	50,905	100.0%	
	Loki	3	215	61	3,920	64	4,135	37%	
Luglar	Viceroy	0	0	102	6,283	102	6,283	56%	
Lucky	AMB	0	0	6	821	6	821	7%	
	Subtotal	3	215	169	11,024	172	11,239	100%	
	Norex	0	0	0	0	0	-	0%	
	Loki	16	776	152	8,091	168	8,867	71%	
	Viceroy	7	497	38	1,934	45	2,431	19%	
Pacific- Blue	Spectrum	2	401	0	0	2	401	1%	
2.00	Alexco	1	167	0	0	1	167	0%	
	AMB	17	2,834	3	416	20	3,250	8%	
	Subtotal	43	4675	193	10441	236	15,116	100%	

Area	Operator	Core Drilling		RC Drilling		Total Drilling		Percentage	
Alea	Operator	No. DHs	Metres	No. DHs	Metres	No. DHs	Metres	of Data	
	Loki	0	0	17	1,032	17	1,032	4%	
North	Viceroy	2	533	12	1,806	14	2,339	10%	
Slope	AMB	30	6,125	79	14,828	109	20,953	86%	
	Subtotal	32	6,658	108	17,666	140	24,324	100%	
	Loki	0	0	7	502	7	502	4%	
Sleeman	AMB	58	10,872	0	0	58	10,872	96%	
	Subtotal	58	10,872	7	502	65	11,374	100%	
AMB Only		359	51,576	210	33,397	569	84,971	43%	
Total		459	59,270	2,149	139,562	2,608	198,829		

Note 1 – Percentage of data is based upon metres drilled. Percentages may not be exact due to rounding.

10.3 Interpretation and Relevant Results

Most of the mineralized intrusive sills strike northwesterly and dip relatively shallowly to the southwest. Many of the older holes were drilled vertically so the apparent intersected length is slightly longer than the actual true thickness of the mineralized zones. Many of the AMB core and RC holes were drilled as angle holes in an attempt to intersect the mineralized zones at a near perpendicular angle.

Table 10-3 summarizes the number of samples and metres above different gold cutoff grades for drillhole data from Bohemian, Schooner, Fosters, West and East Big Rock, Classic, Moosehead, Lone Star, Kokanee-Golden, Lucky, Pacific-Blue, North Slope, and Sleeman deposits.

Table 10-3 Distribution of Significant High-Grade

Au Cutoff	No Comples	Metres	Percent of Total			
(g/t)	No. Samples	wietres	Samples	Metres		
0	107,319	204,649	100%	100%		
0.5	14,621	27,654	13.6%	25.8%		
1	8,430	15,859	7.9%	14.8%		
5	968	1,780	0.9%	1.7%		
10	240	434	0.2%	0.4%		
15	81	145	0.1%	0.1%		
20	27	45	0.0%	0.0%		
25	4	6	0.0%	0.0%		

11 Sample Preparation, Analysis and Security

11.1 Sample Collection Methods

11.1.1 Historical Sampling by Norex (1989)

Information for the Norex sampling preparation and analysis program were not available at the time of reporting. A total of 7 diamond drillholes and 11 RC holes from this campaign were drilled within the Fosters-Canadian, Moosehead, and Kokanee-Golden area discussed in this report. The material surrounding the significant mineralized intervals of these holes has now been mined and these holes do not contribute to the current Mineral Resources found on the property and their sampling methodology is considered irrelevant to this report.

11.1.2 Historical Sampling by Loki and Viceroy (1990 – 1999)

The details of core and RC drill sample preparation, QA/QC, analysis and security procedures prior to 2004 are generally absent in the project files. Based on Viceroy drill and sample logs, samples were logged and collected on continuous 2 metre intervals downhole and submitted to the mine site laboratory for gold assay and metallurgical test work (Table 11-1). Based on data verification work reported in Section 12 of this report, Gustavson is of the opinion that these historical data are suitable for use in resource estimation.

Period	Operator	App. Samples	Laboratory	Analytical Method
1989	Norex	1,300	Norex	Hot Aqua Regia Digestion with AA Analysis
1990-1992	Loki	18,000	Acme	Hot Aqua Regia Digestion with AA Analysis
1993-1995	Loki	18,000	Terramin	30g Fire Assay with AA Finish
1996-1999	Viceroy	29,000	Brewery Creek Mine	30g Fire Assay with AA Finish
2004	Spectrum	382	ALS Chemex	30g Fire Assay with AA Finish
2006	Alexco	783	ALS Chemex	30g Fire Assay with AA Finish

Table 11-1 Historical Analytical Laboratories

11.1.3 Historical Sampling by Spectrum and Alexco (2004 and 2006)

Sampling procedures in 2004 and 2006 were as follows. The geologist laid out each sample by marking the start and end of the sample in red marker on the core. The first part of the sample tag was stapled onto the core box at the start of the sample. If the next sample was a standard, blank or duplicate, that sample tag was stapled onto the box next to the previous tag. The second part of the sample tag was then placed into a

plastic sample bag and the number written in marker onto the bag. The core was then transferred to the core cutting area.

The core was cut in half longitudinally using a 14 inch core saw. The technician placed one half of the core into the sample bag with the corresponding sample tag stapled on the core box. When a second tag was beside the first tag, the technician placed either the blank material or standard material into the next sample bag, based on what was written on the sample tag. When the second tag called for a duplicate, the technician placed an empty sample bag with a sample tag included into the previous sample. Each bag was then closed and secured with a zap strap.

Once twenty sample bags were collected (a complete batch), each batch was placed into rice sacks and labeled with the batch number, bag number, sample numbers within batch, and ALS Chemex's North Vancouver address. Each rice bag was then taped shut and secured with a zap strap. Twice a week, the rice bags were delivered to Mayo and placed on the Kluane Transport Ltd. truck for Whitehorse, where it was shipped to Northwest Freight Systems for transportation to ALS Chemex (ALS) in North Vancouver.

11.1.4 AMB's Core Sampling (2009-2012)

Sampling procedures used from 2009 through 2012 were as follows. Core was oriented (when applicable), retrieved from the barrel, cleaned, placed into boxes and transported to the on-site core logging facility by either drilling crew or AMB staff. Upon arrival at the logging facility, core was logged and tagged for sample breaks. Sample tags, labeled with numeric sample ID, were then attached to core boxes at appropriate sample break points. A preferred sample interval of 2 metres was used whenever possible, but varying sample intervals were used to honor lithologic contacts, significant structural features, alteration and mineralized intervals. Prior to sampling, geotechnical and oriented structural measurements were recorded, specific gravity of select lithologic units was measured and the core was photographed.

A diamond saw located at the on-site core logging facility was used to sample halved core; field duplicates were generated using ¼ core samples. Samples were placed in pre-labeled poly bags and grouped into batches within labeled, sealed/secured rice sacks in preparation for shipment to the lab. Unsampled ½ core was returned to the original core box for storage on-site.

Batch sizes in 2009 and 2010 consisted of 36 samples, including QA/QC SRM (Au standards and blanks) and field duplicates. Mid-season 2011, batches were increased from a 36 sample count to include all samples for each drillhole. This method of whole-

hole batch sizing has been used consistently since the 2011 change, and throughout the 2012 program.

11.1.5 AMB's RC Sampling (2010-2011)

In 2010 and 2011, RC drill samples were collected from an 11.4 cm (4 ½ in) diameter drillhole with a uniform 1.52 metres (5 ft) sample interval. Dry cuttings were funneled from the cyclone through a three-tier Jones (riffle) splitter, setup to gather 12.5% of the returned material. A hydraulic rotary splitter was used for sampling if/when wet drilling occurred. Wet sample splits were targeted at the same 12.5% of cuttings as with dry sample splits. All samples were contained in pre-labeled Hubco® Sentry II or Tyvek® bag, which allows for water drainage while retaining fines.

Each sample was identified using a blind assay tag number placed in the sample bag. The corresponding sample number was also written on the sample bag. Bags were sealed and collected at the drill, placed into pre-labeled rice bags and were transported to the logging area by either the drillers or AMB staff.

In 2010, sample batches of 36 were accumulated for shipment: each batch of 36 samples included, one blank, one standard reference material, and one duplicate. Field duplicates were generated by splitting the remaining (87.5%) sample material. In 2011, field duplicates were generated by halving the 12.5% sample split with a box splitter. Entire holes were placed in apple crates and shipped as individual batches, which included inserted blank and standard reference material.

11.1.6 AMB's RC Sampling (2012)

In 2012, RC samples were collected over 1.52 metre intervals from a 8.89 cm (3 $\frac{1}{2}$ in) diameter hole. Dry cuttings were funneled from the cyclone through the three-tier Jones (riffle) splitter, setup to gather 12.5% of the returned material. A hydraulic rotary splitter was used for sampling if/when wet drilling occurred. Wet samples were targeted at the same 12.5% of cuttings as with dry sample splits. All samples were contained in Sunset Manufacturing BVLBL bags, which were pre-labeled. These bags allowed for drainage of excess water while retaining fines.

Each sample was identified using a blind assay tag number placed in the sample bag. The corresponding sample number was also written on the sample bag. Bags were sealed and collected at the drill, and transported to the logging area by either the drillers or AMB staff. After a period of time for draining of excess water, bags were placed in pre-labeled sample bins (apple crates) with a corresponding batch label (batched by hole). Field duplicates were generated by halving the 12.5% sample split with a box splitter. Entire holes were placed in apple crates and shipped as individual batches which included blank, standard reference material, and the aforementioned duplicates.

11.2 Sample Analytical Methods

11.2.1 Historical Analytical Methods by Norex (1989)

Analytical methods used by Norex are unknown.

11.2.2 Historical Analytical Methods by Loki, and Viceroy (1990 – 1999)

Drill logs and laboratory certificates recovered from Loki/Viceroy drilling campaigns indicate that analysis was conducted using aqua regia digestion with atomic absorption finish during the years 1990 through 1992 at ACME laboratories. The method was changed to 30g fire assay using atomic absorption finish during Loki/Viceroy drilling between the years 1993-1999 at Terramin Labs and the on-site laboratory.

Some of Loki and Viceroy's samples were assayed at ALS, though actual methods used are not known.

11.2.3 Historical Analytical Methods by Spectrum (2004)

The analytical methods used by ALS for the Spectrum 2004 drill samples were as follows. ALS sample preparation (Prep 31) procedure, which involves finely crushing the entire sample to better than 70% -2 mm, splitting off up to 250 g and pulverizing the split to better than 85% passing 75 micron. Gold was analyzed by ALS procedure Au-AA-25, a fire assay - atomic absorption finish method. Samples were also assayed for 34 metals by ME-ICP41, an aqua Regia digestion and analysis by inductively coupled plasma-atomic emission spectroscopy (ICP-ES).

11.2.4 Historical Analytical Methods by Alexco (2006)

The analytical methods used by ALS for the 2006 drill samples were as follows. ALS sample preparation (Prep 31), then assayed for gold by Au-AA25, see Section 11.2.3 for description.

Analysis for an additional 27 elements was completed using ALS method ME-ICP61, a hot four-acid digestion and analysis by ICP-ES.

11.2.5 AMB's Analytical Methods (2009)

ACME Analytical Laboratories of Vancouver, B.C. performed all sample preparation and analyses. ACME Analytical Laboratory is certified by ISO 9001:2008 FM 63007.

Core samples were logged and sampled at the project site under the supervision of the project geologist and then expedited in sealed bags to Whitehorse where they were shipped via common carrier to Vancouver. After being received and logged in at the laboratory, a 2 kg split of core was dried then crushed to 80% -10 mesh. A 250 g split was then pulverized to 85% -200 mesh (Sample Preparation Method R200-250).

A 15 g split of each sample was analyzed by ICP-MS after Aqua Regia digestion to yield a 37 element scan (Method 1F01). All samples yielding greater than 500 ppb gold then underwent a 30 g fire assay with an ICP-ES finish (Method G6). QA/QC procedures followed for the diamond drilling program include submittal of assay standards for analysis approximately every 30 samples as well as a blank and a duplicate sample of quarter core at approximately the same frequency.

11.2.6 AMB's Analytical Methods (2010)

All drill core and RC chips samples in 2010 were received at the ALS Chemex sample prep facility in Whitehorse, YT and analyzed by ALS Chemex in Vancouver, BC. ALS Chemex Laboratory in Vancouver Canada is certified by ISO 9001:2008 and ISO/IEC 17025:2005. Identical procedures were used for both RC and core samples. Samples were prepared in accordance with Prep 31 requirements, as described in Section 11.2.3. Samples were assayed for gold by Au-AA23, with reporting limits of 0.005 to 10 ppm. Samples were also analyzed for 35 elements by ME-ICP41.

11.2.7 AMB's Analytical Methods (2011)

Drill core and RC samples in 2011 were received at either ALS Minerals Whitehorse, YT sample prep facility or at one of ACME Laboratories Dawson City, YT or Whitehorse, YT sample prep facilities. Sample analysis was conducted by either ACME Laboratories, Vancouver, BC or by ALS Minerals, Vancouver, BC or Reno, NV.

Samples sent to ACME were prepared using Method R200-250, as described in Section 11.2.5. ACME assayed for gold by Method G6, 0.005g/t detection limit, 10 ppm upper limit, fire assay of 30g Atomic Absorption finish (Automatic Gravimetric Overlimit); and by Analytical Method Code 7TD1 for silver only (2g/t detection limit), which consists of hot 4-Acid digestion of 1g minimum pulp for sulfide and silicate ores followed by ICP-ES analysis.

Samples submitted to ALS are prepared using method Prep 31, as described in Section 11.2.3, followed by gold assay by Au-AA23, and for 35 elements by ME-ICP41, as described in Section 11.2.6.

11.2.8 AMB's Analytical Methods (2012)

AMB's 2012 samples were prepared by Prep 31, as described in Section 11.2.3, followed by gold assay by Au-AA23 as described in Section 11.2.6. Some samples were analyzed for multi-elements by ME-ICP41, as described in Section 11.2.6. All samples that returned gold grades in excess of 200 ppb (0.2 ppm) were re-analyzed by cyanide leach and gold preg-robbing methods (Au-AA31 and Au-AA31a).

Part way through their 2012 drilling campaign, AMB ran cyanide leach analyses (AuAA13) on all intrusive samples where the initial fire assay grade was in excess of 0.2 g/t.

11.3 AMB's Security Measures

During a site visit in March, 2012, EBA reviewed the sample collection and processing protocol being implemented on site. The facilities in place at the time consisted of dedicated core receiving/logging, cutting and processing areas. Security and control on sample handing is measured through the process and is described in subsequent sections. RMI conducted a similar review of sample collection during a site visit in mid-October 2012.

All sampling was conducted under the supervision of a AMB project geologist and the chain of custody from the drill to the sample preparation and logging facility is continually monitored by the project geologist. Samples are shipped to the lab by qualified couriers or AMB personnel under security-tagged bags with independent identification numbers.

During Gustavson's site visit, no drilling or sampling were being performed, so sampling security measures were not observed directly. However, Gustavson is of the opinion that security measures are commensurate with industry standard practice.

11.4 QA/QC Samples

In summary, no QA/QC data were identified for assay data by Norex, Loki, and Viceroy, drilling conducted between 1989 and 1999. Available QA/QC results are described below.

11.4.1 Standards

Available standard samples and results as provided from AMB are summarized in Table 11-2. As shown on Table 11-2, of the 1,746 standard samples from 2004 through 2012, 6% of the standards exceeded the acceptance criteria, which was the certified standard result, plus or minus 3-times the certified standard deviation results. Gustavson notes that approximately two-thirds those samples that are outside the acceptance criteria were detected at levels below the acceptance criteria, potentially suggesting gold is more likely to be under-reported, rather than over-reported. Gustavson concludes that the available standard results are acceptable.

Table 11-2 Summary of Available Standard Sample Results

Analysis Date	Standard Name	Upper Range	Lower Range	No. Samples	Total Samples Outside Range	Samples Over Range	Samples Under Range
2004	STD-B (Note 1)	1.36	1.15	11	2	1	1
2004	STD-A (Note 1)	6.3	5.2	12	1	1	0
2006	Std-PM182 (Note 1)	1.36	1.15	21	3	0	3
2006	Std-PM907 (Note 1)	6.25	5.17	24	2	0	2
2011	SRM_GSP2	0.24	0.18	20	0	0	0
2011	SRM_GS1F	1.36	0.96	17	2	1	1
2011	SRM_GS2E	1.73	1.31	3	0	0	0
2011	SRM_GS1P5C	1.75	1.37	42	3	0	3
2011	SRM_GS4B	4.18	3.37	10	0	0	0
2011	SRM_SN50	9.19	8.11	13	0	0	0
2012	SRM_GSp3B	0.47	0.35	131	2	1	1
2012	SRM_GS5J	5.59	4.33	4	1	0	1
2012	SRM_GSp3C	None	None Provided 1				
2009, 2010	Std-NR	None	Provided	28			
2009, 2010, 2011	SRM_GS1D	1.2	0.9	56	11	10	1
2009, 2010, 2011	SRM_GS10C	10.69	8.73	32	1	1	0
2010, 2011	SRM_CM-7	0.49	0.36	8	0	0	0
2010, 2011	SRM_OXE74	0.67	0.56	45	0	0	0
2010, 2011	SRM_OXH66	1.38	1.19	29	0	0	1
2010, 2011	SRM_GS2F	2.52	1.8	11	0	0	0
2010, 2011	SRM_CGS-21			13	0	0	0
2011, 2012	SRM_GSP4A	0.49	0.39	410	34	7	27
2011, 2012	SRM_GS1P5D	1.7	1.25	457	25	3	22
2011, 2012	SRM_GS5G	348	23	14	9		
Total Number of S	Samples			1,746	110	36	72
Percentage of Sai	nples				6%	35%	65%

Note 1 - Results of identified standard samples were taken from EBA (2013b).

11.4.2 Blanks

A decorative stone (reddish shale) purchased from Home Hardware in Whitehorse, YT, was used as the blank material for both the 2004 and 2006 drill programs. Blank material for the 2009 program was sourced from an on-site sandstone outcrop located near the core storage area. This material was found to be unsuitable as it contains trace Au values and was not used in future programs. Blank material used for the 2010 to 2012 programs was a bull-quartz landscaping product called "Garden Quartz", packaged by Hillview Products of Barrie, ON.

Blank sample results are shown on Table 11-3. Gustavson considered those blank sample detections at levels less than 5-times the reporting limit (RL) to be acceptable. As shown in Table 11-3, of the 1,776 blank samples, 36 blank samples exceeded the 5-times reporting limit acceptance criterion. Gustavson concludes that the blank sample results are acceptable.

Gold Assay Method	Year	Reporting Limit (ppm)	Number of Blank Samples	Detections > 5*RL	% > 5*RL
ALS_Au-AA25	2004-2006	0.01	51	3	6%
ACM_1F	2009-2010	0.01	74	6	8%
ACM_G6	2009-2012	0.005	174	5	3%
ALS_Au-AA23	2010-2012	0.005	1,477	22	1%
Total Number of	Samples		1,776	36	2%

Table 11-3 Summary of Blank Sample Results

Those blank samples containing gold at levels greater than 5-times the reporting limit are plotted on Figure 11-1. Gustavson notes that all of the blanks with detections greater than 5-times the reporting limit were noted in samples assayed in the Acme laboratory by the G6 Method or in the ALS laboratory by the AA23 Method: both with reporting limits of 0.005 ppm.

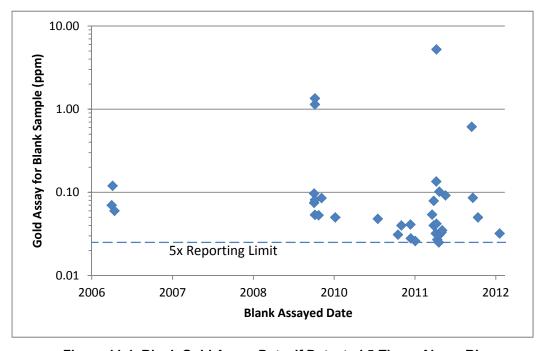


Figure 11-1 Blank Gold Assay Data, if Detected 5-Times Above RL

Those blank samples with gold detections greater than 5-times the reporting limit are shown on Figure 11-2, along with the gold assay result of the sample preceding the blank. This was done to determine whether the gold detections in blanks are a result of carry-over, that is, high levels of gold from the preceding sample carrying over into the blank.

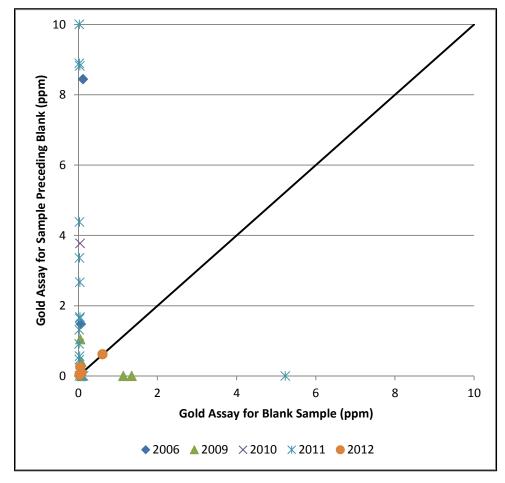


Figure 11-2 Blank Gold Assay Data, if Detected 5-Times above RL

Combined, Figure 11-1 and Figure 11-2 show that blank detections above the acceptance criteria may be due to a combination of two factors:

- 1. Blank samples potentially contain gold, as evidenced by high detections in the blank sample that are not preceded by sample containing comparably high levels of gold. Gustavson notes that this phenomenon is rare, and as such, concludes that the existing blank samples are acceptable for future use.
- Carry-over of gold from a sample containing high gold is occurring, as evidenced by high gold detections in samples preceding blank sample that exceed the acceptance criteria. Gustavson suggests that AMB discuss employing more robust QA/QC practices at the laboratory, in an effort to reduce the potential for gold carry-overs.

11.4.3 Duplicates

A total of 1,627 duplicate samples were provided to Gustavson from 2004 through 2012, as shown in Table 11-4. A plot showing original and duplicate sample results are provided on Figure 11-3 and shows acceptable agreement between original and duplicate sample throughout the years when duplicate data are available.

Table 11-4 Summary of Duplicate Samples

Year Analyzed	Duplicate Samples
2004	13
2006	38
2009	44
2010	103
2011	1071
2012	358
Total	1627

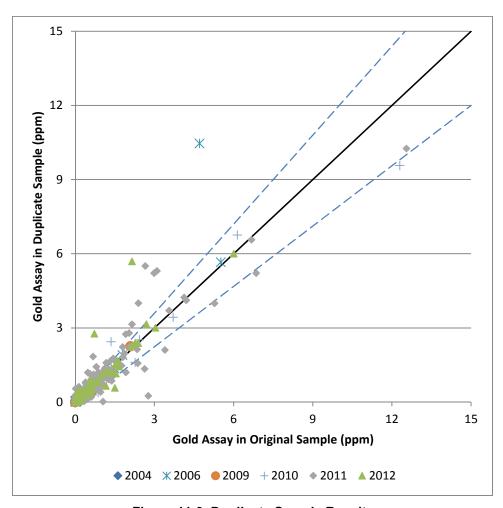


Figure 11-3 Duplicate Sample Results

11.5 Opinion on Adequacy

Based on Gustavson's assessment of sample collection, analytical, security, and QA/QC procedures, Gustavson concludes that the data are adequate for supporting an NI 43-101 resource estimate.

12 Data Verification (Item 12)

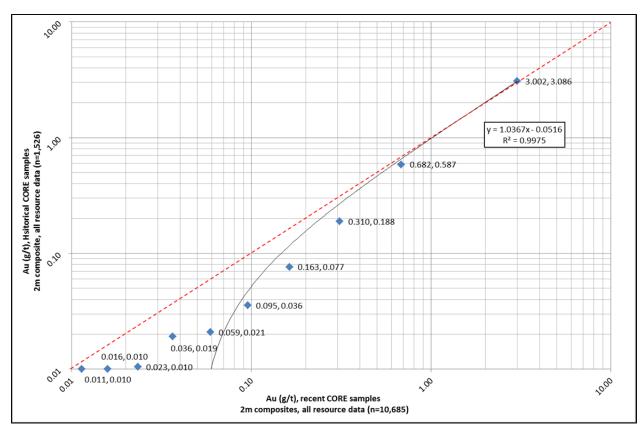
Verification of data used for resource estimation was completed and signed off by three parties.

- EBA completed a site visit and data verification as reported in a previous Technical Report titled "Updated Mineral Resource Estimate for the Brewery Creek Property, Yukon Territory, Canada, effective March 11th, 2012 and amended January 17th, 2013". The verification results from the general database and of data in support of the resource estimates of the North Slope and Sleeman deposits have been extracted from EBA's report and summarized in the current report.
- RMI is responsible for verifying data used to support the resource estimates of the Bohemian, Schooner, Fosters, West and East Big Rock, Classic, Lone Star, and former heap leach pad.
- Gustavson is responsible for verifying the data used to support the resource estimates of the Kokanee, Golden, Pacific, Blue, and Lucky deposits.

Data verification completed by the three parties is described in the following sections.

12.1 Data Verification by EBA

12.1.1 Verification of Historical Data

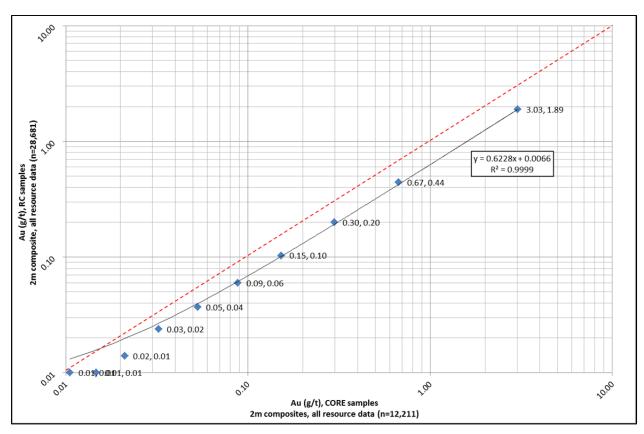

Physical drill core and RC chip sample records for historical drilling on the property were no longer retained at the Brewery Creek Project facility. The assay certificates for a portion of the historical drillholes were not available for data verification. Given these limitations, a desktop review was conducted comparing results from historical drillholes with more recent AMB drill data.

Recent drilling conducted by AMB aimed to test the validity of historically reported gold grades. The traces of 12 historical holes lie within 7 metres of AMB holes (Table 12-1): EBA visually inspected the twinned intersections using geological software and found them to compare favorably in terms of mineralization depth, intercept thickness, grade and logged lithology. The majority of AMB drilling lies with 25 metres of Loki-Viceroy era holes. In general, nearby holes from the historical drill dataset show strong similarities in the intercept thickness, tenor and logged lithologies with AMB drilling.

Table 12-1 Drillholes Used for Historical Data Verification

Historical Resource Hole	Offset GPD Hole	Area
RC97-1967	BC11-236	Bohemian
RC98-2145	BC11-189	Bohemian
RC95-1363	BC11-357	East Big Rock
RC96-1570	RC11-2433	East Big Rock
RC96-1623	RC11-2432	East Big Rock
RC97-1902	BC11-358	East Big Rock
RC97-1772	RC11-2409	North Slope
RC97-1773	BC11-300	North Slope
RC98-2198	BC11-196	Schooner
RC99-2267	BC10-210	Schooner
RC96-1577	RC11-2458	West Big Rock

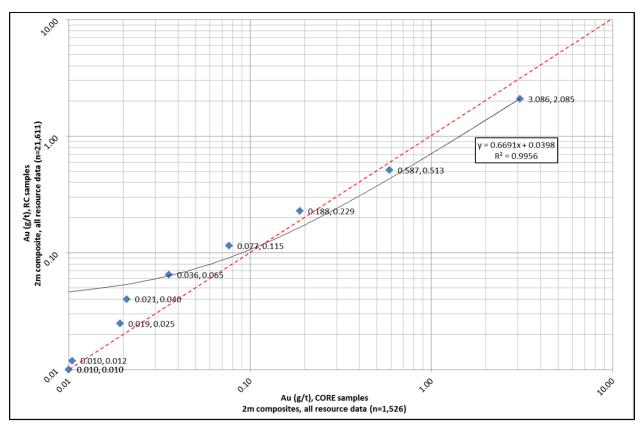
Figure 12-1 shows a decile-decile comparison of the historical core gold grade values versus the recent core gold grade to reveal that at grades generally below 0.2 g/t Au the recent drilling plots higher than historical drilling and at ranges greater than 0.2 g/t (i.e. > 75th percentile) that historical gold grades plot near to unity with the recent drilling. As reported in EBA (2013b), this is reasonable support for the sampling trend given that much of the recent drilling has been targeting known areas of mineralization and generally contains less lower grade material as would have been recovered in historical exploration and geotechnical core drilling programs.


Note: Figure only shows gold assay results of 2-metre composite samples of core drilling results completed by AMB up to and including core hole BC12-401.

Source: EBA (2013b)

Figure 12-1 Decile-Decile Plot of AMB and Historical Core Drilling Data

12.1.2 Verification of Drilling Methods


Using the 2 metre composite dataset, decile-decile plots were created using data from reverse circulation (RC) and diamond drilling. The data set was filtered to remove the low grade composites below 0.01 g/t Au in order to reduce the impact of null and low range detectible gold grades. No upper grade caps were applied. The results for comparison of core sample and RC samples for both historical and recent drilling within the main mineralized areas are shown below in Figure 12-2. The plot identifies a slight bias in gold grades reporting higher for core samples than the RC samples, however good agreement in gold assay data was noted between the two drilling methods, and as such Gustavson concludes that no significant bias between RC and core drilling is notable.

Source: EBA (2013b)

Figure 12-2 Decile-Decile Plot for RC and Core Drilling Data

In a comparison that included only drilling data by Loki/Viceroy (Figure 12-3), low grade ranges below 0.1 g/t Au appear to bias slightly towards the RC sampling, where grades plotting above 0.2 g/t Au plot near the unity line. The number of historical RC samples (n=21,611) far exceeds that of the core samples (n=1,526). This trend suggests that no significant bias is noted in the historical Viceroy data within the useable range of gold grades at the property database scale.

Source: EBA (2013b)

Figure 12-3 Decile-Decile Plot for RC and Core Drilling Data by Viceroy and Loki

12.1.3 Verification of Collar Data

Drillhole location and orientation data used in the database has been extracted and from the original Viceroy AutoCAD database, verified with available logs and survey reports and retranslated from historical mine grid co-ordinates to UTM coordinates. Historical Viceroy surveying was completed from 1996 onwards using survey grade Trimble equipment which measured and reported both latitude and longitude, and local coordinates with the Viceroy mine grid. Control of the surface coordinates was completed by AMB in 2009-2010 with the assistance from the original Viceroy surveyor. In total, approximately 40 historical drillhole collar monuments were located, mostly as stakes with labeled aluminum tags, between west Big Rock and Schooner and used to define an accurate transformation from the original mine grid to modern UTM coordinates that could be applied to all historical drillholes and surveyed information. The process was completed using an affine polynomial algorithm and was verified using actual road centerlines and later with the 2011 LIDAR survey conducted on the property. In 2010, it was determined by AMB that an upward 2.49 metre vertical shift be applied to the historical datum used by Viceroy. Comparison of the re-surveyed historical monuments to the transformed database co-ordinates results in location deviation ranging from approximately 0.5 to 2 metres at the lateral extents of the property. EBA has reviewed the database and methodology used to undertake this transformation and feels that it has been completed using acceptable and modern methods.

12.1.4 EBA Statement on Historical Data Verification

EBA feels that the historical drilling data is verifiable and valid for use in mineral resource estimation. Support is based on the review of historical results, positive comparison of the historical results to recent AMB drilling and minimal to no bias apparent between the various datasets.

12.1.5 EBA Data Verification of AMB Data

12.1.5.1 <u>EBA Site Visit</u>

A site visit was conducted between March 19-21, 2012, by EBA geologist and Independent QP James Barr, P. Geo. The purpose of the visit was to become familiar with the site layout and facilities, review core logging and sample handling procedures, review drill core and collect core samples from recent AMB drilling for independent analysis. Mr. Barr was accompanied by AMB Senior Geologist Bruce Otto, Geologist Mark Shutty and Program Manager Don Penner for the duration of the visit. A second site visit was conducted from May 30 to 31, 2012, at which time no QA/QC review or sample collection was completed.

In total, 7 core holes were reviewed while on site in March, 2012, which provided a familiarity of the variety of rock types and mineralizing systems present at the Brewery Creek Project. Specific core intervals from these holes were selected based on availability, spatial distribution and representative grades.

12.1.5.2 EBA Independent Samples

During this field visit 6 samples were collected from 4 holes, packaged in sampling bags, and transported by Mr. Barr to the EBA offices in Vancouver and then couriered directly to ALS Chemex laboratories for analysis.

For QA/QC purposes a Standard Reference Material (SRM) and a blank sample was included in the sample batch for a total of 8 samples for laboratory analysis at ALS Chemex (Vancouver). Table 12-2 presents the results of the ALS Chemex tests, labeled as EBA, against the original AMB analytical values for Au, and Aq.

Table 12-2 Independent Drill Core Samples Collected by EBA

BHID	From	То	Company	Sample	Rockcode*	SG	Au (g/t)	Ag (g/t)	Au g/t RS **
			AMB	1294244			0.77	-	-
BC11-360	80	82	EBA	500408	SY/IS	2.68	1.07	0.9	1.13
			% Differe	ence			33.1	1	37.89
			AMB	1327702			7.85	-	1
BC11-333	28.73	30.35	EBA	500409	LAQM/IQM	2.55	11.15	0.3	11.65
			% Differe	ence			34.7	1	38.97
			AMB	1327718			14.60	-	-
BC11-333	52.9	54.25	EBA	500410	SGW/SNG	2.67	16.05	0.9	16.6
			% Differe	ence			9.46	-	12.82
			EBA	500411			13.45	4.10	-
SRM			CDN-GS-13A	n/a		n/a	13.20±0.72	-	-
			% Differe	ence			1.88	-	-
			AMB	K739669			7.64	2.50	-
BC11-293	60	62	EBA	500412	LAQM/IQM	2.57	9.72	3.00	10.05
			% Differe	ence			24.0	18.2	27.25
			AMB	1292722			20.60	13.00	-
BC11-321	71.2	72.7	EBA	500413	AQM/IQM	2.63	5.91	18.60	5.99
			% Differe	ence			110.8	35.4	109.89
Blank				500414		2.77	0.03	<0.2	0.03
			AMB	1292725			4.78	14.00	-
BC11-321	74.2	75.7	EBA	500415	AQM/IQM	2.66	3.44	5.00	3.51
			% Differe	ence			32.6	94.7	30.64

^{*} Client rock code/EBA rock code

The samples were analyzed using the following ALS Chemex laboratory methods:

- Prep 31 (Split off 250g and pulverize split to better than 85% passing 75 microns),
- Specific Gravity OA-GRA08A
- Grade 30g nominal sample weight

 Au-AA25
- Analytes & Ranges ME-ICP41

^{**} ALS Chemex re-sample value

EBA conducted a percent difference comparison (Equation 1) of the original AMB values against the analytical results provided by ALS Chemex. A percent difference is used to provide an absolute difference between the duplicate samples relative to their mean allowing meaningful comparison independent of the magnitude of the individual grades. The analysis was calculated using the following formula where, AMB is the original analytical result, and EBA is the duplicate analytical result obtained from ALS Chemex.

Equation 1: Percent Difference Comparison

$$\% \ Difference = \left| \frac{(AMB - EBA)}{(AMB + EBA)} \right| x100\%$$

Through discussion and observations made while on site, EBA confirms that AMB is using best practices in their exploration and sample collection procedures.

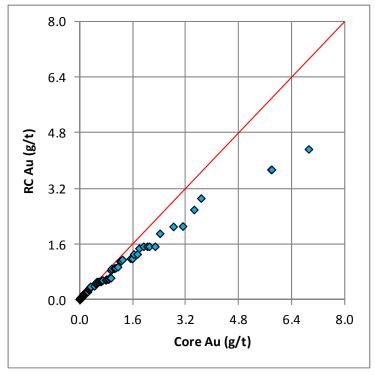
Results from the independent sample collection using percent difference analysis show that in 4 of the 6 samples tested, the AMB samples graded lower (Au g/t) than that of the EBA samples (ALS Chemex) analysis. AMB samples 1292725 and 1292722 were exception to this with +110.8% and +32.6% differences, respectfully.

Due to the irregularities found in the percent difference comparison for EBA sample 500413, sample re-analysis was requested at ALS Chemex. The results for the resampling indicate slight global increase in all reported gold grades. The results, however, do support consistent values and reproducibility of the grades as seen in Table 12-2.

Specific gravity (SG) for each sample was tested and fall within the ranges of values determined by AMB work. This analysis showed no major deviation in the results in terms of the tested lithologies and analytical results.

12.1.5.3 EBA Statement on Verification of AMB's Drill Data

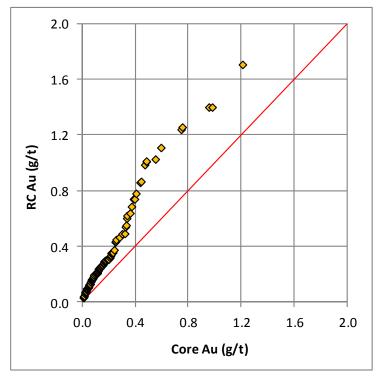
EBA sampling conducted on site indicated a slight variance in grade results for all samples collected on site. The positive percent difference found in hole BC11-321 was exceptionally high and may be accountable to a core recovery issue following sampling or to material shifting within the core box as the material was broken and integrity was quite poor. A number of factors could account for this deviation; however, it is not felt that a bias is present in the dataset.


Based on the visual inspection of core, review of sampling methodology and independent sampling, EBA feels that the results reported by recent AMB drilling is reliable and that inclusion of this data for mineral resource estimation is supported.

12.2 Data Verification by RMI

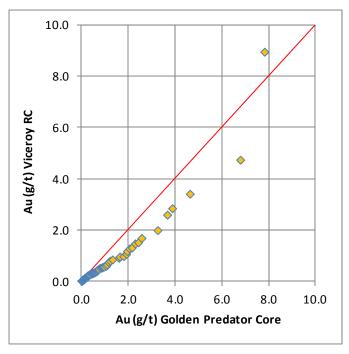
12.2.1 Verification of Drilling Methods by RMI

RMI spatially paired 6-metre-long diamond core composites with 6- metre-long reverse circulation (RC) samples for the Bohemian, Schooner, Fosters, West Big Rock, East Big Rock, and Classic-Lone Star deposits. The data were paired by lithology and oxidation constraints (i.e. oxidized intrusive material only). A similar pattern was observed for all but the Classic-Lone Star data where the diamond drilling data tended to be slightly higher grade than nearby RC samples. This relationship was found to be reversed for the Classic Zone which showed the RC samples to be higher grade than nearby diamond core samples.


Figure 12-4 is a quantile-quantile (QQ) plot that compares diamond core gold grades against RC gold grade samples. A maximum sample separation distance of 25 metres was used and both sample types represent oxidized intrusive material.

Source: RMI (2013)

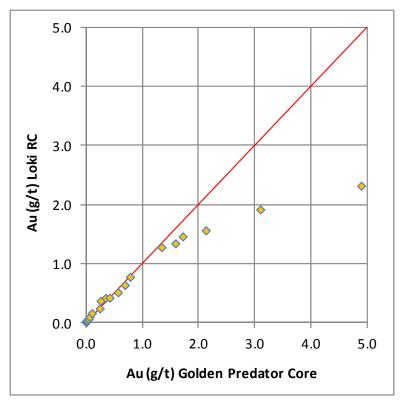
Figure 12-4 Plot Comparing Diamond Core and RC Samples (Bohemian Deposit)


The data in Figure 12-4 show that there is an apparent high bias associated with the diamond drilling sample data relative to nearby RC data. As mentioned above, this relationship was also seen with respect to the Schooner, Fosters, West and East Big Rock deposits. The opposite relationship was observed for the Classic deposit as depicted by the QQ plot shown in Figure 12-5.

Source: RMI (2013)

Figure 12-5 QQ Plot Comparing Diamond Core and RC Samples (Classic Deposit)

More specific gold grade comparisons were made by spatially pairing 6-metre drillhole composites (intrusive material only) that were collected by different companies using different methods. A maximum separation distance of 50 metres was used in pairing the two data types. Figure 12-6 is a QQ plot that compares AMB core samples (X-axis) against Viceroy RC samples (Y-axis) for the Bohemian deposit.

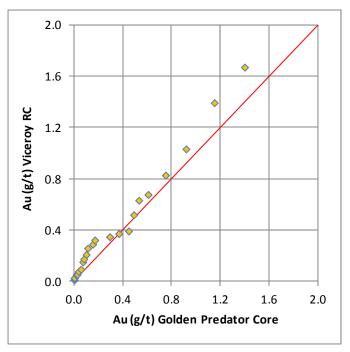


Source: RMI (2013)

Figure 12-6 QQ Plot Comparing AMB Diamond Core and Viceroy RC Samples (Bohemian Deposit)

The data in Figure 12-6 show that there is a low bias associated with the older Viceroy RC samples when that data is compared against the more recent AMB core samples.

Figure 12-7 is a QQ plot that compares AMB core samples (X-axis) against Loki RC samples (Y-axis) for the Fosters deposit.



Source: RMI (2013)

Figure 12-7 QQ Plot Comparing AMB Diamond Core and Loki RC Samples (Fosters Deposit)

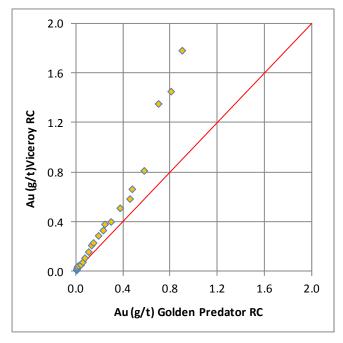

There is a reasonably close comparison between the older Loki RC samples (Y-axis) and the newer AMB core samples (X-axis) for gold grades below 1.5 g/t. above approximately a 1.5 g/t cutoff grade, the older data is biased low.

Figure 12-8 and Figure 12-9 compare older Viceroy RC gold samples against newer AMB core and RC samples, respectively for the East Big Rock deposit.

Source: RMI (2013)

Figure 12-8 QQ Plot Comparing AMB Diamond Core and Viceroy RC Samples (East Big Rock Deposit)

Source: RMI (2013)

Figure 12-9 QQ Plot Comparing AMB RC and Viceroy RC Samples (East Big Rock Deposit)

The QQ plot data in Figure 12-8 and Figure 12-9 that compare Viceroy RC data against AMB core and RC samples show that there is a slight high bias associated with the Viceroy RC data.

RMI compared diamond core sample data with nearby reverse circulation (RC) samples to see if there were any significant differences in gold grades. The original assay samples were composited to 6-metre lengths and then core and RC samples were spatially paired provided both samples types were collected from oxidized intrusive material. RMI notes that there is a slight to moderate high-grade bias associated with core hole samples collected from the Bohemian, Schooner, Fosters, West Big Rock, and East Big Rock deposits. The opposite relationship (i.e. RC samples were higher than core) was observed with the Classic-Lone Star deposit data. At this stage of exploration at Classic it is difficult to determine the cause behind these apparent differences. Groundwater is often the cause for poor RC sampling results but according to AMB's geologic staff, groundwater should not be an issue with the RC samples at Classic. Figure 12-10 contains six quantile-quantile (QQ) plots that compare RC gold grades (Y-axis) with core gold grades (X-axis). As mentioned above, core hole assays from most of the deposits tend to be higher than the RC data above a 0.5 to 1.0 g/t cutoff grade.

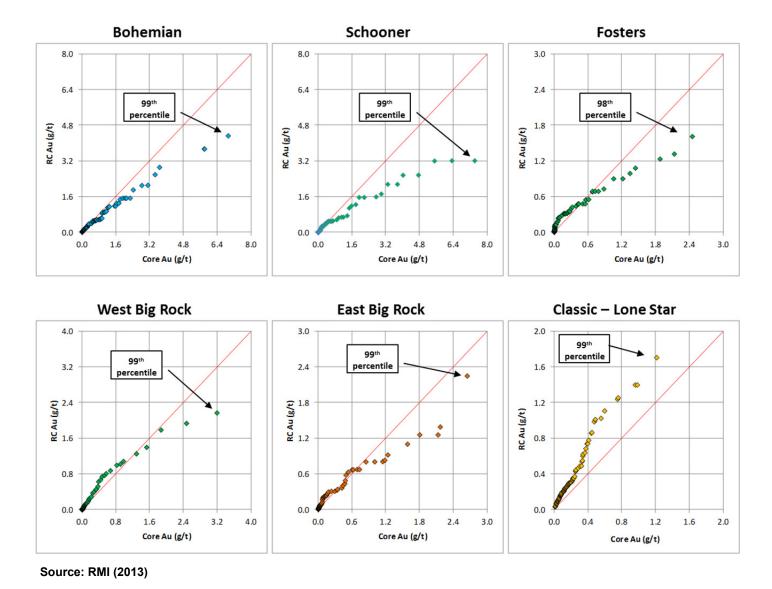


Figure 12-10 QQ Plots of RC and Core Gold Grades

RMI compared gold grades with core recovery for the Classic-Lone Star deposit to see if gold was being lost when recovery was poor. Gold grades are seen to increase marginally as core recovery increases. It is possible that the core samples are not as representative as RC samples at Classic but RMI is recommending that AMB drill three to five diamond holes next to existing RC holes to further examine biases.

Based on the sample studies that have been completed it is RMI's opinion that the core and RC samples are suitable to be used to estimate Mineral Resources for the Bohemian, Schooner, Fosters, West Big Rock and East Big Rock zones. Because of wider spaced drilling and the potential for biased RC samples, RMI elected to classify Classic and Lone Star as Inferred Resources.

RMI examined sampling and assaying procedures that were implemented by AMB and also verified that assay records from the 2012 drilling campaign were accurately entered into the project database. Various diamond core and RC sample data were spatially paired and then compared with one another to check for possible biases. In general, most of the spatially paired sample comparisons suggest that the older RC sample data are biased low when compared against AMB core data.

Based on RMI's verification procedures the gold assay data used for the Brewery Creek Project are suitable for estimating Mineral Resources. RMI recommends that AMB follow up on the apparent high-bias associated with Classic and East Big Rock RC samples by drilling two or three core holes adjacent to existing RC holes so that possible biases can be further analyzed.

12.2.2 RMI's Verification of AMB Drill Data

12.2.2.1 RMI's Site Visit

A site visit was conducted between October 16 and October 18 2012, by RMI geologist and Independent QP Michael Lechner, P. Geo. The purpose of the visit was to become familiar with the site layout and facilities, review core drilling procedures, review core logging/sample handling procedures, examine drill core and review electronic data collection practices. Mr. Lechner was accompanied by AMB Senior Geologist Bruce Otto and Project Geologist Tyler Bourne.

While on site, Mr. Lechner examined two diamond drill rigs that were operating in the Classic-Lone Star areas. The first drill rig that was visited was an A5 drill operated by Matrix Diamond Drilling Inc. (drillhole BC12-580). The hole was approximately 250 metres deep at the time of the visit. The drill site was clean and the core was correctly handled at the site. The second drill rig that was visited was operated by Kluane Drilling Ltd. (drillhole BC12-576). Both drill rigs appeared to be delivering nearly 100% recovery. Both drills were using NQ tools with 10-foot-long core barrels.

Portions of three recent and two older diamond drillholes were examined by Mr. Lechner while on site. Selected drillhole intervals from specified holes were compared against the original drill logs. Table 12-3 lists the holes and intervals that Mr. Lechner examined.

Table 12-3 Drill Core Samples examined by RMI

Drillhole	Resource Area	Depth (m)	Comments	
BC12-438	West Big Rock	41.5 to 76.50	Black argillaceous sedimentary rocks and LAQM	
BC12-440	West Big Rock	38.94 to 65.95	Intersection of +2 g/t LAQM (46.35 - 57.45)	
BC12-451	West Big Rock	29.20 to 60.25	Examples of low and high-grade LAQM mineralization	
DD95-0061	Fosters	2.60 to 25.70	Highly weathered/altered carbonaceous sedimentary rocks	
DD95-0062	Fosters	6.10 to 26.65	Highly altered well mineralized LAQM	

12.2.2.2 RMI's Verification of Assay Data

RMI verified 10% of the 2012 drillhole assays (from hole BC12-411 onward) by comparing electronic database gold assay records against signed assay certificates. Table 12-4 summarizes the drillholes that were audited by RMI.

Table 12-4 Drillhole Assay Samples Verified by RMI

Resource Area	Drillhole	No. Assays	Metres
Bohemian	BC12-418	48	95.1
Bohemian	BC12-423	60	112.77
Schooner	BC12-559	72	135.63
Schooner	RC12-2498	40	60.96
Fosters	RC12-2466	35	53.34
Fosters	RC12-2471	29	44.2
West Big Rock	BC12-411	65	120.39
West Big Rock	BC12-477	64	125.58
West Big Rock	BC12-478	78	142.32
East Big Rock	BC12-483	48	94.8
East Big Rock	BC12-546	77	137.16
Classic	RC12-2500	113	172.21
Classic	RC12-2513	197	300.23
Lone Star	BC12-580	185	340.46
Lone Star	RC12-2523	123	187.45
Grand Total	n/a	1,234	2,122.60

No gold assay database errors were discovered by RMI. Drillhole collar locations were compared against the provided topographic surfaces. Minor elevation differences were noted for some holes and are thought to be associated with reclaimed drill pads which made the collars appear to be slightly low.

12.2.2.3 RMI Statement Regarding Data Verification

RMI examined sampling and assaying procedures that were implemented by AMB and also verified that assay records from the 2012 drilling campaign were accurately entered into the project database. Various diamond core and RC sample data were spatially paired and then compared with one another to check for possible biases. In general, most of the spatially paired sample comparisons suggest that the older RC sample data are biased low when compared against AMB core data.

Based on RMI's verification procedures the gold assay data used for the Brewery Creek Project are suitable for estimating Mineral Resources. RMI recommends that AMB follow up on the apparent high-bias associated with Classic and East Big Rock RC samples by drilling two or three core holes adjacent to existing RC holes so that possible biases can be further analyzed.

12.3 Data Verification by Gustavson

12.3.1 Verification of Historical Data

To validate historical drilling, Gustavson performed a point validation analysis on the historical data. Historical data were used to estimate at gold grade value at the XYZ location of AMB samples using an Inverse Distance Squared method. The estimated values were then compared to the actual value of the AMB sample at that location. A correlation analysis was then performed on the estimated versus actual data. Point validation was restricted by major rock type (intrusive or sedimentary). The results of the correlation analyses were mixed, and Gustavson performed other analyses to confirm historical data. Gustavson next compared the historical drillhole and blasthole data on a bench by bench basis. This analysis showed that the two independent assay campaigns showed similar high grade zones in blastholes and nearby drillholes. Visual inspection showed a good correlation, though it indicated there might be down-hole drift in the drillholes. Gustavson also visually compared historical and AMB drillhole grades on a section basis. Again, high grade zones indicated in the historical data were matched by high grade assays in modern drilling. This visual inspection also showed that some of the previously noted discrepancies between historical and modern drilling may be due to the location of drilling campaigns. Historical campaigns generally targeted the core of the high grade portions of the deposits, while modern drilling has focused more on the periphery of the deposits. Modern drilling has also taken place after mining operations were begun, and therefore is affected by the removal of material that was present during past campaigns. There were no twin holes of historical and AMB drilling to compare. Given the analyses noted above, Gustavson is of the opinion that the historical data is appropriate for resource estimation.

12.3.2 Verification of Drill Data

Drillhole collar data were compared to the site topographic map to confirm that elevations are consistent. The survey data for each drillhole were also examined. Those drillholes containing greater than 5° variation in dip or azimuth, or containing greater than 1° per metre are verified by AMB, and corrected, if necessary. To ensure logging quality, AMB verifies assay and lithology data entries to ensure that data are available from top to bottom of drillhole, with no missing intervals or intervals exceeding the total depth of drillhole. Gustavson reviewed blasthole data compared to the site pre and post mining topography to check that elevations were consistent with those data.

Gustavson implements a data validation step to ensure that the Excel database received matches the actual lab assay certificates. Gustavson requires a 99% confidence level and minimum 4% confidence interval to consider a database of good enough quality for resource estimation. The AMB sample assay Excel database contains 3548 samples. Of the 502 samples versus assay certificate values checked, Gustavson found 45 errors. However, it was noted that in some cases the assay values had been rounded from three decimal places to two, which may account for some errors. This validation produced a 3% confidence interval at a 99% confidence level, which Gustavson believes is an acceptable error rate and that the data is valid.

12.3.3 Gustavson Site Visit

Gustavson QP, M.C. Newton, III, visited the site on June 4 and 5, 2013. During the site visit, Dr. Newton examined rocks in the Lucky, Golden, Kokanee and Pacific pits, took structural measurements, and collected three independent grab samples for gold assay. During the course of the visit, the samples remained in Dr. Newton's custody or vision and were delivered personally by Dr. Newton to ALS Chemex in Whitehorse, Canada. The samples were assayed by ALS's ICP21 and gravimetric methods. Results of these three samples are provided in Table 12-5 below. BC-1 and BC-2 were quartz-pyrite veined quartz monzonite and sample BC-3 was highly fractured but weakly altered felsic intrusive rock. The results of the Gustavson sampling independently verify AMB's drilling results.

Sample	Au	Latitude	Longitude	Elevation
Description	ppm	WGS84	WGS84	ft
BC-1, Lucky	1.175	64.05909	-138.18966	3024.222
BC-2, Golden	3.99	64.0656	-138.17179	2726.967
BC-3 Kokanee	0 044	64 05765	-138 21242	3192 956

Table 12-5 Independent Sample Results

During the course of the site visit, drill sites were examined, photographed and located by GPS. Locations matched coordinates in the database. At the drill sites examined by Gustavson, a concrete slab had been placed around pipe or rebar protruding from the hole and metal markers recorded hole number, azimuth and inclination of the hole.

Diamond core and RC cuttings from several holes, collected in multiple programs by several different mining and drilling companies, were examined. Core sample intervals were generally determined by natural geologic breaks, with no interval being larger than 1.5 metres. RC cuttings were sampled at 1.5 metre intervals. Core is stored in wooden boxes labeled with drillhole number and meterage. Sample intervals in core boxes are marked with stapled paper tags or metal tags. Mineralized intervals in core and RC cuttings were examined and correspond well with the AMB assay database. Core and RC cuttings are stored in covered buildings or boxes and are relatively safe from weather and secure as the road to the storage area is gated and locked.

12.3.4 Gustavson's Statement on Data Adequacy

It is the QP's opinion that the data presented are adequate for the purposes of this report.

13 Mineral Processing and Metallurgical Testing

Metallurgical testing of material from the Brewery Creek Project has been conducted with early reports completed in 1988 by Loki Gold Corporation and testwork by Kappes, Cassiday & Associates and Lakefield in the 1990's. Three sources of metallurgical information have been used to complete this technical study.

In 2012, ABM delivered drill core interval samples obtained from seven deposits located within the Brewery Creek Project to McClelland Laboratories Inc. (MLI) in Sparks, Nevada for a metallurgical study. The metallurgical study is nearing completion and included sample characterization, bottle roll testing and column leach testing. This work is being completed under MLI Job No. 3719 and data logs have been used for metallurgical interpretation of new material from various pits.

Metallurgical data have been extracted from an MLI draft report, MLI Job No. 3618, to estimate metallurgical performance of residue material from the existing heap leach pad. This study was conducted on sonic drill samples collected from the existing heap and delivered to MLI in October 2011.

Viceroy operated the Brewery Creek Project heap leach from 1996 through 2002 and operations reports from this period have been used in estimation of cyanide consumption.

The following review summarizes procedures used to conduct sample preparation, testwork and the metallurgical data developed from the column leach tests at MLI. SGS Metcon/KD Engineering (SGS) conducted the gold extraction projections using a metallurgical software program, METSIM©, for the column leach test data.

13.1 MLI Job No. 3619 Current Metallurgical Testwork

Thirty-two PQ diameter drill core composite samples from seven pits were subjected to head assay characterization, bottle roll testing and column leach testing. Samples for testing included areas of waste and low recovery as part of a variability study. AMB described each composite in detail, including rock type, and gave reasons for composite selection. Rock types for this study are summarized as follows:

- LAQM Limonitic Altered Quartz Monzonite
- AQM Altered Quartz Monzonite
- ARG Graphitic Argillite
- Syenite

13.1.1 Head Assay Analyses

The following Table 13-1 summarizes gold head assays conducted on the composite samples. This data was extracted from the bottle roll testing results provided by MLI on 21 December 2012.

Table 13-1 Drill Core Composites Gold Head Assay Results

	Metallurgical Tests			NaCN Sol.
Resource Area	Rock Type/Interval	Composite I.D.	Au Head Assay (g/t)	Au (%)
	LAQM/23-35m	BC12-01	2.17	94
	LAQM/70-82m	BC12-02	0.88	61
West Big Rock	AQM/50-60m	BC12-03	1.42	87
	ARG/51-59m	BC12-04	0.98	3
	LAQM/41-52m	BC12-27	1.59	94
	LAQM+ARG/28-41m	BC12-05	1.33	57
Foot Dia Dook	LAQM/5-15m	BC12-06	0.85	72
East Big Rock	LAQM/30-40m	BC12-07	0.38	64
	LAQM/66-75m	BC12-08	1.10	53
	LAQM/2-12m	BC12-09	0.26	65
	LAQM/16-30m	BC12-10	0.57	83
Lower Fosters	LAQM/15-28m	BC12-11	0.63	77
	LAQM+ARG/2-14m	BC12-12	1.94	86
	AQM/33-40m	BC12-13	4.23	12
	LAQM/18-30m	BC12-14	0.29	66
Dehamian	LAQM/30-42m	BC12-15	0.35	80
Bohemian	LAQM/2-14m	BC12-16	0.71	110
	LAQM/12-19m	BC12-17	0.35	103
	LAQM/7-19	BC12-18	0.44	80
Cohoonor	LAQM/19-31m	BC12-19	4.91	86
Schooner	LAQM/31-43m	BC12-20	3.30	96
	LAQM/34-53	BC12-28	6.27	45
	AQM/68-79m	BC12-21	1.25	4
	LAQM/12-25m	BC12-22	0.67	42
Massahaad	LAQM/25-37mm	BC12-23	0.42	9
Moosehead	AQM/37-49m	BC12-24	1.24	17
	AQM/63-78m	BC12-25	0.47	0
	AQM+ARG/78-91m	BC12-26	1.60	0
	Syenite/3-17m	BC12-29	0.29	93
Classis	Syenite /113-129m	BC12-30	0.65	68
Classic	Syenite/47-62m	BC12-31	0.64	103
	Syenite/152-170m	BC12-32	0.39	80

The gold grade of the composite samples varied from 0.26 to 6.27 grams per tonne. The sodium cyanide soluble gold assays varied from completely refractory, zero percent soluble, to completely amenable, 100 percent soluble.

13.1.2 Screen Analyses

Each composite sample was screened and stage crushed to approximately 80 percent passing 9.5 mm prior to bottle roll and column leach testing. These screen analysis are shown in Table 13-2.

Table 13-2 Drill Core Composites Head Screen Analyses

D A	Composite	Column			Weight P	assing (%)		
Resource Area	İD	ID	9.5mm	6.3mm	1.7mm	420µm	150µm	75µm
	BC12-01	P-1	81	56	26	13	8	6
	BC12-02	P-2	80	61	28	14	9	7
West Big Rock	BC12-03	P-3	79	54	23	11	6	4
	BC12-04	P-4	78	55	25	12	8	6
	BC12-27	P-27	78	49	20	9	6	5
	BC12-05	P-5	87	68	36	19	12	8
Foot Die Dook	BC12-06	P-6	85	64	33	17	11	7
East Big Rock	BC12-07	P-7	82	60	30	16	11	8
	BC12-08	P-8	80	47	19	8	5	4
	BC12-09	P-9	78	64	43	28	22	19
	BC12-10	P-10	83	62	30	14	8	6
Lower Fosters	BC12-11	P-11	78	57	28	15	9	7
	BC12-12	P-12	87	77	46	23	14	10
	BC12-13	P-13	78	50	20	9	5	4
	BC12-14	P-14	84	55	23	10	6	4
Debersier	BC12-15	P-15	79	45	16	7	4	3
Bohemian	BC12-16	P-16	85	60	28	13	8	6
	BC12-17	P-17	84	57	22	10	6	5
	BC12-18	P-18	78	52	23	11	7	5
Cohoonor	BC12-19	P-19	77	51	19	8	5	4
Schooner	BC12-20	P-20	84	59	24	11	7	5
	BC12-28	P-28	80	52	22	9	5	4
	BC12-21	P-21	77	50	21	10	6	5
	BC12-22	P-22	79	51	21	10	6	5
Massahaad	BC12-23	P-23	77	45	15	6	4	3
Moosehead	BC12-24	P-24	75	43	15	6	4	3
	BC12-25	P-25	79	52	19	9	5	4
	BC12-26	P-26	80	52	21	10	6	5
	BC12-29	P-29	81	63	32	12	5	3
Classic	BC12-30	P-30	78	51	24	11	6	4
Classic	BC12-31	P-31	84	61	33	17	9	5
	BC12-32	P-32	82	57	29	16	9	6

Two samples, both from Lower Fosters, showed greater than 10 percent passing 75 microns. In the column test program, only these samples were agglomerated with cement.

13.1.3 Bottle Roll Testing

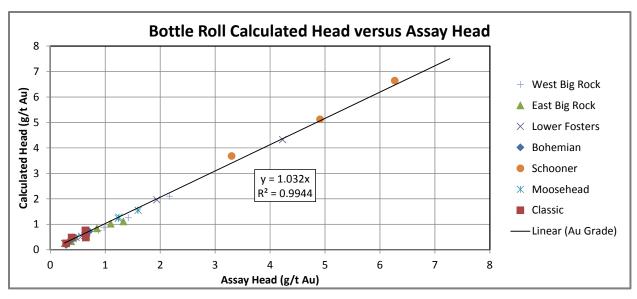
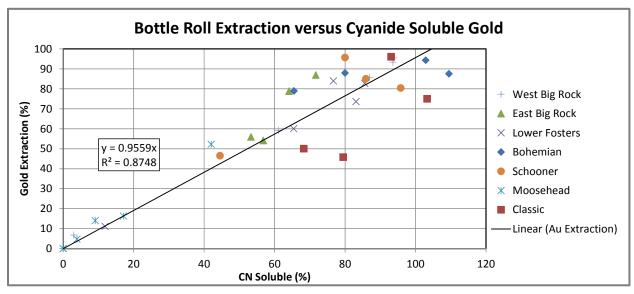

Bottle roll tests were conducted on 80 percent passing 9.5 mm composite test charges from each drillhole to determine gold extraction, gold leach kinetics and reagent consumption. The tests were conducted for 96 hours maintaining 40 percent solid, pulp pH between 10.8 and 11.2, sodium cyanide concentration of 1 g/l and pregnant leach solution samples were withdrawn at 2, 6, 24, 48, 72 and 96 hours to measure pH, cyanide concentration, gold and silver concentrations. At the end of 96 hours, the bottle roll tests were terminated and leached residues were filtered, washed, dried, weighed, and assayed for gold and silver. The reagent consumption and gold results are presented in

Table 13-3.

Table 13-3 Drill Core Composites Bottle Roll Tests

Metallurgical Tests		Gold G	rade	Reag Consur		
Resource Area	Composite I.D.	Calculated Head Assay (g/t)	Tail Assay (g/t)	NaCN (kg/t)	Lime (kg/t)	Gold Extraction (%)
	BC12-01	2.10	0.14	0.31	5.30	93
	BC12-02	0.76	0.31	0.34	3.10	59
West Big Rock	BC12-03	1.26	0.18	0.35	4.30	86
	BC12-04	0.88	0.82	0.45	4.20	7
	BC12-27	1.56	0.07	0.25	4.40	96
	BC12-05	1.11	0.51	0.36	4.00	54
E. (D) D	BC12-06	0.84	0.11	1.56	4.00	87
East Big Rock	BC12-07	0.33	0.07	0.16	3.30	79
	BC12-08	1.02	0.45	0.46	3.70	56
	BC12-09	0.25	0.10	0.37	3.60	60
	BC12-10	0.53	0.14	0.23	2.60	74
Lower Fosters	BC12-11	0.56	0.09	0.08	3.20	84
	BC12-12	1.96	0.34	0.20	4.40	83
	BC12-13	4.32	3.84	1.27	4.50	11
	BC12-14	0.19	0.04	0.30	3.80	79
Dehemien	BC12-15	0.33	0.04	0.35	2.90	88
Bohemian	BC12-16	0.72	0.09	0.28	3.10	88
	BC12-17	0.35	0.02	0.29	3.50	94
	BC12-18	0.47	0.02	<0.07	2.50	96
Cabaanar	BC12-19	5.12	0.77	0.28	3.10	85
Schooner	BC12-20	3.68	0.72	0.14	2.80	51
	BC12-28	6.64	3.55	0.35	2.80	47
	BC12-21	1.28	1.22	0.49	1.60	5
	BC12-22	0.67	0.32	0.30	2.40	52
Moosehead	BC12-23	0.43	0.37	0.78	1.90	14
Moosenead	BC12-24	1.23	1.03	0.40	2.40	16
	BC12-25	0.48	0.48	0.72	1.80	0
	BC12-26	1.55	1.55	0.65	1.80	0
	BC12-29	0.25	0.01	0.18	2.50	96
Classic	BC12-30	0.48	0.24	0.55	3.70	50
Classic	BC12-31	0.76	0.19	0.19	2.00	75
	BC12-32	0.48	0.26	0.40	4.20	46


The calculated gold head assays obtained from the bottle roll mass balance check very well with the head assays presented in Table 13-1 as shown in the Figure 13-1.

Source: Keane Mineral Engineering (2013)

Figure 13-1 Bottle Roll Head Assays

Bottle roll gold extraction varied widely from zero to 96 percent. The ratios of cyanide soluble gold to total, presented in Table 13-1, reasonably predict the variation in bottle roll gold extraction as shown in Figure 13-2.

Source: Keane Mineral Engineering (2013)

Figure 13-2 Bottle Roll Gold Extraction Results

13.1.4 Locked Cycle Column Leach Testing

A locked cycle column leach test program is being conducted on 80 percent passing 9.5 mm composite samples. A total of 32 column tests are in progress to determine gold extraction, leach kinetics and reagent consumptions. Each test charge weighed approximately 71 kg, with the exception of one test using a 34 kg test charge, and was either not agglomerated or agglomerated with either lime or cement and water to optimum moisture content before loading in the column.

The column tests have been under leach for at least 30 days on a leach-rest pattern followed by rinse and drain cycles. Some columns were still under leach by the time of this report preparation. Feed solution containing 1.0 g NaCN was applied at a rate of 0.005 gpm/ft2 and pregnant leach solutions volumes were measured daily and samples were collected and submitted for gold and silver analysis, pH and cyanide concentration. The pregnant leach solutions were pumped through a three stage carbon circuit for adsorption of dissolved gold values. Barren solution, with appropriate make-up reagent, was applied to the charges daily.

After the leach-rest cycles, wash cycles were conducted to remove residual cyanide and to recover dissolved gold values. At the end of the wash cycles, drain cycles were conducted to remove excess solutions from the residues. After leaching, washing, and draining, residues are unloaded from the columns, air dried, blended and split to obtain samples for a tail assay analyses.

Column test physical characteristics complete through the summary report used for this study are presented in Table 13-4:

Table 13-4 Drill Core Composites Column Leach Tests Physical Characteristics

				Passing		Mois	%) Apparent Densit			
Resource Area	Comp.	Test No.	Charge (kg)	100 mesh (%)	As Rec'd	For Aggl.	To Saturate	Retained	(t/m	
7 0			(9)	(70)	Nec u	Ayyı.	Saturate		Before	After
	BC12-01	P-1	71.48	6.0	0.5	0.5	9.1	9.4	1.35	
Mast Dia	BC12-02	P-2	70.96	7.0	0.4	0.4	8.7	8.5	1.37	
West Big Rock	BC12-03	P-3	71.75	4.3	0.4	0.4	8.9		1.46	1.50
	BC12-04	P-4	71.79	6.0	0.0	0.0	11.7	7.0	1.36	
	BC12-27	P-27	71.24	4.5	0.6	7.6	14.6		1.30	
	BC12-05	P-5	71.54	8.4	0.6	0.6	10.1		1.40	
East Big	BC12-06	P-6	33.79	7.4	0.4	0.4	7.1		1.45	1.45
Rock	BC12-07	P-7	71.33	8.3	0.4	0.4	6.4	19.5	1.47	
	BC12-08	P-8	71.27	3.7	0.4	0.4	8.5	8.0	1.46	1.53
	BC12-09	P-9	71.23	18.8	0.3	9.7	19.8		1.25	
	BC12-10	P-10	71.49	6.1	0.2	0.2	7.3	8.6	1.36	
Lower Fosters	BC12-11	P-11	68.81	7.0	0.3	0.3	7.7		1.29	1.38
1 03(013	BC12-12	P-12	71.51	10.3	0.3	10.0	17.0		1.23	
	BC12-13	P-13	71.52	4.1	0.1	0.1	6.7		1.42	
	BC12-14	P-14	71.83	4.3	0.0	6.7	13.3		1.38	
Dobomion	BC12-15	P-15	71.90	3.4	0.0	5.3	12.5		1.41	
Bohemian	BC12-16	P-16	71.89	6.3	0.0	6.6	12.9		1.35	
	BC12-17	P-17	71.97	4.8	0.0	6.6	14.2		1.36	
	BC12-18	P-18	71.91	5.1	0.0	6.2	14.0		1.36	
0-1	BC12-19	P-19	71.72	3.5	0.0	5.2	12.3		1.35	
Schooner	BC12-20	P-20	71.82	5.0	0.0	6.4	12.7		1.34	
	BC12-28	P-28	71.60	4.1	0.3	5.4	18.3		1.41	
	BC12-21	P-21	71.53	4.9	0.2	0.2	6.3	6.0	1.47	
	BC12-22	P-22	71.74	4.8	0.4	0.4	6.3		1.39	1.44
	BC12-23	P-23	71.40	2.8	0.3	0.3	6.2	5.9	1.37	
Moosehead	BC12-24	P-24	71.42	2.7	0.2	0.2	6.6		1.38	
	BC12-25	P-25	71.42	4.0	0.3	0.3	7.2	6.5	1.39	
	BC12-26		71.32	4.3	0.3	0.3	6.3	3.4	1.47	1.50
	BC12-29	P-29	71.08	3.2	1.0	7.3	13.1	10.6	1.44	
	BC12-30	P-30	71.39	3.8	0.6	6.1	19.0		1.43	
Classic	BC12-31	P-31	71.30	5.4	0.8	6.9	12.4		1.59	
	BC12-32	P-32	71.01	5.8	1.0	6.8	11.9		1.44	

Based on the results of the head screen analyses, agglomerate strength and stability tests and bottle roll leach tests, the column leach test charges were either blended with lime and loaded into columns at the as received moisture content, agglomerated with lime and loaded into columns, or agglomerated with cement and loaded into columns. Agglomeration with cement was conducted on two columns with size distributions

containing greater than 10 percent minus 100 mesh material, both from Lower Fosters. The column test data logs did not note any problems with solution permeability at the targeted irrigation rate of 0.005 gpm/ft². All column test charges were loaded into 6-inch diameter columns, with the exception of P-6 which used a 4-inch diameter column, to an initial height of approximately 10 feet. As received moisture contents were consistently low at 1 percent or less. Moisture under leach (to saturate) varied widely from 6 to 20 percent. Retained moisture values also varied widely with one unexpected result in Test P-7 where the retained moisture is three times greater than the saturation moisture. Interpretation of this result should be deferred until publication of the final MLI report. Initial dry bulk densities ranged from 1.3 to 1.6 t/m3. Similarities in characteristics are apparent for each pit except Lower Fosters, where more variation in moisture and particle distribution is seen between composites.

Table 13-5 summarizes the metallurgical results obtained from the column leach tests.

Table 13-5 Drill Core Composites Column Leach Tests

B4 - 4 - 11			Gold Head Grade		Reagent Consumption			Gold Extraction	
Metali	urgical Tests			(g/t)	NaCN	Lime	Cement	Indicated	Final
Resource Area	Composite I.D.	Test No.	Assay	Calculated	(kg/t)	(kg/t)	(kg/t)	(%) ⁽¹⁾	(%)
	BC12-01	P-1	2.15	2.13	0.99	4.8		94.4	95.3
W (D:	BC12-02	P-2	0.84		0.99	2.8		73.8	
West Big Rock	BC12-03	P-3	1.36		0.99	3.9		91.8	
ROOK	BC12-04	P-4	0.96	0.92	1.24	3.8		24.0	25.0
	BC12-27	P-27	1.58		0.78	4.0		96.5	
	BC12-05	P-5	1.28		1.59	3.6		74.8	
East Big	BC12-06	P-6	0.85		1.23	3.6		87.1	
Rock	BC12-07	P-7	0.36	0.37	1.06	3.0		88.9	86.5
	BC12-08	P-8	1.08	1.07	0.86	3.3		72.2	72.9
	BC12-09	P-9	0.25		0.96		6.0	67.0	
	BC12-10	P-10	0.25	0.36	0.77	2.3		104.0	72.2
Lower Fosters	BC12-11	P-11	0.61		0.68	2.9		73.6	
1 03(613	BC12-12	P-12	1.91		0.85		8.0	91.6	
	BC12-13	P-13	4.32		1.86	4.1		12.6	
	BC12-14	P-14	0.26		0.86	3.4		62.6	
Dahamian	BC12-15	P-15	0.34		0.82	2.6		84.8	
Bohemian	BC12-16	P-16	0.71		0.85	2.8		91.2	
	BC12-17	P-17	0.35		0.79	3.2		91.0	
	BC12-18	P-18	0.44		0.72	2.3		97.1	
0-1	BC12-19	P-19	5.00		1.37	2.8		90.4	
Schooner	BC12-20	P-20	3.44		1.26	2.5		83.7	
	BC12-28	P-28	6.47		1.37	2.5		47.4	
	BC12-21	P-21	1.27	1.29	0.61	1.5		1.6	1.6
	BC12-22	P-22	0.67		0.76	2.2		44.3	
Managhand	BC12-23	P-23	0.42	0.39	0.67	1.7		9.5	10.3
Moosehead	BC12-24	P-24	1.24		0.54	2.1		11.3	
	BC12-25	P-25	0.48	0.47	0.91	1.6		0.0	0.0
	BC12-26	P-26	1.59	1.65	0.46	1.6		0.0	0.0
	BC12-29	P-29	0.27	0.22	0.39	2.3		77.8	95.5
Ol- or	BC12-30	P-30	0.60		0.92	3.3		36.8	
Classic	BC12-31	P-31	0.69		0.74	1.8		79.9	
	BC12-32	P-32	0.43		0.81	3.8		37.4	

⁽¹⁾ Calculated based on average head assays.

All of the residue assays were not complete by the time of writing this review; therefore, gold extractions from the column tests are reported as indicated extraction, based on head assays, and as final extraction, based on heads calculated from measured extracted gold and tail assays. For the five tests that are complete the assay head and

calculated head values agree well with the exceptions of tests P-10 and P-29. Interpretation of these discrepancies should be deferred until MLI has completed a final report.

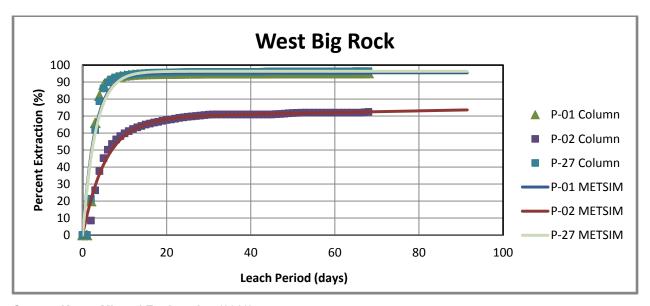
The preliminary sodium cyanide consumption ranged approximately from 0.67 to 1.37 kg/t. While cyanide consumption is material dependent, variation is also introduced as some of the columns are complete and some still under leach.

The reported levels of lime and cement consumption are indeed the quantities of lime and cement added to the samples during loading. Lime was not added for pH control to any of the columns while under leach and pregnant leach solution pH values were acceptably between 10 and 11 for a majority of the time with occasional early periods of 11 to 12, and isolated occurrences of pH greater than 12 or less than 9 at solution breakthrough.

The column leach also included samples that were outside of the proposed pit limits as well as samples from areas with known preg-robbing or refractory response as described by the Brewery Creek Project geology that were tested to observe the metallurgical response. The results of these columns tests were omitted in estimation of gold recovery and reagent consumption by pit. The omitted column tests are:

•	West Big Rock	BC12-03 Composite Sample
•	West Big Rock	BC12-04 Composite Sample
•	East Big Rock	BC12-05 Composite Sample
•	Lower Foster	BC12-12 Composite Sample
•	Lower Foster	BC12-13 Composite Sample
•	Moosehead	BC12-21 Composite Sample
•	Moosehead	BC12-24 Composite Sample
•	Moosehead	BC12-25 Composite Sample
•	Moosehead	BC12-26 Composite Sample

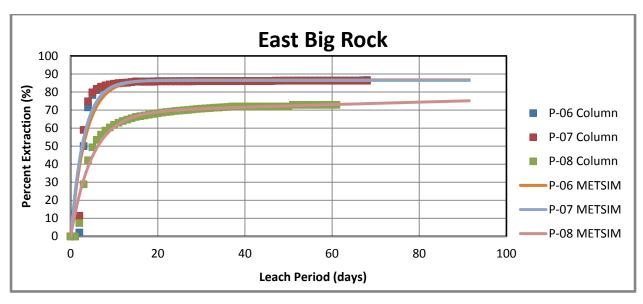
Additionally, due to poor metallurgical response from the Moosehead samples, this deposit has been removed from mine planning. Finally, as the Classis deposit remains under development, it also is not included in the mine plan.


Figure 13-3 through Figure 13-7 depict the actual column leach data and METSIM projections for gold leach extraction versus leach day. Only the column leach tests used for estimating project gold extraction levels are shown. The METSIM projections fit the

extraction data to Equation 2 in which "t" is leach day and "A1", "A2", "R1" and "R2" are constants derived from the METSIM software.

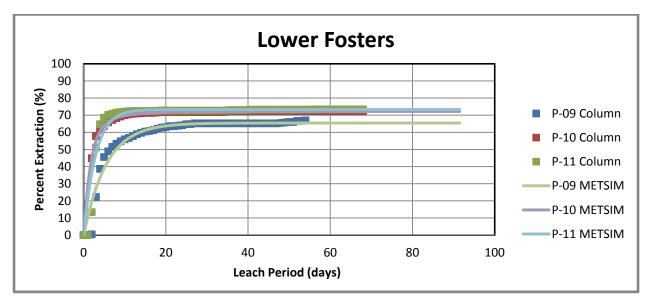
Equation 2: Extraction Calculation

Extraction =
$$(A1 * (1 - (1 - R1)^t)) + (A2 * (1 - R2)^t)$$


As shown, these equations model the column test data well and facilitate averaging of column test data.

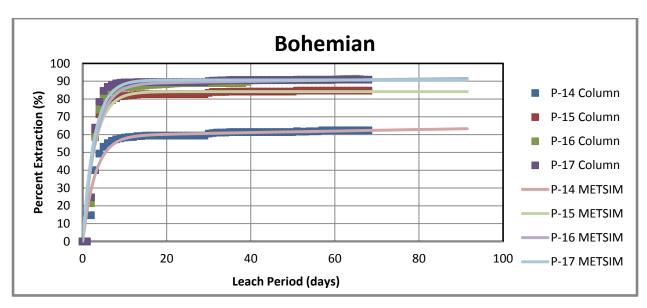
Source: Keane Mineral Engineering (2013)

Figure 13-3 West Big Rock Column Leach Gold Extraction


Two columns from West Big Rock attained 95 percent gold extraction and the third 74 percent.

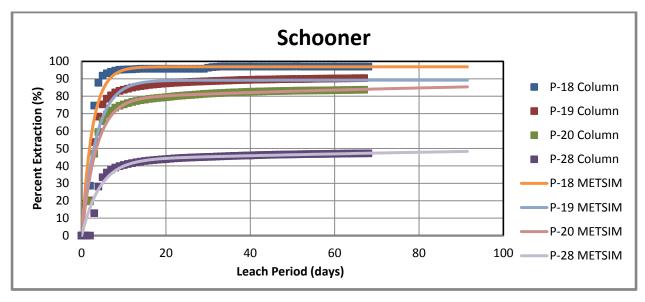
Source: Keane Mineral Engineering (2013)

Figure 13-4 East Big Rock Column Leach Gold Extraction


Two columns from East Big Rock attained 87 percent gold extraction and the third 72 percent.

Source: Keane Mineral Engineering (2013)

Figure 13-5 Lower Fosters Column Leach Gold Extraction


The three Lower Fosters columns attained gold extraction levels around 70 percent though P-11 exhibited a slower rate of leaching.

Source: Keane Mineral Engineering (2013)

Figure 13-6 Bohemian Column Leach Gold Extraction

Gold extraction from the four Bohemian columns ranged from 62 to 91 percent.

Source: Keane Mineral Engineering (2013)

Figure 13-7 Schooner Column Leach Gold Extraction

Gold extraction from the four Schooner columns ranged from 47 to 97 percent.

In all of the column tests, gold extraction was essentially complete after 30 days of leaching. Under the column test leach conditions, 30 days of leaching corresponds to an approximate cumulative leach solution to material ratio of 2.0 kl/t.

13.1.5 Prediction of Industrial Gold Production

The column test work was conducted in columns with the height of approximately 10 feet of depth, which is shorter than the 8 metre lift heights proposed for the industrial operation. The column leach tests were conducted at an approximate application rate of 5 gpm/ft2 (12.2 l/h/m2) which is slightly higher than the proposed 12 l/h/m2 for the industrial operation. The initial dry bulk density of the columns ranged from 1.3 to 1.6 t/m3. A constant value of 1.6 t/m3 has been proposed for the industrial operation. An intermediate leach solution pond has been proposed for the industrial operation which will allow stacking of leach solutions to increase pregnant leach solution grade. The proposed industrial leach cycle is as follows:

- Fresh material will be irrigated for 30 days using intermediate leach solution.
- Barren solution will be applied to the material for an additional 30 days.
- The material will be buried and leaching will continue for an additional 30 days from leach solution applied to the upper lift.

Under the proposed industrial leaching parameters and leach cycle (Table 13-6), the overall industrial cumulative applied leach solution to material ratio will attain 2.0 kl/t. For scaling purposes, no additional gold extraction is expected to occur when the leach solution to material ratio exceeds 2.0 kl/t, either as a buried lift or during the 135 days of winter when irrigation continues without the addition of fresh material to the leach pad.

Table 13-6 Industrial Heap Leach Design Parameters

Parameter	Units	Design
Lift Height	m	8
Dry Stack Bulk Density	t/m ³	1.6
Solution Application Rate	l/m²/h	12
Leach Stages: Primary Leach (ILS Solution Application)	days (S:M ratio)	30 (0.7)
Secondary Leach (Barren Solution Application)	days (S:M ratio)	30 (0.7)
Buried Lift Leach (PLS Application)	days (S:M ratio)	30 (0.7)
Total Leach Cycle	days (S:M ratio)	90 (2.0)

The gold extraction data has been extracted from the column tests when solution to material ratios attained approximately 0.7, 1.3 and 2.0 kl/t. Gold extraction has been

calculated from the METSIM projections at these exact solution to material ratios. Both of these are shown in Table 13-7. Also shown are the average results for each mineralized zone.

Table 13-7 Column Leach Tests and Modeled Gold Extraction

Metallurgical Tests			_	Leach Test Gold Extraction (%)			METSIM Projection Gold Extraction (%)		
	a.g.oa. rooto		Appro	ximate S:	M Ratio	S:M Ratio			
Resource Area	Composite I.D.	Test No.	0.7	1.3	2.0	0.7	1.3	2.0	
	BC12-01	P-1	93.9	95.0	95.1	92.6	95.4	95.4	
West Big	BC12-02	P-2	59.8	67.7	70.3	58.5	68.2	70.1	
Rock	BC12-27	P-27	93.8	95.5	96.0	92.7	96.2	96.3	
	Averaç	je	82.5	86.1	87.1	81.3	86.6	87.3	
	BC12-06	P-6	84.4	86.0	86.1	82.3	86.5	86.7	
East Big	BC12-07	P-7	84.6	85.9	85.9	83.5	86.3	86.4	
Rock	BC12-08	P-8	61.8	68.3	70.3	60.6	69.0	70.5	
	Average		76.9	80.1	80.8	75.5	80.6	81.2	
	BC12-09	P-9	55.9	63.0	65.2	54.8	63.7	65.1	
Lower	BC12-10	P-10	70.0	71.8	71.8	69.6	71.7	72.0	
Fosters	BC12-11	P-11	72.1	72.7	72.7	71.2	73.3	73.3	
	Averaç	je	66.0	69.2	69.9	65.2	69.6	70.1	
	BC12-14	P-14	58.4	59.4	59.4	57.7	60.2	60.6	
	BC12-15	P-15	81.7	82.7	82.7	81.8	84.1	84.1	
Bohemian	BC12-16	P-16	86.3	88.3	88.9	85.9	89.1	89.5	
	BC12-17	P-17	89.3	89.5	89.5	88.4	90.6	90.7	
	Averaç	je	78.9	80.0	80.1	78.5	81.0	81.2	
	BC12-18	P-18	95.3	95.8	95.8	95.1	96.9	96.9	
	BC12-19	P-19	83.7	87.3	88.4	84.2	88.9	89.2	
Schooner	BC12-20	P-20	75.3	79.5	81.1	75.1	80.2	81.2	
	BC12-28	P-28	40.5	43.9	45.0	39.9	44.3	45.2	
	Averaç	je	73.7	76.6	77.6	73.6	77.6	78.1	

Gold recovery to doré has been estimated for the individual deposits and shown in Table 13-8. The average values of the gold extractions from the METSIM projections were used as bases. These levels of extraction have been downgraded by 3.5 percent to reflect the attainable industrial heap leach extraction due to scale up (increased lift height, losses on the side of the heap and channeling effects) on finely crushed material. Additionally, gold extraction is downgraded by one percent to account for losses in the metal recovery processes.

Gold Extraction by Mineralized Zone (%) East Big **West Big** Lower **Bohemian** Schooner Rock Rock Foster Cumulative Extraction 30 days (0.7 kl/t) 81.3 75.4 78.4 73.6 65.2 60 days (1.3 kl/t) 86.6 80.6 79.5 81.0 77.6 90 days (2.0 kl/t) 87.3 81.2 70.1 81.2 78.1 Discount for Industrial Practice 3.5 3.5 3.5 3.5 3.5 Heap Leach Average Extraction 83.8 77.7 66.6 77.7 74.6 CIC/Goldroom Recovery 99.0 99.0 99.0 99.0 99.0 **Gold Recovery to Doré** 82.9 77.0 66.0 77.0 73.9

Table 13-8 Industrial Heap Leach Metal Recovery Estimates

13.1.6 Prediction of Industrial Reagent Consumption

Schooner

Lime and cement consumption are estimated based on results from the column leach tests. Consumptions for each deposit are estimated as averages of the column test results. As the column test consumptions were calculated as reagent added prior to loading the columns and no additional lime or cement was added during the leach cycles, these levels of consumption are independent of leach time. Results are shown in Table 13-9.

	Reagent Con	sumption (kg/t)
Resource Area	Lime	Cement
West Big Rock	3.87	-
East Big Rock	3.30	-
Lower Fosters	1.73	2.00
Bohemian	3.00	-

3.00

2.53

Table 13-9 Weighted Average for Lime and Cement from Column Tests

Sodium cyanide consumption from the bottle roll and column leach tests is shown in Table 13-10. In all cases the bottle roll consumption was lower than the column leach test consumption. This is in part due to the extended leach cycle of the column tests. Column test sodium cyanide consumption and the pregnant leach solution free sodium cyanide concentration, at the point when the applied leach solution to material ratio was 2 kl/t, are also shown in the table. At a 2 kl/t solution to material ratio, the overall average cyanide consumption is 0.66 kg/t and range from 0.49 to 0.85 kg/t. All column tests show high free cyanide in the pregnant leach solutions, 0.72 g/l on average, which is higher than would be targeted for an operating heap leach.

Table 13-10 Sodium Cyanide Consumption

Resource	Composite	Bottle Roll NaCN	Reported Column Test NaCN	Column Test at S:M Ratio = 2 kl/t			
Area	I.D.	Consumption (kg/t)	Consumption (kg/t)	NaCN Consumption (kg/t)	PLS NaCN Concentration (g/l)		
West Big	BC12-01	0.31	0.99	0.71	0.85		
	BC12-02	0.34	0.99	0.67	0.65		
Rock	BC12-27	0.25	0.78	0.49	0.70		
	Average	0.30	0.92	0.62	0.73		
	BC12-06	1.56	1.23	0.85	0.65		
East Big	BC12-07	0.16	1.06	0.70	0.65		
Rock	BC12-08	0.46	0.86	0.75	0.75		
	Average	0.73	1.05	0.77	0.68		
	BC12-09	0.37	0.96	0.72	0.75		
Lower	BC12-10	0.23	0.77	0.72	0.75		
Fosters	BC12-11	0.08	0.68	0.75	0.62		
	Average	0.23	0.80	0.73	0.71		
	BC12-14	0.30	0.86	0.69	0.75		
	BC12-15	0.35	0.82	0.67	0.80		
Bohemian	BC12-16	0.28	0.85	0.57	0.75		
	BC12-17	0.29	0.79	0.66	0.70		
	Average	0.31	0.83	0.65	0.75		
	BC12-18	<0.07	0.72	0.58	0.85		
Schooner	BC12-19	0.28	1.37	0.62	0.60		
	BC12-20	0.14	1.26	0.49	0.85		
	BC12-28	0.35	1.37	0.56	0.65		
	Average	0.26	1.18	0.56	0.74		

A review of the historical operational data reveals that in the final year of operation, 2000, the Brewery Creek Project consumed 0.34 kg/t sodium cyanide with a plant to date consumption of 0.21 kg/t². As these levels of consumption are more in line with the levels of consumption observed in the bottle roll tests, the average consumptions obtained from the bottle roll tests are used to estimate sodium cyanide consumption by deposit.

Tests were not conducted to determine if the gold extraction was sensitive to sodium cyanide concentration.

Gustavson Associates, LLC Brewery Creek_NI 43-101 TR on R_10Jan2014.docx

² Viceroy Minerals Corporation, Brewery Creek Monthly Report, December 2000, Reagent Consumption Report page 21.

13.2 MLI Job No. 3618 Reprocessing of Original Heap

The original work at the Brewery Creek Project processed an estimated 9.5 million tonnes of material on a truck dumped heap leach. This material is scheduled to be reprocessed along with the new material. A drilling program was conducted on the old heap and 18 sonic drillholes were punched down to a maximum depth of 75 ft. One hundred-seventy seven head samples were analyzed and composited into 28 samples for bottle roll analysis. The individual holes were then combined into 4 composite samples, RZ-1 to 4, and crushed to 9.5 mm, agglomerated, and column leached.³

Each drill core interval sample was analyzed for total gold and silver, cyanide soluble gold and silver, and preg-robbing potential of the carbonaceous minerals. Composite samples were reconstituted from the interval samples and subjected to bottle roll leach testing, vat leach testing and column leach testing. Bottle roll testing and column leach testing were conducted on composites prepared by mineralized zones to evaluate rehandling and crushing the residue material. Screen analyses were conducted on column composite sample heads and residual tails. Vat leach tests included fresh water rinsing followed by cyanide leaching to evaluate rinsing or re-leaching the existing residue material.

13.2.1 Reprocessed Material Sample Preparation

A total of 177 drill core interval samples were delivered to MLI on 21 October 2011 from the Brewery Creek Project. A majority of the drill core intervals were 5 ft long and weighed approximately 20 kg. There were 16 interval samples measured less than 4 feet in length and weighed between 2 kg and 20 kg. The interval samples were prepared according to the following procedures to generate test charges for the interval head assays and composite head assays.

- Each drill core interval sample was dried and the dry samples with 8 kg or more blended and split in half by coning and quartering methods.
- The interval samples with less than 8 kg of weight stage crushed to 80 percent passing 38 mm (100 percent passing 50 mm) prior to splitting.
- One half of the interval sample prepared in the previous stages was saved for further tests. The other half was stage crushed to 80 percent passing 9.5 mm (100 percent passing 12.5 mm).
- A 1,000 gram was split from each 80 percent passing 9.5 mm sample and submitted for the interval sample Au and Ag assays.

³ Memorandum from KD Engineering 5 Nov 2012, "Brewery Creek Reprocessing Existing Heap Leach"

- The un-crushed and 80 percent passing 38 mm materials prepared in the first two stages were combined to generate a total of 28 drillhole composite samples representing the upper and lower portions of the drillholes.
- The 60 to 60.6 feet interval from the drillhole BCS 6-2 was not included in these composites. It was suspected by the client that this 0.6 foot long interval had been mislabeled and/or included by mistake.
- A 15 kg split was taken from each composite for vat leach tests.
- The remaining composite samples were crushed to 80 percent passing 38 mm (100 percent passing 50 mm), blended and a 5 kg split was obtained by coning and quartering methods.
- Each 5 kg composite was stage crushed to 80 percent passing 9.5 mm and 1,000 gram test charges were split for composite head assays. The composite head assay analyses were conducted in triplicate.

The following paragraphs describe the steps used to generate composite test charges for stability tests, bottle roll testing and column leach testing.

- Composite samples prepared in the previous steps were blended by mineralized zone and test charges were split for agglomerate strength and stability tests (10 kg) and bottle roll testing (5 kg).
- The 5 kg split was crushed to 80 percent passing 9.5 mm (100 percent passing 12.5 mm) and 1,000 gram test charges were split for bottle roll testing and head assay analysis. Head assays were conducted in triplicate using 1,000 gram splits.
- The reject 38 mm material from each residue zone composites was blended and 90 kg splits were stage crushed to 80 percent passing 9.5 mm (100 percent passing 12.5 mm). From the 9.5 mm material 75 kg was split for column leach tests and the remaining material (~15 kg) was used for head screen analyses.

13.2.2 Reprocessed Material Column Leach Tests

Head assay splits from each interval and the composites were assayed for gold and silver content by conventional fire assay and geochemical methods. The cyanide soluble gold and cyanide soluble silver were determined by cyanide shake tests.

Physical characteristics for the column leach tests are shown in Table 13-11.

Sample Designation			Passing	Moisture, (weight %)			Apparent Bulk		
	Test No.	Charge (kg)	100 mesh (%)	As Rec'd.	for Aggl.	to Saturate	Retained	Density (t/m³)	
								Before	After
RZ-1	P-1	71.69	16.9	0.3	8.9	18.0	10.4	1.28	1.35
RZ-2	P-2	69.96	16.8	0.3	9.1	17.1	12.6	1.24	1.29
RZ-3	P-3	72.06	14.6	0.2	8.6	17.5	12.0	1.23	1.27
RZ-4	P-4	70.95	16.2	0.2	8.8	16.0	9.8	1.20	1.24

Table 13-11 Reprocessed Material Physical Characteristics

The high percentage of minus 100 mesh material indicates that cement should be used for agglomeration of the reprocessed material.

The results of the column leach tests conducted on the reprocessed material are shown in Table 13-12.

		Reagent Consumption			
Composite I.D.	Gold Extraction (%)	NaCN Cement (kg/t) (kg/t)			
RZ-1	42.9	1.54	5.75		
RZ-2	54.7	1.80	5.75		
RZ-3	53.6	1.87	5.75		
RZ-4	57.3	1.89	5.75		

Table 13-12 Reprocessed Material Column Leach Tests

The average gold extraction of 49.6 percent has been decreased to a proposed 45.0 percent for industrial heap leaching to account for the idealized conditions in a column leach test and ADR and refinery recovery. Cement consumption for the industrial heap leach is 5.75 kg/t. Sodium cyanide consumption was based on the original heap leach consumption rate noted in the Brewery Creek Project monthly reports and equal to the average consumption in the last year of operation x 1.25 safety factor, 0.212 x 1.25 = 0.265 kg/t, where new material was still being placed on the heap.⁴

Because of the previous issues at Brewery Creek Project, reprocessing will require sampling before crushing to eliminate any preg-robbing materials. It is estimated that this operational testwork will eliminate some of the tonnage on the old pad, and some of the tonnage will be left as a cushion layer to prevent damage to the old pad.

⁴ Viceroy Minerals Corporation, Brewery Creek Monthly Report, December 2000, Reagent Consumption Report page 21.

Additionally, the volume available on the old and new cells combined limits the amount of tonnage processed from the old pad. Parameters are shown in Table 13-13.

Description	Value	Units	Comments
Resource	4,774,000	t/h	Estimated
Grade	0.59	g/t	Mine Plan grade
Recovery	45	%	Test work ⁵
Lime Consumption	0	kg/t	Column Leach Tests
Cyanide Consumption	0.265	kg/t	Operational data
Cement Consumption	5.75	kg/t	Column Leach Tests

Table 13-13 Reprocessing Parameters

13.3 Industrial Gold Extraction and Reagent Consumption

Table 13-14 summarizes the levels of gold extraction and reagent consumption for the resource areas included in MLI job #3719 and the reprocessed heap. This table includes the estimated tonnage from each resource area. The weighted average gold extraction and reagent consumption have been used as bases for the process plant design criteria. The weighted average reagent consumption values have been used to estimate overall per tonne operating cost. The gold extraction results by deposit have been used in conjunction with the mine plan to estimate gold production.

Resource Area	Tonnes	Au Extraction (%)	NaCN (kg/t)	Lime (kg/t)	Cement (kg/t)
West Big Rock	1,256,700	82.9	0.30	3.87	0
East Big Rock	783,300	77.0	0.73	3.30	0
Lower Fosters	1,099,300	66.0	0.23	1.73	2.00
Bohemian	2,018,600	77.0	0.31	3.00	0
Schooner	1,428,500	73.9	0.26	2.53	0
Old Heap	4,774,000	45.0	0.27	0	5.75
Weighted Average	11,360,400	66.6	0.30	1.67	2.61

Table 13-14 Weighted Average Reagent Consumption

Run-of-Mine size distribution is assumed based on visual inspection of materials on the pad and in the mined-out pits.

Gustavson Associates, LLC
Brewery Creek_NI 43-101 TR on R_10Jan2014.docx

⁵ "Report on Heap Leach Residue Testing, MLI Job No. 3618", Dec. 19 2012, McClelland Laboratories, Inc.

13.4 Crusher Work Index and Abrasion

Samples of drill core were submitted to Phillips Enterprises LLC for bond impact and abrasion index testing. The results are summarized in Table 13-15.

Crusher Work Index Abrasion Resource Area Sample ID (kW-hr/mt) kW-hr/short ton Index **WBR** 4.96 0.0908 West Big Rock 4.50 0.0390 East Big Rock FBR 5.33 4.83 **Lower Fosters** LF 9.82 8.91 0.0308 **BOH Comp 14-17** 12.97 11.76 0.0391 Bohemian

Table 13-15 Work Index and Abrasion Results

Work and abrasion indices are used to size crushing machines and to estimate the wear incurred during operations.

13.5 Historical Mine Pits

The Brewery Creek Project property contains historical pits that were mined until early 2000. These pits, Kokanee, Golden, Pacific, Blue, and Lucky, were not investigated and any potential identified will require additional metallurgical testing.

13.6 Recommendations

Additional testwork is recommended to define the following:

- Crush and abrasion indices for Schooner and Classic deposits
- Load permeability study by resource area to confirm irrigation rate and proposed ultimate lift height
- Column test work at varying sodium cyanide concentrations to confirm cyanide consumption assessment
- Column test simulating the three leach stages used in the design: primary leach cycle, secondary leach cycle, buried lift cycle.
- Historical pits with resource potential should be drilled and metallurgical testing performed.

Upon completion of the ongoing column test program, a thorough analysis of the column test data is recommended.

14 Mineral Resource Estimate (Item 14)

A total of fifteen Mineral Resource estimates are presented in this report which have been prepared or validated independently by three independent Qualified Persons, Michael J. Lechner, P. Geo., of RMI, James Barr, P. Geo., of EBA, and D. Hulse, P.E., of Gustavson. Mr. Hulse, QP for Gustavson Associates, verifies that all resources reported are for Northern Tiger Resources (NTR) and no other business entity.

AMB prepared mineral resource estimates for the Pacific-Blue (PABL), Kokanee-Golden (KOGD) and Lucky (LU) resource areas which were verified by Gustavson. D. Hulse is the responsible QP for the KOGD, PABL, and LU resource estimates. These estimates are presented in Section 14.1, 14.5, and 14.6.

Mr. Lechner prepared the Mineral Resources for the Bohemian (BH), Schooner (SC), Lower Fosters (FS), West Big Rock (WB), East Big Rock (EB), Classic (CL), and Lone Star (LS) deposit, and for the historical heap leach pad material. M. Lechner is the responsible QP for the BH, SC, FS, WB, EB, CL, LS and heap leach pad resource estimates. These estimates are presented in Sections 14.2, 14.3., 14.5, and 14.6.

Mr. Barr prepared mineral resource estimates for the North Slope (NS) and Sleeman (SL) deposits. J. Barr is the responsible QP for the NS and SL resource estimates. These estimates are summarized in Section 14.4, 14.5, and 14.6.

Figure 14-1 shows the location of the fourteen block models. The heap leach pad is not shown.

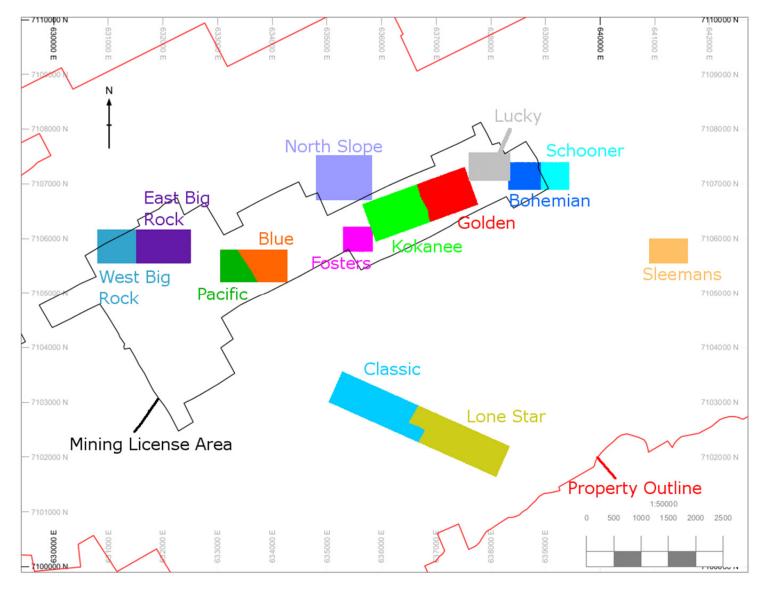


Figure 14-1 Location of All Resource Area Block Models

14.1 Kokanee, Golden, Pacific, Blue, and Lucky Deposits

The Brewery Creek Project mineral resource estimates for the past producing Pacific-Blue (PABL), Kokanee-Golden (KOGD) and Lucky (LU) resource areas were generated by Bruce Otto and Mark Shutty from AMB and were verified by Gustavson.

Drilling in the above mentioned resource areas consists of 1327 core and RC drillholes which Gustavson is of the opinion provide sufficient data on which to base an indicated and inferred mineral resource estimate.

14.1.1 Deposit Geology Pertinent to Resource Estimation

The Brewery Creek Project deposits exhibit characteristics of both epithermal type and intrusive-related gold deposits. Gold mineralization consists of fracture-controlled quartz stockwork in both siliciclastic and intrusive rocks along an east-northeast striking, moderately south dipping structural trend (BCRT). Altered intrusive rocks are typically the preferred host for gold mineralization, however gold mineralization at the Pacific deposit exhibits a strong preference for a siltstone host.

AMB constructed a probabilistic lithology model of each target area based on lithology information from drillhole logs. Logged sample intervals were used to estimate the majority lithology, intrusive (1) or sedimentary (2), throughout each deposit and code these values directly to the block model.

Oxidation generally conforms to surface topography but penetrates deeper along structures into altered intrusive rocks and is also noted deeper in pyritized sedimentary rocks at or near intrusive contacts. Because of the multi-dimensional and somewhat localized occurrence of logged oxidation in drill core/cuttings an all-inclusive RedOx surface was neither practical nor possible to construct. As such, a probabilistic indicator oxide model was constructed to completely capture the complex occurrence of oxide material. The procedure codes all eligible blocks as oxide or sulfide via a simplistic and conservative RedOx surface, constructed to envelope all near surface oxide material, then overprints deeper sulfide coding where intrusive lithologies having a greater than 50% probability of being oxidized are encountered.

Viceroy mined but only partially backfilled and reclaimed shallow pits within all three resource model areas. An ultimate pit surface inherited by AMB from Viceroy was used in conjunction with a comprehensive blast drill database to construct a mined surface. LiDAR data points, acquired in 2011 and 2012 by AMB, were used to generate a current topographic surface. All blocks within the model were coded with a percent (below) topo value. And, blocks residing below the topographic surface but above the mined surface were coded as backfill material, making them ineligible for gold grade estimation.

AMB's models consist of generalized structurally bound, sediment/intrusive lithology models coded to account for oxide/sulfide and backfill material types. Gold estimation was conducted using inverse distance (ID) method and validated with nearest neighbor (NN) method for eligible blocks meeting the criteria of residing below the present topographic surface and having an assigned intrusive or sediment rock type.

14.1.2 Data Used for Estimation

AMB created a 3D block model of the mineral resource based on current and historical data. The resource estimate is divided into three areas consisting of 5 targets. The Kokanee-Golden (KOGD) model consists of the Kokanee (KO) and Golden (GD) targets; the Pacific-Blue (PABL) model consists of the Pacific (PA) and Blue (BL) targets, and the Lucky (LU) model consists of the Lucky (LU) target. Drillhole data used for estimation are summarized in Table C-1, Appendix C.

The drillhole database contains 1327 drillholes with assay values that fall within the 3 model areas. Drillhole location detail by resource area is shown in Figure 14-8, Figure 14-11, and Figure 14-13.

A statistical analysis of the drillhole samples is presented in Table 14-1.

Resource Area	Number Samples	Min	Max	Mean	Std. Dev.	Median
KOGD	30675	0.0025	27.36	0.400	1.203	0.05
PABL	10695	0.0001	24.20	0.483	1.416	0.06
LU	6419	0.0025	27.50	0.489	1.516	0.05

Table 14-1 Sample Gold Assay Statistics (Gold grades reported in g/t)

14.1.3 Bulk Density

Bulk density (specific gravity, SG) was assigned on a block by block basis and determined by the majority lithology and oxidation state of the block. For blocks that were modeled in the oxide zone, a specific gravity of 2.57 g/cm³ was assigned for both sedimentary and intrusive lithologies. Within the sulfide zone, blocks modeled with an intrusive lithology were assigned a SG of 2.64g/cm³ and blocks modeled with a sedimentary lithology were assigned a SG of 2.67 g/cm³. All blocks that were modeled as backfill were given a SG of 1.8 g/cm³.

14.1.4 Methodology

AMB constructed a 3D block model for each of the three resource areas in MineSight ® modeling software. Each resource area was broken down into structural domains to accommodate local anisotropy during estimation. The KOGD area contains 6 structural domains, the PABL area contains 7 structural domains, and the LU area contains 2 structural domains. Search ellipse orientations for these structural domains are specified in the modeling parameters section, Table 14-6.

No discreet higher grade areas were modeled for the resource estimate. The structural and lithologic domains were instead used to constrain estimation. Lithologic domains (LDMN) were used to constrain gold estimation by way of an intrusive or sediment block coding value. In lieu of constructing deterministic 3D wireframes representing the two major rock types, a probabilistic, categorical indicator block modeling method has been used to model lithologic data. The process first uses an ID3 interpolation of uncomposited major rock type values to estimate lithology for all blocks within the defined search ellipse. The lithology type having the highest probability is assigned to

each block. A code matching restriction requiring only blocks and samples having like coded lithology was then used in gold estimation, i.e. intrusive samples can only be used to estimate an intrusive coded block.

Contact plots comparing intrusive (1) and sediment (2) major rock categories against the Au variable clearly demonstrate the existence of a distinct boundary between these grouped lithologies and lend support to LDMN stationarity. An example contact plot is shown in Figure 14-2, demonstrating Au affinity for an intrusive host and occurrence of elevated values at the sediment-intrusive contact.

Structural domains (SDMN) were established to distinguish areas having continuity of mineralization, typically within a fault-bound space. Each domain has a unique orientation for the purpose of optimizing search parameters within the model during the estimation procedure. AMB utilized oriented search ellipses based on structural trends within each target and resource area. All estimations were done using an Inverse Distance methodology with a power of 3 (ID3).

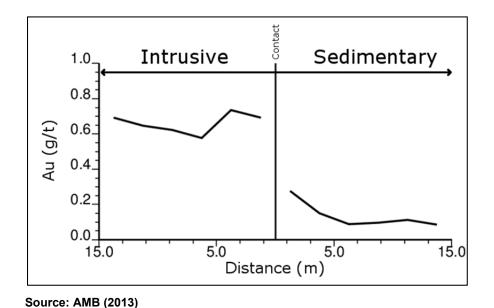


Figure 14-2 Lucky Area Contact Plot

All block models used blocks that are 6 metres along strike, 6 metres normal to the structure, and 6 metres high. Each of the blocks was assigned attributes of gold grade, weighted rock density, structural domain (SDMN), and majority rock type. Block model parameters are shown in Table 14-2.

Table 14-2 Block Model Parameters

Resource Area		Origin (UTM m)	Number of Blocks	Block Size (m)	Rotation
	Х	635900	330	6	0
KOGD	Υ	7105940	120	6	0
	Z	700	70	6	-20
	X	633050	204	6	0
PABL	Y	7105200	97	6	0
	Z	560	60	6	0
	Х	637600	125	6	0
LU	Υ	7107050	85	6	0
	Z	600	75	6	0

14.1.5 Capping of Assays

An assessment of high-grade Au outliers within the raw sample population was conducted for each resource area using descriptive statistics, histograms, cumulative probability plots and decile-percentile worksheets. Cap values were applied to outliers prior to compositing samples. Cap values are shown in Table 14-3. An example cumulative probability plot for the KOGD resource area is shown in Figure 14-3.

Table 14-3 Gold Cap Values

Resource Area	Au Cap (g/t)			
PABL	8.5			
KOGD	16.0			
LU	9.5			

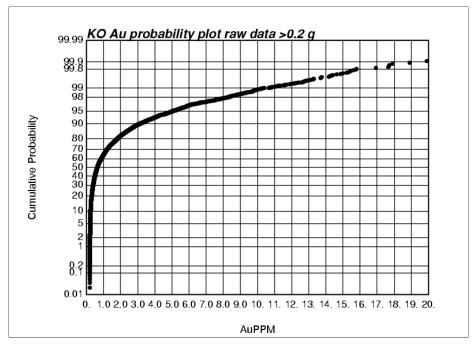


Figure 14-3 KOGD Area Raw Au Sample Cumulative Probability Plot

14.1.6 Compositing

Drillholes were composited at nominal 6 metre down-hole intervals honoring lithologic contacts. Thus, composites are as close to 6 metres as possible, but always end at a lithologic contact. Partial intervals less than 3 metres length were merged with neighboring intervals. The 6 metre composite length was chosen, along with the 6 metres x 6 metres x 6 metres SMU block size for consistency between AMB and RMI resource models. Composites were back-marked for SDMN and LDMN using the 3D block models created previously. Statistics for the capped and composited samples are presented in Table 14-4.

Table 14-4 Composite Gold Assay Statistics (Gold grades reported in g/t) Zone

	Number Samples	les Min Max		Mean	Std. Dev.	Median
KOGD	9653	0.002	15.46	0.405	1.041	0.063
PABL	3616	0.000	8.50	0.450	1.006	0.077
LU	1972	0.002	7.50	0.421	0.892	0.065

14.1.7 Variography

AMB conducted a statistical analysis of assay data within the each Resource Area. In the Lucky area, it was determined through variography that the down-dip range of the gold grade continuity was 70 metres. The continuity along strike was 70 metres. The search ellipse ranges in the PABL and KOGD Resource Areas, 80 metres along strike and 40 metres down-dip, were determined by variography conducted previously at other, similar BRC district deposits. The variograms from the LU resource area are shown in Figure 14-4 and Figure 14-5.

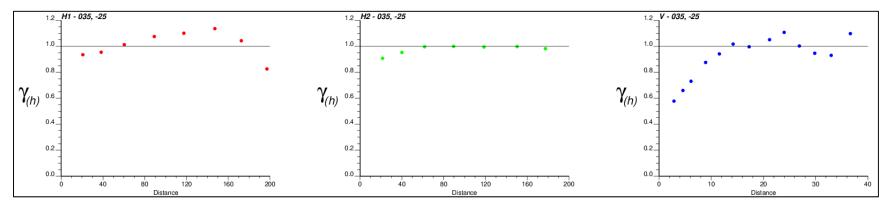


Figure 14-4 Pairwise Relative Experimental Variograms within Horizontal and Vertical Directions for all Samples within SDMN1

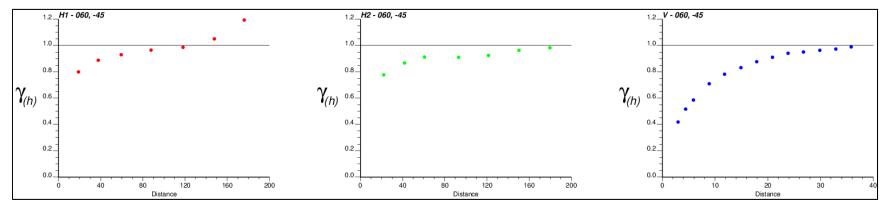


Figure 14-5 Pairwise Relative Experimental Variograms within Horizontal and Vertical Directions for all Samples within SDMN2

14.1.8 Estimation

Within each area, blocks were estimated using only composites from the same lithologic and structural domains (KOGD and PABL only). For example, a block in structural domain 1 with a majority lithology of sedimentary will be estimated using only composites back-marked as structural domain 1 from the 3D structural model and marked as in the sediment lithology domain from the 3D lithology model. Essentially lithologic domains are hard boundaries for grade estimation. The resource was estimated in 3 passes for all blocks. A three-pass interpolation was utilized to estimate Au via an Inverse Distance method (ID) within each structural domain. Each pass searches progressively less distance; the liberal first pass fills the model with widely spaced data, much of which will contribute to the inferred category. The second pass tightly constrains the interpolation and forms the basis for much of the indicated category. The third pass constrains the interpolation to within a block or two of the composite data and assures that the blocks closest to the drillholes accurately portray the composite values. The estimation parameters are listed in Table 14-5 and Table 14-6.

Table 14-5 Block Estimation Parameters

Resource Area		1 st Pass	2 nd Pass	3 rd Pass
	Primary Axis (metres)	80	40	3
	Secondary Axis (metres)	40	20	3
	Tertiary Axis (metres)	20	15	3
KOGD	Min # Composites	3	2	1
	Max # Composites	8	8	8
	Max Composites per Drillhole	2	2	1
	ID Power	3	3	3
	Primary Axis (metres)	80	40	3
	Secondary Axis (metres)	40	20	3
	Tertiary Axis (metres)	20	15	3
PABL	Min # Composites	3	2	1
	Max # Composites	8	8	8
	Max Composites per Drillhole	2	2	1
	ID Power	3	3	3
	Primary Axis (metres)	70	35	3
	Secondary Axis (metres)	70	35	3
	Tertiary Axis (metres)	18	9	3
LU	Min # Composites	2	3	1
	Max # Composites	8	8	8
	Max Composites per Drillhole	2	2	1
	ID Power	3	3	3

Table 14-6 Structural Domain Estimation Parameters

Resource Area	Structural Domain	Azimuth of Primary Axis	Dip of Secondary Axis
	1	110	35
	2	75	45
KOCD	3	45	55
KOGD	4	60	35
	5	45	45
	6	75	35
	1	70	40
	2	65	50
	3	90	55
PABL	4	90	55
	5	40	30
	6	50	25
	7	50	25
LU	1	35	30
LU	2	60	45

14.1.8.1 <u>Estimate Validation</u>

The model was first evaluated by comparing the composite statistics to the block model statistics for each structural domain and each lithology domain in each target area. Results are shown in Table 14-7.

.

Table 14-7 Descriptive Statistics for Gold in Composite Samples and Model (Gold grade reported in g/t)

Resource	Structural	Lithology		Com	posites			Bloc	ck Model	
Area	Domain	Domain	Min	Max	Mean	Std. Dev.	Min	Max	Mean	Std. Dev.
	_	1	0.002	7.800	0.224	0.571	0.002	3.560	0.146	0.290
	1	2	0.002	4.000	0.103	0.372	0.003	1.354	0.046	0.071
	•	1	0.002	15.460	0.331	0.804	0.002	10.617	0.282	0.458
	2	2	0.002	3.540	0.083	0.248	0.002	3.540	0.042	0.070
	3	1	0.007	5.213	0.386	0.670	0.010	4.413	0.422	0.535
KOOD	3	2	0.003	3.080	0.128	0.347	0.004	1.496	0.055	0.130
KOGD	4	1	0.002	7.390	0.234	0.551	0.003	7.390	0.199	0.300
	4	2	0.002	2.420	0.105	0.238	0.002	2.420	0.056	0.106
	5	1	0.002	7.270	0.321	0.793	0.002	6.340	0.243	0.453
	5	2	0.002	4.700	0.138	0.430	0.002	2.717	0.083	0.177
	6	1	0.002	7.301	0.266	0.683	0.002	7.301	0.191	0.439
		2	0.002	11.173	0.168	0.695	0.002	3.298	0.071	0.138
	1	1	0.010	1.930	0.364	0.343	0.010	1.930	0.376	0.153
	I	2	0.010	5.086	0.376	0.675	0.010	4.040	0.234	0.327
	2	1	0.040	2.380	0.837	0.886	0.058	2.380	0.856	0.673
	2	2	0.000	5.227	0.313	0.671	0.000	5.227	0.220	0.435
	3	1	0.002	1.110	0.171	0.266	0.002	1.084	0.200	0.228
	3	2	0.000	2.655	0.248	0.452	0.002	2.553	0.159	0.236
PABL	4	1	0.000	3.443	0.852	1.003	0.000	3.443	0.563	0.708
FADL	Ŧ	2	0.000	3.991	0.191	0.711	0.000	3.991	0.127	0.355
	5	1	0.002	1.960	0.089	0.187	0.002	1.921	0.106	0.189
	5	2	0.002	3.141	0.173	0.368	0.002	2.740	0.105	0.152
	6	1	0.000	7.402	0.616	0.949	0.000	7.402	0.465	0.553
	0	2	0.000	8.500	0.509	1.080	0.000	6.877	0.234	0.443
	7	1	0.010	0.490	0.080	0.129	0.010	0.199	0.035	0.039
	,	2	0.010	0.531	0.043	0.095	0.010	0.414	0.042	0.067
	1	1	0.010	7.500	0.681	1.080	0.010	7.057	0.487	0.627
LU	ı	2	0.005	5.210	0.169	0.473	0.006	5.013	0.071	0.208
	2	1	0.002	7.500	0.493	0.997	0.002	6.243	0.339	0.573
	2	2	0.002	4.930	0.112	0.446	0.002	4.930	0.068	0.175

The model was validated by evaluating the blocks against actual composite assay data to determine if the estimated blocks fit the grade and parameters of the deposit. A cross section for each resource area displaying the block model gold content with the composite gold data is presented in Figure 14-6, Figure 14-7, Figure 14-9, Figure 14-10, and Figure 14-12. Locations of drill holes and sections given in Figure 14-8, Figure 14-11, and Figure 14-13.

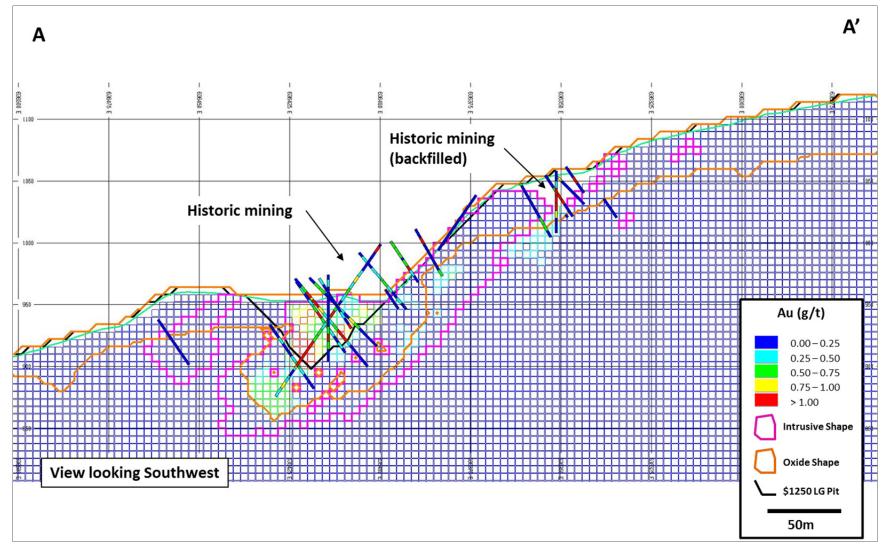


Figure 14-6 Validation Section A-A' of Kokanee Block Model (See Figure 14-8 for Location)

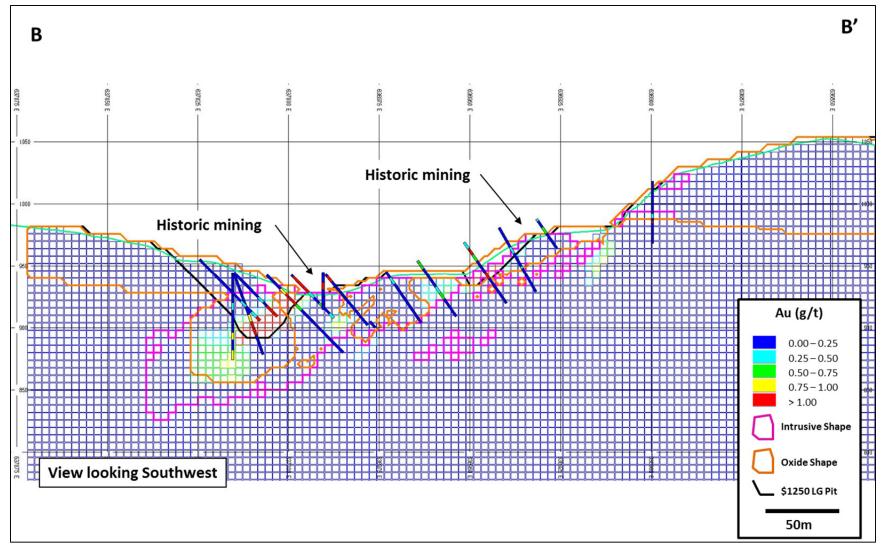


Figure 14-7 Validation Section B-B' of Golden Block Model (See Figure 14-8 for Location)

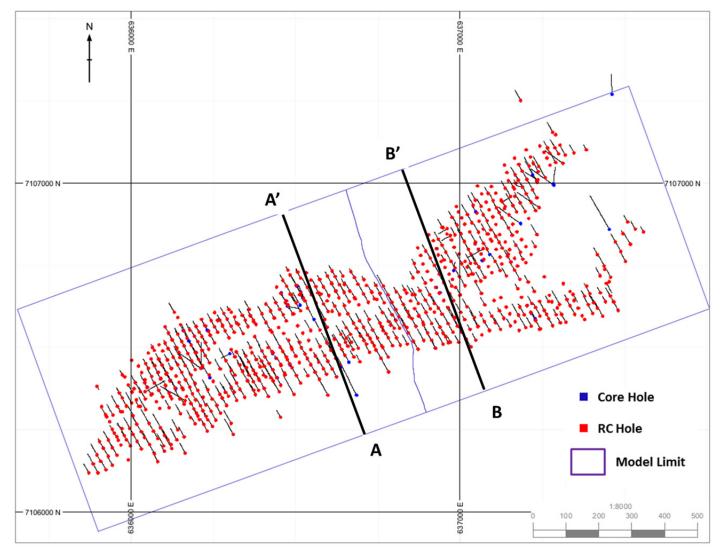


Figure 14-8 Detailed Drill Hole Locations of KOGD and Location of Cross Sections A-A' and B-B'

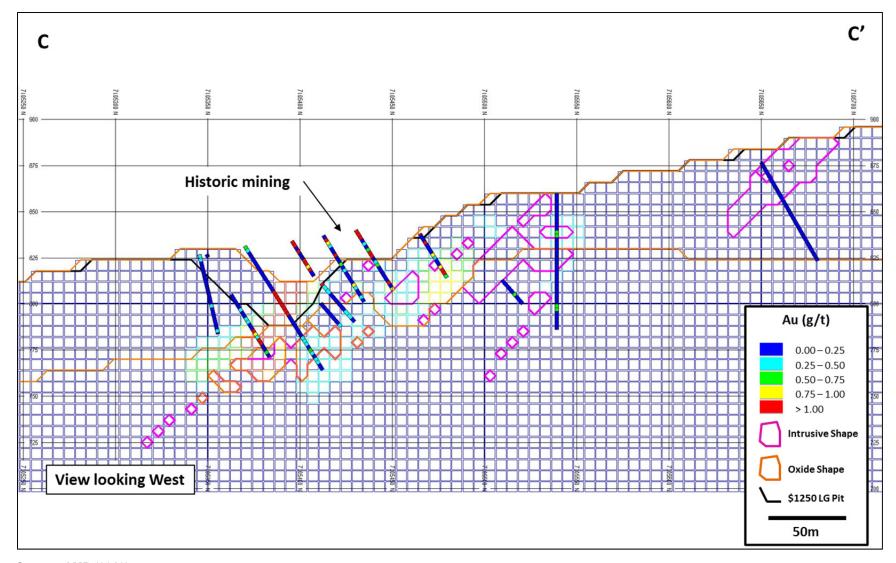


Figure 14-9 Validation Section C-C' of Pacific Block Model (See Figure 14-11 for Location)

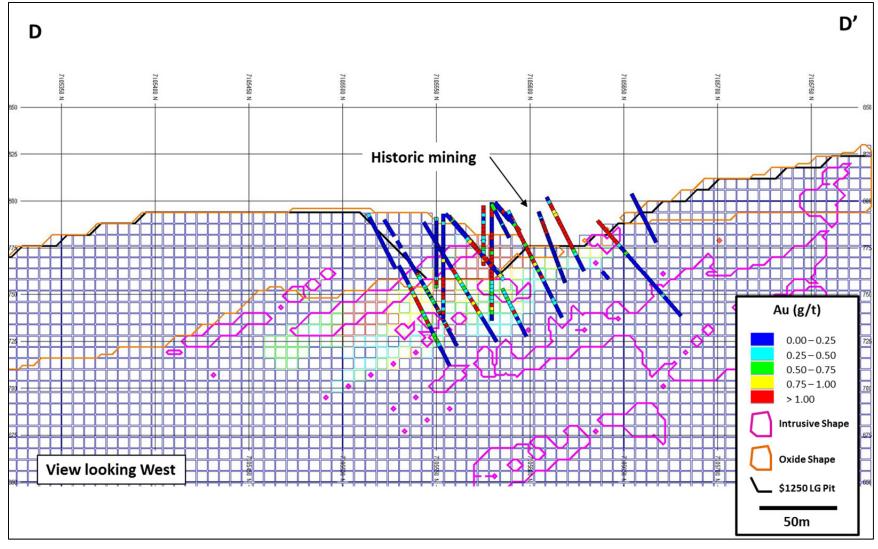


Figure 14-10 Validation Section D-D' of BL Block Model (See Figure 14-11 for Location)

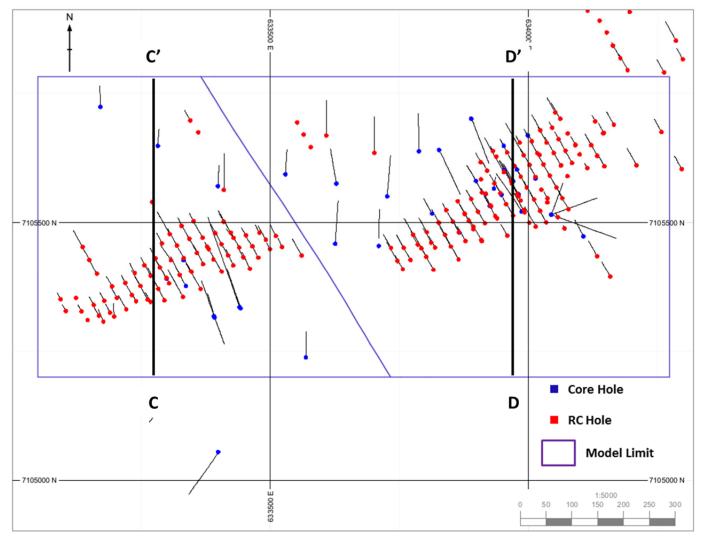


Figure 14-11 Detailed Drill Hole Locations of PABL and Location of Cross Sections C-C' and D-D'

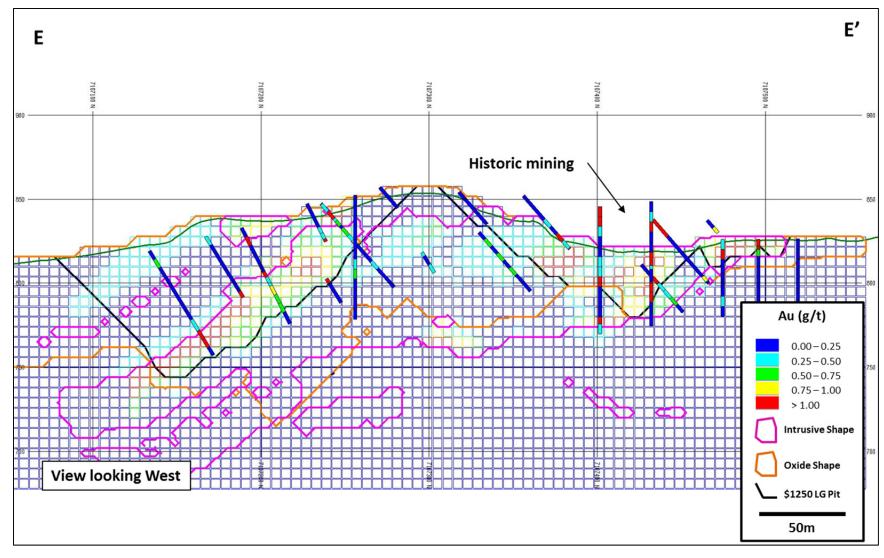


Figure 14-12 Validation Section E-E' of Lucky Block Model (See Figure 14-13 for Location)

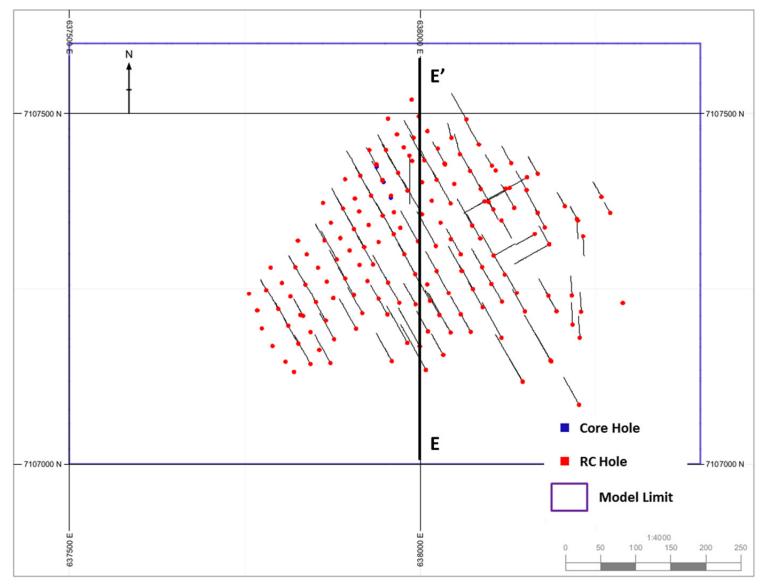


Figure 14-13 Detailed Drill Hole Locations of LU and Location of Cross Section E-E'

The resources were also evaluated using a nearest neighbor (NN) estimation as a check. NN estimations are valid at a 0 g/t cutoff only; the 0 g/t cutoff is shown for illustrative purposes only. The resource estimate produced using this method, as well as the percent change between the ID3 and NN methods are shown in Table 14-8.

Resource Area	ID Avg. Grade 0.0 cutoff (g/t)	NN Avg. Grade 0.0 cutoff (g/t)	% Difference		
PABL	0.186	0.195	-4.7%		
KOGD	0.163	0.160	1.8%		
LU	0.228	0.228	0.2%		

Table 14-8 ID3 and NN Model Comparison

14.2 Bohemian, Schooner, Lower Fosters, West Big Rock, East Big Rock, Classic, and Lone Star Deposits

Mr. Michael J. Lechner, P. Geo., President of RMI has completed updated Mineral Resources for the Bohemian (BH), Schooner (SC), Lower Fosters (FS), West Big Rock (WB), East Big Rock (EB) (formerly known as Big Rocks) and Classic deposits. In addition, Mr. Lechner has completed a new Mineral Resource estimate for the Lone Star deposit.

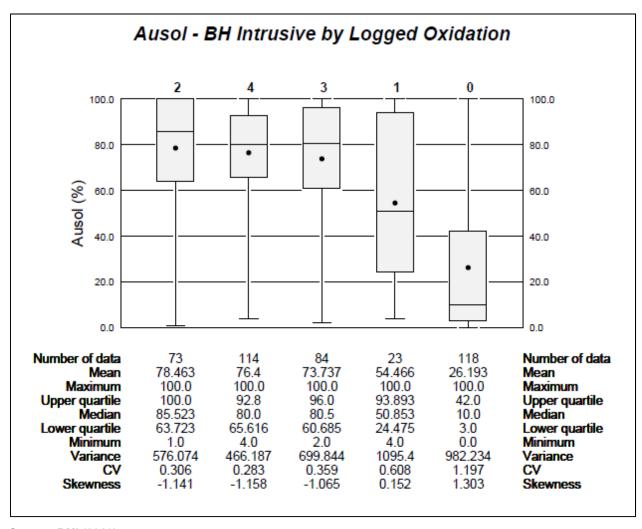
RMI worked closely with AMB's geologic staff in preparing geologic models for each of the deposits. Most of the modeling was completed using MineSight® software. Various statistical analyses were completed using proprietary software.

14.2.1 Deposit Geology Pertinent to Resource Estimation

The deposits at the Brewery Creek Project are primarily hosted by altered quartz monzonite sills, which commonly contain bifurcating and disconnected lenses of sedimentary strata. The sedimentary lenses are often thin and difficult to model using standard wire framing techniques due to limited hole-to-hole continuity and variable thicknesses of the intercalated sills and sedimentary rocks. Due to these constraints, a probability technique was used to predict the distribution of intrusive and sedimentary rocks in all deposits except Classic and Lone Star.

Raw lithologic data collected from drill logs were coded with an integer value of 1 if a specific lithologic unit was present, a 0 was entered if that lithology was not present in the drillhole interval. A total of six lithologic units were modeled using this probability method. Block models were constructed using 2m x 2m x 2m blocks and 2-metre-long drillhole composites. A two pass inverse distance squared estimation method was used to estimate probabilities for the six unique lithologic units. After all of the lithologic

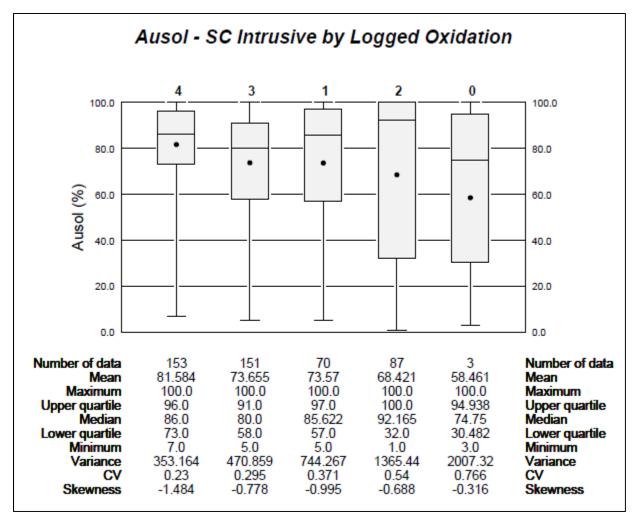
indicators were estimated the blocks were assigned intrusive (1) and sediment (2) codes based on the highest of the six possible lithologic probabilities that were estimated. The 2-metre model blocks provided a high degree of resolution and resulted in excellent continuity for the distribution of thin sedimentary intervals. Three dimensional intrusive wireframes were constructed from the 2-metre block model. Those wireframes were used to code the 6-metre block models so that the blocks were either intrusive or sediment based on a majority rule. In addition to whole block coding, the percentage of intrusive and sediment were stored in each block. This step would allow mine planners to have an idea about possible dilution of "clean" intrusive with potentially preg robbing sedimentary rocks.


Wide-spaced drilling and complicated compositional and textural relationships in the Classic-Lone Star intrusive complex precluded the construction of a standard wire frame geological model. Probability modeling of lithology as described above was deemed to not be appropriate for the style of mineralization observed in this area, so development of a technique suited to the construction of a model was required for this intrusive suite.

A multi-variate factor analysis of ICP data from the Classic and Lone Star resource drilling resulted in three whole-rock signatures and one hydrothermal signature. This analysis, based on empirical geochemical data, was used to build a model which is thought to be more appropriate than from drillhole lithologic data alone. The factor representing a hydrothermal signature of gold, arsenic, and copper defined a broad and coherent area of mineralization. Results of the analysis were used to construct a three dimensional wireframe that was used to constrain the estimate of gold for the Classic-Lone Star deposits.

14.2.1.1 Oxidation

Previously, AMB constructed oxidation surfaces based on logged oxidation intensity. Numeric codes of 0 (no oxidation) through 4 (complete oxidation) were assigned to each interval by the AMB geologic staff. The oxide surface was based on intervals where the oxide intensity code was 3 or 4. Cyanide soluble analyses were collected for 2012 drillhole samples where the initial fire assay grade was above a 0.2 g/t cutoff. RMI conducted a study of comparing how well solubility data compared with the logged oxidation attribute. In general, high cyanide solubility results tended to correspond well with intervals that were logged with oxidation codes of 3 and 4 for intrusive rocks. However, RMI found that in many cases, reasonably high solubility (+ 70%) were associated with intervals that had been logged with oxidation codes of 1 or 2. In general, gold solubility was found to be quite low for sedimentary units. In addition to poor gold solubility the sedimentary rocks also display varying degrees of gold preg robbing. Boxplots were generated for each mineralized zone by major rock type (intrusive and sedimentary rocks) comparing cyanide solubility with logged oxidation


codes. Figure 14-14 shows such a boxplot which shows various gold solubility statistics for each logged oxidation intensity codes. The data in Figure 14-14 show that there is a reasonably high solubility ratio for logged oxidation codes 2, 3, and 4.

Source: RMI (2013)

Figure 14-14 Au Solubility vs. Logged Oxidation (BH Intrusives)

Figure 14-15 shows a similar boxplot of gold solubility of Schooner intrusives and in this case even logged oxidation code 1 shows a reasonably high solubility ratio.

Source: RMI (2013)

Figure 14-15 Au Solubility vs. Logged Oxidation (SC Intrusives)

Based on an analysis of solubility data a new method was used to sub-divide the various block models into two regimes: potentially leachable ("oxidized") and non-leachable ("sulfide"). An oxidation indicator probability function was implemented to help predict potentially leachable material. Indicator values of 0 (low probability of being leachable) or 1 (potentially leachable) were assigned to six-metre-long drillhole composites. The indicator value of 1 was based on the previously described boxplot analysis on a deposit by deposit basis. The 0/1 indicator values were used to estimate "oxidation" probability in each block model. Blocks with an estimated "oxidation" probability above 50% were flagged as potentially amenable to cyanidation (i.e. MODOX = 1). All other blocks were considered as "sulfide" (i.e. MODOX = 2). The MODOX field was then used to define oxide and sulfide resources.

14.2.2 Data Used for Estimation

RMI was provided with a series of Excel spreadsheets that contained collar, survey, assay, geologic, and metallurgical data. The records from these files were imported into MineSight® and used to estimate Mineral Resources after a number of statistical studies were completed. Table 14-9 summarizes the type, number, and metres of drilling data for each mineralized area that was used by Mr. Lechner.

Core **RC Total** Resource Area Count Count Metres **Metres** Count Metres Bohemian 4,673 113 8,642 154 13,315 41 Schooner 81 8,394 16 1,676 97 10,070 Lower Fosters 40 3,250 396 16,388 436 19,638 West Big Rock 7,648 60 6,209 100 160 13,857 East Big Rock 17 1,925 114 7,461 131 9,386 Classic 52 17 4,088 9,391 69 13,478 Lone Star 17 3,865 12 2,283 29 6,147 Total 273 32,403 803 53,489 1,076 85,892

Table 14-9 Drillhole Data

14.2.2.1 Drillhole Assay Statistics

Drillhole assay statistics were generated for fire assay gold (AuFA), cyanide soluble (AuCN), and gold preg rob. The statistics were tabulated by mineralized area, sample type, major rock type, and logged oxidation code. The statistics are summarized in Table 14-10 through Table 14-15. The statistics (drilled meterage, mean grade, incremental meterage above cutoff, grade-thickness products, incremental grade-thickness, standard deviation, and coefficient of variation are shown for four cutoff grades.

Table 14-10 Drillhole Assay Statistics - Gold Fire Assays by Area

	Uncapped AuFA Statistics Above Cutoff										
Resource Area	AuFA Cutoff	Total Metres	Inc. Percent	Mean AuFA (g/t)	Grd- Thk (g/t-m)	Inc. Percent	Std. Dev.	Coeff. Of Variation			
	0	68,440	78%	0.28	18,879	11.50%	0.98	3.55			
All Data	0.2	14,872	11%	1.12	16,713	11.90%	1.87	1.66			
All Data	0.5	7,630	3%	1.9	14,464	5.90%	2.36	1.25			
	0.7	5,740	8%	2.33	13,354	70.70%	2.58	1.11			
	0	12,106	72%	0.42	5,074	8.50%	1.4	3.35			
Dehemien	0.2	3,371	13%	1.38	4,643	9.60%	2.41	1.75			
Bohemian -	0.5	1,804	3%	2.3	4,155	4.20%	3	1.3			
	0.7	1,443	12%	2.73	3,943	77.70%	3.21	1.18			
	0	9,034	78%	0.45	4,023	5.30%	1.61	3.62			
0-1	0.2	2,009	9%	1.9	3,812	6.00%	2.99	1.58			
Schooner	0.5	1,231	3%	2.9	3,569	3.50%	3.47	1.2			
-	0.7	987	11%	3.47	3,428	85.20%	3.65	1.05			
	0	5,928	76%	0.36	2,113	6.90%	1.09	3.04			
Lower	0.2	1,439	8%	1.37	1,966	7.20%	1.87	1.37			
Fosters	0.5	952	3%	1.91	1,815	5.30%	2.1	1.1			
	0.7	761	13%	2.24	1,704	80.60%	2.23	1			
	0	13,017	80%	0.23	2,938	9.90%	0.65	2.89			
West Big	0.2	2,568	8%	1.03	2,648	11.90%	1.16	1.12			
Rock	0.5	1,478	3%	1.56	2,300	6.80%	1.29	0.83			
	0.7	1,140	9%	1.84	2,100	71.50%	1.34	0.73			
	0	9,100	82%	0.2	1,811	13.80%	0.52	2.62			
East Big	0.2	1,662	8%	0.94	1,561	12.20%	0.9	0.96			
Rock	0.5	974	3%	1.38	1,340	8.20%	0.96	0.7			
	0.7	722	8%	1.65	1,192	65.80%	0.97	0.59			
	0	13,190	78%	0.16	2,083	29.40%	0.31	1.98			
Ola i -	0.2	2,925	16%	0.5	1,470	30.20%	0.53	1.05			
Classic	0.5	849	3%	0.99	842	10.30%	0.78	0.78			
	0.7	478	4%	1.31	627	30.10%	0.92	0.7			
	0	6,065	85%	0.14	835	26.80%	0.44	3.18			
Lana Ota	0.2	898	9%	0.68	611	20.10%	0.97	1.43			
Lone Star	0.5	344	2%	1.29	443	9.70%	1.36	1.05			
	0.7	208	3%	1.74	362	43.30%	1.59	0.92			

Table 14-11 Drillhole Assay Statistics - Gold Fire Assays by Sample Type

			Uncapped	AuFA Stat	istics Abo	ve Cutoff		
Туре	AuFA Cutoff	Total Metres	Inc. Percent	Mean AuFA (g/t)	Grd- Thk (g/t-m)	Inc. Percent	Std. Dev.	Coeff. Of Variation
	0	68,440	78%	0.28	18,879	11.50%	0.98	3.55
All Data	0.2	14,872	11%	1.12	16,713	11.90%	1.87	1.66
All Data	0.5	7,630	3%	1.9	14,464	5.90%	2.36	1.25
	0.7	5,740	8%	2.33	13,354	70.70%	2.58	1.11
	0	27,425	80%	0.32	8,769	8.40%	1.25	3.9
Coro	0.2	5,389	9%	1.49	8,031	8.40%	2.49	1.67
Core	0.5	3,008	2%	2.42	7,290	4.30%	3.03	1.25
	0.7	2,363	9%	2.92	6,912	78.80%	3.24	1.11
	0	41,016	77%	0.25	10,110	14.10%	0.75	3.03
RC	0.2	9,483	12%	0.92	8,682	14.90%	1.35	1.47
RC	0.5	4,622	3%	1.55	7,175	7.20%	1.71	1.1
	0.7	3,376	8%	1.91	6,442	63.70%	1.89	0.99

Table 14-12 Drillhole Assay Statistics - Gold Fire Assays by Major Rock Type

	Uncapped AuFA Statistics Above Cutoff										
Туре	AuFA Cutoff	Total Metres	Inc. Percent	Mean AuFA (g/t)	Grd- Thk (g/t-m)	Inc. Percent	Std. Dev.	Coeff. Of Variation			
	0	68,440	78%	0.28	18,879	11.50%	0.98	3.55			
All Data	0.2	14,872	11%	1.12	16,713	11.90%	1.87	1.66			
All Data	0.5	7,630	3%	1.9	14,464	5.90%	2.36	1.25			
	0.7	5,740	8%	2.33	13,354	70.70%	2.58	1.11			
	0	186	88%	0.12	23	27.90%	0.32	2.55			
Undefined	0.2	23	7%	0.72	17	15.80%	0.62	0.85			
Undefined	0.5	11	2%	1.21	13	7.40%	0.6	0.5			
	0.7	8	4%	1.47	11	48.80%	0.52	0.35			
	0	41,544	70%	0.39	16,188	9.00%	1.2	3.08			
Intrusive	0.2	12,336	14%	1.19	14,725	11.20%	1.98	1.66			
initiusive	0.5	6,536	4%	1.98	12,918	5.60%	2.47	1.25			
	0.7	4,979	12%	2.41	12,003	74.10%	2.69	1.12			
	0	26,440	91%	0.1	2,641	25.90%	0.4	4.04			
Sediment	0.2	2,479	5%	0.79	1,956	16.30%	1.09	1.39			
Sediment	0.5	1,076	1%	1.42	1,526	7.30%	1.43	1.01			
	0.7	748	3%	1.78	1,333	50.50%	1.59	0.89			
	0	271	87%	0.1	27	42.40%	0.2	1.97			
Overburden	0.2	34	10%	0.45	15	27.80%	0.38	0.85			
Overburden	0.5	8	1%	0.98	8	7.10%	0.48	0.49			
	0.7	5	2%	1.2	6	22.60%	0.49	0.41			

Table 14-13 Drillhole Assay Statistics - Gold Fire Assays by Logged Oxidation

	Uncapped AuFA Statistics Above Cutoff									
Туре	AuFA Cutoff	Total Metres	Inc. Percent	Mean AuFA (g/t)	Grd- Thk (g/t-m)	Inc. Percent	Std. Dev.	Coeff. Of Variation		
	0	68,440	78%	0.28	18,879	11.50%	0.98	3.55		
All Data	0.2	14,872	11%	1.12	16,713	11.90%	1.87	1.66		
All Data	0.5	7,630	3%	1.9	14,464	5.90%	2.36	1.25		
	0.7	5,740	8%	2.33	13,354	70.70%	2.58	1.11		
	0	13,000	78%	0.24	3,123	14.50%	0.89	3.72		
Undefined	0.2	2,889	12%	0.92	2,670	15.60%	1.73	1.87		
Ondenned	0.5	1,313	3%	1.66	2,183	7.10%	2.36	1.42		
	0.7	936	7%	2.1	1,962	62.80%	2.68	1.28		
	0	13,792	87%	0.17	2,299	16.00%	0.71	4.26		
0	0.2	1,741	6%	1.11	1,930	11.50%	1.72	1.56		
0	0.5	892	2%	1.87	1,666	5.70%	2.15	1.15		
	0.7	669	5%	2.29	1,535	66.80%	2.33	1.02		
	0	12,041	84%	0.18	2,142	17.80%	0.7	3.93		
4	0.2	1,922	9%	0.92	1,761	16.00%	1.55	1.69		
1	0.5	798	2%	1.78	1,418	6.20%	2.12	1.2		
	0.7	569	5%	2.26	1,285	60.00%	2.35	1.04		
	0	9,616	77%	0.29	2,778	11.80%	1.12	3.88		
	0.2	2,174	12%	1.13	2,450	12.80%	2.16	1.91		
2	0.5	1,025	3%	2.05	2,096	5.70%	2.87	1.41		
	0.7	755	8%	2.57	1,937	69.70%	3.19	1.24		
	0	10,533	72%	0.35	3,651	8.30%	0.93	2.68		
	0.2	2,998	12%	1.12	3,349	11.00%	1.48	1.32		
3	0.5	1,715	4%	1.72	2,949	6.50%	1.72	1		
	0.7	1,313	12%	2.07	2,713	74.30%	1.83	0.89		
	0	9,459	67%	0.52	4,886	6.80%	1.47	2.84		
4	0.2	3,148	13%	1.45	4,552	8.20%	2.27	1.57		
4	0.5	1,889	4%	2.2	4,153	4.70%	2.68	1.22		
	0.7	1,497	16%	2.62	3,922	80.30%	2.87	1.1		

Table 14-14 Drillhole Assay Statistics - Cyanide Soluble Gold Assays by Area

	Uncapped AuCN Statistics Above Cutoff								
Resource Area	AuCN Cutoff	Total Metres	Inc. Percent	Mean AuCN (g/t)	Grd- Thk (g/t-m)	Inc. Percent	Std. Dev.	Coeff. Of Variation	
All Data	0	6,688	40%	0.56	3,738	5.90%	1.06	1.89	
	0.2	3,995	32%	0.88	3,517	18.00%	1.27	1.44	
All Data	0.5	1,829	7%	1.55	2,842	7.70%	1.64	1.05	
	0.7	1,339	20%	1.91	2,555	68.40%	1.79	0.94	
	0	665	57%	0.63	420	4.90%	1.34	2.13	
Bohemian -	0.2	284	14%	1.41	399	7.00%	1.78	1.27	
Doneman	0.5	191	6%	1.94	370	5.40%	1.96	1.01	
	0.7	153	23%	2.26	347	82.70%	2.06	0.91	
	0	859	39%	1.14	977	2.30%	2.09	1.84	
Cohoonor	0.2	520	22%	1.83	954	6.00%	2.45	1.34	
Schooner	0.5	333	4%	2.69	896	2.20%	2.71	1.01	
	0.7	297	35%	2.95	874	89.50%	2.76	0.94	
	0	232	44%	0.48	112	4.10%	0.69	1.43	
Lower	0.2	130	26%	0.83	107	16.40%	0.76	0.92	
Fosters	0.5	70	8%	1.26	89	9.30%	8.0	0.63	
	0.7	52	22%	1.51	78	70.20%	0.79	0.52	
	0	1,407	43%	0.52	726	5.10%	0.77	1.49	
West Big	0.2	806	26%	0.85	689	16.20%	0.87	1.02	
Rock	0.5	446	9%	1.28	571	9.90%	0.98	0.76	
	0.7	323	23%	1.54	499	68.70%	1.03	0.67	
	0	480	31%	0.74	357	3.30%	0.85	1.14	
East Big	0.2	333	23%	1.04	345	9.80%	0.87	0.84	
Rock	0.5	222	9%	1.4	310	7.50%	0.85	0.61	
	0.7	177	37%	1.6	284	79.40%	0.84	0.52	
	0	2,280	42%	0.33	758	13.40%	0.42	1.27	
Classic -	0.2	1,326	42%	0.5	657	38.10%	0.49	0.99	
	0.5	378	7%	0.97	368	11.90%	0.71	0.73	
	0.7	222	10%	1.25	277	36.60%	0.82	0.65	
	0	766	22%	0.51	390	6.10%	0.73	1.43	
Lama Ota	0.2	596	53%	0.61	366	32.50%	0.79	1.29	
Lone Star	0.5	190	10%	1.26	239	11.20%	1.16	0.93	
	0.7	115	15%	1.7	196	50.20%	1.32	0.78	

Table 14-15 Drillhole Assay Statistics - Gold Preg Rob Assays by Area

	Uncapped Preg Rob Statistics Above Cutoff								
Resource Area	Preg Rob Cutoff	Total Metres	Inc. Percent	Mean Preg Rob (g/t)	Grd- Thk (g/t-m)	Inc. Percent	Std. Dev.	Coeff. Of Variation	
All Data	0%	4,392	87%	12%	506	14.20%	0.27	2.34	
	25%	563	3%	77%	434	9.90%	0.25	0.33	
All Data	50%	428	2%	90%	384	8.60%	0.13	0.14	
	75%	361	8%	94%	341	67.40%	0.07	0.08	
	0%	658	88%	12%	81	12.80%	0.29	2.37	
Bohemian	25%	80	1%	88%	70	2.50%	0.19	0.22	
Doneman	50%	74	1%	93%	68	5.60%	0.11	0.12	
	75%	67	10%	96%	64	79.10%	0.06	0.07	
	0%	729	84%	14%	103	12.30%	0.3	2.14	
Schooner	25%	115	5%	79%	91	11.80%	0.28	0.35	
Schooliei	50%	82	0%	96%	78	1.00%	0.07	0.07	
	75%	80	11%	96%	77	74.90%	0.06	0.06	
	0%	66	51%	42%	28	9.90%	0.38	0.9	
Lower	25%	32	10%	77%	25	8.90%	0.21	0.27	
Fosters	50%	26	2%	87%	22	4.10%	0.1	0.11	
	75%	24	37%	87%	21	77.10%	0.1	0.11	
	0%	1,139	72%	24%	270	11.20%	0.35	1.48	
West Big	25%	316	6%	76%	239	9.90%	0.25	0.33	
Rock	50%	244	5%	87%	213	13.00%	0.14	0.16	
	75%	189	17%	94%	178	65.90%	0.07	0.08	
East Big Rock	0%	84	83%	11%	9	36.20%	0.16	1.46	
	25%	15	14%	40%	6	44.30%	0.13	0.33	
	50%	3	3%	64%	2	19.40%	0.05	0.08	
	75%	0	0%	0%	0	0.00%	0	0	
	0%	1,718	100%	1%	16	78.70%	0.04	3.9	
Classia	25%	7	0%	52%	3	16.40%	0.11	0.21	
Classic	50%	1	0%	78%	1	0.00%	0	0	
	75%	1	0%	78%	1	4.90%	0	0	

14.2.2.2 <u>Topographic Data</u>

RMI was provided with three dimensional topographic surfaces that were created by AMB based on a LiDAR survey that was conducted in 2012. These surfaces were used to determine the percentage of rock in each model block.

14.2.3 Bulk Density

Bulk density determinations were performed by AMB on drill core samples during their 2011 and 2012 drilling campaigns. A total of 851 bulk density determinations were collected from the Bohemian, Schooner, Lower Fosters, West Big Rock and East Big Rock zones. The determinations were made by weighing select core samples in air and water using a triple beam balance. The bulk density determinations were examined by a variety of logged attributes. RMI ultimately elected to differentiate density based on rock type (intrusive or sediment) and oxidation (oxide or sulfide). Table 14-16 summarizes the bulk density data that were used for the Bohemian, Schooner, Lower Fosters, West Big Rock and East Big Rock block models.

Major Rock Type -Mean SG **Density of Models** Count Oxidation (g/cm³) (g/cm³) Intrusive Oxide 265 2.57 2.57 Intrusive Sulfide 2.64 125 2.64 All Intrusives 390 2.59 n/a 2.59 2.57 Sediment Oxide 4 Sediment Sulfide 67 2.67 2.67 All Sedimentary rocks 461 2.67 n/a

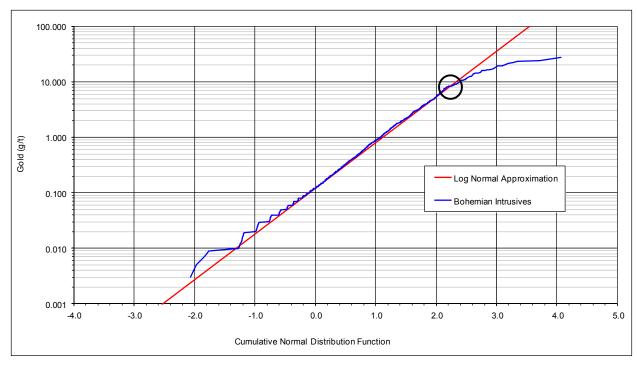
Table 14-16 Bulk Density for BH, SC, FS, WB, and EB Models

An additional 111 bulk density samples were collected from the Classic and Lone Star deposits. Based on an analysis of that data, RMI chose to use a single bulk density value of 2.73 g/cm³ for the Classic and Lone Star deposit models.

14.2.4 Methodology

Four MineSight® block models were constructed by RMI for estimating Mineral Resources for seven distinct zones. A block size of 6m x 6m x 6m was selected for all models because this dimension is thought to represent a reasonable selective mining unit (SMU). Three of the block models were not rotated and their areal extents are summarized in Table 14-17.

Table 14-17 Block Model Extents


Resource	Easting			Northing			Elevation		
Area	Min	Max	No. Cols.	Min	Max	No. Rows	Min	Max	No. Levels
Bohemian & Schooner	638,322	639,432	185	7,106,887	7,107,379	82	697	937	40
Lower Fosters	635,304	635,832	88	7,105,754	7,106,204	75	646	958	52
West & East Big Rock	630,797	632,507	285	7,105,547	7,106,153	10	597	855	43

The combined Classic-Lone Star model was rotated 24 degrees (new north axis has an azimuth of 25 degrees) to better accommodate the orientation of the structurally controlled mineralization and to reduce the number of blocks in the model. The combined Classic-Lone Star model contains 558 columns, 100 rows, and 114 levels.

The models were setup to contain a similar number of fields for storing a variety of geologic, topographic, density, and grade data.

14.2.5 Capping of Assays

Isolated high-grade assays, while often substantiated by re-assaying and/or quality assurance-quality control samples, can potentially result in local over estimation of resources. Typically high-grade outlier values are "cut" or "capped" to minimize the potential of over estimating resources. An examination for potential high-grade outlier values was conducted by RMI by analyzing cumulative probability plots and decile/percentile distributions for each deposit by major rock type. Figure 14-16 shows a typical cumulative probability plot for the Bohemian deposit that was used by RMI to identify outliers. The original fire assay results were transformed using the cumulative normal distribution function and then displayed in log normal scale.

Source: RMI (2013)

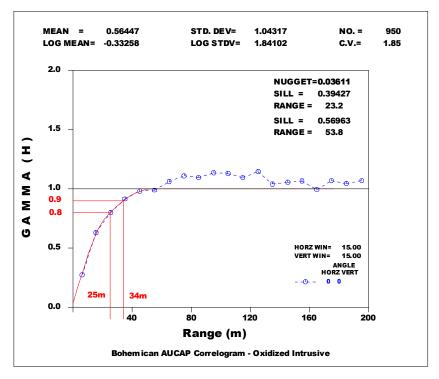
Figure 14-16 Au Probability Plot – (Bohemian Intrusives)

Similar plots were generated for each mineralized zone for intrusive and sedimentary rocks.

Table 14-18 summarizes the grade capping limits that were used by RMI for each mineralized zone. The raw original assay intervals were capped according to the values shown in Table 14-18 prior to compositing the drillhole data.

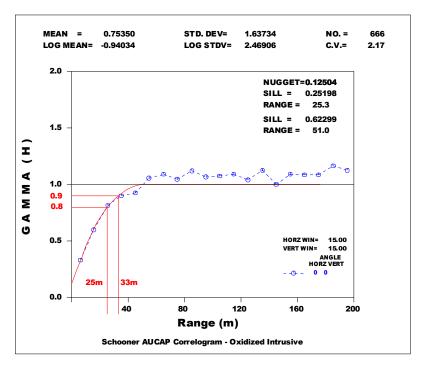
Table 14-18 Gold Grade Capping Limits by Area

A	Au Cap Grade (g/t)				
Area	Intrusive	Sediment			
Bohemian	10.0	5.0			
Schooner	10.0	2.5			
Lower Fosters	7.5	4.5			
West Big Rock	6.0	2.0			
East Big Rock	4.0	2.0			
Classic	5.0	0.4			
Lone Star	5.0	0.3			


14.2.6 Compositing

The length of samples from the various drilling campaigns is somewhat variable with many samples in the range of 1.5 to 2.0 metres in length. RMI elected to use 6-metre-long drillhole composites to estimate grades into 6 metre x 6 metre x 6 metre blocks. It is RMI's opinion that the 6-metre-long composites provide appropriate support for estimating grade into 6 metre x 6 metre x 6 metre blocks. The composites contain varying amounts of internal dilution which is appropriate for 6 metre SMU's. Down-hole fixed length composites were generated on six-metre intervals from the collar down the bore hole providing uniform length samples. The compositing routine honored major rock type (intrusive and sedimentary) codes stored in the raw data file, starting and ending the creation of 6-metre-long composites at lithologic contacts.

14.2.6.1 Variography


RMI generated a variety of grade and indicator variograms for each of the mineralized areas using both MineSight® and Sage2001® software. In general, the grade variograms tended to identify anisotropy in the plane of the mineralized intrusive sills.

Examples of gold grade correlograms are presented for the Bohemian, Schooner, Lower Fosters, and West Big Rock deposits as Figure 14-17 through Figure 14-20, respectively. These correlograms show nugget effects for these deposits in the range of 0.3 to 0.6. Ranges are indicated at 80% and 90% of the total variance and are shown in red font.

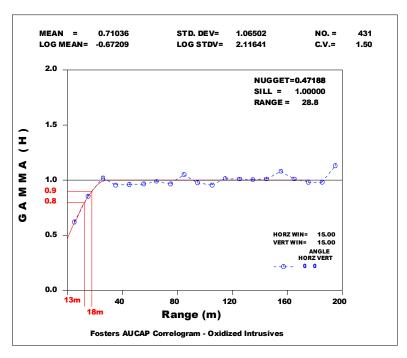

Source: RMI (2013)

Figure 14-17 Au Grade Correlogram – (Oxidized Bohemian Intrusives)

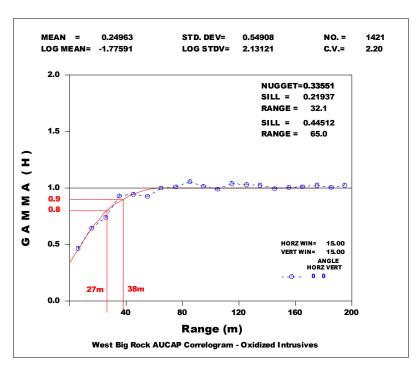
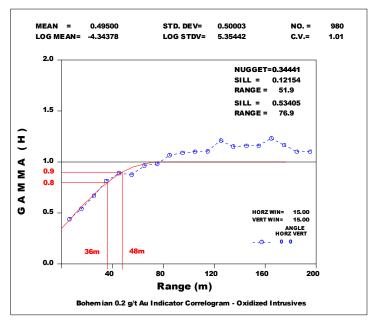
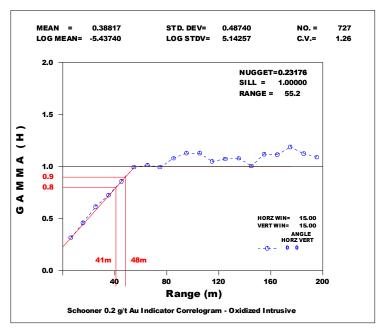

Source: RMI (2013)

Figure 14-18 Au Grade Correlogram – (Oxidized Schooner Intrusives)

Source: RMI (2013)


Figure 14-19 Au Grade Correlogram – (Oxidized Lower Fosters Intrusives)

Source: RMI (2013)


Figure 14-20 Au Grade Correlogram – (Oxidized West Big Rock Intrusives)

Gold indicator correlograms based on a 0.2 g/t indicator threshold for the Bohemian, Schooner, Lower Fosters, and West Big Rock deposits as Figure 14-21 through Figure 14-24, respectively.

Source: RMI (2013)

Figure 14-21 0.2 g/t Au Indicator Correlogram – (Oxidized Bohemian Intrusives)

Source: RMI (2013)

Figure 14-22 0.2 g/t Au Indicator Correlogram – (Oxidized Schooner Intrusives)

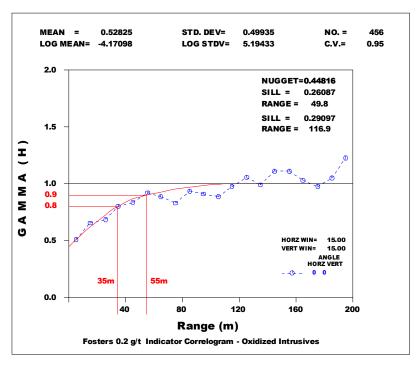


Figure 14-23 0.2 g/t Au Indicator Correlogram – (Oxidized Lower Fosters Intrusives)

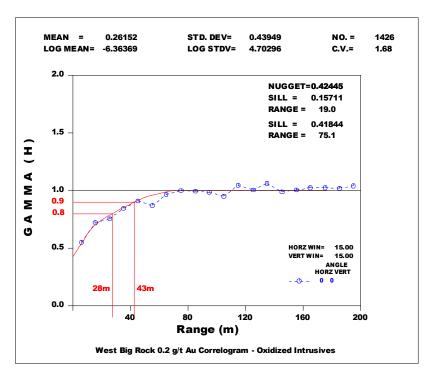


Figure 14-24 0.2 g/t Au Indicator Correlogram – (Oxidized West Big Rock Intrusives)

14.2.7 Estimation

Block gold grades were estimated for all mineralized areas using an inverse distance cubed method. In general a three or four pass estimation strategy was implemented using a limited number of composites to minimize grade smoothing. Table 14-19 summarizes the main constraints that were used to estimate gold grades for each area.

Resource Area	Constraint
Bohemian	Intrusive and sediment populations
Schooner	Intrusive and sediment populations
Lower Fosters	Intrusive and sediment populations
West Big Rock	Intrusive and sediment populations by two structural domains
East Big Rock	Intrusive and sediment populations by two structural domains
Classic	Gold grade envelope based on hydrothermal geochem signature
Lone Star	Gold grade envelope based on hydrothermal geochem signature

Table 14-19 Gold Grade Estimation Constraints

Table 14-20 lists key parameters that were used for each estimation pass for the various mineralized areas. The Table shows the number of composites used to estimate block grades (i.e. minimum number, maximum, number, and maximum composites per drillhole), the size and orientation of the search ellipse, and whether outlier restriction was used. Outlier restriction does not allow composite grades above a specified value to be projected more than a specified distance.

Table 14-20 Gold Grade Estimation Parameters

Resource	Pass Number	Number of Composite		Ellip	Ellipse Range (m)			Ellipse Rotation			Outlier Restriction	
Area		Min	Max	Max/hole	Major	Minor	Vertical	ROTN	DIPN	DIPE	Au (g/t)	Max Dist (m)
	1	1	3	1	4	4	4	75	0	-15	n/a	n/a
Dohamian	2	3	6	2	37.5	37.5	12.5	75	0	-15	n/a	n/a
Bohemian	3	3	6	2	75	75	25	75	0	-15	n/a	n/a
	4	1	3	1	25	25	5	75	0	-15	n/a	n/a
	1	1	3	1	4	4	4	90	0	-15	n/a	n/a
Schooner	2	1	3	1	25	25	5	90	0	-15	n/a	n/a
	3	1	3	1	50	50	10	90	0	-15	n/a	n/a
	1	1	3	1	4	4	3	90	0	-35	n/a	n/a
Lower Fosters	2	1	3	2	25	25	12.5	90	0	-35	n/a	n/a
. 23.010	3	1	3	2	50	50	25	90	0	-35	n/a	n/a

Resource	Pass	Number of Composite			Ellip	se Ran	ge (m)	Ellips	e Rota	ation	Outlier Restriction	
Area Number		Min	Max	Max/hole	Major	Minor	Vertical	ROTN	DIPN	DIPE	Au (g/t)	Max Dist (m)
	1	1	3	1	4	4	3	70	0	-35	3	12
West Big	2	2	3	1	25	25	5	70	0	-35	3	12
Rock	3	2	3	1	50	50	10	70	0	-35	1.5	12
4	4	1	3	1	25	25	5	70	0	-35	1.5	12
	1	1	3	1	4	4	3	120	0	0	3	12
East Big	2	2	3	1	25	25	5	120	0	0	3	12
Rock	3	2	3	1	50	50	10	120	0	0	1.5	12
	4	1	3	1	25	25	5	120	0	0	1.5	12
	1	1	3	1	4	4	3	100	0	-55	n/a	n/a
Classic	2	1	3	1	37.5	37.5	5	100	0	-55	n/a	n/a
Classic	3	1	3	1	75	75	10	100	0	-55	n/a	n/a
	4	1	3	1	100	100	15	100	0	-55	n/a	n/a
	1	1	3	1	4	4	3	100	0	-55	2	12
Lone Star	2	1	3	2	37.5	37.5	5	100	0	-55	2	12
	3	1	3	2	75	75	10	100	0	-55	2	12

14.2.7.1 <u>Model Validation</u>

The grade models were validated by visual and statistical methods. The estimated block grades were compared against drillhole composites in both sectional and level plan views. In the opinion of RMI, there is a close comparison between block and drillhole composite grades. Figure 14-25 through Figure 14-34 are representative cross sections and cross section locations that compare drillhole composites with model blocks for the Bohemian, Schooner, Lower Fosters, West Big Rock, East Big Rock, and Classic deposits, respectively. Conceptual pit outlines are shown on each cross section as heavy black lines.

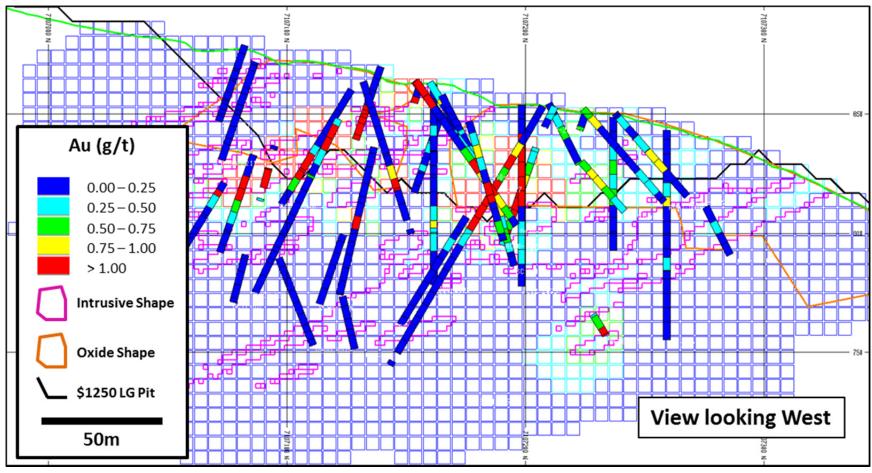


Figure 14-25 Bohemian Block Model Section A-A' (See Figure 14-27 for Location)

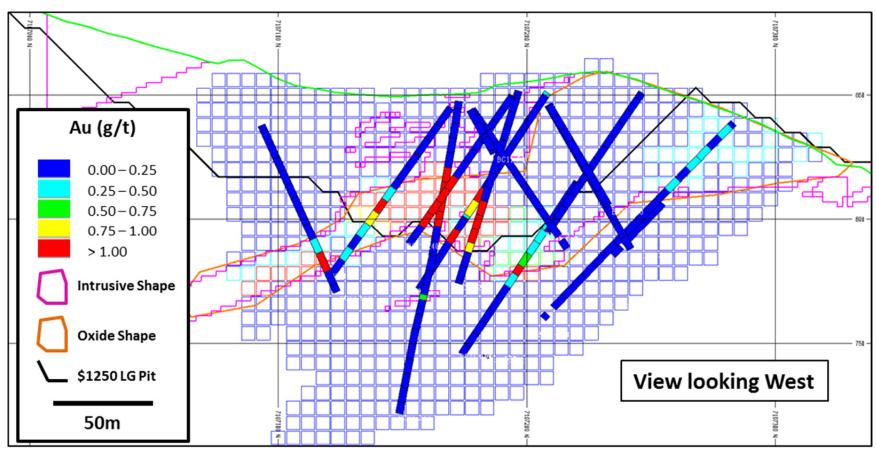


Figure 14-26 Schooner Block Model Section B-B' (See Figure 14-27 for Location)

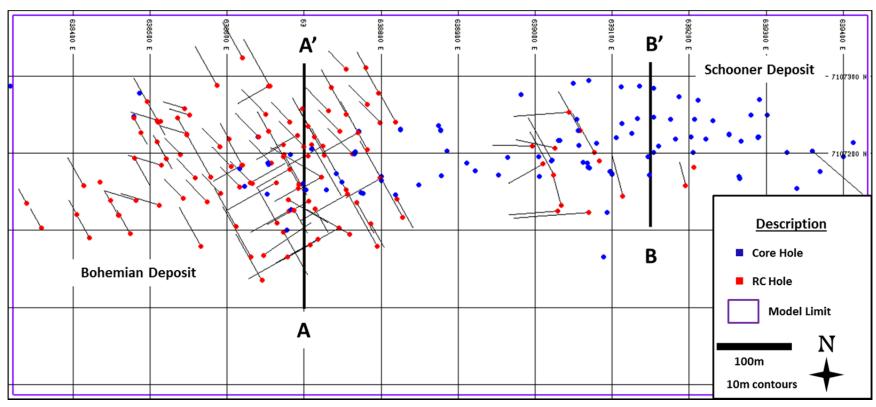


Figure 14-27 Location of Bohemian (A-A') and Schooner (B-B') Cross Sections

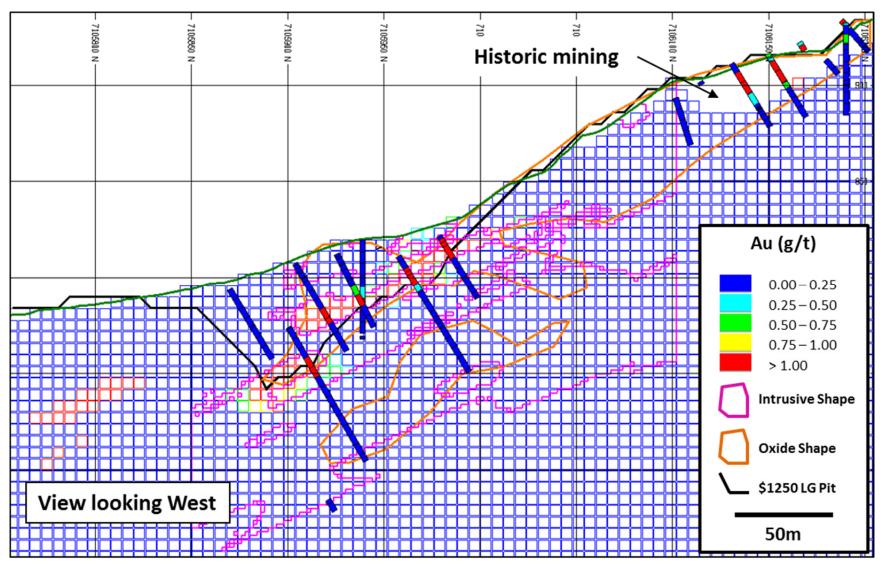


Figure 14-28 Lower Fosters Block Model Section C-C' (See Figure 14-29 for Location)

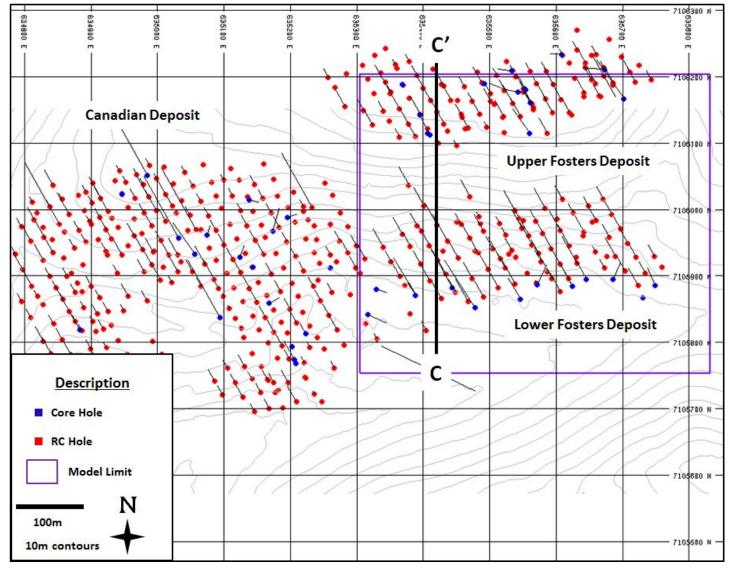


Figure 14-29 Location of Lower Fosters (C-C') Cross Section

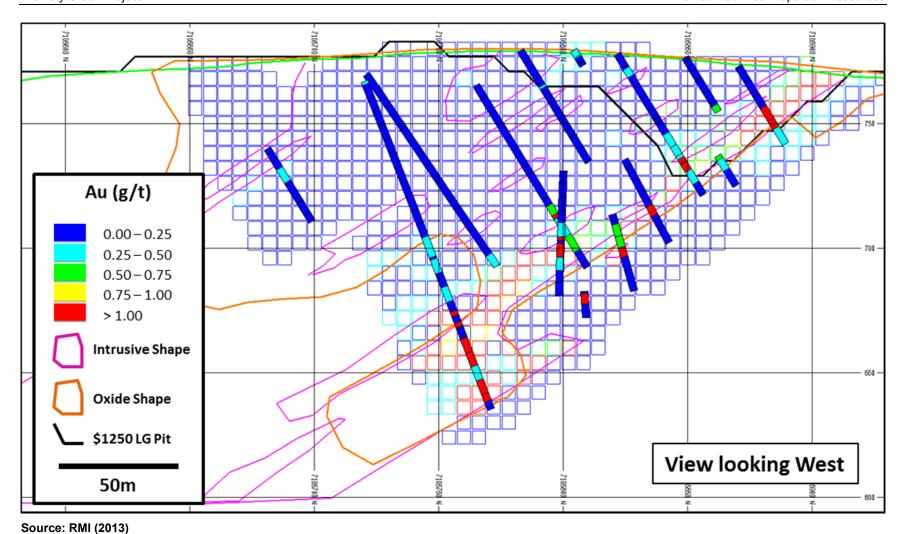


Figure 14-30 West Big Rock Block Model Section D-D' (See Figure 14-32 for Location)

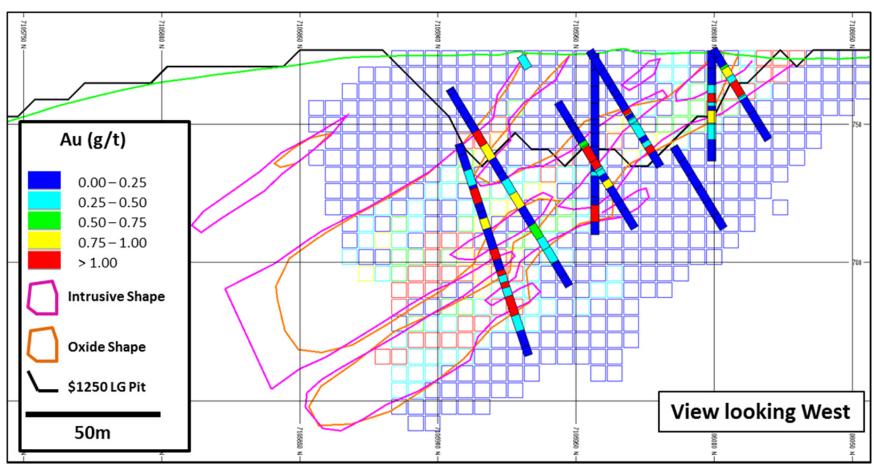


Figure 14-31 East Big Rock Block Model Section E-E' (See Figure 14-32 for Location)

Figure 14-32 Location of West Big Rock (D-D') and East Big Rock (E-E') Cross Sections

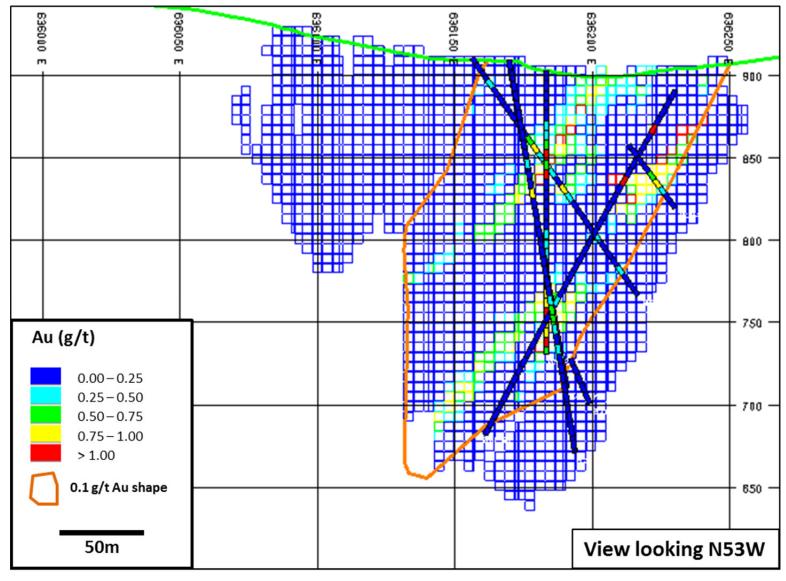


Figure 14-33 Classic Block Model Section F-F' (See Figure 14-34 for Location)

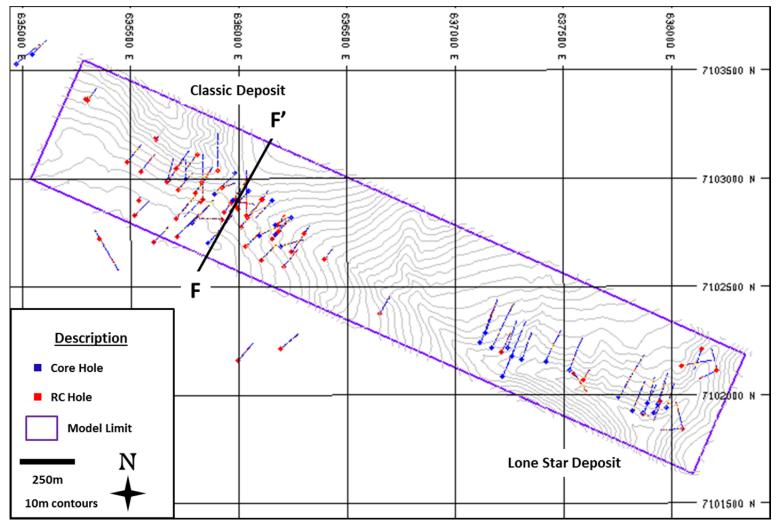


Figure 14-34 Location of Classic (F-F') Cross Section

Nearest neighbor gold grade models were constructed to check for potential global biases in the inverse distance grade models. Table 14-21 compares the inverse distance (IDW) grade with a nearest neighbor (NN) grade using a zero cutoff grade. The comparisons are shown for both Indicated and Inferred resources. Several of the deposits show a slight low bias with regards to the inverse distance grade. RMI believes that this is not material given the intercalated nature of the mineralized intrusive sills and often unmineralized sedimentary rocks.

Table 14-21 Global Bias Check – Inverse Distance vs. Nearest Neighbor Grades

Resource	Indic	ated Reso	ource	Infe	rred Reso	urce
Area	IDW	NN	% Diff	IDW	NN	% Diff
Bohemian	0.224	0.2317	-3.30%	0.0809	0.0812	-0.40%
Schooner	0.2612	0.2576	1.40%	0.156	0.1589	-1.80%
Lower Fosters	0.2172	0.2287	-5.00%	0.0991	0.1019	-2.70%
West Big Rock	0.1566	0.1663	-5.80%	0.09	0.0897	0.30%
East Big Rock	0.1345	0.1446	-7.00%	0.0769	0.0717	7.30%
Classic	n/a	n/a	n/a	0.1496	0.1463	2.00%
Lone Star	n/a	n/a	n/a	0.1187	0.1188	-0.20%

Local bias checks were made by generating a series of "swath" plots through the block model. These plots compare the inverse distance and nearest neighbor grade models as vertical slices (east-west and north-south) and horizontal slices (level plans) through the block model. Figure 14-35 through Figure 14-41 show level plan slices through the Bohemian, Schooner, Lower Fosters, West Big Rock, East Big Rock, Classic, and Lone Star models, respectively. Note that only Indicated blocks are depicted for Figure 14-35 through Figure 14-39, while only Inferred blocks are summarized in Figure 14-40 and Figure 14-41.

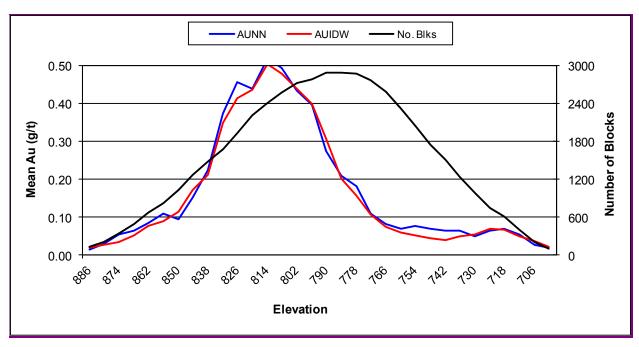


Figure 14-35 Bohemian Gold Swath Plot by Elevation Levels

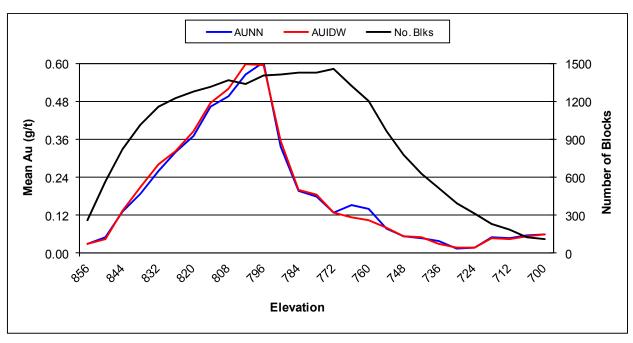


Figure 14-36 Schooner Gold Swath Plot by Elevation Levels

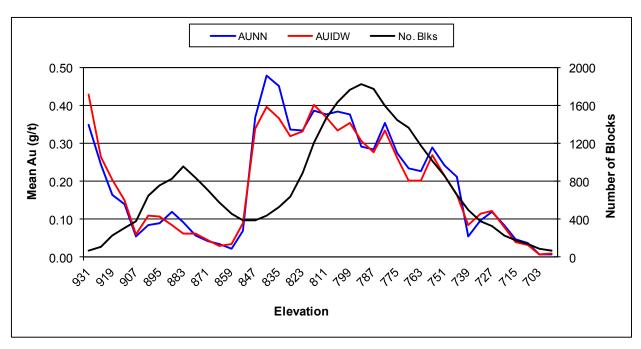


Figure 14-37 Lower Fosters Gold Swath Plot by Elevation Levels

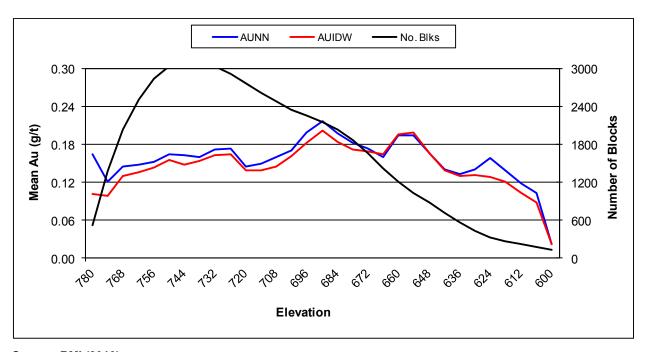


Figure 14-38 West Big Rock Gold Swath Plot by Elevation Levels

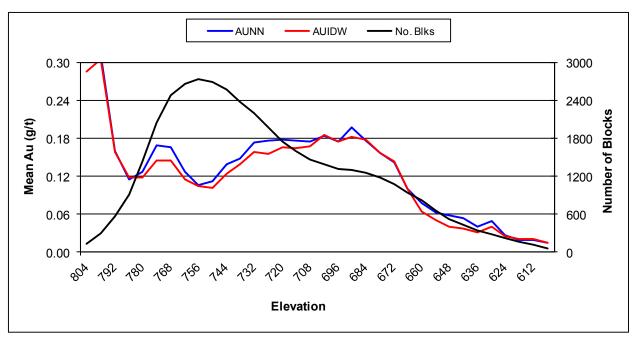


Figure 14-39 East Big Rock Gold Swath Plot by Elevation Levels

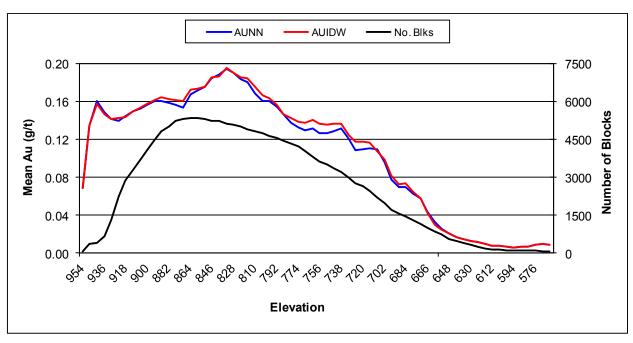


Figure 14-40 Classic Gold Swath Plot by Elevation Levels

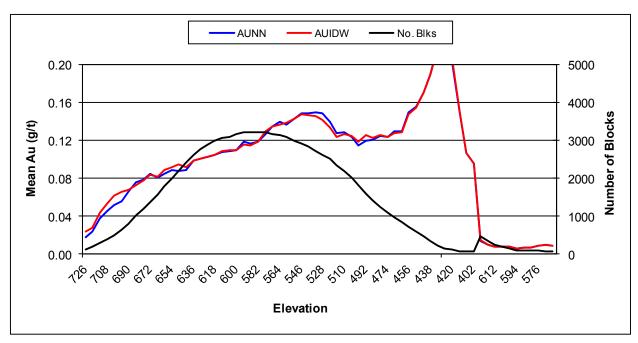


Figure 14-41 Lone Star Gold Swath Plot by Elevation Levels

14.3 Historical Heap Leach Pad

Viceroy Minerals operated an open pit and run-of-mine heap leach operation at the Brewery Creek Project from approximately 1996 through September 2002. Monthly report data indicate that Viceroy placed about 10.4 million tonnes on the heap leach pad at an average gold grade of about 1.5 g/t containing approximately 502,000 ounces of gold *in situ*. Based on Viceroy reports about 279,500 ounces were produced from the heap leach pad.

Based on that information, AMB undertook a sonic drilling program to collect samples from the Viceroy leach pad. A total of 18 four inch diameter sonic holes were drilled in 2011 on approximately 100m centers. The holes were sampled on five-foot (1.52m) intervals resulting in 177 samples which were analyzed at McClelland Laboratories located in Reno, Nevada. The average head grade, established by conventional fire assay methods, was approximately 0.66 g/t which correlates well with the calculated residual contained grade of 0.59 g/t. McClelland undertook additional testwork including cyanide soluble analyses along with preg robbing characteristics.

The sonic drillhole samples were combined at the McClelland Lab to create material for four column leach tests. A total of 28 composites were generated from the sonic samples. The composites were crushed to 80% passing 9.5mm and then subjected to

96 hour bottle roll tests. SGS Metcon from Tucson, Arizona estimated gold recovery from the four column tests to be about 47.5% after 141 days of leaching.

RMI constructed a 3D block model of the heap leach pad and estimated grades using the sonic drillholes. A basal surface was generated approximately 3 metres above the synthetic liner. No block grades were estimated above the old heap leach liner and the below the protective buffer zone surface. There is approximately 905,000 m³ (about 1.5 million tonnes) of material above the liner and below the described protective boundary surface.

A block size of 3m x 3m x 3m was selected along with 3-metre-long composites. Fire assay and cyanide soluble gold grades were estimated using a three pass inverse distance method. A high inverse distance power of five was used based on comparisons with a nearest neighbor model. The first pass used a large search ellipse (300m x 300m x 50m) to ensure that all blocks were estimated. The second pass used a search strategy of 125m x 125m x 21 m. The last pass used a search ellipse of 75m x 75m x 12m. Previously estimated blocks were overwritten by subsequent tighter search ellipse runs. A maximum of three samples were allowed to estimate the blocks. This strategy resulted in a more "polygonal" estimate but, in the opinion of RMI, this is appropriate for this project.

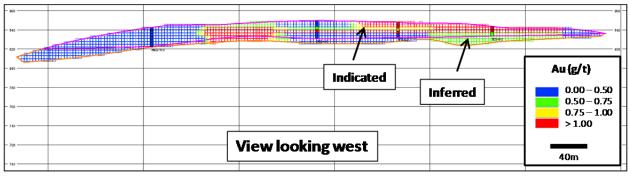

A bulk density value of 1.70 g/cm3 was used to tabulate tonnages. This density was derived by testwork that was completed by Viceroy and seems to be reasonable for run-of-mine truck dumped primarily intrusive material.

Figure 14-42 is a plan view showing the existing heap leach pad, the 18 sonic hole locations (red dots) and a line of section (A-A') for Figure 14-43, which is a north-south trending vertical cross section. A surface was constructed 3 metres above the heap leach liner and no grades were estimated below the buffer surface. Another surface was constructed at the base of the sonic holes which were intentionally drilled short of the liner as a precaution against compromising the liner.

Source: AMB (2013)

Figure 14-42 Plan View of Viceroy Heap Leach Pad Showing Sonic Holes

Source: RMI (2013)

Figure 14-43 Heap Leach Cross Section A-A'

14.4 North Slope and Sleeman Deposits

Mr. James F. Barr, P.Geo., Senior Geologist with EBA, A Tetra Tech Company (EBA) reported mineral resource estimates for the North Slope (NS) and Sleeman (SL) deposits in the 2012 Technical Report effective March 11, 2012, and amended on January 17, 2013. The resource estimates for these deposits remain current.

The estimates for NS and SL were originally reported using a 0.2 g/t Au as the base case cut-off for oxide resources in the previous Technical Report. The base case is being revised to use the 0.5 g/t Au cut-off reported in the Technical Report's sensitivity tables to better reflect current market conditions.

The following sections summarize the information contained in the January 17, 2013 Technical Report.

14.4.1 Deposit Geology Pertinent to Resource Estimation

Geological solids were constructed to represent the major lithologies identified at each of the deposit areas and used in the creation of a geological model within the block model using GEMS® v6.4.1. In most respects, the lithologies for each deposit were simplified due to the complexity of individual rock codes used in the drillhole database. The geological model was used to define rock codes (Table 14-22) to each individual block using a partial block percentage methodology.

Major Rock **Major Rock Type** Description Type Code LAQM 121 Limonite altered quartz monzonite Oxidized SED OX 220 Argillite, graphitic argillite, siltstone with limonite staining 143 AQM Altered quartz monzonite Unoxidized SED NX 221 Argillite, graphitic argillite, siltstone OB 601 Overburden Unknown, unmineralized material Waste 888 Other Air 999 Air

Table 14-22 Descriptions for Major Rock Types used in Geologic Model

The North Slope deposit includes a single semi-continuous zone of mineralization hosted primarily within sedimentary rocks with higher grade mineralization occurring in proximity to a few thin quartz-monzonite intrusive sills. Mineralization within the sedimentary rocks occurs along similar orientation to these sills. The sedimentary and intrusive rock units respected the interpreted redox boundary that was incorporated into the geological model, as described below. The model incorporated numerous geological and mineralization domains used for modeling of gold grade values into the block model. In general, the mineralization was found to be continuous in distinct shear packages within the sedimentary host lithologies.

The Sleeman Deposit includes a single semi-continuous zone of mineralization distributed along sub-vertical fault bound pathways and lower angle stratiform quartz-monzonite sills. The Sleeman deposit was modeled using both sedimentary and intrusive quartz-monzonite rock types as the two primary lithologies; however, gold

mineralization was constrained to the quartz-monzonite unit. The quartz-monzonite intrusive was subdivided into LAQM and AQM respecting the redox boundary interpreted for the area, as described below. Sedimentary 'selvages' modeled to occur within the quartz-monzonite sill were noted to be barren of mineralization.

Both geological models were bound at the surface by LIDAR data provided by AMB. Natural overburden and till was considered insignificant at these deposits and was ignored in the block model.

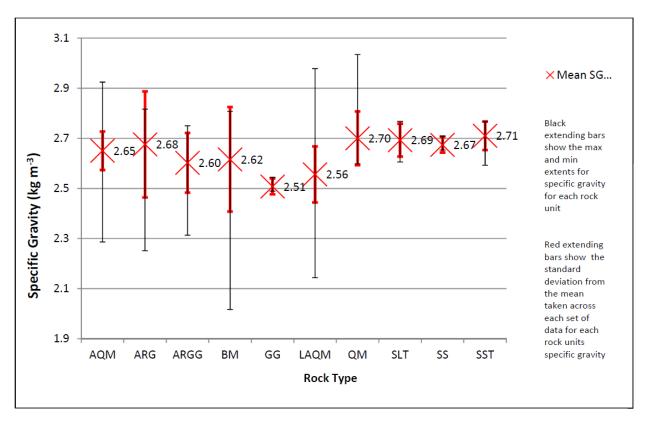
14.4.1.1 <u>Oxidation</u>

The redox boundary was provided as a geological surface and was incorporated into the geological model based upon the assumption that gold-bearing mineralization occurring above the boundary is oxidized and material below the surface is unoxidized or hosted within a sulfide phase. The boundary was interpreted based on either visual geological coding from recent AMB drilling or from rock identification within historical drill logs where no recent AMB drilling exists. The redox scheme that was used in the field by company geologists applied an incremental scale for visual observation from 0 to 4, where 0 described unoxidized material and 4 described completely oxidized material. The interpreted geological contact lying between rocks identified as 2 and 3, describing weak and partial oxidation respectively, was typically chosen as the redox boundary. No transition zone was defined at this time. All material coded as sedimentary was exempt from this redox distinction and was modeled as "unoxidized" for the purposes of resource reporting as EBA felt historical data from Vicerov operations suggested the materials have the potential for preg-robbing and as such may not react similarly to the oxidized quartz-monzonite material. As a result, sedimentary rocks were subject to higher grade cut-offs for resource reporting. Sedimentary rocks at North Slope are an exception to this and were modeled to respect the interpreted oxide boundary by reporting sedimentary resources as oxidized and unoxidized.

14.4.2 Data Used for Estimation

Drillhole data used in the resource was provided by AMB in a database format which included details on header, survey, analytical, lithological, mineralogical, and alteration. The complete drillhole database includes 2,432 holes, of which 90 core holes and 115 RC holes were geographically subset for use in the modeling based on the proximity to the target areas of interest (Table 14-23). The subset database was reviewed by EBA and corrections were made in collaboration with AMB, where necessary.

Number of **Deposit Total Metres Drilled Drillholes North Slope** 140 24,323.11 Core 32 6,657.14 RC 108 17,665.97 Sleeman 65 11,373.83 Core 58 10,871.83 RC 7 502 Total 205 35,696.94


Table 14-23 Drillholes by deposit used in the Mineral Resource Estimate

14.4.3 Bulk Density

In situ testing performed by AMB on drill core samples during the 2011 drilling campaign resulted in 467 specific gravity determination (SG) values obtained by in-situ wet density methods. The individual results were correlated to lithology by EBA and then inspected to obtain a representative value for each lithology. The analysis was conducted by calculating the mean specific gravity values for the available data. The extents of SG and variability in SG high hand low values were plotted against the rock units the SG data represented.

Some manipulation of the dataset was applied and is described as follows. Data values lower than a value of 1 were considered to be anomalous and were omitted from the analysis to avoid a bias in the skewness of the mean. Data that had SG values greater than 5 without mineralogical support were also considered anomalous and were omitted from the analysis.

The results of the analysis are plotted in Figure 14-44 and summarized in Table 14-24 for the major lithologies used in the geological model. Results of specific gravity tests on verification samples collected by EBA in March of 2012, discussed in Section 12, conform well to the values determined from the average in situ AMB testwork.

Source: EBA (2013b)

Figure 14-44 Specific Gravity Determination by Rock Type

Table 14-24 Specific Gravity Values used for North Slope and Sleeman

Rock Type	Specific Gravity used in Geological Model
LAQM	2.56
AQM	2.65
SED	2.67
WASTE	2.50
OVB	2.50
OTHER	2.50

14.4.4 Methodology

A summary of block modeling parameters used for the North Slope and Sleeman Mineral Resource estimates is included below.

The Mineral Resource estimates were performed using geological and block models in GEMS® v6.4.1. Block size selected for the models were 6x6x6 metres. Block model

origins were selected to include sufficient waste, or unmineralized material, around the spatial limits of the interpreted mineralized zones, both vertically and horizontally. Table 14-25 shows the block model parameters.

Resource Area		Origin (UTM m)	Number of Blocks	Block Size (m)	Rotation
	Х	6634798	170	6	0
NS	Υ	7106700	135	6	0
	Z	552	105	6	0
	Х	640900	140	6	0
SL	Υ	7105542	90	6	0
	Z	540	65	6	0

Table 14-25 Block Model Origins and Dimensions

For the North Slope model, the majority of the gold grade was constrained to a 0.1 g/t Au grade shell in addition to some loosely constrained mineralized zones outside of the grade shell within the wall rock. All blocks containing gold grade were controlled using ellipse ranges not exceeding the ranges supported by variography for their respective domain.

Modeling of gold grade values into the block model at Sleeman was constrained by two 0.5 g/t Au grade shells within a sub-vertical fault and within loosely constrained geological solids within the stratiform quartz-monzonite sills. All blocks containing gold grade were controlled using ellipse ranges not exceeding the ranges supported by variography for their respective domain. Continuity is supported by visual interpretation of the geological and grade solids, ellipse orientation and range, and with filtering criteria used for the Classification of Mineral Resources. Pit constraints were not applied to either the North Slope or Sleeman model.

14.4.5 Capping of Assays

Initial analysis of the gold grade log-histogram distributions for each deposit area indicate that grade populations are positively skewed and are generally contain few high grade outliers. Using GEMS, EBA visually scrutinized the grade distributions using composited drillhole data and determined that many high grade composites lay with areas of high mineral concentrations. A handful of composite samples were considered to be truly anomalous and were subjected to a high grade cap within the grade interpolation process. Table 14-26 lists the grade caps applied to the composited database to each deposit before interpolation and the actual number of samples that were subjected to the capping.

Table 14-26 High Grade Caps Applied to Composites

Resource Area	Composite Capping Grade (Au g/t)	Number of Samples Capped
North Slope	15	0
Sleeman	16	1

14.4.6 Compositing

A composite length of 2 metres was selected based on the population median of the sample length histogram analysis to normalize the data before being subject to geostatistical analysis. A summary of the raw and composited data with the related descriptive statistics is presented in Table 14-27. Minimal smoothing of the raw data resolution was noted in the 2 metres composite dataset.

Visual interpretation of the 2 metre composited data in 3 dimensions using GEMS resulted in determination and iterative subsetting of the data. These subsets were subject to histogram and variogram analysis in order to obtain geostatistical significant grade populations. Refinement of these grade populations to best estimate gold grade stationarity resulted in the determination of numerous mineralogical domains within the broader mineralized zone of each deposit. Slight modifications to existing geological solids and creation of new geological solids from wireframes based on these domains permitted spatial constraints on the data for subsequent interpolation.

Table 14-27 Summary Descriptive Statistics for Raw Assay and 2m Uncapped Composite Samples

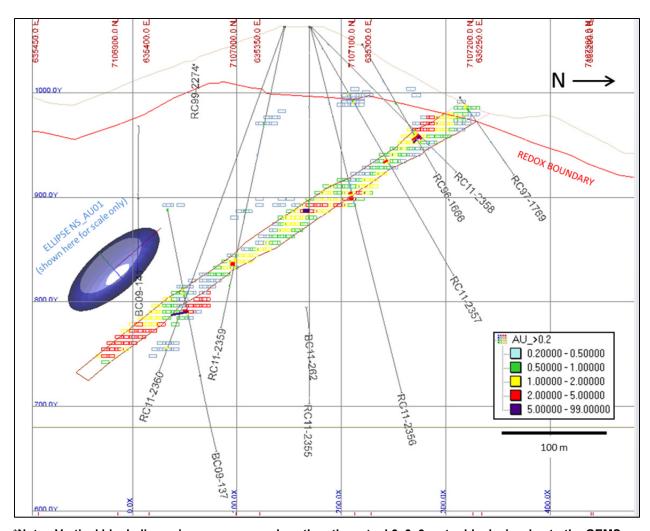
	Minimum	Maximum	Mean	Std. Dev.	Median
NS Raw Assays	0.00	20.17	0.13	0.60	0.013
NS 2m Composites	0.00	15.82	0.13	0.56	0.01
SL Raw Assays	0.00	43.00	0.29	1.02	0.021
SL 2m Composites	0.00	21.54	0.25	0.78	0.02

14.4.7 Estimation

Ordinary Kriging (OK) interpolation methodology was selected to for the Sleeman and North Slope deposits based in the high density and volume available in AMB's drillhole database. Raw and 2 metre composite values were subjected to visual and statistical domaining. A total of 5 domains were defined by variogram analysis for these deposits. Table 14-28 below summarizes the variogram orientation and structures for each domain. Search ellipse parameters were set to the variogram orientation and range. A summary of the search ellipse parameters are listed in Table 14-29 below. Orientations reported below are based on the GEMS *principal azimuth-principal dip-intermediate azimuth* system. Through iterative model runs, followed by visual inspection, a minimum

of 3 to a maximum of 30 composites were required for a value to be assigned to a block. A limit of 6 composites per drillhole was applied. Kriging neighborhood analysis was not performed.

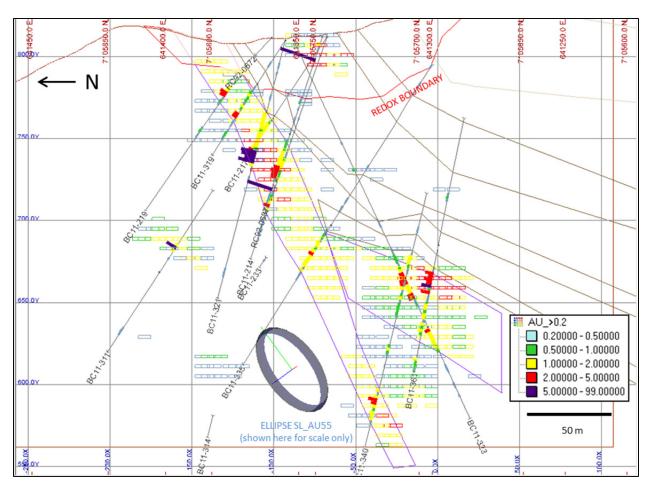
Gemcom GEMS v6.4.1 was used to complete the geostatistical analysis, geological modeling and block modeling for the Mineral Resource estimation. High grade capping was applied to the composited datasets to eliminate positive skew and remove values that were considered anomalous. A high grade cap of 15 g/t was applied to the North Slope and of 16 g/t to the Sleeman data.


A representative cross section of the estimated block model for North Slope is shown in Figure 14-45, and Sleeman in Figure 14-46.

Resource Area	Domain	Variogram	P-Azi	P-Dip	Int-Azi	C0	Sill	S-Total
North	11	NS_AU01X	267.621	12.199	9.553	0.550	1.134	1.684
Slope	12	NS_AU01	267.621	12.199	9.553	0.550	1.134	1.684
	13	SL_AU55	294.577	8.901	37.037	0.208	2.720	2.928
Sleeman	14	SL_HG2	302.552	38.866	46.778	0.000	1.431	1.431
	15	SL_HG2	302.552	38.866	46.778	0.000	1.431	1.431

Table 14-28 Summary of Variogram Parameters

Table 14-29	Summary	of Sparch	Ellingo	Darameters
Table 14-29	Summary	ot Search	Ellinse	Parameters


Resource Area	Domain	Interpolation Profile	Ellipse	Primary Azimuth	Primary Dip	Int- Azimuth	Major	Semi- major	Minor
	11	NS_SDNX2	NS AU01X	267.621	12.199	9.553	35	12	12
North Slope	11	NS_SDOX2	NS_AUUTA	207.021	12.199	9.555	33	12	12
North Slope	12	NS_SEDNX	NS AU01	267.621	12.199	9.553	69	43	23
		NS_SEDOX	NS_A001		12.199	9.555	09	43	
	13	SL_HG1NX	SL AU55	294.577	8.901	37.037	34	30	14
		SL_HG10X	3L_A055		0.901	37.037	34	30	14
	14	SL_HG2NX	SL HG2	202 552	20.000	46.778	26	23	10
Sleeman	14	SL_HG2OX	SL_HG2	302.332	302.552 38.866		20	23	12
		SL_AQM			38.866		26	23	12
	15	SL_LAQM	SL_HG2	302.552		46.778			
		SL_SED							

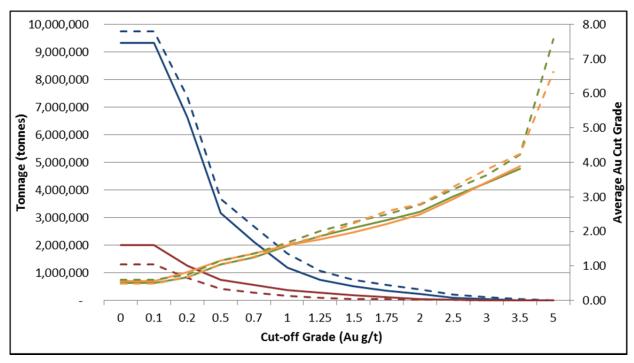
*Note: Vertical block dimensions may appear less than the actual 6x6x6 metre block size due to the GEMS percent model cross sectional visual representation.

Source: EBA (2013b)

Figure 14-45 Oblique Section of North Slope Gold Grade Model (40 metre wide)

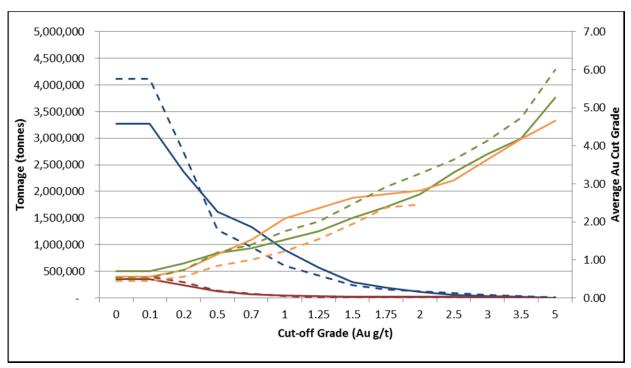
*Note: Vertical block dimensions may appear less than the actual 6x6x6 metre block size due to the GEMS percent model cross sectional visual representation.

Source: EBA (2013b)


Figure 14-46 Oblique Section of Sleeman Gold Grade Model (25 metre wide)

14.4.7.1 Grade Cut-off Selection

Gold cut-off grades of 0.5 g/t Au for oxide material and 0.7 g/t Au for sulfide material have been applied by EBA for the purposes of this updated mineral resource estimate. The oxide cut-off grade has been revised from 0.2 g/t Au as used in the previous Technical Report to 0.5 g/t Au reported in the previous Technical Report's sensitivity tables to better reflect current market conditions.


The cut-off grades were originally selected based on review NI 43-101 documents reporting on properties analogous to Brewery Creek and since no economic or engineering studies had been completed for the property at the time of the previous report. EBA feels that the numbers are suitable at the resource estimation stage of the project given a moderate level of uncertainty in the actual costs for the proposed project at this time.

Grade-tonnage curves are presented in Figure 14-47 and Figure 14-48 below to highlight the effect with variation to the grade cut-offs. A legend for the line types used in the figures is seen in Figure 14-49.

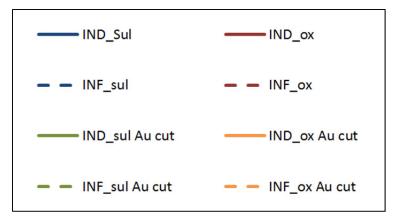

Source: EBA (2013b)

Figure 14-47 Grade Tonnage Curve for the North Slope Deposit

Source: EBA (2013b)

Figure 14-48 Grade Tonnage Curve for the Sleeman Deposit

Source: EBA (2013b)

Figure 14-49 Legend for grade-tonnage curve line types
(IND = Indicated Resources, IND = Inferred Resources, ox = oxide material, sul = sulphide bearing material, cut = gold grade subject to high grade cap)

14.4.7.2 Model Validation

Three validation methods were conducted to compare the results of the six individual block models as a reasonable estimate of the raw data: visual comparison of raw assays to the block model, geostatistical comparison of raw and 2 metre composites to the block model and unbiased nearest neighbor interpolation method compared to the Kriging/IDW interpolation methods. The block model data was exported from GEMS as only the blocks that were candidate for either Inferred or Indicated Resource Classification, by this only blocks with grades greater or equal to 0.1 g/t Au were included in the analysis.

14.4.7.2.1 Visual Comparison

Visual comparison of raw assay and 2 metre composited data plotted on drillholes versus the gold distribution within the block model was completed. It was felt that a good correlation between the data was seen and that no significant biases were apparent in the block model data.

14.4.7.2.2 Geostatistical Comparison

A summary of the descriptive statistics for gold values within the block models were compared to the data set for the raw assays and the 2 metre composites. Table 14-30 below summarizes the comparative statistics where all raw and 2 metre composite data less that 0.1 g/t gold were removed from the population to be comparable with the block model data.

Block model data is reported here with lower mean and median values. This is felt to be justified by inherent declustering of raw and 2 metre composite sampling within the block model, for which areas with numerous drillholes in the same high grade zone

have been declustered. In addition, 2 metre composite values of less than 0.1 g/t gold may have contributed to lower average grades of some marginal blocks, as these same less than 0.1 g/t gold values have been excluded from the raw and 2 metre composite datasets a minor low grade bias is influencing the block model data.

Resource	Reso	urce Bloc	k Model		Raw		2m Composite			
Area	Mean	Median	Std. Dev	Mean	Median	Std. Dev	Mean	Median	Std. Dev	
North Slope	0.550	0.337	0.570	0.737	0.298	1.359	0.693	0.290	1.226	
Sleeman	0.606	0.352	0.655	0.944	0.505	1.730	0.817	0.450	1.295	

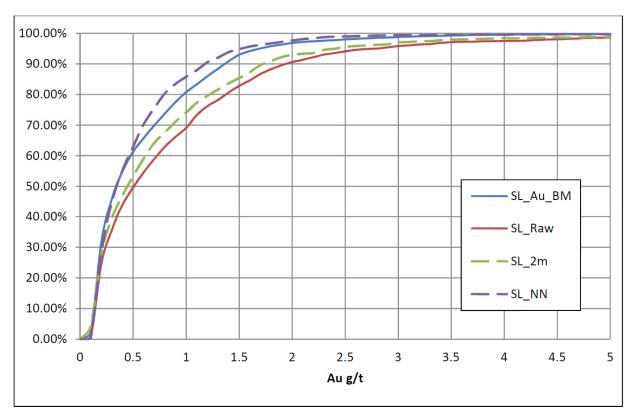
Table 14-30 Resource Block Model Comparative Statistics

14.4.7.2.3 Nearest Neighbor Comparison

An exercise was completed where the complete 2 metre composite datasets for each deposit were interpolated into a validation block model using an 'unbiased' nearest neighbor (NN) model. This method does not factor distance, direction or clustering into account when determining block grades during the interpolation process and is intended to provide a 'raw' numerical representation of an interpolated grade distribution. This method does not incorporate extensive control parameters, or 'bias', to the interpolation profile and typically does not visually represent grade trends or mineral continuity well.

An isotropic ellipse with a 30 metre radius was used to compare NN models with the 5 Kriged deposits and an isotropic ellipse with radius of 50 metres was used to compare the NN model with the Classic Deposit (interpolated using IDW). The radius was selection to reflect a generalized average of the search range determined for each deposit from the variography.

Given the consistent and relatively dense drillhole spacing within the mineralized zones, the NN model resulted visually in a remarkably similar grade distribution as the Kriging and IDW models, however, as no geological control was implemented on the NN models, grade was noted to cross unmineralized geological boundaries.


Cumulative probability plots were created to compare grade populations for the raw, 2 metre composite, resource block model and NN block model data, where all data sets were filtered of data less than 0.1 g/t Au. The plots are presented as Figure 14-50 and Figure 14-51, below. Review of the plots reveals that the resource block models and NN models are numerically similar. Some smoothing is noted within both block model datasets relative to the raw dataset, however, the resource block model data and the 2 metre composite data are typically found to lie between the two extremes of the NN model and the raw dataset. As discussed above, declustering of the source data and

the inherent low grades within the marginal blocks may contribute to some of the smoothing effect present in the Big Rock, Fosters-Canadian and Bohemian Schooner Deposits.

Source: EBA (2013b)

Figure 14-50 Cumulative Probability Plot for North Slope Deposit

Source: EBA (2013b)

Figure 14-51 Cumulative Probability Plot for Sleeman Deposit

14.5 Mineral Resource Classification

14.5.1 Kokanee, Golden, Pacific, Blue, and Lucky Deposits

The estimated block grades were classified into Indicated and Inferred categories. For the Kokanee, Golden, Pacific, Blue, and Lucky deposits oxide blocks that were estimated by two or more drillholes with the closest hole within 25m were classified as Indicated Resources. Also, blocks in KOGD and PABL that were estimated by a single drillhole within 15 metres of the nearest drillhole, and blocks in LU that were estimated by a single drillhole within 7.5 metres of the nearest drillhole were classified as Indicated Resources. All other estimated oxide blocks were classified as Inferred. Oxide blocks were reported inside a \$1250 Au LG pit. The parameters for pit construction are listed in Table 14-31. These pit parameters were used to construct a base case Au cutoff grade for resource reporting, as noted in Equation 3. All sulfide blocks were classified as Inferred. No Measured Mineral Resources have been defined within the current Mineral Resource Estimate.

14.5.2 Bohemian, Schooner, Lower Fosters, West Big Rock, East Big Rock, Classic, and Lone Star Deposits

The estimated block grades were classified into Indicated and Inferred categories. For the Bohemian, Schooner, Lower Fosters, West Big Rock, and East Big Rock deposits oxide blocks that were estimated by two or more drillholes with the closest hole within 25m were classified as Indicated Resources. Blocks estimated by a single drillhole within 12.5m were also classified as Indicated Resources. All other estimated oxide blocks were classified as Inferred. Oxide blocks in the above areas were reported inside a \$1250 Au LG pit. The parameters for pit construction are listed in Table 14-31. These pit parameters were used to construct a base case Au cutoff grade for resource reporting, as noted in Equation 3. All sulfide blocks were classified as Inferred. Blocks were considered as Inferred Resources for the Classic and Lone Star deposits if they were estimated by three or more drillholes with the closest hole located within 50 metres or two or more holes with the closest within 37.5 metres or 1 hole within 25 metres. No Measured Mineral Resources have been defined within the current Mineral Resource Estimate.

14.5.3 Historical Heap Leach Pad

Indicated Resources were confined to the base of the sampled sonic drillholes upward to the existing heap surface. All material below the base of the assayed sonic holes to a surface located 3 metres above the heap leach liner was classified as Inferred Resources. The lower portion of the existing heap leach pad was placed into the Inferred category primarily due to a lack of sonic drillhole assays from the lower levels of the pad, and to provide a conservative buffer zone to protect the liner from being breached. The base case Au cutoff was calculated based on assuming a \$1250/oz Au price, and a 45% recovery.

14.5.4 North Slope and Sleeman Deposits

An Inferred classification has been applied to target marginal and outlier blocks in the block models, which suggest presence and continuity of mineralization but lack the density of data for confirmation. Inferred blocks lie within the maximum variogram range, are associated with one or more drillholes, exist on the outer extremities of the principal mineralized body, have at least 3 composite samples reporting within the search ellipse and contain partial block grades of greater than or equal to 0.1 g/t Au. An Indicated classification has been applied to block models to target portions of the mineralized body where data density confirms the presence and continuity of mineralization with a moderate level of confidence. Indicated blocks lie within 25 metres of the closest reporting composite, have a minimum of 8 composites reporting within the search ellipse from a minimum of 2 drillholes and contain partial block grades of greater than or equal to 0.1 g/t Au. These minimum criteria were selected based on visual

inspection of the grade distribution and the average drillhole spacing. No Measured Mineral Resources have been defined within the current Mineral Resource Estimate. In early 2012, when the resource estimates for Sleeman and North Slope were calculated no economic or engineering studies had been completed for the property and gold cut-off grades of 0.5 g/t Au for oxide material and 0.7 g/t Au for sulfide material were selected based reviews of NI 43-101 documents reporting on other properties analogous to Brewery Creek and based on the gold prices at the time. EBA felt that these numbers were suitable for the resource estimation stage of the project.

14.6 Mineral Resource Estimation

Oxide Mineral Resources for the Kokanee, Golden, Pacific, Blue, Lucky, Bohemian, Schooner, Lower Fosters, West Big Rock, and East Big Rock deposits are based on Indicated and Inferred Resources which are located inside of conceptual pits. Table 14-31 summarizes the parameters that were used to generate the conceptual oxide pits (no value was attributed to sulfide material). Both Indicated and Inferred Resources were used to generate the pits. Oxide cutoff grades for resource declaration were established using the parameters shown in Table 14-31.

Resource Area	Mining (\$/tonne)	G&A (\$/tonne leached)	Processing (\$/tonne leached)	LG Processing (\$/tonne leached)	Au Recovery	Au Cutoff (g/t)*
Kokanee, Golden	\$3.10	\$2.65	\$9.41	\$12.06	70%	0.54
Pacific, Blue	\$2.78	\$2.65	\$9.41	\$12.06	70%	0.53
Lucky	\$3.20	\$2.65	\$9.41	\$12.06	70%	0.54
Bohemian	\$3.20	\$2.65	\$9.41	\$12.06	77%	0.49
Schooner	\$3.20	\$2.65	\$9.41	\$12.06	74%	0.51
Lower Fosters	\$2.97	\$2.65	\$9.41	\$12.06	73%	0.51
West Big Rock	\$2.92	\$2.65	\$9.41	\$12.06	83%	0.45
East Big Rock	\$2.92	\$ 2.65	\$9.41	\$12.06	77%	0.48

Table 14-31 Oxide Pit Parameters

Equation 3: Basecase Au Cutoff Calculation

$$Au\ Basecase\ Cutoff = \frac{Mining\ Cost + Processing\ Cost + G\&A\ Cost}{Au\ Price * Au\ Recovery}$$

All mineral resource estimates are summarized in Table 14-32. Gustavson knows of no environmental, permitting, legal, title, taxation, socio-economic, marketing, political, or other factors that could materially affect the mineral resource.

Mineral resources are not mineral reserves and do not demonstrate economic viability. The quantity and grade of inferred resources reported herein are uncertain in nature and exploration completed to date is insufficient to define these Mineral Resources as indicated or measured. There is no guarantee that further exploration will result in the inferred Mineral Resources being upgraded to an indicated or measured mineral resource category. There is no certainty that all or any part of the mineral resource will be converted to mineral reserves. Mineral Resources are not mineral reserves and may be materially affected by environmental, permitting, legal, socio-economic, marketing, political, or other factors. Quantity and grade are estimates and are rounded to reflect the fact that the resource estimate is an approximation.

The effective date of this Mineral Resources is June 1st, 2013.

Table 14-32 Summary of Total Mineral Resources

Oxide Mineral Resources										
Resource Area	Au Cutoff	Indicated Oxide Resources			Inferred Oxide Resources			Constrained by \$1250 LG	QP	Estimated with Capped
110000110071100	(g/t)	Tonnes (000)	Au (g/t)	Au Ozs (000)	Tonnes (000)	Au (g/t)	Au Ozs (000)	Pit?	Responsible	Composites?
Kokanee	0.54	1,201	1.19	46	279	1.19	11	Yes	Don Hulse	Yes
Golden	0.54	1,070	1.38	47	247	1.25	10	Yes	Don Hulse	Yes
Pacific	0.53	373	1.01	12	131	0.91	4	Yes	Don Hulse	Yes
Blue	0.53	250	1.29	10	29	0.98	1	Yes	Don Hulse	Yes
Lucky	0.54	2,394	1.36	105	236	1.27	10	Yes	Don Hulse	Yes
Bohemian	0.49	1,491	1.31	63	134	1.49	6	Yes	Mike Lechner	Yes
Schooner	0.51	1,108	1.99	71	243	2.65	21	Yes	Mike Lechner	Yes
Lower Fosters	0.51	1,090	1.61	56	492	1.52	24	Yes	Mike Lechner	Yes
West Big Rock	0.45	722	1.27	29	38	0.75	1	Yes	Mike Lechner	Yes
East Big Rock	0.48	596	1.10	21	21	0.87	1	Yes	Mike Lechner	Yes
Classic	0.54	-	-	-	3,711	0.81	97	No	Mike Lechner	Yes
Lone Star	0.54	-	-	-	1,522	0.88	43	No	Mike Lechner	Yes
North Slope	0.5	756	1.15	28	412	1.05	14	No	James Barr	Yes
Sleeman	0.5	124	1.14	5	132	0.84	4	No	James Barr	Yes
Historical Viceroy Pad	0.30	2,977	0.88	84	1,682	0.60	32	No	Mike Lechner	No
Total		14,152	1.27	577	9,309	0.93	279			

Table 14-32 (cont.)

Sulfide Mineral Resources										
Resource Area	Au Cutoff	Indicated Sulfide Resources			Inferred Sulfide Resources			Constrained by \$1250 LG	QP	Estimated with Capped
(g/t)		Tonnes (000)	Au (g/t)	Au Ozs (000)	Tonnes (000)	Au (g/t)	Au Ozs (000)	Pit?	Responsible	Composites?
Kokanee	0.70	-	-	-	1,547	1.33	66	No	Don Hulse	Yes
Golden	0.70	-	-	-	649	1.20	25	No	Don Hulse	Yes
Pacific	0.70	-	-	-	707	1.45	33	No	Don Hulse	Yes
Blue	0.70	-	-	-	1,358	1.31	57	No	Don Hulse	Yes
Lucky	0.70	-	-	-	1,783	1.36	78	No	Don Hulse	Yes
Bohemian	0.70	-	-	-	973	1.58	50	No	Mike Lechner	Yes
Schooner	0.70	-	-	-	313	1.42	14	No	Mike Lechner	Yes
Lower Fosters	0.70	-	-	-	883	1.45	41	No	Mike Lechner	Yes
West Big Rock	0.70	-	-	-	381	1.28	16	No	Mike Lechner	Yes
East Big Rock	0.70	-	-	-	170	1.00	5	No	Mike Lechner	Yes
Classic	0.70	-	-	-	-	-	-	No	Mike Lechner	Yes
Lone Star	0.70	-	-	-	-	-	-	No	Mike Lechner	Yes
North Slope	0.70	2,122	1.26	86	2,686	1.36	118	No	James Barr	Yes
Sleeman	0.70	1,337	1.30	56	958	1.40	43	No	James Barr	Yes
Total		3,459	1.28	142	12,408	1.37	546			

15 Adjacent Properties (Item 23)

There are no mining properties adjacent to the Brewery Creek property.

16 Other Relevant Data and Information (Item 24)

Other relevant data and information is contained throughout this report.

17 Interpretation and Conclusions (Item 25)

It is Gustavson's conclusion from review of the information provided in this report that the Brewery Creek Project has merit and warrants continuing development.

17.1 Results

Exploration on the Project is advanced and has involved drilling, soil sampling and geophysical surveying. These exploration results guided drilling activities and helped to define the intrusion-related gold mineralization within the Project. Continued observations and exploration will better define the mineralization system and refine how targets are selected. The magnetic survey delineated a magnetic high, likely an intrusive body from the tombstone plutonic suite, in the southwest portion of the project area. Adjacent to this high are abrupt magnetic lows over the reserve trend mineralization. The IP survey identified a resistivity low near the surface which may indicate the location of the structure associated with mineralizing fluid flow.

The mineralization delineated to date consists of fracture-controlled quartz stockwork in siliciclastic and intrusive rocks. Most of the mineralized intrusive sills strike northwesterly and dip relatively shallowly to the southwest. The true thickness of the sills is better determined from recent drilling, as newer holes were drilled at angles approximately perpendicular to the trend of mineralization. The size and extent of each mineralized resource area, as discussed fully in Section 7.5, is summarized here. The Kokanee-Golden resource area mineralization is associated mainly with the quartz monzonite sill complex, with minor mineralization in siltstone and argillite. The Kokanee deposit is ~1100 metres along strike, while the Golden deposit is ~950 metres. The Pacific deposit mineralization is hosted by lower Paleozoic siltstone and is ~500 metres along strike. The Blue deposit mineralization is hosted primarily in guartz monzonite with subordinate mineralization in Paleozoic siltstone. The mineralization trends northeast for ~560 metres along strike. The Lucky resource area mineralization is associated with guartz monzonite and strikes for ~550 metres in a northeast trend. The Bohemian-Schooner resource area mineralization is hosted in mainly in clay-altered quartz monzonite sills, with subordinate mineralization in adjacent siltstone. Bohemian mineralization is ~520 metres along strike, and Schooner mineralization is ~450 metres along strike. Mineralization in the Lower Fosters resource area, part of the Canadian-Fosters complex, is hosted primarily in the limonite-altered quart monzonite and subordinately in sedimentary strata that lie adjacent to the intrusions. The Lower Foster mineralization has a strike length of ~550 metres. The West and East Big Rock resource area mineralization occurs primarily in limonite-altered quartz monzonite sills and subordinately in adjacent siliciclastic sedimentary strata. The Big Rock sills strike 070° azimuth and dip between 40 and 45 degrees southeast and have a drill-defined

strike length of approximately 1.3 kilometres. The Classic resource area mineralization is poorly understood, but is observed within centimetre-scale sheeted quartz veinlets. Modeled mineralization is 1.4 kilometres along strike. Three styles of mineralization occur at the Lone Star deposit: elevated Au associated with skarns, disseminations in syenite, and auriferous sheeted quartz veins. The modeled extent of mineralization is ~1.1 km along strike. The North Slope resource area mineralization zone occurs in clay-altered quartz monzonite and siltstone of the Steele Formation, with mineralization related to a through-going breccia zone. The mineralization extends ~750 metres along strike. The Sleeman resource area mineralization is associated with an altered, tabular-shaped quartz monzonite intrusion the cuts siltstone. Mineralization is ~500 metres along strike.

Based on field observations and a review of AMB's QA/QC programs, Gustavson considers that the assay database supports the use of the data in estimation of a CIM-compliant mineral resource. Gustavson is of the opinion that the selected base case cutoffs discussed in Section 14.6 are reasonable based on noted parameters.

The results of the Mineral Resource estimation are that the Brewery Creek Project has indicated resources in oxide and sulfide materials totaling 719,000 troy ounces of contained gold and inferred resources in oxide and sulfide materials totaling 825,000 troy ounces of contained gold.

17.2 Significant Risks and Uncertainties

Gustavson knows of no environmental, permitting, legal, title, taxation, socio-economic, marketing, political, or other factors that could materially affect the Mineral Resource.

17.2.1 Royalties

Gustavson notes no significant factors or risks that may affect access, title, or right or ability to perform work on this property.

17.2.2 Exploration

Gustavson is of the opinion that the exploration is being conducted properly to provide adequate information for the current mineral resource estimate. Further exploration should aim to add to the geological understanding of the mineralizing system in addition to spatially defining known deposits and identifying new targets. The little understood Classic deposit is an area of opportunity and requires further work.

17.2.3 Mineral Resource Estimate

Indicated and inferred resource estimates have been produced for fourteen deposits plus the former heap leach pile. Resources are reported for both oxide and sulfide material. Indicated oxide resources (including historical heap leach pad) total 577,000

troy ounces of contained gold in 14,152,000 tonnes of material at 1.27 g/t Au. Inferred oxide resources (including historical heap leach pad) total 279,000 troy ounces of contained gold in 9,309,000 tonnes of material at 0.93 g/t Au. Indicated sulfide resources total 142,000 troy ounces of contained gold in 3,459,000 tonnes of material at 1.28 g/t Au. Inferred sulfide resources total 546,000 troy ounces of contained gold in 12,408,000 tonnes of material at 1.37 g/t Au.

A better understanding of the mineralizing system (intrusive-related versus epithermal) may help to refine modeling methods. As with any mineral resource estimate, there exist both positive and negative opportunities when additional drilling is undertaken.

18 Recommendations (Item 26)

In October 2013, Gustavson recommended a two-stage ongoing program for the Brewery Creek Project. In the first stage, exploration drilling should continue, particularly targeting the deeper portions of known deposits and closing up drill spacing to potentially upgrade inferred to indicated resources. In the second stage, additional engineering studies and an economic analysis should be completed, leading to finalization of the preliminary feasibility study and subsequent publication of a technical report inclusive of reserves. Gustavson has reviewed the October 2013 program recommended to AMB and finds no events have changed to alter the recommended program as stated below for Northern Tiger Resources.

18.1 Recommended Work Programs

Exploration Program: \$2,240,000

An additional 10,000 metres of drilling is recommended at Lone Star and Classic to close up spacing and further test deeper parts of the system. This drilling could potentially result in upgrading these two resources from inferred to indicated status. Estimated cost of drilling, assaying, and project support is estimated to be \$2,000,000. Metallurgical holes, totaling approximately 1200 metres of PQ core, are recommended to be drilled at Lucky, Kokanee and Golden for an additional direct drilling cost of approximately \$240,000. This will better define the metallurgical characteristics of these resource areas.

Engineering Program: \$625,000

As the Exploration Phase delineates further resources, the results will be fed into an Engineering Program. The existing engineering studies should be updated and refined into a prefeasibility level report. The primary task of updating of existing studies will be to incorporate all the resource areas with potentially minable oxide material into a comprehensive mine plan and schedule. Estimated cost is \$150,000.

PQ core drilled during the Exploration Program should undergo metallurgical testing. Estimated cost of metallurgical testing and reporting on the PQ core is \$225,000.

Updating of potential waste rock disposal sites and accompanying geotechnical investigations to accommodate new resource areas. Estimated cost \$150,000.

An economic analysis should be completed, leading to finalization of the preliminary feasibility study and subsequent publication of a technical report inclusive of reserves. Estimated costs are \$100,000.

18.1.2 Costs

The following are the estimated costs of recommended work.

Exploration: \$2,240,000

Complete engineering studies into PFS level \$ 625,000

Total: \$2,865,000

19 References

- Access, 2010. From Assessment and Permitting through Production to Post Closure: A Post Closure Analysis of a Northern Heap Leach Mine. Prepared by Access Consulting Group, dated 2010.
- Alexco, 2005. Acknowledgement and Agreement to Be Bound. Prepared and Executed by Alexco Resource Corp. to Viceroy Minerals Corporation and Energold Minerals Inc. on March 15, 2005.
- BBA, 2012. Conceptual Study: Connection to Yukon Energy Corporation Network. Prepared by BBA for Golden Predator Canada Corp., dated November 19, 2012.
- Diment et al, 2009. Technical Report on the Brewery Creek Gold Project, Yukon Territory, Canada. Prepared by Richard M. Diment, P.G. and Ronald G. Simpson, P.G. of GeoSim Services, Inc. for Golden Predator Royalty & Development Corp., dated July 31, 2009.
- Diment, R., and Simpson, R., 2003, SpectrumGold Inc. and 650399 BC Ltd. Brewery Creek Gold Project, Yukon Territory, Canada, Technical Report for Viceroy Corporation, May 16, 2003.
- EBA, 2012a. 2012 Geotechnical Site Investigation & Geotechnical Pre-Feasibility Study for Six Proposed Pits. Prepared by EBA for Golden Predator Corp., dated December 2012.
- EBA, 2012b. Waste Rock Deposition Sites, Preliminary Options and Volume Estimates. Prepared by EBA for Golden Predator Canada Corp., dated December 2012.
- EBA, 2012c. Design Memo regarding Lower Foster Pit, Small Ephemeral Drainage Tributary Diversion Conceptual Design. Prepared by EBA for Golden Predator Corp., dated December 20, 2012.
- EBA, 2013a. Technical Memorandum regarding Brewery Creek Mine Haul Roads. Prepared by EBA for Golden Predator Corp., dated January 2, 2013.
- EBA, 2013b. Updated Mineral Resource Estimate for the Brewery Creek Property, Yukon Territory, Canada. Prepared by EBA for Golden Predator Canada Corp., dated January 17, 2013.
- EBA, 2013c. Draft Internal Pre-Feasibility Study for the Brewery Creek Property, Yukon Territory, Canada. Prepared by EBA for Golden Predator Canada Corp., dated May 2013.

- Golden Predator, 2012a. Acknowledgement and Agreement to Be Bound. Prepared and Executed by Golden Predator Canada Corp. to Alexco Resource Corp. and Energold Minerals Inc., dated September 25, 2012.
- Golden Predator, 2012b. Acknowledgement and Agreement to Be Bound. Prepared and Executed by Golden Predator Canada Corp. to Franco-Nevada Corporation, dated September 25, 2012.
- Golden Predator, 2013a. 2012 Assessment Report on the Brewery Creek Property. Prepared by Golden Predator Canada Corp., dated January 9, 2013.
- Golden Predator, 2013b. 2012 Annual Water License Report and 2012 Annual Quartz Mining License Report. Prepared by Golden Predator Corp. and submitted to Yukon Water Board and Yukon Government, Energy Mines and Resources, et al, dated February 2013.
- Hemlo, 1992. Letter from Hemlo Gold to Total Erickson Resources Limited regarding Agreement Made the 9th Day of June, 1989 between Noranda Exploration Company, Limited and Total Erickson Resources Limited; dated September 23, 1992.
- Hemlo, et al, 1993. Royalty Agreement between Hemlo Gold Mines, Inc. and Loki Gold Corporation, Executed on September 24, 1993.
- KD, 2012. Memorandum regarding Brewery Creek Reprocessing Existing Heap Leach. Prepared by KD Engineering for Golden Predator Corp., dated November 5, 2012.
- KD, 2013a. Equipment List. Prepared by KD Engineering for Golden Predator Corp., dated January 2013.
- KD, 2013b. Electrical Load Study. Prepared by KD Engineering for Golden Predator Corp., dated February 6, 2013.
- KD, 2013c. Capital Cost Estimate, Brewery Creek Prefeasibility Study Owner Operated Crushing. Prepared by KD Engineering for Golden Predator Corp., dated March 2013.
- KD, 2013d. Operating Cost Estimate. Prepared by KD Engineering for Golden Predator Corp., dated April 2013.
- Lindsay, M., (2006). The Structural and Hydrothermal Evolution of Intrusion-Related Gold Mineralisation at Brewery Creek Mine, Yukon, Canada. PhD thesis Submitted to the James Cook University, North Queensland, Australia. Murphy, D.C., 1997: Geology of the McQuesten River Region, Northern McQuesten and Mayo Map Areas, Yukon Territory (115P/14, 15, 16; 105M/13, 14). Exploration and Geological Services Division, Yukon Region. Bulletin 6. 95p. + maps.

- Matrix, 2012. Heritage Resources Overview Assessment for the Brewery Creek Property. Prepared by Matrix Research Limited for Golden Predator Corp., dated June 2012.
- McClelland, 2012. Report on Heap Leach Residue Testing, MLI Job No. 3618, dated Dec. 19 2012, McClelland Laboratories, Inc.
- Newmont, et al, 2007. Assignment and Assumption Agreement between Newmont Mining Corporation and Franco-Nevada Corporation, Executed on December 20, 2007.
- Noranda, 1989. Royalty Acknowledgement Agreement between Noranda Exploration Company, Limited and Total Erickson Resources, Limited, Executed on June 9, 1989.
- NCL, 2013. Quote for Golden Predator to Provide a Complete Contracted Crushing, Screening, and Conveying Operation System at Brewery Creek Mine. Prepared by Nuway Crushing Ltd, dated January 12, 2013.
- SGS et al, 2013. Design Criteria, Brewery Creek Prefeasibility Study. Prepared by SGS Metcon and KD Engineering for Golden Predator Canada Corp., dated April 8, 2013.
- Tetra Tech, 2012. Waste Rock Deposition Sites, Preliminary Options and Volume Estimates. Prepared by Tetra Tech for Golden Predator Corp., dated December 2012.
- Tetra Tech, 2013a. Technical Memorandum regarding Brewery Creek Preliminary Heap Leach Facility Water Balance. Prepared by Tetra Tech for Golden Predator Corp., dated January 14, 2013.
- Tetra Tech, 2013b. Heap Leach Facility Pre-Feasibility Design Cells 8, 9, & 10. Prepared by Tetra Tech for Golden Predator, dated April 2013.
- Viceroy Minerals Corporation, 2000. Brewery Creek Monthly Report, December 2000, Reagent Consumption Report page 21.
- Vista, 2012. Letter from Vista Tek Limited to Golden Predator regarding September 2012 Engineering Inspection Brewery Creek Mine, dated October 3, 2012.
- Walker, 2012. Airborne Geophysical Survey Report Brewery Creek Block 2012. Precision GeoSurveys Inc. October 2012.
- YEMR, 2004. Amendment to Yukon Quartz Mining Licence A99-01. Issued by Yukon Energy, Mines Resources to Viceroy Minerals Corporation, dated April 6, 2004.
- YEMR, 2012a. Class 4 Quartz Mining Permit, Executed by Glenna Southwick of Yukon Energy, Mines and Resources on July 6, 2012.

- YEMR, 2012b. Letter from Bryony McIntyre of Yukon Energy, Mines and Resources to John Legg of Golden Predator Canada Corp. regarding Assignment of Quartz Mining License A99-001 Brewery Creek, dated July 6, 2012.
- YEMR, 2012c. Type B Water License No. MN12-038. Permitted to Golden Predator Corporation by Yukon Water Board, dated August 6, 2012.

20 Glossary

20.1 Mineral Resources

The Mineral Resources and mineral reserves have been classified according to the "CIM Standards on Mineral Resources and Reserves: Definitions and Guidelines" (November 27, 2010). Accordingly, the Resources have been classified as Measured, Indicated or Inferred, the Reserves have been classified as Proven, and Probable based on the Measured and Indicated Resources as defined below.

A Mineral Resource is a concentration or occurrence of natural, solid, inorganic or fossilized organic material in or on the Earth's crust in such form and quantity and of such a grade or quality that it has reasonable prospects for economic extraction. The location, quantity, grade, geological characteristics and continuity of a Mineral Resource are known, estimated or interpreted from specific geological evidence and knowledge.

An 'Inferred Mineral Resource' is that part of a Mineral Resource for which quantity and grade or quality can be estimated on the basis of geological evidence and limited sampling and reasonably assumed, but not verified, geological and grade continuity. The estimate is based on limited information and sampling gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings and drillholes.

An 'Indicated Mineral Resource' is that part of a Mineral Resource for which quantity, grade or quality, densities, shape and physical characteristics can be estimated with a level of confidence sufficient to allow the appropriate application of technical and economic parameters, to support mine planning and evaluation of the economic viability of the deposit. The estimate is based on detailed and reliable exploration and testing information gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings and drillholes that are spaced closely enough for geological and grade continuity to be reasonably assumed.

A 'Measured Mineral Resource' is that part of a Mineral Resource for which quantity, grade or quality, densities, shape, physical characteristics are so well established that they can be estimated with confidence sufficient to allow the appropriate application of technical and economic parameters, to support production planning and evaluation of the economic viability of the deposit. The estimate is based on detailed and reliable exploration, sampling and testing information gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings and drillholes that are spaced closely enough to confirm both geological and grade continuity.

20.2 Mineral Reserves

A Mineral Reserve is the economically mineable part of a Measured or Indicated Mineral Resource demonstrated by at least a Preliminary Feasibility Study. This Study must include adequate information on mining, processing, metallurgical, economic and other relevant factors that demonstrate, at the time of reporting, that economic extraction can be justified. A Mineral Reserve includes diluting materials and allowances for losses that may occur when the material is mined.

A 'Probable Mineral Reserve' is the economically mineable part of an Indicated, and in some circumstances a Measured Mineral Resource demonstrated by at least a Preliminary Feasibility Study. This Study must include adequate information on mining, processing, metallurgical, economic, and other relevant factors that demonstrate, at the time of reporting, that economic extraction can be justified.

A 'Proven Mineral Reserve' is the economically mineable part of a Measured Mineral Resource demonstrated by at least a Preliminary Feasibility Study. This Study must include adequate information on mining, processing, metallurgical, economic, and other relevant factors that demonstrate, at the time of reporting, that economic extraction is justified.

20.3 Glossary

The following general mining terms may be used in this report.

Table 20-1 Glossary

Term	Definition
Assay:	The chemical analysis of mineral samples to determine the metal content.
Capital	All other expenditures not classified as operating costs.
Expenditure:	The same of the sa
Composite:	Combining more than one sample result to give an average result over a larger
'	distance.
Crushing:	Initial process of reducing particle size to render it more amenable for further
· ·	processing.
Cut-off Grade	The grade of mineralized rock, which determines as to whether or not it is
(CoG):	economic to recover its gold content by further concentration.
Dip:	Angle of inclination of a geological feature/rock from the horizontal.
Fault:	The surface of a fracture along which movement has occurred.
Footwall:	The underlying side of a fault or stope.
Grade:	The measure of concentration of gold within mineralized rock.
Hangingwall:	The overlying side of a fault or slope.
Haulage:	A horizontal underground excavation which is used to transport mined material.
Hydrocyclone:	A process whereby material is graded according to size by exploiting centrifugal
	forces of particulate materials.
Igneous:	Primary crystalline rock formed by the solidification of magma.
Kriging:	An interpolation method of assigning values from samples to blocks that
	minimizes the estimation error.
Level:	Horizontal tunnel the primary purpose is the transportation of personnel and

Term	Definition
	materials.
Lithological:	Geological description pertaining to different rock types.
LoM Plans:	Life-of-Mine plans.
LRP:	Long Range Plan.
Material	Mine properties.
Properties:	
Milling:	A general term used to describe the process in which the material is crushed and ground and subjected to physical or chemical treatment to extract the valuable metals to a concentrate or finished product.
Mineral/Mining Lease:	A lease area for which mineral rights are held.
Mining Assets:	The Material Properties and Significant Exploration Properties.
Ongoing Capital:	Capital estimates of a routine nature, which is necessary for sustaining
5	operations.
Pillar:	Rock left behind to help support the excavations in an underground mine.
RoM:	Run-of-Mine.
Sedimentary:	Pertaining to rocks formed by the accumulation of sediments, formed by the
•	erosion of other rocks.
Shaft:	An opening cut downwards from the surface for transporting personnel,
	equipment, supplies, material and waste.
Sill:	A thin, tabular, horizontal to sub-horizontal body of igneous rock formed by the injection of magma into planar zones of weakness.
Smelting:	A high temperature pyrometallurgical operation conducted in a furnace, in which the valuable metal is collected to a molten matte or doré phase and separated from the gangue components that accumulate in a less dense molten slag phase.
Stope:	Underground void created by mining.
Stratigraphy:	The study of stratified rocks in terms of time and space.
Strike:	Direction of line formed by the intersection of strata surfaces with the horizontal
	plane, always perpendicular to the dip direction.
Sulfide:	A sulfur bearing mineral.
Tailings:	Finely ground waste rock from which valuable minerals or metals have been
· ·	extracted.
Thickening:	The process of concentrating solid particles in suspension.
Total Expenditure:	All expenditures including those of an operating and capital nature.
Variogram:	A statistical representation of the characteristics (usually grade).

20.4 Definition of Terms

The following abbreviations may be used in this report.

Table 20-2 Abbreviations

Abbreviation	Unit or Term
A	ampere
AA _	atomic absorption
A/m ²	amperes per square metre
ANFO	ammonium nitrate fuel oil
Ag	silver
Au	gold
AuEq	gold equivalent grade
°C	degrees Centigrade
CCD	counter-current decantation

Abbreviation	Unit or Term
CIL	carbon-in-leach
CoG	cut-off grade
cm	centimetre
cm ²	square centimetre
cm ³	cubic centimetre
cfm	cubic feet per minute
ConfC	confidence code
CRec	core recovery
CSS	closed-side setting
CTW	calculated true width
0	
dia.	degree (degrees) diameter
EIS	
EMP	Environmental Impact Statement
FA	Environmental Management Plan
	fire assay
ft ft ²	foot (feet)
	square foot (feet)
ft ³	cubic foot (feet)
g	gram
gal	gallon
g/L	gram per liter
g-mol	gram-mole
gpm	gallons per minute
g/t	grams per tonne
ha	hectares
HDPE	Height Density Polyethylene
hp	horsepower
HTW	horizontal true width
ICP	induced couple plasma
ID2	inverse-distance squared
ID3	inverse-distance cubed
IFC	International Finance Corporation
ILS	Intermediate Leach Solution
kA	kiloamperes
kg	kilograms
km	kilometre
km ²	square kilometre
koz	thousand troy ounce
kt	thousand tonnes
kt/d	thousand tonnes per day
kt/y	thousand tonnes per year
kV	kilovolt
kW	kilowatt
kWh	kilowatt-hour
kWh/t	kilowatt-hour per metric tonne
L	liter
L/sec	liters per second
L/sec/m	liters per second per metre
lb	pound
LHD	Long-Haul Dump truck
LLDDP	Linear Low Density Polyethylene Plastic
LOI	Loss On Ignition
LoM	Life-of-Mine
m	metre
m ²	square metre
	99999

masl masl metres above sea level MARN Ministry of the Environment and Natural Resources MDA Mine Development Associates mg/L milligrams/liter mm millimetre mm² square millimetre cubic millimetre MME Mine & Mill Engineering MOZ million troy ounces Mt million tonnes MTW measured true width MW million watts m.y. million years NGO non-governmental organization NI 43-101 Canadian National Instrument 43-101 OSC Ontario Securities Commission oz troy ounce % percent PLC Programmable Logic Controller PLS Pregnant Leach Solution ppb ppm parts per million QA/QC Quality Assurance/Quality Control rotary circulation drilling	Abbreviation	Unit or Term
masl MARN Minetres above sea level Mine Development Associates milligrams/liter milligrams/liter millimetre millimetre millimetre millimetre Minetres above sea level Alimitation and Natural Resources Mine Development Associates milligrams/liter millimetre awallimetre willimetre willimetre Alimitation Millimetre willion values million toy ounces million toy ounces million toy ounce willion person non-governmental organization Canadian National Instrument 43-101 OSC Ontario Securities Commission troy ounce measured true width million vatts million vatts million vatts million toy ounces milli		
MARN MDA Ministry of the Environment and Natural Resources MDA Mine Development Associates milligrams/liter millimetre mm² mm³ cubic millimetre MME Mine & Mill Engineering Moz Mill Engineering million troy ounces million troy ounces million tonnes measured true width million watts m.y. MGO NI 43-101 OSC Oz Torion Securities Commission Oz Verent PLC PLS PLC Programmable Logic Controller PLS Pregnant Leach Solution PMF Ppb Pph		
MDA mg/L mm millimetre mm² square millimetre mm³ Mine Development Associates milligrams/liter millimetre square millimetre mm³ Mille Mille Engineering Moz Mille Mille Engineering million troy ounces Mt million tonnes masured true width million watts m.y. my. million years NGO NI 43-101 Canadian National Instrument 43-101 OSC Oz troy ounce percent PLC PLS PLC PLS Pregnant Leach Solution pph ppb pph pph pph pph pph pph pph pph		
mg/L mm mm² square millimetre square millimetre cubic millimetre dillimetre MME Mine & Mill Engineering Moz Million troy ounces Mit million tonnes MTW measured true width million watts m.y. NGO NI 43-101 OSC Oz Totario Securities Commission Oz Verent PLC PLS Pregnant Leach Solution PMF PDB PMF		
mm mm² mm³ square millimetre cubic millimetre MME MME Mill Engineering Moz Million troy ounces Million tronnes MTW MW million watts my. NGO NI 43-101 OSC Oz Toroy ounce % PLC PLC PLS PMF PMF PMF PMF ppb ppb ppb ppm QA/QC RC Millimetre square millimetre cubic millimetre square million tropounces million trop ounces million trop ounce mil		
mm² mm³ MME MME Mine & Mill Engineering Million troy ounces Mit Million tonnes MTW MW Million watts M.y. MGO NI 43-101 OSC Ontario Securities Commission Oz Where the percent PLC PLS PLS PLC PLS PLS PMF probable maximum flood pph pph ppm QA/QC RC Quality Assurance/Quality Control rotary circulation drilling	_	
mm³ MME Mine & Mill Engineering Mine & Mill Engineering million troy ounces million tonnes million tonnes million watts m.y. MGO NI 43-101 OSC Oz Torio Securities Commission oz FLC PLC PLS PLC PLS PMF programmable Logic Controller PLS PMF ppb ppb ppm parts per billion QA/QC RC Unitario Security Control parts per million QA/QC Quality Assurance/Quality Control rotary circulation drilling	_	
MME Moz Mine & Mill Engineering million troy ounces mt mt mt mw measured true width million watts m.y. million years NGO NI 43-101 Canadian National Instrument 43-101 OSC Or oz troy ounce percent PLC PLS Pregnant Leach Solution PMF ppb pph pph pph ppm QA/QC RC Mine & Mill Engineering million troy ounces million tonnes million vatts million years non-governmental organization Canadian National Instrument 43-101 OSC Ontario Securities Commission troy ounce percent Pregnamable Logic Controller Pregnant Leach Solution probable maximum flood parts per billion parts per million QA/QC Quality Assurance/Quality Control rotary circulation drilling		
Moz Mt Mt MW million tonnes measured true width million watts m.y. NGO NI 43-101 Canadian National Instrument 43-101 OSC Oz troy ounce % PLC PLS PLS PLS Pregnant Leach Solution PMF ppb pph pph pph ppm QA/QC RC Million troy ounces million troy ounces million watts million years non-governmental organization Canadian National Instrument 43-101 Osc Ontario Securities Commission troy ounce percent Programmable Logic Controller Pregnant Leach Solution probable maximum flood parts per billion parts per million Quality Assurance/Quality Control rotary circulation drilling		
Mtmillion tonnesMTWmeasured true widthMWmillion wattsm.y.million yearsNGOnon-governmental organizationNI 43-101Canadian National Instrument 43-101OSCOntario Securities Commissionoztroy ounce%percentPLCProgrammable Logic ControllerPLSPregnant Leach SolutionPMFprobable maximum floodppbparts per billionppmparts per millionQA/QCQuality Assurance/Quality ControlRCrotary circulation drilling		
MTW MW million watts million years NGO NI 43-101 OSC Oz froy ounce percent PLC PLS PMF PMF ppb ppm QA/QC RC MTW million watts million watts million watts million years non-governmental organization Canadian National Instrument 43-101 Ontario Securities Commission troy ounce percent Programmable Logic Controller Pregnant Leach Solution probable maximum flood parts per billion parts per million Quality Assurance/Quality Control rotary circulation drilling		
MW m.y. NGO NI 43-101 OSC Ontario Securities Commission oz froy ounce percent PLC PLS PMF PMF PMF PDB PMF PDB PMF PDB PMF PDB		
m.y. NGO NI 43-101 OSC Oz White the percent pe		
NGO NI 43-101 OSC Ontario Securities Commission oz troy ounce percent PLC PLS PMF pm ppm QA/QC QA/QC RC NI 43-101 Canadian National Instrument 43-101 Ontario Securities Commission troy ounce percent Programmable Logic Controller Pregnant Leach Solution probable maximum flood parts per billion parts per million Quality Assurance/Quality Control rotary circulation drilling		
NI 43-101 OSC Ontario Securities Commission oz troy ounce percent PLC PLS PMF probable maximum flood ppb ppm ppm QA/QC QA/QC RC Canadian National Instrument 43-101 Ontario Securities Commission troy ounce percent Programmable Logic Controller Pregnant Leach Solution probable maximum flood parts per billion Qallity Assurance/Quality Control rotary circulation drilling		
OSC Ontario Securities Commission troy ounce percent PLC PLS Pregnant Leach Solution PMF ppb ppb ppm QA/QC QA/QC RC Ontario Securities Commission troy ounce percent Programmable Logic Controller Pregnant Leach Solution probable maximum flood parts per billion parts per million Quality Assurance/Quality Control rotary circulation drilling		
oz % percent PLC Programmable Logic Controller PLS Pregnant Leach Solution PMF probable maximum flood ppb parts per billion ppm parts per million QA/QC Quality Assurance/Quality Control RC rotary circulation drilling		
% PLC PLS PMF programmable Logic Controller Pms Pms ppb ppb ppm QA/QC QC QC RC PC Pregnant Leach Solution probable maximum flood parts per billion parts per million Quality Assurance/Quality Control rotary circulation drilling		
PLC PLS Pregnant Leach Solution PMF ppb ppb ppm QA/QC QC QC RC Programmable Logic Controller Pregnant Leach Solution probable maximum flood parts per billion parts per million Quality Assurance/Quality Control rotary circulation drilling		troy ounce
PLS PMF ppb ppm QA/QC RC RC Pregnant Leach Solution probable maximum flood parts per billion parts per million Quality Assurance/Quality Control rotary circulation drilling		
PMF probable maximum flood ppb parts per billion ppm parts per million QA/QC Quality Assurance/Quality Control RC rotary circulation drilling		
ppb parts per billion ppm parts per million QA/QC Quality Assurance/Quality Control RC rotary circulation drilling		
ppm parts per million QA/QC Quality Assurance/Quality Control RC rotary circulation drilling	PMF	1 •
QA/QC Quality Assurance/Quality Control RC rotary circulation drilling	opb	
RC rotary circulation drilling	ppm	parts per million
		Quality Assurance/Quality Control
	RC	
RoM Run-of-Mine	RoM	Run-of-Mine
RQD Rock Quality Description	RQD	Rock Quality Description
SEC U.S. Securities & Exchange Commission	SEC	U.S. Securities & Exchange Commission
sec second	sec	second
SG specific gravity	SG	specific gravity
SPT standard penetration testing	SPT	standard penetration testing
st short ton (2,000 pounds)	st	short ton (2,000 pounds)
t tonne (metric ton) (2,204.6 pounds)	Ī	tonne (metric ton) (2,204.6 pounds)
t/h tonnes per hour	:/h	tonnes per hour
t/d tonnes per day	:/d	tonnes per day
t/y tonnes per year	:/y	tonnes per year
TSF tailings storage facility	TSF	tailings storage facility
TSP total suspended particulates	TSP	total suspended particulates
μm micron or microns		
V volts		
VFD variable frequency drive	VFD	variable frequency drive
W watt		· · ·
XRD x-ray diffraction		
y year	y	

Appendix A Certificate of Authors

DONALD E. HULSE, P.E.

Vice President

Gustavson Associates, LLC 274 Union Boulevard, Suite 450 Lakewood, Colorado 80228

Telephone: 720-407-4062 Facsimile: 720-407-4067

Email: dhulse@gustavson.com

CERTIFICATE of AUTHOR

- I, Donald E. Hulse, P.E., SME-RM do hereby certify that:
 - 1. I am currently employed as Principal Mining Engineer by Gustavson Associates, LLC at:

274 Union Boulevard

Suite 450

Lakewood, Colorado 80228

- I am a graduate of the Colorado School of Mines with a Bachelor of Science in Mining Engineering (1982), and have practiced my profession continuously since 1983.
- 3. I am a registered Professional Engineer in the State of Colorado (35269), and a registered member of the Society of Mining Metallurgy & Exploration (1533190RM).
- 4. I have worked as a mining engineer for a total of 30 years since my graduation from university; as an employee of a major mining company, a major engineering company, and as a consulting engineer. I have performed resource estimation and mine planning on numerous silver and base metals deposits for over 11 mining companies in three countries working as a consultant as well as an engineer or engineering manager for the projects.
- 5. I have read the definition of "qualified person" set out in National Instrument 43-101 ("NI 43-101") and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purposes of NI 43-101.

- 6. I am responsible for the preparation of the technical report entitled "NI 43-101 Technical Report on Resources, Brewery Creek Project, Yukon Territory, Canada", effective date June 1st, 2013, and dated January 10th, 2014 (the "Technical Report"), with specific responsibility for Sections 14.1,14.5 and 14.6.
- 7. I have not had prior involvement with the property that is the subject of this Technical Report. I was responsible for Sections 14.1, 14.5, and 14.6 of the technical report titled "NI 43-101 Technical Report on Resources, Brewery Creek Project, Yukon Territory, Canada," dated October 23rd, effective date June 1st.
- 8. I am independent of the issuer applying all of the tests in Section 1.5 of National Instrument 43-101.
- 9. I have read National Instrument 43-101 and Form 43-101, and the Technical Report has been prepared in compliance with that instrument and form.
- 10. As of the date of this certificate, to the best of my knowledge, information and belief, the Technical Report contains all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.

Dated this 10th day of January, 2014

/s/ Donald E. Hulse (Signature)
Signature of Qualified Person

Donald E. Hulse

Print name of Qualified Person

M. Claiborne Newton, III, Ph.D., SME-RM Chief Geologist

Gustavson Associates, LLC 274 Union Boulevard, Suite 450 Lakewood, Colorado 80228 Telephone: 720-407-4062 Facsimile: 720-407-4067

Email: cnewton@gustavson.com

CERTIFICATE of AUTHOR

- I, M. Claiborne Newton, III, Ph.D, SME-RM do hereby certify that:
 - 1. I am currently employed as Vice President / Director Geological Services by ECSI, LLC at:

274 Union Boulevard Suite 450 Lakewood, Colorado 80228

- 2. I am a graduate of North Carolina State University with a Bachelor of Arts in Geology (1977), a Master of Science degree in Geological Sciences (1983) from Virginia Polytechnic Institute and State University and a Doctorate of Philosophy in Geosciences (1990) from the University of Arizona. I have practiced my profession continuously since 1977.
- 3. I am a Registered Member in good standing of the Society for Mining, Metallurgy and Exploration (SME, #4145342RM) a Qualified Professional Member in good standing of the Mining and Metallurgical Society of America (MMSA, #01396QP) with recognized special expertise in geology, mining, and ore reserves, and a registered Professional Geologist in the State of Virginia (#2801001736). I am also a member of the Society of Economic Geologists.
- 4. I have worked as a geologist for a total of 36 years since graduation from university as an employee of three major mining companies and two major engineering and geological consulting firms, as a consulting geologist and as a university instructor.
- 5. I have read the definition of "qualified person" set out in National Instrument 43-101 ("NI 43-101") and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purposes of NI 43-101.

- 6. I am responsible for the preparation of the technical report entitled "NI 43-101 Technical Report on Resources, Brewery Creek Project, Yukon Territory, Canada", effective date June 1st, 2013 and dated January 10th, 2014 (the "Technical Report"), with specific responsibility for Sections 1 through 12.3, 15 through 20, and the overall content. I most recently visited the property for 2 days on June 4th and 5th, 2013.
- 7. I have not had prior involvement with the property that is the subject of this Technical Report. I was responsible for Sections 1 through 12.3, 15 through 20, and the overall content of the technical report titled "NI 43-101 Technical Report on Resources, Brewery Creek Project, Yukon Territory, Canada," dated October 23rd, 2013 effective date June 1st, 2013.
- 8. I am independent of the issuer, applying all of the tests in Section 1.5 of National Instrument 43-101.
- 9. I have read National Instrument 43-101 and Form 43-101, and the Technical Report has been prepared in compliance with that instrument and form.
- 10. As of the date of this certificate, to the best of my knowledge, information and belief, the Technical Report contains all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.

Dated this 10th day of January, 2014

<u>/s/ M. Claiborne Newton, III (Signature)</u>
Signature of Qualified Person

M. Claiborne Newton, III

Print name of Qualified Person

Michael J. Lechner, C.P.G President

Resource Modeling Inc. 124 Lazy J Drive, PO Box 295 Stites, ID 83552

Telephone: 208-926-4948 Facsimile: 208-926-4950

Email: mlechner@theriver.com

CERTIFICATE of AUTHOR

- I, Michael J. Lechner, C.P.G. do hereby certify that:
 - 1. I am currently employed as a consulting geologist and President of Resource Modeling, Inc, at:

PO Box 295 Stites, Idaho 83552

- 2. I am a graduate of the University of Montana with a B.A. degree in Geology (1979)
- 3. I am a Registered Professional Geologist in the State of Arizona (#37753), a Certified Professional Geologist with the American Institute of Professional Geologists (#10690), a P. Geo. with British Columbia (#155344), and a Registered Member of SME (#4124987RM).
- 4. From 1979 to the present I have been actively employed in various capacities of the mining industry. I have worked as an exploration geologist exploring for precious and base metals throughout western North America (8 years), a mine geologist working at precious metal mines in California and Nevada (10 years), and a geologic consultant during which time I have estimated Mineral Resources for numerous precious and base metal deposits located throughout the world (14 years).
- 5. I have read the definition of "qualified person" set out in National Instrument 43-101 ("NI 43-101") and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purposes of NI 43-101.

- 6. I am responsible for the preparation of the technical report entitled "NI 43-101 Technical Report on Resources, Brewery Creek Project, Yukon Territory, Canada", effective date June 1st, 2013, and dated January 10th, 2014 (the "Technical Report"), with specific responsibility for Sections 12.2,14.2, 14.3, 14.5, and 14.6. I most recently visited the property for 3 days on October 16th to 18th, 2012.
- 7. I have not had prior involvement with the property that is the subject of this Technical Report. I was responsible for Sections 12.2,14.2, 14.3, 14.5, and 14.6 of the technical report titled "NI 43-101 Technical Report on Resources, Brewery Creek Project, Yukon Territory, Canada," dated October 23rd, 2013 effective date June 1st, 2013.
- 8. I am independent of the issuer applying all of the tests in Section 1.5 of National Instrument 43-101.
- 9. I have read National Instrument 43-101 and Form 43-101, and the Technical Report has been prepared in compliance with that instrument and form.
- 10. As of the date of this certificate, to the best of my knowledge, information and belief, the Technical Report contains all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.

Dated this 10th day of January, 2014

/s/ Michael J. Lechner (Signature)
Signature of Qualified Person

Michael J. Lechner

Print name of Qualified Person

P. James F. Barr, P. Geo. Senior Geologist

EBA, A Tetra Tech Company 1066 West Hastings Street Vancouver, BC V6E 3X2

CERTIFICATE of AUTHOR

- I, P. James F. Barr, P. Geo. do hereby certify that:
 - 1. I am currently employed as a senior geologist with EBA, A Tetra Tech Company, at:

1066 West Hastings Street Vancouver, BC V6E 3X2

- 2. I am a graduate of the University of Waterloo with a B.Sc. with a major in Environmental Science and joint minors in Earth Science and Chemistry (2003).
- 3. I am a registered Professional Geoscientist with the Association of Professional Engineers and Geoscientists of the province of British Columbia (#35150).
- 4. From 2003 to the present I have worked as an exploration and resource geologist for numerous projects in northern Canada and Mexico, and have worked on a precious metal oxide heap leach project in Mexico.
- 5. I have read the definition of "qualified person" set out in National Instrument 43-101 ("NI 43-101") and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purposes of NI 43-101.
- 6. I am responsible for the information referenced from previous technical reporting that is contained in Sections 12.1, 14.4, 14.5, and 14.6 of the technical report entitled "NI 43-101 Technical Report on Resources, Brewery Creek Project, Yukon Territory, Canada", effective date June 1st, 2013, and dated January 10th, 2014 (the "Technical Report"). I visited the property for 3 days on March 19th to 21st, 2012, and most recently visited the property for 2 days on May 30th and 31st, 2012.

- 7. I was the principal author of the previous Technical Report titled "Updated Mineral Resource Estimate for the Brewery Creek Property, Yukon Territory, Canada" effective March 11, 2012, amended January 17, 2013.
- 8. I am independent of the issuer applying all of the tests in Section 1.5 of National Instrument 43-101.
- 9. I have read National Instrument 43-101 and Form 43-101, and the Technical Report has been prepared in compliance with that instrument and form.
- 10. As of the date of this certificate, to the best of my knowledge, information and belief, the Technical Report contains all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.

Dated this 10th day of January, 2014

/s/ P. James F. Barr (Signature)
Signature of Qualified Person

P. James F. Barr
Print name of Qualified Person

Joseph M. Keane, P.E.

Principal Metallurgical Engineer

SGS Metcon/KD Engineering

7701 N. Business Park Drive
Tucson, Arizona 85743
Telephone: 520-579-8315 Facsimile: 520-579-3686

Email: Joseph.Keane@sgs.com

CERTIFICATE of AUTHOR

I, Joseph M. Keane, P.E. do hereby certify that:

1. I am currently employed as a Principal Metallurgical Engineer with SGS Metcon/KD Engineering, at:

7701 N. Business Park Drive Tucson, Arizona 85743

- I graduated with a degree of Bachelor of Science in Metallurgical Engineering from the Montana School of Mines in 1962. I obtained a Master of Science in Mineral Processing Engineering in 1966 from the Montana College of Mineral Science and Technology. In 1989 I received a Distinguished Alumni Award from that institution..
- 3. I am a member of the Society for Mining, Metallurgy, and Exploration, Inc. (SME) and the Instituto de Ingenieros de Minas de Chile. I am a registered professional metallurgical engineer in Arizona (Number 12979).
- 4. I have worked as a metallurgical engineer for a total of 51 years since my graduation from university.
- 5. I have read the definition of "qualified person" set out in National Instrument 43-101 ("NI 43-101") and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purposes of NI 43-101.

- 6. I am responsible for the preparation of a section of the technical report entitled "NI 43-101 Technical Report on Resources, Brewery Creek Project, Yukon Territory, Canada", effective date June 1st, 2013, and dated January 21, 2014 (the "Technical Report"), with specific responsibility for Section 13. I visited the property during the period 8 through 11 October 2012.
- 7. I have not had prior involvement with the property that is the subject of this Technical Report.
- 8. Lam independent of the issuer, vendor and the property applying all of the tests in Section 1.5 of National Instrument 43-101.
- 9. I have read National Instrument 43-101 and Form 43-101, and the Technical Report has been prepared in compliance with that instrument and form.
- 10. As of the date of this certificate, to the best of my knowledge, information and belief, the Technical Report contains all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.

Dated this 21st day of January, 2014

Signature of Qualified Person

Joseph M. Keane, P.E.

Print Name of Qualified Person

Appendix B Claims List

Grant Number	Mineral Claim Type	Claim Name	Claim Numbe r	Claim Expiratio n Date	Area (km2)	Claim Owner
YB04486	Mining Lease	Lee	1	5/31/2016	0.1762	Golden Predator Canada Corp 100%
YB04487	Quartz Claim	Lee	2	1/20/2026	0.1389	Golden Predator Canada Corp 100%
YB04488	Mining Lease	Lee	3	5/31/2016	0.1897	Golden Predator Canada Corp 100%
YB04489	Quartz Claim	Lee	4	1/20/2026	0.1622	Golden Predator Canada Corp 100%
YB04490	Mining Lease	Lee	5	5/31/2016	0.191	Golden Predator Canada Corp 100%
YB04491	Quartz Claim	Lee	6	1/20/2026	0.1736	Golden Predator Canada Corp 100%
YB04492	Mining Lease	Lee	7	5/31/2016	0.1882	Golden Predator Canada Corp 100%
YB04493	Quartz Claim	Lee	8	1/20/2026	0.1766	Golden Predator Canada Corp 100%
YB04494	Mining Lease	Lee	9	5/31/2016	0.1937	Golden Predator Canada Corp 100%
YB04495	Quartz Claim	Lee	10	1/20/2026	0.1842	Golden Predator Canada Corp 100%
YB04496	Mining Lease	Lee	11	5/31/2016	0.1936	Golden Predator Canada Corp 100%
YB04497	Mining Lease	Lee	12	5/31/2016	0.1853	Golden Predator Canada Corp 100%
YB04498	Mining Lease	Lee	13	5/31/2016	0.1936	Golden Predator Canada Corp 100%
YB04499	Mining Lease	Lee	14	5/31/2016	0.1968	Golden Predator Canada Corp 100%
YB04500	Mining Lease	Lee	15	5/31/2016	0.1942	Golden Predator Canada Corp 100%
YB04501	Mining Lease	Lee	16	5/31/2016	0.2055	Golden Predator Canada Corp 100%
YB04502	Quartz Claim	Lee	17	1/20/2026	0.1413	Golden Predator Canada Corp 100%
YB04503	Quartz Claim	Lee	18	1/20/2026	0.1556	Golden Predator Canada Corp 100%
YB04504	Quartz Claim	Lee	19	1/20/2026	0.1653	Golden Predator Canada Corp 100%
YB04505	Quartz Claim	Lee	20	1/20/2026	0.1846	Golden Predator Canada Corp 100%
YB04506	Quartz Claim	Lee	21	1/20/2026	0.1529	Golden Predator Canada Corp 100%
YB04507	Quartz Claim	Lee	22	1/20/2026	0.1811	Golden Predator Canada Corp 100%
YB04508	Quartz Claim	Lee	23	1/20/2026	0.1214	Golden Predator Canada Corp 100%
YB04509	Quartz Claim	Lee	24	1/20/2026	0.1538	Golden Predator Canada Corp 100%
YB04510	Quartz Claim	Lee	25	1/20/2026	0.145	Golden Predator Canada Corp 100%
YB04511	Quartz Claim	Lee	26	1/20/2026	0.1877	Golden Predator Canada Corp 100%
YB04512	Mining Lease	Lee	27	5/31/2016	0.1304	Golden Predator Canada Corp 100%
YB04513	Quartz Claim	Lee	28	1/20/2026	0.1803	Golden Predator Canada Corp 100%
YB04514	Mining Lease	Lee	29	5/31/2016	0.1224	Golden Predator Canada Corp 100%
YB04515	Quartz Claim	Lee	30	1/20/2026	0.1815	Golden Predator Canada Corp 100%
YB04516	Mining Lease	Lee	31	5/31/2016	0.147	Golden Predator Canada Corp 100%
YB04517	Quartz Claim	Lee	32	1/20/2026	0.1813	Golden Predator Canada Corp 100%
YB17700	Mining Lease	Lee	33	5/31/2016	0.1626	Golden Predator Canada Corp 100%
YB17701	Mining Lease	Lee	34	5/31/2016	0.2017	Golden Predator Canada Corp 100%
YB17702	Mining Lease	Lee	35	5/31/2016	0.1612	Golden Predator Canada Corp 100%
YB17703	Mining Lease	Lee	36	5/31/2016	0.167	Golden Predator Canada Corp 100%
YB17704	Quartz Claim	Lee	37	1/20/2027	0.1846	Golden Predator Canada Corp 100%

Grant Number	Mineral Claim Type	Claim Name	Claim Numbe r	Claim Expiratio n Date	Area (km2)	Claim Owner
YB17705	Mining Lease	Lee	38	5/31/2016	0.2038	Golden Predator Canada Corp 100%
YB17706	Quartz Claim	Lee	39	1/20/2027	0.1876	Golden Predator Canada Corp 100%
YB17707	Mining Lease	Lee	40	5/31/2016	0.2047	Golden Predator Canada Corp 100%
YB17708	Quartz Claim	Lee	41	1/20/2027	0.1841	Golden Predator Canada Corp 100%
YB17709	Mining Lease	Lee	42	5/31/2016	0.1625	Golden Predator Canada Corp 100%
YB17710	Quartz Claim	Lee	43	1/20/2027	0.1872	Golden Predator Canada Corp 100%
YB17711	Mining Lease	Lee	44	5/31/2016	0.1498	Golden Predator Canada Corp 100%
YB17712	Quartz Claim	Lee	45	1/20/2027	0.2062	Golden Predator Canada Corp 100%
YB17713	Mining Lease	Lee	46	5/31/2016	0.1258	Golden Predator Canada Corp 100%
YB17714	Mining Lease	Lee	47	3/24/2022	0.1974	Golden Predator Canada Corp 100%
YB17715	Mining Lease	Lee	48	5/31/2016	0.1106	Golden Predator Canada Corp 100%
YB17716	Mining Lease	Lee	49	5/31/2016	0.1852	Golden Predator Canada Corp 100%
YB17717	Mining Lease	Lee	50	5/31/2016	0.1105	Golden Predator Canada Corp 100%
YB17718	Mining Lease	Lee	51	5/31/2016	0.211	Golden Predator Canada Corp 100%
YB17719	Mining Lease	Lee	52	5/31/2016	0.1158	Golden Predator Canada Corp 100%
YB17720	Mining Lease	Lee	53	5/31/2016	0.1875	Golden Predator Canada Corp 100%
YB17721	Mining Lease	Lee	54	5/31/2016	0.0989	Golden Predator Canada Corp 100%
YB17722	Mining Lease	Lee	55	5/31/2016	0.1834	Golden Predator Canada Corp 100%
YB17723	Mining Lease	Lee	56	5/31/2016	0.1056	Golden Predator Canada Corp 100%
YB17724	Quartz Claim	Lee	57	1/20/2027	0.1485	Golden Predator Canada Corp 100%
YB17725	Quartz Claim	Lee	58	1/20/2027	0.1913	Golden Predator Canada Corp 100%
YB17726	Quartz Claim	Lee	59	1/20/2027	0.1681	Golden Predator Canada Corp 100%
YB17727	Quartz Claim	Lee	60	1/20/2027	0.2099	Golden Predator Canada Corp 100%
YB17728	Quartz Claim	Lee	61	1/20/2027	0.1701	Golden Predator Canada Corp 100%
YB17729	Quartz Claim	Lee	62	1/20/2027	0.2071	Golden Predator Canada Corp 100%
YB17730	Quartz Claim	Lee	63	1/20/2027	0.1705	Golden Predator Canada Corp 100%
YB17731	Quartz Claim	Lee	64	1/20/2027	0.2029	Golden Predator Canada Corp 100%
YB17732	Quartz Claim	Lee	65	1/20/2027	0.1649	Golden Predator Canada Corp 100%
YB17733	Quartz Claim	Lee	66	1/20/2027	0.1945	Golden Predator Canada Corp 100%
YB17734	Quartz Claim	Lee	67	1/20/2027	0.1561	Golden Predator Canada Corp 100%
YB17735	Quartz Claim	Lee	68	1/20/2027	0.1771	Golden Predator Canada Corp 100%
YB17736	Quartz Claim	Lee	69	1/20/2027	0.1571	Golden Predator Canada Corp 100%
YB17737	Quartz Claim	Lee	70	1/20/2027	0.1732	Golden Predator Canada Corp 100%
YB17738	Quartz Claim	Lee	71	1/20/2027	0.1782	Golden Predator Canada Corp 100%
YB17739	Quartz Claim	Lee	72	1/20/2027	0.1901	Golden Predator Canada Corp 100%
YB17740	Quartz Claim	Lee	73	1/20/2027	0.1916	Golden Predator Canada Corp 100%
YB17741	Quartz Claim	Lee	74	1/20/2027	0.1971	Golden Predator Canada Corp 100%

Grant Number	Mineral Claim Type	Claim Name	Claim Numbe r	Claim Expiratio n Date	Area (km2)	Claim Owner
YB17742	Quartz Claim	Lee	75	1/20/2027	0.1048	Golden Predator Canada Corp 100%
YB17743	Quartz Claim	Lee	76	1/20/2027	0.1094	Golden Predator Canada Corp 100%
YB23207	Quartz Claim	Lee	77	1/20/2025	0.1014	Golden Predator Canada Corp 100%
YB23208	Quartz Claim	Lee	78	1/20/2025	0.1954	Golden Predator Canada Corp 100%
YB23209	Mining Lease	Lee	79	4/30/2023	0.1283	Golden Predator Canada Corp 100%
YB23210	Mining Lease	Lee	80	4/30/2023	0.2019	Golden Predator Canada Corp 100%
YB23211	Mining Lease	Lee	81	4/30/2023	0.2011	Golden Predator Canada Corp 100%
YB23212	Mining Lease	Lee	82	4/30/2023	0.2025	Golden Predator Canada Corp 100%
YB23313	Quartz Claim	EEL	1	1/20/2025	0.1829	Golden Predator Canada Corp 100%
YB23314	Mining Lease	EEL	2	5/31/2016	0.2098	Golden Predator Canada Corp 100%
YB23315	Mining Lease	EEL	3	5/31/2016	0.1951	Golden Predator Canada Corp 100%
YB23316	Mining Lease	EEL	4	5/31/2016	0.1937	Golden Predator Canada Corp 100%
YB23317	Mining Lease	EEL	5	5/31/2016	0.1971	Golden Predator Canada Corp 100%
YB23318	Mining Lease	EEL	6	5/31/2016	0.1979	Golden Predator Canada Corp 100%
YB23319	Mining Lease	EEL	7	5/31/2016	0.2011	Golden Predator Canada Corp 100%
YB23320	Mining Lease	EEL	8	5/31/2016	0.2085	Golden Predator Canada Corp 100%
YB23321	Mining Lease	EEL	9	5/31/2016	0.203	Golden Predator Canada Corp 100%
YB23322	Mining Lease	EEL	10	5/31/2016	0.1823	Golden Predator Canada Corp 100%
YB23323	Quartz Claim	EEL	11	1/20/2025	0.1717	Golden Predator Canada Corp 100%
YB23324	Quartz Claim	EEL	12	1/20/2025	0.1813	Golden Predator Canada Corp 100%
YB23325	Quartz Claim	EEL	13	1/20/2025	0.1949	Golden Predator Canada Corp 100%
YB23326	Quartz Claim	EEL	14	1/20/2025	0.205	Golden Predator Canada Corp 100%
YB23327	Quartz Claim	EEL	15	1/20/2025	0.2112	Golden Predator Canada Corp 100%
YB23328	Quartz Claim	EEL	16	1/20/2025	0.2184	Golden Predator Canada Corp 100%
YB23329	Quartz Claim	EEL	17	1/20/2025	0.1983	Golden Predator Canada Corp 100%
YB23330	Quartz Claim	EEL	18	1/20/2025	0.1966	Golden Predator Canada Corp 100%
YB23331	Quartz Claim	EEL	19	1/20/2025	0.2137	Golden Predator Canada Corp 100%
YB23332	Quartz Claim	EEL	20	1/20/2025	0.2201	Golden Predator Canada Corp 100%
YB23333	Mining Lease	EEL	21	5/31/2016	0.1725	Golden Predator Canada Corp 100%
YB23334	Mining Lease	EEL	22	5/31/2016	0.0927	Golden Predator Canada Corp 100%
YB23335	Mining Lease	EEL	23	5/31/2016	0.1888	Golden Predator Canada Corp 100%
YB23336	Mining Lease	EEL	24	5/31/2016	0.1687	Golden Predator Canada Corp 100%
YB23337	Mining Lease	EEL	25	5/31/2016	0.2026	Golden Predator Canada Corp 100%
YB23338	Mining Lease	EEL	26	5/31/2016	0.2065	Golden Predator Canada Corp 100%
YB23339	Mining Lease	EEL	27	5/31/2016	0.204	Golden Predator Canada Corp 100%
YB23340	Mining Lease	EEL	28	5/31/2016	0.2191	Golden Predator Canada Corp 100%
YB23341	Mining Lease	EEL	29	5/31/2016	0.209	Golden Predator Canada Corp 100%

Grant Number	Mineral Claim Type	Claim Name	Claim Numbe r	Claim Expiratio n Date	Area (km2)	Claim Owner
YB23342	Mining Lease	EEL	30	5/31/2016	0.209	Golden Predator Canada Corp 100%
YB23343	Quartz Claim	EEL	31	1/20/2025	0.106	Golden Predator Canada Corp 100%
YB23344	Quartz Claim	EEL	32	1/20/2025	0.111	Golden Predator Canada Corp 100%
YB23345	Quartz Claim	EEL	33	1/20/2025	0.2031	Golden Predator Canada Corp 100%
YB23346	Quartz Claim	EEL	34	1/20/2025	0.1814	Golden Predator Canada Corp 100%
YB23347	Quartz Claim	EEL	35	1/20/2025	0.1941	Golden Predator Canada Corp 100%
YB23348	Quartz Claim	EEL	36	1/20/2025	0.2002	Golden Predator Canada Corp 100%
YB23349	Quartz Claim	EEL	37	1/20/2025	0.1858	Golden Predator Canada Corp 100%
YB23350	Quartz Claim	EEL	38	1/20/2025	0.185	Golden Predator Canada Corp 100%
YB23351	Quartz Claim	EEL	39	1/20/2025	0.184	Golden Predator Canada Corp 100%
YB23352	Quartz Claim	EEL	40	1/20/2025	0.1999	Golden Predator Canada Corp 100%
YB23353	Quartz Claim	EEL	41	1/20/2025	0.1856	Golden Predator Canada Corp 100%
YB23354	Quartz Claim	EEL	42	1/20/2025	0.1806	Golden Predator Canada Corp 100%
YB23355	Quartz Claim	EEL	43	1/20/2025	0.192	Golden Predator Canada Corp 100%
YB23356	Quartz Claim	EEL	44	1/20/2025	0.1827	Golden Predator Canada Corp 100%
YB23357	Quartz Claim	EEL	45	1/20/2025	0.1929	Golden Predator Canada Corp 100%
YB23358	Quartz Claim	EEL	46	1/20/2025	0.1922	Golden Predator Canada Corp 100%
YB23359	Quartz Claim	EEL	47	1/20/2025	0.2102	Golden Predator Canada Corp 100%
YB23360	Quartz Claim	EEL	48	1/20/2025	0.1952	Golden Predator Canada Corp 100%
YB23361	Quartz Claim	EEL	49	1/20/2025	0.1909	Golden Predator Canada Corp 100%
YB23362	Quartz Claim	EEL	50	1/20/2025	0.1902	Golden Predator Canada Corp 100%
YB23363	Quartz Claim	EEL	51	1/20/2025	0.1816	Golden Predator Canada Corp 100%
YB23364	Quartz Claim	EEL	52	1/20/2025	0.1779	Golden Predator Canada Corp 100%
YB23541	Quartz Claim	Ele	1	1/20/2025	0.2004	Golden Predator Canada Corp 100%
YB23542	Quartz Claim	Ele	2	1/20/2025	0.1881	Golden Predator Canada Corp 100%
YB23543	Quartz Claim	Ele	3	1/20/2025	0.2199	Golden Predator Canada Corp 100%
YB23544	Quartz Claim	Ele	4	1/20/2025	0.209	Golden Predator Canada Corp 100%
YB23545	Mining Lease	Ele	5	5/31/2016	0.1983	Golden Predator Canada Corp 100%
YB23546	Mining Lease	Ele	6	5/31/2016	0.1857	Golden Predator Canada Corp 100%
YB23547	Mining Lease	Ele	7	5/31/2016	0.2015	Golden Predator Canada Corp 100%
YB23548	Mining Lease	Ele	8	5/31/2016	0.2032	Golden Predator Canada Corp 100%
YB23549	Mining Lease	Ele	9	3/24/2022	0.1757	Golden Predator Canada Corp 100%
YB23550	Mining Lease	Ele	10	5/31/2016	0.1838	Golden Predator Canada Corp 100%
YB23551	Quartz Claim	Ele	11	1/20/2025	0.1512	Golden Predator Canada Corp 100%
YB23552	Quartz Claim	Ele	12	1/20/2025	0.1525	Golden Predator Canada Corp 100%
YB23553	Quartz Claim	Ele	13	1/20/2025	0.1943	Golden Predator Canada Corp 100%
YB23554	Quartz Claim	Ele	14	1/20/2025	0.2026	Golden Predator Canada Corp 100%

Grant Number	Mineral Claim Type	Claim Name	Claim Numbe r	Claim Expiratio n Date	Area (km2)	Claim Owner
YB23555	Quartz Claim	Ele	15	1/20/2025	0.1967	Golden Predator Canada Corp 100%
YB23556	Quartz Claim	Ele	16	1/20/2025	0.2078	Golden Predator Canada Corp 100%
YB23773	Mining Lease	Ele	17	5/31/2016	0.0495	Golden Predator Canada Corp 100%
YB23774	Mining Lease	Ele	18	5/31/2016	0.0366	Golden Predator Canada Corp 100%
YB23775	Mining Lease	Ele	19	5/31/2016	0.196	Golden Predator Canada Corp 100%
YB23776	Mining Lease	Ele	20	5/31/2016	0.196	Golden Predator Canada Corp 100%
YB23777	Quartz Claim	Ele	21	1/20/2025	0.1699	Golden Predator Canada Corp 100%
YB23778	Quartz Claim	Ele	22	1/20/2025	0.1725	Golden Predator Canada Corp 100%
YB23779	Quartz Claim	Ele	23	1/20/2025	0.1763	Golden Predator Canada Corp 100%
YB23780	Quartz Claim	Ele	24	1/20/2025	0.1936	Golden Predator Canada Corp 100%
YB23781	Quartz Claim	Ele	25	1/20/2025	0.2199	Golden Predator Canada Corp 100%
YB23782	Quartz Claim	Ele	26	1/20/2025	0.2347	Golden Predator Canada Corp 100%
YB23783	Quartz Claim	Ele	27	1/20/2025	0.1996	Golden Predator Canada Corp 100%
YB23784	Quartz Claim	Ele	28	1/20/2025	0.2182	Golden Predator Canada Corp 100%
YB23785	Quartz Claim	Ele	29	1/20/2025	0.1963	Golden Predator Canada Corp 100%
YB23786	Quartz Claim	Ele	30	1/20/2025	0.0713	Golden Predator Canada Corp 100%
YB23787	Quartz Claim	Ele	31	1/20/2025	0.1703	Golden Predator Canada Corp 100%
YB23788	Quartz Claim	Ele	32	1/20/2025	0.1264	Golden Predator Canada Corp 100%
YB23789	Quartz Claim	Ele	33	1/20/2025	0.1218	Golden Predator Canada Corp 100%
YB23790	Quartz Claim	Ele	34	1/20/2025	0.1861	Golden Predator Canada Corp 100%
YB23791	Quartz Claim	Ele	35	1/20/2025	0.1089	Golden Predator Canada Corp 100%
YB23792	Quartz Claim	Ele	36	1/20/2025	0.1861	Golden Predator Canada Corp 100%
YB23793	Quartz Claim	Ele	37	1/20/2025	0.1149	Golden Predator Canada Corp 100%
YB23794	Quartz Claim	Ele	38	1/20/2025	0.1962	Golden Predator Canada Corp 100%
YB23795	Quartz Claim	Ele	39	1/20/2025	0.1091	Golden Predator Canada Corp 100%
YB23796	Quartz Claim	Ele	40	1/20/2025	0.1892	Golden Predator Canada Corp 100%
YB23797	Quartz Claim	Ele	41	1/20/2025	0.1289	Golden Predator Canada Corp 100%
YB23798	Quartz Claim	Ele	42	1/20/2025	0.169	Golden Predator Canada Corp 100%
YB23799	Quartz Claim	Ele	43	1/20/2025	0.15	Golden Predator Canada Corp 100%
YB23800	Quartz Claim	Ele	44	1/20/2025	0.1955	Golden Predator Canada Corp 100%
YB23801	Quartz Claim	Ele	45	1/20/2025	0.1454	Golden Predator Canada Corp 100%
YB23802	Quartz Claim	Ele	46	1/20/2025	0.1728	Golden Predator Canada Corp 100%
YB23803	Quartz Claim	Ele	47	1/20/2025	0.1431	Golden Predator Canada Corp 100%
YB23804	Quartz Claim	Ele	48	1/20/2025	0.1757	Golden Predator Canada Corp 100%
YB23805	Quartz Claim	Ele	49	1/20/2025	0.1577	Golden Predator Canada Corp 100%
YB23806	Quartz Claim	Ele	50	1/20/2025	0.1836	Golden Predator Canada Corp 100%
YB23807	Quartz Claim	Ele	51	1/20/2025	0.1543	Golden Predator Canada Corp 100%

Grant Number	Mineral Claim Type	Claim Name	Claim Numbe r	Claim Expiratio n Date	Area (km2)	Claim Owner
YB23808	Quartz Claim	Ele	52	1/20/2025	0.182	Golden Predator Canada Corp 100%
YB23809	Quartz Claim	Ele	53	1/20/2025	0.1606	Golden Predator Canada Corp 100%
YB23810	Quartz Claim	Ele	54	1/20/2025	0.183	Golden Predator Canada Corp 100%
YB23811	Quartz Claim	Ele	55	1/20/2025	0.1731	Golden Predator Canada Corp 100%
YB23812	Quartz Claim	Ele	56	1/20/2025	0.1909	Golden Predator Canada Corp 100%
YB23813	Quartz Claim	Ele	57	1/20/2025	0.1865	Golden Predator Canada Corp 100%
YB23814	Quartz Claim	Ele	58	1/20/2025	0.2003	Golden Predator Canada Corp 100%
YB23815	Quartz Claim	Ele	59	1/20/2025	0.1338	Golden Predator Canada Corp 100%
YB23816	Quartz Claim	Ele	60	1/20/2025	0.1389	Golden Predator Canada Corp 100%
YB23817	Quartz Claim	Ele	61	1/20/2025	0.1588	Golden Predator Canada Corp 100%
YB23818	Quartz Claim	Ele	62	1/20/2025	0.152	Golden Predator Canada Corp 100%
YB23819	Quartz Claim	Ele	63	1/20/2025	0.1805	Golden Predator Canada Corp 100%
YB23820	Quartz Claim	Ele	64	1/20/2025	0.1731	Golden Predator Canada Corp 100%
YB23821	Quartz Claim	Ele	65	1/20/2025	0.1616	Golden Predator Canada Corp 100%
YB23822	Quartz Claim	Ele	66	1/20/2025	0.1597	Golden Predator Canada Corp 100%
YB23823	Quartz Claim	Ele	67	1/20/2025	0.1672	Golden Predator Canada Corp 100%
YB23824	Quartz Claim	Ele	68	1/20/2025	0.1707	Golden Predator Canada Corp 100%
YB23825	Quartz Claim	Ele	69	1/20/2025	0.1692	Golden Predator Canada Corp 100%
YB23826	Quartz Claim	Ele	70	1/20/2025	0.1702	Golden Predator Canada Corp 100%
YB23827	Quartz Claim	Ele	71	1/20/2025	0.1741	Golden Predator Canada Corp 100%
YB23828	Quartz Claim	Ele	72	1/20/2025	0.1845	Golden Predator Canada Corp 100%
YB23829	Quartz Claim	Ele	73	1/20/2025	0.1727	Golden Predator Canada Corp 100%
YB23830	Quartz Claim	Ele	74	1/20/2025	0.1833	Golden Predator Canada Corp 100%
YB23831	Quartz Claim	Ele	75	1/20/2025	0.1781	Golden Predator Canada Corp 100%
YB23832	Quartz Claim	Ele	76	1/20/2025	0.1896	Golden Predator Canada Corp 100%
YB23833	Quartz Claim	Ele	77	1/20/2025	0.1858	Golden Predator Canada Corp 100%
YB23834	Quartz Claim	Ele	78	1/20/2025	0.1994	Golden Predator Canada Corp 100%
YB23835	Quartz Claim	Ele	79	1/20/2025	0.1268	Golden Predator Canada Corp 100%
YB23836	Quartz Claim	Ele	80	1/20/2025	0.1353	Golden Predator Canada Corp 100%
YB23907	Mining Lease	Eel	53	4/30/2019	0.133	Golden Predator Canada Corp 100%
YB23908	Quartz Claim	Eel	54	1/20/2025	0.1303	Golden Predator Canada Corp 100%
YB23909	Mining Lease	Eel	55	4/30/2019	0.1974	Golden Predator Canada Corp 100%
YB23910	Quartz Claim	Eel	56	1/20/2025	0.2126	Golden Predator Canada Corp 100%
YB23911	Mining Lease	Eel	57	4/30/2019	0.1957	Golden Predator Canada Corp 100%
YB23912	Quartz Claim	Eel	58	1/20/2025	0.2079	Golden Predator Canada Corp 100%
YB23913	Quartz Claim	Eel	59	1/20/2025	0.1521	Golden Predator Canada Corp 100%
YB23914	Quartz Claim	Eel	60	1/20/2025	0.1722	Golden Predator Canada Corp 100%

Grant Number	Mineral Claim Type	Claim Name	Claim Numbe r	Claim Expiratio n Date	Area (km2)	Claim Owner
YB23915	Quartz Claim	Eel	61	1/20/2025	0.171	Golden Predator Canada Corp 100%
YB23916	Quartz Claim	Eel	62	1/20/2025	0.1937	Golden Predator Canada Corp 100%
YB23917	Quartz Claim	Eel	63	1/20/2025	0.186	Golden Predator Canada Corp 100%
YB23918	Quartz Claim	Eel	64	1/20/2025	0.2056	Golden Predator Canada Corp 100%
YB23919	Quartz Claim	Eel	65	1/20/2025	0.1966	Golden Predator Canada Corp 100%
YB23920	Quartz Claim	Eel	66	1/20/2025	0.2083	Golden Predator Canada Corp 100%
YB23923	Quartz Claim	Flee	1	1/20/2025	0.1133	Golden Predator Canada Corp 100%
YB23924	Quartz Claim	Flee	2	1/20/2025	0.0726	Golden Predator Canada Corp 100%
YB23925	Quartz Claim	Flee	3	1/20/2025	0.1904	Golden Predator Canada Corp 100%
YB23926	Quartz Claim	Flee	4	1/20/2025	0.1099	Golden Predator Canada Corp 100%
YB23927	Quartz Claim	Flee	5	1/20/2025	0.2018	Golden Predator Canada Corp 100%
YB23928	Quartz Claim	Flee	6	1/20/2025	0.1921	Golden Predator Canada Corp 100%
YB23929	Quartz Claim	Flee	7	1/20/2025	0.2141	Golden Predator Canada Corp 100%
YB23930	Quartz Claim	Flee	8	1/20/2025	0.2046	Golden Predator Canada Corp 100%
YB23931	Quartz Claim	Flee	9	1/20/2025	0.2107	Golden Predator Canada Corp 100%
YB23932	Quartz Claim	Flee	10	1/20/2025	0.2013	Golden Predator Canada Corp 100%
YB23933	Quartz Claim	Flee	11	1/20/2025	0.2072	Golden Predator Canada Corp 100%
YB23934	Quartz Claim	Flee	12	1/20/2025	0.1983	Golden Predator Canada Corp 100%
YB23935	Quartz Claim	Flee	13	1/20/2025	0.2058	Golden Predator Canada Corp 100%
YB23936	Quartz Claim	Flee	14	1/20/2025	0.1952	Golden Predator Canada Corp 100%
YB23937	Quartz Claim	Flee	15	1/20/2025	0.204	Golden Predator Canada Corp 100%
YB23938	Quartz Claim	Flee	16	1/20/2025	0.1898	Golden Predator Canada Corp 100%
YB23939	Quartz Claim	Flee	17	1/20/2025	0.0541	Golden Predator Canada Corp 100%
YB23940	Quartz Claim	Flee	18	1/20/2025	0.0695	Golden Predator Canada Corp 100%
YB23941	Quartz Claim	Flee	19	1/20/2025	0.1143	Golden Predator Canada Corp 100%
YB23942	Mining Lease	Flee	20	3/24/2022	0.0871	Golden Predator Canada Corp 100%
YB23943	Quartz Claim	Flee	21	1/20/2025	0.2002	Golden Predator Canada Corp 100%
YB23944	Quartz Claim	Flee	22	1/20/2025	0.2392	Golden Predator Canada Corp 100%
YB23945	Quartz Claim	Flee	23	1/20/2025	0.1682	Golden Predator Canada Corp 100%
YB23946	Quartz Claim	Flee	24	1/20/2025	0.1668	Golden Predator Canada Corp 100%
YB23947	Quartz Claim	Flee	25	1/20/2025	0.1858	Golden Predator Canada Corp 100%
YB23948	Quartz Claim	Flee	26	1/20/2025	0.1701	Golden Predator Canada Corp 100%
YB23949	Quartz Claim	Flee	27	1/20/2025	0.2222	Golden Predator Canada Corp 100%
YB23950	Quartz Claim	Flee	28	1/20/2025	0.1896	Golden Predator Canada Corp 100%
YB23951	Quartz Claim	Flee	29	1/20/2025	0.1825	Golden Predator Canada Corp 100%
YB23952	Quartz Claim	Flee	30	1/20/2025	0.1627	Golden Predator Canada Corp 100%
YB23953	Quartz Claim	Flee	31	1/20/2025	0.1533	Golden Predator Canada Corp 100%

Grant Number	Mineral Claim Type	Claim Name	Claim Numbe r	Claim Expiratio n Date	Area (km2)	Claim Owner
YB23954	Quartz Claim	Flee	32	1/20/2025	0.1565	Golden Predator Canada Corp 100%
YB23957	Mining Lease	Flee	35	3/24/2022	0.0813	Golden Predator Canada Corp 100%
YB23958	Mining Lease	Flee	36	5/31/2016	0.1461	Golden Predator Canada Corp 100%
YB23959	Quartz Claim	Flee	37	1/20/2025	0.0743	Golden Predator Canada Corp 100%
YB23960	Mining Lease	Flee	38	5/31/2016	0.2177	Golden Predator Canada Corp 100%
YB23961	Quartz Claim	Flee	39	1/20/2025	0.0404	Golden Predator Canada Corp 100%
YB23962	Quartz Claim	Flee	40	1/20/2025	0.0699	Golden Predator Canada Corp 100%
YB23963	Quartz Claim	Flee	41	1/20/2025	0.0839	Golden Predator Canada Corp 100%
YB23964	Quartz Claim	Flee	42	1/20/2025	0.1524	Golden Predator Canada Corp 100%
YB23965	Quartz Claim	Flee	43	1/20/2025	0.0918	Golden Predator Canada Corp 100%
YB23966	Quartz Claim	Flee	44	1/20/2025	0.1681	Golden Predator Canada Corp 100%
YB23967	Quartz Claim	Flee	45	1/20/2025	0.0779	Golden Predator Canada Corp 100%
YB23968	Quartz Claim	Flee	46	1/20/2025	0.149	Golden Predator Canada Corp 100%
YB23969	Quartz Claim	Flee	47	1/20/2025	0.0771	Golden Predator Canada Corp 100%
YB23970	Quartz Claim	Flee	48	1/20/2025	0.1582	Golden Predator Canada Corp 100%
YB23971	Quartz Claim	Flee	49	1/20/2025	0.1047	Golden Predator Canada Corp 100%
YB23972	Quartz Claim	Flee	50	1/20/2025	0.1011	Golden Predator Canada Corp 100%
YB23973	Mining Lease	Flee	51	5/31/2016	0.143	Golden Predator Canada Corp 100%
YB23974	Quartz Claim	Flee	52	1/20/2025	0.1754	Golden Predator Canada Corp 100%
YB23975	Mining Lease	Flee	53	5/31/2016	0.199	Golden Predator Canada Corp 100%
YB23976	Quartz Claim	Flee	54	1/20/2025	0.2237	Golden Predator Canada Corp 100%
YB23977	Quartz Claim	Flee	55	1/20/2025	0.1242	Golden Predator Canada Corp 100%
YB23978	Quartz Claim	Flee	56	1/20/2025	0.2198	Golden Predator Canada Corp 100%
YB23979	Quartz Claim	Flee	57	1/20/2025	0.1268	Golden Predator Canada Corp 100%
YB23980	Quartz Claim	Flee	58	1/20/2025	0.2206	Golden Predator Canada Corp 100%
YB23981	Quartz Claim	Flee	59	1/20/2025	0.1359	Golden Predator Canada Corp 100%
YB23982	Quartz Claim	Flee	60	1/20/2025	0.2279	Golden Predator Canada Corp 100%
YB23983	Quartz Claim	Flee	61	1/20/2025	0.1261	Golden Predator Canada Corp 100%
YB23984	Quartz Claim	Flee	62	1/20/2025	0.2147	Golden Predator Canada Corp 100%
YB23985	Quartz Claim	Flee	63	1/20/2025	0.1489	Golden Predator Canada Corp 100%
YB23986	Quartz Claim	Flee	64	1/20/2025	0.2424	Golden Predator Canada Corp 100%
YB23987	Quartz Claim	Flee	65	1/20/2025	0.1131	Golden Predator Canada Corp 100%
YB23988	Quartz Claim	Flee	66	1/20/2025	0.128	Golden Predator Canada Corp 100%
YB23989	Quartz Claim	Flee	67	1/20/2025	0.1786	Golden Predator Canada Corp 100%
YB23990	Quartz Claim	Flee	68	1/20/2025	0.2006	Golden Predator Canada Corp 100%
YB23991	Quartz Claim	Flee	69	1/20/2025	0.1843	Golden Predator Canada Corp 100%
YB23992	Quartz Claim	Flee	70	1/20/2025	0.2042	Golden Predator Canada Corp 100%

Grant Number	Mineral Claim Type	Claim Name	Claim Numbe r	Claim Expiratio n Date	Area (km2)	Claim Owner
YB23993	Quartz Claim	Flee	71	1/20/2025	0.1789	Golden Predator Canada Corp 100%
YB23994	Quartz Claim	Flee	72	1/20/2025	0.1878	Golden Predator Canada Corp 100%
YB23995	Quartz Claim	Flee	73	1/20/2025	0.1938	Golden Predator Canada Corp 100%
YB23996	Quartz Claim	Flee	74	1/20/2025	0.2024	Golden Predator Canada Corp 100%
YB23997	Quartz Claim	Flee	75	1/20/2025	0.1768	Golden Predator Canada Corp 100%
YB23998	Quartz Claim	Flee	76	1/20/2025	0.1889	Golden Predator Canada Corp 100%
YB23999	Quartz Claim	Flee	77	1/20/2025	0.1853	Golden Predator Canada Corp 100%
YB24000	Quartz Claim	Flee	78	1/20/2025	0.1938	Golden Predator Canada Corp 100%
YB30004	Quartz Claim	Flee	79	1/20/2025	0.1628	Golden Predator Canada Corp 100%
YB30005	Quartz Claim	Flee	80	1/20/2025	0.1647	Golden Predator Canada Corp 100%
YB30006	Quartz Claim	Flee	81	1/20/2025	0.1791	Golden Predator Canada Corp 100%
YB30007	Quartz Claim	Flee	82	1/20/2025	0.1829	Golden Predator Canada Corp 100%
YB30008	Quartz Claim	Flee	83	1/20/2025	0.1833	Golden Predator Canada Corp 100%
YB30009	Quartz Claim	Flee	84	1/20/2025	0.1833	Golden Predator Canada Corp 100%
YB30010	Quartz Claim	Flee	85	1/20/2025	0.1615	Golden Predator Canada Corp 100%
YB30011	Quartz Claim	Flee	86	1/20/2025	0.157	Golden Predator Canada Corp 100%
YB30012	Quartz Claim	Flee	87	1/20/2025	0.1763	Golden Predator Canada Corp 100%
YB30013	Quartz Claim	Flee	88	1/20/2025	0.1614	Golden Predator Canada Corp 100%
YB30014	Quartz Claim	Flee	89	1/20/2025	0.1994	Golden Predator Canada Corp 100%
YB30015	Quartz Claim	Flee	90	1/20/2025	0.1874	Golden Predator Canada Corp 100%
YB30016	Quartz Claim	Flee	91	1/20/2025	0.1565	Golden Predator Canada Corp 100%
YB30017	Quartz Claim	Flee	92	1/20/2025	0.1406	Golden Predator Canada Corp 100%
YB30018	Quartz Claim	Flee	93	1/20/2025	0.1516	Golden Predator Canada Corp 100%
YB30019	Quartz Claim	Flee	94	1/20/2025	0.2043	Golden Predator Canada Corp 100%
YB30020	Quartz Claim	Flee	95	1/20/2025	0.054	Golden Predator Canada Corp 100%
YB30021	Quartz Claim	Flee	96	1/20/2025	0.189	Golden Predator Canada Corp 100%
YB30022	Quartz Claim	Flee	97	1/20/2025	0.051	Golden Predator Canada Corp 100%
YB30023	Quartz Claim	Flee	98	1/20/2025	0.1753	Golden Predator Canada Corp 100%
YB30024	Quartz Claim	Flee	99	1/20/2025	0.0454	Golden Predator Canada Corp 100%
YB30025	Quartz Claim	Flee	100	1/20/2025	0.1586	Golden Predator Canada Corp 100%
YB30026	Quartz Claim	Flee	101	1/20/2025	0.0493	Golden Predator Canada Corp 100%
YB30027	Quartz Claim	Flee	102	1/20/2025	0.1718	Golden Predator Canada Corp 100%
YB30028	Quartz Claim	Flee	103	1/20/2025	0.0525	Golden Predator Canada Corp 100%
YB30029	Quartz Claim	Flee	104	1/20/2025	0.1806	Golden Predator Canada Corp 100%
YB38729	Quartz Claim	Lee	83	1/20/2025	0.1495	Golden Predator Canada Corp 100%
YB38730	Quartz Claim	Lee	84	1/20/2025	0.1375	Golden Predator Canada Corp 100%
YB38731	Quartz Claim	Lee	85	1/20/2025	0.0382	Golden Predator Canada Corp 100%

						·
Grant Number	Mineral Claim Type	Claim Name	Claim Numbe r	Claim Expiratio n Date	Area (km2)	Claim Owner
YB38732	Mining Lease	Lee	86	5/31/2016	0.0004	Golden Predator Canada Corp 100%
YB38733	Mining Lease	Lee	87	5/31/2016	0.0251	Golden Predator Canada Corp 100%
YB39516	Quartz Claim	Eel	67	1/20/2022	0.2012	Golden Predator Canada Corp 100%
YB39517	Quartz Claim	Eel	68	1/20/2022	0.2067	Golden Predator Canada Corp 100%
YB39518	Quartz Claim	Eel	69	1/20/2022	0.203	Golden Predator Canada Corp 100%
YB39519	Quartz Claim	Eel	70	1/20/2022	0.2015	Golden Predator Canada Corp 100%
YB39520	Quartz Claim	Eel	71	1/20/2022	0.1914	Golden Predator Canada Corp 100%
YB39521	Quartz Claim	Eel	72	1/20/2022	0.1911	Golden Predator Canada Corp 100%
YB39522	Quartz Claim	Eel	73	1/20/2022	0.2029	Golden Predator Canada Corp 100%
YB39523	Quartz Claim	Eel	74	1/20/2022	0.1864	Golden Predator Canada Corp 100%
YB39524	Quartz Claim	Eel	75	1/20/2022	0.1983	Golden Predator Canada Corp 100%
YB39525	Quartz Claim	Eel	76	1/20/2022	0.1547	Golden Predator Canada Corp 100%
YB39526	Quartz Claim	Eel	77	1/20/2022	0.2017	Golden Predator Canada Corp 100%
YB39527	Quartz Claim	Eel	78	1/20/2022	0.1805	Golden Predator Canada Corp 100%
YB39528	Quartz Claim	Eel	79	1/20/2022	0.1689	Golden Predator Canada Corp 100%
YB39529	Quartz Claim	Eel	80	1/20/2022	0.1021	Golden Predator Canada Corp 100%
YB39530	Quartz Claim	Eel	81	1/20/2022	0.1723	Golden Predator Canada Corp 100%
YB39531	Quartz Claim	Eel	82	1/20/2022	0.1812	Golden Predator Canada Corp 100%
YB39532	Quartz Claim	Eel	83	1/20/2022	0.17	Golden Predator Canada Corp 100%
YB39533	Quartz Claim	Eel	84	1/20/2022	0.1856	Golden Predator Canada Corp 100%
YB39534	Quartz Claim	Eel	85	1/20/2022	0.1536	Golden Predator Canada Corp 100%
YB39535	Quartz Claim	Eel	86	1/20/2022	0.1816	Golden Predator Canada Corp 100%
YB39536	Quartz Claim	Eel	87	1/20/2022	0.1483	Golden Predator Canada Corp 100%
YB39537	Quartz Claim	Eel	88	1/20/2022	0.1961	Golden Predator Canada Corp 100%
YB39538	Quartz Claim	Eel	89	1/20/2022	0.1461	Golden Predator Canada Corp 100%
YB39539	Quartz Claim	Eel	90	1/20/2022	0.1345	Golden Predator Canada Corp 100%
YB39540	Quartz Claim	Eel	91	1/20/2022	0.1867	Golden Predator Canada Corp 100%
YB39541	Quartz Claim	Eel	92	1/20/2022	0.1859	Golden Predator Canada Corp 100%
YB39542	Quartz Claim	Eel	93	1/20/2022	0.1953	Golden Predator Canada Corp 100%
YB39543	Quartz Claim	Eel	94	1/20/2022	0.1945	Golden Predator Canada Corp 100%
YB39544	Quartz Claim	Eel	95	1/20/2022	0.1849	Golden Predator Canada Corp 100%
YB39545	Quartz Claim	Eel	96	1/20/2022	0.1912	Golden Predator Canada Corp 100%
YB39546	Quartz Claim	Eel	97	1/20/2022	0.1648	Golden Predator Canada Corp 100%
YB39547	Quartz Claim	Eel	98	1/20/2022	0.1751	Golden Predator Canada Corp 100%
YB39548	Quartz Claim	Eel	99	1/20/2022	0.169	Golden Predator Canada Corp 100%
YB39549	Quartz Claim	Eel	100	1/20/2022	0.1857	Golden Predator Canada Corp 100%
YB39550	Quartz Claim	Eel	101	1/20/2022	0.1501	Golden Predator Canada Corp 100%

Grant Number	Mineral Claim Type	Claim Name	Claim Numbe r	Claim Expiratio n Date	Area (km2)	Claim Owner
YB39551	Quartz Claim	Eel	102	1/20/2022	0.1491	Golden Predator Canada Corp 100%
YB39552	Quartz Claim	Eel	103	1/20/2022	0.1932	Golden Predator Canada Corp 100%
YB39553	Quartz Claim	Eel	104	1/20/2022	0.1847	Golden Predator Canada Corp 100%
YB39554	Quartz Claim	Eel	105	1/20/2022	0.1982	Golden Predator Canada Corp 100%
YB39555	Quartz Claim	Eel	106	1/20/2022	0.1856	Golden Predator Canada Corp 100%
YB39556	Quartz Claim	Eel	107	1/20/2022	0.1981	Golden Predator Canada Corp 100%
YB39557	Quartz Claim	Eel	108	1/20/2022	0.187	Golden Predator Canada Corp 100%
YB39558	Quartz Claim	Eel	109	1/20/2022	0.1837	Golden Predator Canada Corp 100%
YB39559	Quartz Claim	Eel	110	1/20/2022	0.1745	Golden Predator Canada Corp 100%
YB39560	Quartz Claim	Eel	111	1/20/2022	0.1996	Golden Predator Canada Corp 100%
YB39561	Quartz Claim	Eel	112	1/20/2022	0.1778	Golden Predator Canada Corp 100%
YB39562	Quartz Claim	Eel	113	1/20/2022	0.0904	Golden Predator Canada Corp 100%
YB39563	Quartz Claim	Eel	114	1/20/2022	0.0093	Golden Predator Canada Corp 100%
YB39564	Quartz Claim	Eel	115	1/20/2022	0.1245	Golden Predator Canada Corp 100%
YB39565	Mining Lease	Eel	116	5/31/2016	0.0704	Golden Predator Canada Corp 100%
YB39566	Quartz Claim	Eel	117	1/20/2022	0.1597	Golden Predator Canada Corp 100%
YB39567	Quartz Claim	Eel	118	1/20/2022	0.1548	Golden Predator Canada Corp 100%
YB39568	Quartz Claim	Eel	119	1/20/2022	0.1784	Golden Predator Canada Corp 100%
YB39569	Quartz Claim	Eel	120	1/20/2022	0.1886	Golden Predator Canada Corp 100%
YB39570	Quartz Claim	Eel	121	1/20/2022	0.1916	Golden Predator Canada Corp 100%
YB39571	Quartz Claim	Eel	122	1/20/2022	0.2099	Golden Predator Canada Corp 100%
YB39572	Quartz Claim	Eel	123	1/20/2022	0.1355	Golden Predator Canada Corp 100%
YB39573	Quartz Claim	Eel	124	1/20/2022	0.2164	Golden Predator Canada Corp 100%
YB39574	Quartz Claim	Eel	125	1/20/2022	0.1261	Golden Predator Canada Corp 100%
YB39575	Quartz Claim	Eel	126	1/20/2022	0.2236	Golden Predator Canada Corp 100%
YB39576	Quartz Claim	Eel	127	1/20/2022	0.2158	Golden Predator Canada Corp 100%
YB39577	Quartz Claim	Eel	128	1/20/2022	0.1812	Golden Predator Canada Corp 100%
YB39578	Quartz Claim	Eel	129	1/20/2022	0.1902	Golden Predator Canada Corp 100%
YB39579	Quartz Claim	Eel	130	1/20/2022	0.1741	Golden Predator Canada Corp 100%
YB39580	Quartz Claim	Eel	131	1/20/2022	0.1999	Golden Predator Canada Corp 100%
YB39581	Quartz Claim	Eel	132	1/20/2022	0.1849	Golden Predator Canada Corp 100%
YB39582	Quartz Claim	Eel	133	1/20/2022	0.1691	Golden Predator Canada Corp 100%
YB39583	Quartz Claim	Eel	134	1/20/2022	0.1544	Golden Predator Canada Corp 100%
YB39584	Quartz Claim	Eel	135	1/20/2022	0.1843	Golden Predator Canada Corp 100%
YB39585	Quartz Claim	Eel	136	1/20/2022	0.178	Golden Predator Canada Corp 100%
YB39586	Quartz Claim	Eel	137	1/20/2022	0.1884	Golden Predator Canada Corp 100%
YB39587	Quartz Claim	Eel	138	1/20/2022	0.1535	Golden Predator Canada Corp 100%

Grant Number	Mineral Claim Type	Claim Name	Claim Numbe r	Claim Expiratio n Date	Area (km2)	Claim Owner
YB39588	Quartz Claim	Eel	139	1/20/2022	0.0766	Golden Predator Canada Corp 100%
YB39589	Quartz Claim	Eel	140	1/20/2022	0.0431	Golden Predator Canada Corp 100%
YB39590	Quartz Claim	Eel	141	1/20/2022	0.1271	Golden Predator Canada Corp 100%
YB39591	Quartz Claim	Eel	142	1/20/2022	0.1093	Golden Predator Canada Corp 100%
YB39592	Quartz Claim	Eel	143	1/20/2022	0.1087	Golden Predator Canada Corp 100%
YB39593	Quartz Claim	Eel	144	1/20/2022	0.142	Golden Predator Canada Corp 100%
YB39594	Quartz Claim	Eel	145	1/20/2022	0.1904	Golden Predator Canada Corp 100%
YB39595	Quartz Claim	Eel	146	1/20/2022	0.1947	Golden Predator Canada Corp 100%
YB39596	Quartz Claim	Eel	147	1/20/2022	0.1849	Golden Predator Canada Corp 100%
YB39597	Quartz Claim	Eel	148	1/20/2022	0.1897	Golden Predator Canada Corp 100%
YB39598	Quartz Claim	Eel	149	1/20/2022	0.1953	Golden Predator Canada Corp 100%
YB39599	Quartz Claim	Eel	150	1/20/2022	0.1994	Golden Predator Canada Corp 100%
YB39600	Quartz Claim	Eel	151	1/20/2022	0.1593	Golden Predator Canada Corp 100%
YB39601	Quartz Claim	Eel	152	1/20/2022	0.1666	Golden Predator Canada Corp 100%
YB39602	Quartz Claim	Eel	153	1/20/2022	0.1713	Golden Predator Canada Corp 100%
YB39603	Quartz Claim	Eel	154	1/20/2022	0.1748	Golden Predator Canada Corp 100%
YB39604	Quartz Claim	Eel	155	1/20/2022	0.1774	Golden Predator Canada Corp 100%
YB39605	Quartz Claim	Eel	156	1/20/2022	0.1879	Golden Predator Canada Corp 100%
YB39606	Quartz Claim	Eel	157	1/20/2022	0.1876	Golden Predator Canada Corp 100%
YB39607	Quartz Claim	Eel	158	1/20/2022	0.1953	Golden Predator Canada Corp 100%
YB39608	Quartz Claim	Eel	159	1/20/2022	0.1624	Golden Predator Canada Corp 100%
YB39609	Quartz Claim	Eel	160	1/20/2022	0.1848	Golden Predator Canada Corp 100%
YB39610	Quartz Claim	Eel	161	1/20/2022	0.1539	Golden Predator Canada Corp 100%
YB39611	Quartz Claim	Eel	162	1/20/2022	0.1547	Golden Predator Canada Corp 100%
YB39612	Quartz Claim	Eel	163	1/20/2022	0.0793	Golden Predator Canada Corp 100%
YB39613	Quartz Claim	Eel	164	1/20/2022	0.1811	Golden Predator Canada Corp 100%
YB39614	Quartz Claim	Eel	165	1/20/2022	0.0981	Golden Predator Canada Corp 100%
YB39615	Quartz Claim	Eel	166	1/20/2022	0.1734	Golden Predator Canada Corp 100%
YB39616	Quartz Claim	Eel	167	1/20/2022	0.1504	Golden Predator Canada Corp 100%
YB39617	Quartz Claim	Eel	168	1/20/2022	0.2047	Golden Predator Canada Corp 100%
YB39618	Quartz Claim	Eel	169	1/20/2022	0.1703	Golden Predator Canada Corp 100%
YB39619	Quartz Claim	Eel	170	1/20/2022	0.1871	Golden Predator Canada Corp 100%
YB39620	Quartz Claim	Eel	171	1/20/2022	0.1948	Golden Predator Canada Corp 100%
YB39621	Quartz Claim	Eel	172	1/20/2022	0.1787	Golden Predator Canada Corp 100%
YB39622	Quartz Claim	Eel	173	1/20/2022	0.1719	Golden Predator Canada Corp 100%
YB39623	Quartz Claim	Eel	174	1/20/2022	0.1903	Golden Predator Canada Corp 100%
YB39624	Quartz Claim	Eel	175	1/20/2022	0.1692	Golden Predator Canada Corp 100%

Grant Number	Mineral Claim Type	Claim Name	Claim Numbe r	Claim Expiratio n Date	Area (km2)	Claim Owner
YB39625	Quartz Claim	Eel	176	1/20/2022	0.1821	Golden Predator Canada Corp 100%
YB39626	Quartz Claim	Eel	177	1/20/2022	0.2039	Golden Predator Canada Corp 100%
YB39627	Quartz Claim	Eel	178	1/20/2022	0.211	Golden Predator Canada Corp 100%
YB39628	Quartz Claim	Eel	179	1/20/2022	0.1956	Golden Predator Canada Corp 100%
YB39629	Quartz Claim	Eel	180	1/20/2022	0.1994	Golden Predator Canada Corp 100%
YB39630	Quartz Claim	Eel	181	1/20/2022	0.1941	Golden Predator Canada Corp 100%
YB39631	Quartz Claim	Eel	182	1/20/2022	0.1939	Golden Predator Canada Corp 100%
YB39632	Quartz Claim	Eel	183	1/20/2022	0.2042	Golden Predator Canada Corp 100%
YB39633	Quartz Claim	Eel	184	1/20/2022	0.2046	Golden Predator Canada Corp 100%
YB39634	Quartz Claim	Eel	185	1/20/2022	0.191	Golden Predator Canada Corp 100%
YB39635	Quartz Claim	Eel	186	1/20/2022	0.1866	Golden Predator Canada Corp 100%
YB39636	Quartz Claim	Eel	187	1/20/2022	0.2141	Golden Predator Canada Corp 100%
YB39637	Quartz Claim	Eel	188	1/20/2022	0.2018	Golden Predator Canada Corp 100%
YB39638	Quartz Claim	Eel	189	1/20/2022	0.2008	Golden Predator Canada Corp 100%
YB39639	Quartz Claim	Eel	190	1/20/2022	0.1873	Golden Predator Canada Corp 100%
YB39640	Quartz Claim	Eel	191	1/20/2022	0.1924	Golden Predator Canada Corp 100%
YB39641	Quartz Claim	Eel	192	1/20/2022	0.1763	Golden Predator Canada Corp 100%
YB39642	Quartz Claim	Eel	195	1/20/2022	0.1309	Golden Predator Canada Corp 100%
YB39643	Quartz Claim	Eel	196	1/20/2022	0.1634	Golden Predator Canada Corp 100%
YB39644	Quartz Claim	Eel	197	1/20/2022	0.1467	Golden Predator Canada Corp 100%
YB39645	Quartz Claim	Eel	198	1/20/2022	0.1736	Golden Predator Canada Corp 100%
YB39646	Quartz Claim	Eel	199	1/20/2022	0.1495	Golden Predator Canada Corp 100%
YB39647	Quartz Claim	Eel	200	1/20/2022	0.1737	Golden Predator Canada Corp 100%
YB39648	Quartz Claim	Eel	201	1/20/2022	0.165	Golden Predator Canada Corp 100%
YB39649	Quartz Claim	Eel	202	1/20/2022	0.189	Golden Predator Canada Corp 100%
YB39650	Quartz Claim	Eel	203	1/20/2022	0.164	Golden Predator Canada Corp 100%
YB39651	Quartz Claim	Eel	204	1/20/2022	0.1863	Golden Predator Canada Corp 100%
YB39652	Quartz Claim	Eel	205	1/20/2022	0.1647	Golden Predator Canada Corp 100%
YB39653	Quartz Claim	Eel	206	1/20/2022	0.1897	Golden Predator Canada Corp 100%
YB39654	Quartz Claim	Eel	207	1/20/2022	0.1531	Golden Predator Canada Corp 100%
YB39655	Quartz Claim	Eel	208	1/20/2022	0.1811	Golden Predator Canada Corp 100%
YB39656	Quartz Claim	Eel	209	1/20/2022	0.1282	Golden Predator Canada Corp 100%
YB39657	Quartz Claim	Eel	210	1/20/2022	0.1475	Golden Predator Canada Corp 100%
YB39658	Quartz Claim	Eel	211	1/20/2022	0.1621	Golden Predator Canada Corp 100%
YB39659	Quartz Claim	Eel	212	1/20/2022	0.1691	Golden Predator Canada Corp 100%
YB39660	Quartz Claim	Eel	213	1/20/2022	0.1876	Golden Predator Canada Corp 100%
YB39661	Quartz Claim	Eel	214	1/20/2022	0.1884	Golden Predator Canada Corp 100%

Grant Number	Mineral Claim Type	Claim Name	Claim Numbe r	Claim Expiratio n Date	Area (km2)	Claim Owner
YB39662	Quartz Claim	Eel	215	1/20/2022	0.1865	Golden Predator Canada Corp 100%
YB39663	Quartz Claim	Eel	216	1/20/2022	0.1838	Golden Predator Canada Corp 100%
YB39664	Quartz Claim	Eel	217	1/20/2022	0.2024	Golden Predator Canada Corp 100%
YB39665	Quartz Claim	Eel	218	1/20/2022	0.1964	Golden Predator Canada Corp 100%
YB39666	Quartz Claim	Eel	219	1/20/2022	0.1993	Golden Predator Canada Corp 100%
YB39667	Quartz Claim	Eel	220	1/20/2022	0.1905	Golden Predator Canada Corp 100%
YB39668	Quartz Claim	Eel	221	1/20/2022	0.2018	Golden Predator Canada Corp 100%
YB39669	Quartz Claim	Eel	222	1/20/2022	0.1892	Golden Predator Canada Corp 100%
YB39670	Quartz Claim	Eel	223	1/20/2022	0.1936	Golden Predator Canada Corp 100%
YB39671	Quartz Claim	Eel	224	1/20/2022	0.1801	Golden Predator Canada Corp 100%
YB39672	Quartz Claim	Eel	225	1/20/2022	0.1488	Golden Predator Canada Corp 100%
YB39673	Quartz Claim	Eel	226	1/20/2022	0.1858	Golden Predator Canada Corp 100%
YB39674	Quartz Claim	Eel	227	1/20/2022	0.1005	Golden Predator Canada Corp 100%
YB39675	Quartz Claim	Eel	228	1/20/2022	0.1064	Golden Predator Canada Corp 100%
YB39676	Quartz Claim	Eel	229	1/20/2022	0.1238	Golden Predator Canada Corp 100%
YB39677	Quartz Claim	Eel	230	1/20/2022	0.1293	Golden Predator Canada Corp 100%
YB39678	Quartz Claim	Eel	231	1/20/2022	0.1735	Golden Predator Canada Corp 100%
YB39679	Quartz Claim	Eel	232	1/20/2022	0.1821	Golden Predator Canada Corp 100%
YB39680	Quartz Claim	Eel	233	1/20/2022	0.1865	Golden Predator Canada Corp 100%
YB39681	Quartz Claim	Eel	234	1/20/2022	0.1961	Golden Predator Canada Corp 100%
YB39682	Quartz Claim	Eel	235	1/20/2022	0.1823	Golden Predator Canada Corp 100%
YB39683	Quartz Claim	Eel	236	1/20/2022	0.1922	Golden Predator Canada Corp 100%
YB39684	Quartz Claim	Eel	237	1/20/2022	0.1816	Golden Predator Canada Corp 100%
YB39685	Quartz Claim	Eel	238	1/20/2022	0.1912	Golden Predator Canada Corp 100%
YB39686	Quartz Claim	Eel	239	1/20/2022	0.1752	Golden Predator Canada Corp 100%
YB39687	Quartz Claim	Eel	240	1/20/2022	0.1859	Golden Predator Canada Corp 100%
YB39688	Quartz Claim	Eel	241	1/20/2022	0.1725	Golden Predator Canada Corp 100%
YB39689	Quartz Claim	Eel	242	1/20/2022	0.1948	Golden Predator Canada Corp 100%
YB39690	Quartz Claim	Eel	243	1/20/2022	0.1582	Golden Predator Canada Corp 100%
YB39691	Quartz Claim	Eel	244	1/20/2022	0.1886	Golden Predator Canada Corp 100%
YB39692	Quartz Claim	Eel	245	1/20/2022	0.1606	Golden Predator Canada Corp 100%
YB39693	Quartz Claim	Eel	246	1/20/2022	0.1956	Golden Predator Canada Corp 100%
YB39694	Quartz Claim	Eel	247	1/20/2022	0.1668	Golden Predator Canada Corp 100%
YB39695	Quartz Claim	Eel	248	1/20/2022	0.1949	Golden Predator Canada Corp 100%
YB39696	Quartz Claim	Eel	249	1/20/2022	0.1814	Golden Predator Canada Corp 100%
YB39697	Quartz Claim	Eel	250	1/20/2022	0.2084	Golden Predator Canada Corp 100%
YB39698	Quartz Claim	Eel	251	1/20/2022	0.1799	Golden Predator Canada Corp 100%

Grant Number	Mineral Claim Type	Claim Name	Claim Numbe r	Claim Expiratio n Date	Area (km2)	Claim Owner
YB39699	Quartz Claim	Eel	252	1/20/2022	0.2033	Golden Predator Canada Corp 100%
YB39700	Quartz Claim	Eel	253	1/20/2022	0.1802	Golden Predator Canada Corp 100%
YB39701	Quartz Claim	Eel	254	1/20/2022	0.1995	Golden Predator Canada Corp 100%
YB39702	Quartz Claim	Eel	255	1/20/2022	0.1782	Golden Predator Canada Corp 100%
YB39703	Quartz Claim	Eel	256	1/20/2022	0.1955	Golden Predator Canada Corp 100%
YB39704	Quartz Claim	Eel	257	1/20/2022	0.1785	Golden Predator Canada Corp 100%
YB39705	Quartz Claim	Eel	258	1/20/2022	0.189	Golden Predator Canada Corp 100%
YB39706	Quartz Claim	Eel	259	1/20/2022	0.1261	Golden Predator Canada Corp 100%
YB39707	Quartz Claim	Eel	260	1/20/2022	0.0927	Golden Predator Canada Corp 100%
YB39708	Quartz Claim	Eel	261	1/20/2022	0.1396	Golden Predator Canada Corp 100%
YB39709	Quartz Claim	Eel	262	1/20/2022	0.1052	Golden Predator Canada Corp 100%
YB39710	Quartz Claim	Eel	263	1/20/2022	0.1341	Golden Predator Canada Corp 100%
YB39711	Quartz Claim	Eel	264	1/20/2022	0.0995	Golden Predator Canada Corp 100%
YB39712	Quartz Claim	Eel	265	1/20/2022	0.1441	Golden Predator Canada Corp 100%
YB39713	Quartz Claim	Eel	266	1/20/2022	0.107	Golden Predator Canada Corp 100%
YB39714	Quartz Claim	Eel	267	1/20/2022	0.1415	Golden Predator Canada Corp 100%
YB39715	Quartz Claim	Eel	268	1/20/2022	0.1053	Golden Predator Canada Corp 100%
YB39716	Quartz Claim	Eel	269	1/20/2022	0.1388	Golden Predator Canada Corp 100%
YB39717	Quartz Claim	Eel	270	1/20/2022	0.1032	Golden Predator Canada Corp 100%
YB39718	Quartz Claim	Eel	271	1/20/2022	0.1948	Golden Predator Canada Corp 100%
YB39719	Quartz Claim	Eel	272	1/20/2022	0.1796	Golden Predator Canada Corp 100%
YB39720	Quartz Claim	Eel	273	1/20/2022	0.1862	Golden Predator Canada Corp 100%
YB39721	Quartz Claim	Eel	274	1/20/2022	0.1681	Golden Predator Canada Corp 100%
YB40131	Quartz Claim	FLEE F	91	1/20/2023	0.1208	Golden Predator Canada Corp 100%
YB40132	Quartz Claim	FLEE F	92	1/20/2023	0.1012	Golden Predator Canada Corp 100%
YB40133	Quartz Claim	FLEE F	93	1/20/2023	0.1122	Golden Predator Canada Corp 100%
YB40134	Quartz Claim	FLEE F	94	1/20/2023	0.1039	Golden Predator Canada Corp 100%
YB40135	Quartz Claim	FLEE F	95	1/20/2023	0.1028	Golden Predator Canada Corp 100%
YB40136	Mining Lease	FLEE F	96	5/31/2016	0.018	Golden Predator Canada Corp 100%
YB40137	Mining Lease	FLEE F	97	5/31/2016	0.0157	Golden Predator Canada Corp 100%
YB40139	Quartz Claim	FLEE F	98	1/20/2023	0.0295	Golden Predator Canada Corp 100%
YB40140	Quartz Claim	FLEE F	99	1/20/2023	0.0513	Golden Predator Canada Corp 100%
YB40141	Quartz Claim	FLEE F	100	1/20/2023	0.0562	Golden Predator Canada Corp 100%
YB40142	Quartz Claim	FLEE F	101	1/20/2023	0.0577	Golden Predator Canada Corp 100%
YB40143	Quartz Claim	FLEE F	102	1/20/2023	0.0516	Golden Predator Canada Corp 100%
YB40144	Quartz Claim	FLEE F	103	1/20/2023	0.0483	Golden Predator Canada Corp 100%
YB40145	Quartz Claim	FLEE F	104	1/20/2023	0.0406	Golden Predator Canada Corp 100%

Grant Number	Mineral Claim Type	Claim Name	Claim Numbe r	Claim Expiratio n Date	Area (km2)	Claim Owner
YB40246	Mining Lease	Eel	275	4/30/2019	0.1378	Golden Predator Canada Corp 100%
YB40247	Mining Lease	Eel	276	4/30/2019	0.1672	Golden Predator Canada Corp 100%
YB40248	Mining Lease	Eel	277	4/30/2019	0.0927	Golden Predator Canada Corp 100%
YB40249	Mining Lease	Eel	278	5/31/2016	0.1741	Golden Predator Canada Corp 100%
YB40250	Mining Lease	Eel	279	3/24/2018	0.002	Golden Predator Canada Corp 100%
YB40251	Mining Lease	Eel	280	5/31/2016	0.1863	Golden Predator Canada Corp 100%
YB40252	Quartz Claim	Eel	281	1/20/2023	0.0034	Golden Predator Canada Corp 100%
YB40253	Quartz Claim	Eel	282	1/20/2023	0.1743	Golden Predator Canada Corp 100%
YB40254	Quartz Claim	Eel	283	1/20/2023	0.0764	Golden Predator Canada Corp 100%
YB40255	Quartz Claim	Eel	284	1/20/2023	0.1126	Golden Predator Canada Corp 100%
YB40256	Quartz Claim	Eel	285	1/20/2023	0.0862	Golden Predator Canada Corp 100%
YB40257	Quartz Claim	Eel	286	1/20/2023	0.117	Golden Predator Canada Corp 100%
YB40258	Quartz Claim	Eel	287	1/20/2023	0.1122	Golden Predator Canada Corp 100%
YB40259	Quartz Claim	Eel	288	1/20/2023	0.1401	Golden Predator Canada Corp 100%
YB40260	Mining Lease	Eel	289	5/31/2016	0.0723	Golden Predator Canada Corp 100%
YB40261	Mining Lease	Eel	290	5/31/2016	0.0142	Golden Predator Canada Corp 100%
YB40262	Mining Lease	Eel	291	5/31/2016	0.0301	Golden Predator Canada Corp 100%
YB40263	Mining Lease	Eel	292	5/31/2016	0.0304	Golden Predator Canada Corp 100%
YB40264	Quartz Claim	Eel	293	1/20/2023	0.0381	Golden Predator Canada Corp 100%
YB40265	Quartz Claim	Eel	294	1/20/2023	0.0578	Golden Predator Canada Corp 100%
YB40266	Quartz Claim	Eel	295	1/20/2023	0.0777	Golden Predator Canada Corp 100%
YB40267	Quartz Claim	Eel	296	1/20/2023	0.1001	Golden Predator Canada Corp 100%
YB40268	Quartz Claim	Eel	297	1/20/2023	0.1131	Golden Predator Canada Corp 100%
YB40269	Mining Lease	Eel	298	5/31/2016	0.0973	Golden Predator Canada Corp 100%
YB40270	Quartz Claim	Flee	105	1/20/2023	0.1333	Golden Predator Canada Corp 100%
YB40271	Quartz Claim	Flee	106	1/20/2023	0.1394	Golden Predator Canada Corp 100%
YB40272	Quartz Claim	Flee	107	1/20/2023	0.1314	Golden Predator Canada Corp 100%
YB40273	Quartz Claim	Flee	108	1/20/2023	0.1158	Golden Predator Canada Corp 100%
YB40274	Quartz Claim	Flee	109	1/20/2023	0.1266	Golden Predator Canada Corp 100%
YB40275	Quartz Claim	Flee	110	1/20/2023	0.1285	Golden Predator Canada Corp 100%
YB40276	Quartz Claim	Flee	111	1/20/2023	0.1365	Golden Predator Canada Corp 100%
YB40277	Quartz Claim	Flee	112	1/20/2023	0.1185	Golden Predator Canada Corp 100%
YB40278	Quartz Claim	Flee	113	1/20/2023	0.1393	Golden Predator Canada Corp 100%
YB40279	Quartz Claim	Flee	114	1/20/2023	0.1443	Golden Predator Canada Corp 100%
YB40280	Quartz Claim	Flee	115	1/20/2023	0.1264	Golden Predator Canada Corp 100%
YB40281	Quartz Claim	Flee	116	1/20/2023	0.128	Golden Predator Canada Corp 100%
YB40282	Quartz Claim	Flee	117	1/20/2023	0.0604	Golden Predator Canada Corp 100%

Grant Number	Mineral Claim Type	Claim Name	Claim Numbe r	Claim Expiratio n Date	Area (km2)	Claim Owner
YB40283	Quartz Claim	Eel	301	1/20/2023	0.0837	Golden Predator Canada Corp 100%
YB40284	Quartz Claim	Eel	302	1/20/2023	0.0782	Golden Predator Canada Corp 100%
YB40285	Quartz Claim	Eel	303	1/20/2023	0.1152	Golden Predator Canada Corp 100%
YB40286	Quartz Claim	Eel	305	1/20/2023	0.0647	Golden Predator Canada Corp 100%
YB40287	Quartz Claim	Eel	306	1/20/2023	0.0378	Golden Predator Canada Corp 100%
YB40288	Quartz Claim	Eel	307	1/20/2023	0.0124	Golden Predator Canada Corp 100%
YB40317	Quartz Claim	Flee	118	1/20/2023	0.0526	Golden Predator Canada Corp 100%
YB40318	Quartz Claim	Flee	119	1/20/2023	0.1769	Golden Predator Canada Corp 100%
YB40319	Quartz Claim	Flee	120	1/20/2023	0.0304	Golden Predator Canada Corp 100%
YB40320	Quartz Claim	Flee	121	1/20/2023	0.0406	Golden Predator Canada Corp 100%
YB40321	Quartz Claim	Eel	299	1/20/2023	0.1681	Golden Predator Canada Corp 100%
YB40322	Quartz Claim	Eel	300	1/20/2023	0.2034	Golden Predator Canada Corp 100%
YB40323	Quartz Claim	Eel	304	1/20/2023	0.1623	Golden Predator Canada Corp 100%
YB40324	Quartz Claim	Lee	88	1/20/2023	0.1006	Golden Predator Canada Corp 100%
YB40325	Quartz Claim	Lee	89	1/20/2023	0.0926	Golden Predator Canada Corp 100%
YB40326	Quartz Claim	Eel	313	1/20/2019	0.1997	Golden Predator Canada Corp 100%
YB40327	Quartz Claim	Eel	314	1/20/2019	0.1742	Golden Predator Canada Corp 100%
YB40328	Quartz Claim	Eel	315	1/20/2019	0.1965	Golden Predator Canada Corp 100%
YB40329	Quartz Claim	Eel	316	1/20/2019	0.1684	Golden Predator Canada Corp 100%
YB40330	Quartz Claim	Eel	317	1/20/2019	0.1937	Golden Predator Canada Corp 100%
YB40331	Quartz Claim	Eel	318	1/20/2019	0.1632	Golden Predator Canada Corp 100%
YB40332	Quartz Claim	Eel	319	1/20/2019	0.2067	Golden Predator Canada Corp 100%
YB40333	Quartz Claim	Eel	320	1/20/2019	0.1827	Golden Predator Canada Corp 100%
YB40334	Quartz Claim	Eel	321	1/20/2019	0.1936	Golden Predator Canada Corp 100%
YB40335	Quartz Claim	Eel	322	1/20/2019	0.1762	Golden Predator Canada Corp 100%
YB40336	Quartz Claim	Eel	323	1/20/2019	0.1879	Golden Predator Canada Corp 100%
YB40337	Quartz Claim	Eel	324	1/20/2019	0.1779	Golden Predator Canada Corp 100%
YB40338	Quartz Claim	Eel	325	1/20/2019	0.1751	Golden Predator Canada Corp 100%
YB40339	Quartz Claim	Eel	326	1/20/2019	0.169	Golden Predator Canada Corp 100%
YB40340	Quartz Claim	Eel	327	1/20/2019	0.1925	Golden Predator Canada Corp 100%
YB40341	Quartz Claim	Eel	328	1/20/2019	0.1923	Golden Predator Canada Corp 100%
YB40342	Quartz Claim	Eel	329	1/20/2019	0.1744	Golden Predator Canada Corp 100%
YB40343	Quartz Claim	Eel	330	1/20/2019	0.18	Golden Predator Canada Corp 100%
YB40344	Quartz Claim	Eel	331	1/20/2019	0.1764	Golden Predator Canada Corp 100%
YB40345	Quartz Claim	Eel	332	1/20/2019	0.1912	Golden Predator Canada Corp 100%
YB40346	Quartz Claim	Eel	333	1/20/2019	0.1737	Golden Predator Canada Corp 100%
YB40347	Quartz Claim	Eel	334	1/20/2019	0.205	Golden Predator Canada Corp 100%

Grant Number	Mineral Claim Type	Claim Name	Claim Numbe r	Claim Expiratio n Date	Area (km2)	Claim Owner
YB40348	Quartz Claim	Eel	335	1/20/2019	0.1666	Golden Predator Canada Corp 100%
YB40349	Quartz Claim	Eel	336	1/20/2019	0.1953	Golden Predator Canada Corp 100%
YB40350	Quartz Claim	Eel	337	1/20/2019	0.1587	Golden Predator Canada Corp 100%
YB40351	Quartz Claim	Eel	338	1/20/2019	0.1828	Golden Predator Canada Corp 100%
YB40352	Quartz Claim	Eel	339	1/20/2019	0.1795	Golden Predator Canada Corp 100%
YB40353	Quartz Claim	Eel	340	1/20/2019	0.2098	Golden Predator Canada Corp 100%
YB40354	Quartz Claim	Eel	341	1/20/2019	0.1717	Golden Predator Canada Corp 100%
YB40355	Quartz Claim	Eel	342	1/20/2019	0.1992	Golden Predator Canada Corp 100%
YB40356	Quartz Claim	Eel	343	1/20/2019	0.1738	Golden Predator Canada Corp 100%
YB40357	Quartz Claim	Eel	344	1/20/2019	0.2026	Golden Predator Canada Corp 100%
YB40358	Quartz Claim	Eel	345	1/20/2019	0.1625	Golden Predator Canada Corp 100%
YB40359	Quartz Claim	Eel	346	1/20/2019	0.1866	Golden Predator Canada Corp 100%
YB40360	Quartz Claim	Eel	347	1/20/2019	0.1845	Golden Predator Canada Corp 100%
YB40361	Quartz Claim	Eel	348	1/20/2019	0.2118	Golden Predator Canada Corp 100%
YB40362	Quartz Claim	Eel	349	1/20/2019	0.172	Golden Predator Canada Corp 100%
YB40363	Quartz Claim	Eel	350	1/20/2019	0.1968	Golden Predator Canada Corp 100%
YB40364	Quartz Claim	Eel	351	1/20/2019	0.1722	Golden Predator Canada Corp 100%
YB40365	Quartz Claim	Eel	352	1/20/2019	0.1886	Golden Predator Canada Corp 100%
YB40366	Quartz Claim	Eel	308	1/20/2023	0.1013	Golden Predator Canada Corp 100%
YB40367	Quartz Claim	Eel	309	1/20/2023	0.1287	Golden Predator Canada Corp 100%
YB40368	Quartz Claim	Eel	310	1/20/2023	0.0957	Golden Predator Canada Corp 100%
YB40369	Quartz Claim	Eel	311	1/20/2023	0.0731	Golden Predator Canada Corp 100%
YB40370	Quartz Claim	Eel	312	1/20/2023	0.04	Golden Predator Canada Corp 100%
YB40371	Quartz Claim	Eel	353	1/20/2019	0.1731	Golden Predator Canada Corp 100%
YB40372	Quartz Claim	Eel	354	1/20/2019	0.1727	Golden Predator Canada Corp 100%
YB40373	Quartz Claim	Eel	355	1/20/2019	0.1707	Golden Predator Canada Corp 100%
YB40374	Quartz Claim	Eel	356	1/20/2019	0.1738	Golden Predator Canada Corp 100%
YB40375	Quartz Claim	Eel	357	1/20/2019	0.1922	Golden Predator Canada Corp 100%
YB40376	Quartz Claim	Eel	358	1/20/2019	0.1939	Golden Predator Canada Corp 100%
YB40377	Quartz Claim	Eel	359	1/20/2019	0.184	Golden Predator Canada Corp 100%
YB40378	Quartz Claim	Eel	360	1/20/2019	0.1895	Golden Predator Canada Corp 100%
YB40379	Quartz Claim	Eel	361	1/20/2019	0.2171	Golden Predator Canada Corp 100%
YB40380	Quartz Claim	Eel	362	1/20/2019	0.2239	Golden Predator Canada Corp 100%
YB40381	Quartz Claim	Eel	363	1/20/2019	0.1938	Golden Predator Canada Corp 100%
YB40382	Quartz Claim	Eel	364	1/20/2019	0.1983	Golden Predator Canada Corp 100%
YB40383	Quartz Claim	Eel	365	1/20/2019	0.1941	Golden Predator Canada Corp 100%
YB40384	Quartz Claim	Eel	366	1/20/2019	0.2056	Golden Predator Canada Corp 100%

Grant Number	Mineral Claim Type	Claim Name	Claim Numbe r	Claim Expiratio n Date	Area (km2)	Claim Owner
YB40385	Quartz Claim	Eel	367	1/20/2019	0.1925	Golden Predator Canada Corp 100%
YB40386	Quartz Claim	Eel	368	1/20/2019	0.2023	Golden Predator Canada Corp 100%
YB40387	Quartz Claim	Eel	369	1/20/2019	0.2138	Golden Predator Canada Corp 100%
YB40388	Quartz Claim	Eel	370	1/20/2019	0.2271	Golden Predator Canada Corp 100%
YB40389	Quartz Claim	Eel	371	1/20/2019	0.2102	Golden Predator Canada Corp 100%
YB40390	Quartz Claim	Eel	372	1/20/2019	0.224	Golden Predator Canada Corp 100%
YB40393	Quartz Claim	Eel	373	1/20/2019	0.0923	Golden Predator Canada Corp 100%
YB40394	Quartz Claim	Eel	374	1/20/2019	0.1793	Golden Predator Canada Corp 100%
YB40395	Quartz Claim	Eel	375	1/20/2019	0.1092	Golden Predator Canada Corp 100%
YB40396	Quartz Claim	Eel	376	1/20/2019	0.1214	Golden Predator Canada Corp 100%
YB40397	Quartz Claim	Eel	377	1/20/2019	0.1746	Golden Predator Canada Corp 100%
YB40398	Quartz Claim	Eel	378	1/20/2019	0.1696	Golden Predator Canada Corp 100%
YB40399	Quartz Claim	Eel	379	1/20/2019	0.1167	Golden Predator Canada Corp 100%
YB40400	Quartz Claim	Eel	380	1/20/2019	0.1073	Golden Predator Canada Corp 100%
YB40401	Quartz Claim	Eel	381	1/20/2019	0.137	Golden Predator Canada Corp 100%
YB40402	Quartz Claim	Eel	382	1/20/2019	0.1496	Golden Predator Canada Corp 100%
YB40403	Quartz Claim	Eel	383	1/20/2019	0.0828	Golden Predator Canada Corp 100%
YB40404	Quartz Claim	Eel	384	1/20/2019	0.0871	Golden Predator Canada Corp 100%
YB40405	Quartz Claim	Eel	385	1/20/2020	0.1744	Golden Predator Canada Corp 100%
YB40406	Quartz Claim	Eel	386	1/20/2020	0.1873	Golden Predator Canada Corp 100%
YB40407	Quartz Claim	Eel	387	1/20/2020	0.1966	Golden Predator Canada Corp 100%
YB40408	Quartz Claim	Eel	388	1/20/2020	0.2118	Golden Predator Canada Corp 100%
YB40409	Quartz Claim	Eel	389	1/20/2020	0.2089	Golden Predator Canada Corp 100%
YB40410	Quartz Claim	Eel	390	1/20/2020	0.212	Golden Predator Canada Corp 100%
YB40411	Quartz Claim	Eel	391	1/20/2020	0.1344	Golden Predator Canada Corp 100%
YB40412	Quartz Claim	Eel	392	1/20/2020	0.142	Golden Predator Canada Corp 100%
YB40413	Quartz Claim	Eel	393	1/20/2020	0.2073	Golden Predator Canada Corp 100%
YB40414	Quartz Claim	Eel	394	1/20/2020	0.0996	Golden Predator Canada Corp 100%
YB40415	Quartz Claim	Eel	395	1/20/2020	0.1959	Golden Predator Canada Corp 100%
YB40416	Quartz Claim	Eel	396	1/20/2020	0.1484	Golden Predator Canada Corp 100%
YB40417	Quartz Claim	Eel	397	1/20/2020	0.2145	Golden Predator Canada Corp 100%
YB40418	Quartz Claim	Eel	398	1/20/2020	0.1408	Golden Predator Canada Corp 100%
YB40419	Quartz Claim	Eel	399	1/20/2020	0.1495	Golden Predator Canada Corp 100%
YB40420	Quartz Claim	Eel	400	1/20/2020	0.0971	Golden Predator Canada Corp 100%
YB40421	Quartz Claim	Eel	401	1/20/2020	0.0917	Golden Predator Canada Corp 100%
YB40422	Quartz Claim	Eel	402	1/20/2020	0.1141	Golden Predator Canada Corp 100%
YB40423	Quartz Claim	Eel	403	1/20/2020	0.2045	Golden Predator Canada Corp 100%

Grant Number	Mineral Claim Type	Claim Name	Claim Numbe r	Claim Expiratio n Date	Area (km2)	Claim Owner
YB40424	Quartz Claim	Eel	404	1/20/2020	0.2151	Golden Predator Canada Corp 100%
YB40425	Quartz Claim	Eel	405	1/20/2020	0.224	Golden Predator Canada Corp 100%
YB40426	Quartz Claim	Eel	406	1/20/2020	0.2355	Golden Predator Canada Corp 100%
YB40427	Quartz Claim	Eel	407	1/20/2020	0.187	Golden Predator Canada Corp 100%
YB40428	Quartz Claim	Eel	408	1/20/2020	0.1967	Golden Predator Canada Corp 100%
YB40429	Quartz Claim	Eel	409	1/20/2020	0.1208	Golden Predator Canada Corp 100%
YB40430	Quartz Claim	Eel	410	1/20/2020	0.0433	Golden Predator Canada Corp 100%
YB40431	Quartz Claim	Eel	411	1/20/2020	0.2401	Golden Predator Canada Corp 100%
YB40432	Quartz Claim	Eel	412	1/20/2020	0.14	Golden Predator Canada Corp 100%
YB40433	Quartz Claim	Eel	413	1/20/2020	0.1756	Golden Predator Canada Corp 100%
YB40434	Quartz Claim	Eel	414	1/20/2020	0.1092	Golden Predator Canada Corp 100%
YB40435	Quartz Claim	Eel	415	1/20/2020	0.1187	Golden Predator Canada Corp 100%
YB40436	Quartz Claim	Eel	416	1/20/2020	0.0627	Golden Predator Canada Corp 100%
YB40437	Quartz Claim	Eel	417	1/20/2020	0.1457	Golden Predator Canada Corp 100%
YB40438	Quartz Claim	Eel	418	1/20/2020	0.1277	Golden Predator Canada Corp 100%
YB40439	Quartz Claim	Eel	419	1/20/2019	0.1081	Golden Predator Canada Corp 100%
YB40440	Quartz Claim	Eel	420	1/20/2019	0.1152	Golden Predator Canada Corp 100%
YB40441	Quartz Claim	Eel	421	1/20/2019	0.1682	Golden Predator Canada Corp 100%
YB40442	Quartz Claim	Eel	422	1/20/2019	0.1599	Golden Predator Canada Corp 100%
YB40443	Quartz Claim	Eel	423	1/20/2019	0.2096	Golden Predator Canada Corp 100%
YB40444	Quartz Claim	Eel	424	1/20/2019	0.2043	Golden Predator Canada Corp 100%
YB40445	Quartz Claim	Eel	425	1/20/2019	0.1682	Golden Predator Canada Corp 100%
YB40446	Quartz Claim	Eel	426	1/20/2019	0.1834	Golden Predator Canada Corp 100%
YB40447	Quartz Claim	Eel	427	1/20/2019	0.1597	Golden Predator Canada Corp 100%
YB40448	Quartz Claim	Eel	428	1/20/2019	0.1581	Golden Predator Canada Corp 100%
YB40449	Quartz Claim	Eel	429	1/20/2019	0.1544	Golden Predator Canada Corp 100%
YB40450	Quartz Claim	Eel	430	1/20/2019	0.1584	Golden Predator Canada Corp 100%
YB40451	Quartz Claim	Eel	431	1/20/2019	0.1514	Golden Predator Canada Corp 100%
YB40452	Quartz Claim	Eel	432	1/20/2019	0.1533	Golden Predator Canada Corp 100%
YB40453	Quartz Claim	Eel	433	1/20/2019	0.098	Golden Predator Canada Corp 100%
YB40454	Quartz Claim	Eel	434	1/20/2019	0.1693	Golden Predator Canada Corp 100%
YB40455	Quartz Claim	Eel	435	1/20/2019	0.1884	Golden Predator Canada Corp 100%
YB40456	Quartz Claim	Eel	436	1/20/2019	0.177	Golden Predator Canada Corp 100%
YB40457	Quartz Claim	Eel	437	1/20/2019	0.1905	Golden Predator Canada Corp 100%
YB40458	Quartz Claim	Eel	438	1/20/2019	0.1859	Golden Predator Canada Corp 100%
YB40459	Quartz Claim	Eel	439	1/20/2019	0.1967	Golden Predator Canada Corp 100%
YB40460	Quartz Claim	Eel	440	1/20/2019	0.1958	Golden Predator Canada Corp 100%

Grant Number	Mineral Claim Type	Claim Name	Claim Numbe r	Claim Expiratio n Date	Area (km2)	Claim Owner
YB40461	Quartz Claim	Eel	441	1/20/2019	0.2033	Golden Predator Canada Corp 100%
YB40462	Quartz Claim	Eel	442	1/20/2019	0.155	Golden Predator Canada Corp 100%
YB40463	Quartz Claim	Eel	443	1/20/2019	0.1497	Golden Predator Canada Corp 100%
YB40464	Quartz Claim	Eel	444	1/20/2019	0.1534	Golden Predator Canada Corp 100%
YB40465	Quartz Claim	Eel	445	1/20/2019	0.1336	Golden Predator Canada Corp 100%
YB40466	Quartz Claim	Eel	446	1/20/2019	0.1346	Golden Predator Canada Corp 100%
YB40467	Quartz Claim	Eel	447	1/20/2019	0.1774	Golden Predator Canada Corp 100%
YB40468	Quartz Claim	Eel	448	1/20/2019	0.1763	Golden Predator Canada Corp 100%
YB40469	Quartz Claim	Eel	449	1/20/2019	0.1748	Golden Predator Canada Corp 100%
YB40470	Quartz Claim	Eel	450	1/20/2019	0.1772	Golden Predator Canada Corp 100%
YB40471	Quartz Claim	Eel	451	1/20/2019	0.0789	Golden Predator Canada Corp 100%
YB40472	Quartz Claim	Eel	452	1/20/2019	0.158	Golden Predator Canada Corp 100%
YB40473	Quartz Claim	Eel	453	1/20/2019	0.1237	Golden Predator Canada Corp 100%
YB40474	Quartz Claim	Eel	454	1/20/2019	0.1042	Golden Predator Canada Corp 100%
YB40475	Quartz Claim	Eel	455	1/20/2019	0.2202	Golden Predator Canada Corp 100%
YB40476	Quartz Claim	Eel	456	1/20/2019	0.1919	Golden Predator Canada Corp 100%
YB40477	Quartz Claim	Eel	457	1/20/2019	0.0103	Golden Predator Canada Corp 100%
YB40478	Quartz Claim	Eel	458	1/20/2019	0.1714	Golden Predator Canada Corp 100%
YB40479	Quartz Claim	Eel	461	1/20/2019	0.1792	Golden Predator Canada Corp 100%
YB40480	Quartz Claim	Eel	462	1/20/2019	0.2064	Golden Predator Canada Corp 100%
YB40481	Quartz Claim	Eel	463	1/20/2019	0.1914	Golden Predator Canada Corp 100%
YB40482	Quartz Claim	Eel	464	1/20/2019	0.1111	Golden Predator Canada Corp 100%
YB40483	Quartz Claim	Eel 407A	407	1/20/2020	0.0761	Golden Predator Canada Corp 100%
YB40484	Quartz Claim	Eel 408A	408	1/20/2020	0.0995	Golden Predator Canada Corp 100%
YB40485	Quartz Claim	Eel 415A	415	1/20/2020	0.0356	Golden Predator Canada Corp 100%
YB40486	Quartz Claim	Eel 416A	416	1/20/2020	0.0214	Golden Predator Canada Corp 100%
YB40557	Quartz Claim	Eel	465	1/20/2023	0.1655	Golden Predator Canada Corp 100%
YB40558	Quartz Claim	Eel	466	1/20/2023	0.2234	Golden Predator Canada Corp 100%
YB40559	Quartz Claim	Eel	467	1/20/2023	0.1972	Golden Predator Canada Corp 100%
YB40560	Quartz Claim	Eel	468	1/20/2023	0.2266	Golden Predator Canada Corp 100%
YB40561	Quartz Claim	Eel	469	1/20/2023	0.1878	Golden Predator Canada Corp 100%
YB40562	Quartz Claim	Eel	470	1/20/2023	0.1972	Golden Predator Canada Corp 100%
YB40563	Quartz Claim	Eel	471	1/20/2023	0.1276	Golden Predator Canada Corp 100%
YB40564	Quartz Claim	Eel	472	1/20/2023	0.205	Golden Predator Canada Corp 100%
YB40565	Quartz Claim	Eel	473	1/20/2023	0.1024	Golden Predator Canada Corp 100%
YB40566	Quartz Claim	Eel	474	1/20/2023	0.2193	Golden Predator Canada Corp 100%

Grant Number	Mineral Claim Type	Claim Name	Claim Numbe r	Claim Expiratio n Date	Area (km2)	Claim Owner
YB40567	Quartz Claim	Eel	475	1/20/2023	0.165	Golden Predator Canada Corp 100%
YB40568	Quartz Claim	Eel	476	1/20/2023	0.1952	Golden Predator Canada Corp 100%
YB40569	Quartz Claim	Eel	477	1/20/2023	0.1667	Golden Predator Canada Corp 100%
YB40570	Quartz Claim	Eel	478	1/20/2023	0.2022	Golden Predator Canada Corp 100%
YB45736	Quartz Claim	Eel F	465	1/20/2021	0.134	Golden Predator Canada Corp 100%
YB45737	Quartz Claim	Eel F	466	1/20/2021	0.136	Golden Predator Canada Corp 100%
YB45738	Quartz Claim	Eel F	467	1/20/2021	0.1383	Golden Predator Canada Corp 100%
YB45739	Quartz Claim	Eel F	468	1/20/2021	0.1284	Golden Predator Canada Corp 100%
YB45740	Quartz Claim	Eel F	469	1/20/2021	0.131	Golden Predator Canada Corp 100%
YB45741	Quartz Claim	Eel F	470	1/20/2021	0.1214	Golden Predator Canada Corp 100%
YB52721	Quartz Claim	BDM	1	1/20/2019	0.2218	Golden Predator Canada Corp 100%
YB52881	Mining Lease	BDM	2	3/24/2018	0.0014	Golden Predator Canada Corp 100%
YB52882	Mining Lease	BDM	3	3/24/2018	0.004	Golden Predator Canada Corp 100%
YB52883	Quartz Claim	BDM	4	1/20/2019	0.0833	Golden Predator Canada Corp 100%
YB52884	Quartz Claim	BDM	5	1/20/2019	0.0852	Golden Predator Canada Corp 100%
YB88625	Quartz Claim	BDM F	7	1/20/2019	0.0426	Golden Predator Canada Corp 100%
YB88626	Quartz Claim	BDM F	8	1/20/2019	0.0708	Golden Predator Canada Corp 100%
YD03401	Quartz Claim	EELX	1	12/19/2016	0.0854	Golden Predator Canada Corp 100%
YD03402	Quartz Claim	EELX	2	12/19/2016	0.2021	Golden Predator Canada Corp 100%
YD03403	Quartz Claim	EELX	3	12/19/2016	0.0583	Golden Predator Canada Corp 100%
YD03404	Quartz Claim	EELX	4	12/19/2016	0.2057	Golden Predator Canada Corp 100%
YD03405	Quartz Claim	EELX	5	12/19/2016	0.1602	Golden Predator Canada Corp 100%
YD03406	Quartz Claim	EELX	6	12/19/2016	0.2057	Golden Predator Canada Corp 100%
YD03407	Quartz Claim	EELX	7	12/19/2016	0.2057	Golden Predator Canada Corp 100%
YD03408	Quartz Claim	EELX	8	12/19/2016	0.2057	Golden Predator Canada Corp 100%
YD03409	Quartz Claim	EELX	9	12/19/2016	0.2057	Golden Predator Canada Corp 100%
YD03410	Quartz Claim	EELX	10	12/19/2016	0.2057	Golden Predator Canada Corp 100%
YD03411	Quartz Claim	EELX	11	12/19/2016	0.1234	Golden Predator Canada Corp 100%
YD03412	Quartz Claim	EELX	12	12/19/2016	0.1993	Golden Predator Canada Corp 100%
YD03413	Quartz Claim	EELX	13	12/19/2016	0.1905	Golden Predator Canada Corp 100%
YD03414	Quartz Claim	EELX	14	12/19/2016	0.1992	Golden Predator Canada Corp 100%
YD03415	Quartz Claim	EELX	15	12/19/2016	0.1168	Golden Predator Canada Corp 100%
YD03416	Quartz Claim	EELX	16	12/19/2016	0.1945	Golden Predator Canada Corp 100%
YD03417	Quartz Claim	EELX	17	12/19/2016	0.1559	Golden Predator Canada Corp 100%
YD03418	Quartz Claim	EELX	18	12/19/2016	0.1898	Golden Predator Canada Corp 100%
YD03419	Quartz Claim	EELX	19	12/19/2016	0.1974	Golden Predator Canada Corp 100%
YD03420	Quartz Claim	EELX	20	12/19/2016	0.1853	Golden Predator Canada Corp 100%

Grant Number	Mineral Claim Type	Claim Name	Claim Numbe r	Claim Expiratio n Date	Area (km2)	Claim Owner
YD03421	Quartz Claim	EELX	21	12/19/2016	0.2025	Golden Predator Canada Corp 100%
YD03422	Quartz Claim	EELX	22	12/19/2016	0.182	Golden Predator Canada Corp 100%
YD03423	Quartz Claim	EELX	23	12/19/2016	0.2025	Golden Predator Canada Corp 100%
YD03424	Quartz Claim	EELX	24	12/19/2016	0.1795	Golden Predator Canada Corp 100%
YD03425	Quartz Claim	EELX	25	12/19/2016	0.2025	Golden Predator Canada Corp 100%
YD03426	Quartz Claim	EELX	26	12/19/2016	0.1771	Golden Predator Canada Corp 100%
YD03427	Quartz Claim	EELX	27	12/19/2016	0.2025	Golden Predator Canada Corp 100%
YD03428	Quartz Claim	EELX	28	12/19/2016	0.1766	Golden Predator Canada Corp 100%
YD03429	Quartz Claim	EELX	29	12/19/2016	0.2025	Golden Predator Canada Corp 100%
YD03430	Quartz Claim	EELX	30	12/19/2016	0.1773	Golden Predator Canada Corp 100%
YD03431	Quartz Claim	EELX	31	12/19/2016	0.2025	Golden Predator Canada Corp 100%
YD03432	Quartz Claim	EELX	32	12/19/2016	0.1746	Golden Predator Canada Corp 100%
YD03433	Quartz Claim	EELX	33	12/19/2016	0.2025	Golden Predator Canada Corp 100%
YD03434	Quartz Claim	EELX	34	12/19/2016	0.1811	Golden Predator Canada Corp 100%
YD03435	Quartz Claim	EELX	35	12/19/2016	0.2025	Golden Predator Canada Corp 100%
YD03436	Quartz Claim	EELX	36	12/19/2016	0.1815	Golden Predator Canada Corp 100%
YD03437	Quartz Claim	EELX	37	12/19/2016	0.2025	Golden Predator Canada Corp 100%
YD03438	Quartz Claim	EELX	38	12/19/2016	0.1828	Golden Predator Canada Corp 100%
YD03439	Quartz Claim	EELX	39	12/19/2016	0.2025	Golden Predator Canada Corp 100%
YD03440	Quartz Claim	EELX	40	12/19/2016	0.184	Golden Predator Canada Corp 100%
YD03441	Quartz Claim	EELX	41	12/19/2016	0.2025	Golden Predator Canada Corp 100%
YD03442	Quartz Claim	EELX	42	12/19/2016	0.1853	Golden Predator Canada Corp 100%
YD03443	Quartz Claim	EELX	43	12/19/2016	0.2025	Golden Predator Canada Corp 100%
YD03444	Quartz Claim	EELX	44	12/19/2016	0.1866	Golden Predator Canada Corp 100%
YD03445	Quartz Claim	EELX	45	12/19/2016	0.2025	Golden Predator Canada Corp 100%
YD03446	Quartz Claim	EELX	46	12/19/2016	0.1879	Golden Predator Canada Corp 100%
YD03447	Quartz Claim	EELX	47	12/19/2016	0.2025	Golden Predator Canada Corp 100%
YD03448	Quartz Claim	EELX	48	12/19/2016	0.1908	Golden Predator Canada Corp 100%
YD03449	Quartz Claim	EELX	49	12/19/2016	0.2025	Golden Predator Canada Corp 100%
YD03450	Quartz Claim	EELX	50	12/19/2016	0.095	Golden Predator Canada Corp 100%
YD03451	Quartz Claim	EELX	51	12/19/2016	0.2025	Golden Predator Canada Corp 100%
YD03452	Quartz Claim	EELX	52	12/19/2016	0.1996	Golden Predator Canada Corp 100%
YD03453	Quartz Claim	EELX	53	12/19/2016	0.2025	Golden Predator Canada Corp 100%
YD03454	Quartz Claim	EELX	54	12/19/2016	0.2025	Golden Predator Canada Corp 100%
YD03455	Quartz Claim	EELX	55	12/19/2016	0.2025	Golden Predator Canada Corp 100%
YD03456	Quartz Claim	EELX	56	12/19/2016	0.2021	Golden Predator Canada Corp 100%
YD03457	Quartz Claim	EELX	57	12/19/2016	0.2025	Golden Predator Canada Corp 100%

Grant Number	Mineral Claim Type	Claim Name	Claim Numbe r	Claim Expiratio n Date	Area (km2)	Claim Owner
YD03458	Quartz Claim	EELX	58	12/19/2016	0.2025	Golden Predator Canada Corp 100%
YD03459	Quartz Claim	EELX	59	12/19/2016	0.2025	Golden Predator Canada Corp 100%
YD03460	Quartz Claim	EELX	60	12/19/2016	0.2025	Golden Predator Canada Corp 100%
YD03461	Quartz Claim	EELX	61	12/19/2016	0.2025	Golden Predator Canada Corp 100%
YD03462	Quartz Claim	EELX	62	12/19/2016	0.2025	Golden Predator Canada Corp 100%
YD03463	Quartz Claim	EELX	63	12/19/2016	0.2025	Golden Predator Canada Corp 100%
YD03464	Quartz Claim	EELX	64	12/19/2016	0.2025	Golden Predator Canada Corp 100%
YD03465	Quartz Claim	EELX	65	12/19/2016	0.2025	Golden Predator Canada Corp 100%
YD03466	Quartz Claim	EELX	66	12/19/2016	0.2025	Golden Predator Canada Corp 100%
YD03467	Quartz Claim	EELX	67	12/19/2016	0.2025	Golden Predator Canada Corp 100%
YD03468	Quartz Claim	EELX	68	12/19/2016	0.2025	Golden Predator Canada Corp 100%
YD03469	Quartz Claim	EELX	69	12/19/2016	0.2025	Golden Predator Canada Corp 100%
YD03470	Quartz Claim	EELX	70	12/19/2016	0.2025	Golden Predator Canada Corp 100%
YD03471	Quartz Claim	EELX	71	12/19/2016	0.2025	Golden Predator Canada Corp 100%
YD03472	Quartz Claim	EELX	72	12/19/2016	0.2009	Golden Predator Canada Corp 100%
YD03473	Quartz Claim	EELX	73	12/19/2016	0.1643	Golden Predator Canada Corp 100%
YD03474	Quartz Claim	EELX	74	12/19/2016	0.1945	Golden Predator Canada Corp 100%
YD03475	Quartz Claim	EELX	75	12/19/2016	0.1668	Golden Predator Canada Corp 100%
YD03476	Quartz Claim	EELX	76	12/19/2016	0.1897	Golden Predator Canada Corp 100%
YD03477	Quartz Claim	EELX	77	12/19/2016	0.1051	Golden Predator Canada Corp 100%
YD03478	Quartz Claim	EELX	78	12/19/2016	0.1588	Golden Predator Canada Corp 100%
YD102641	Quartz Claim	BCX	1	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD102642	Quartz Claim	BCX	2	5/13/2017	0.1233	Golden Predator Canada Corp 100%
YD86503	Quartz Claim	BCX	3	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86504	Quartz Claim	BCX	4	5/13/2017	0.0949	Golden Predator Canada Corp 100%
YD86505	Quartz Claim	BCX	5	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86506	Quartz Claim	BCX	6	5/13/2017	0.1013	Golden Predator Canada Corp 100%
YD86507	Quartz Claim	F/BCX	7	5/13/2017	0.0762	Golden Predator Canada Corp 100%
YD86508	Quartz Claim	F/BCX	8	5/13/2017	0.0375	Golden Predator Canada Corp 100%
YD86509	Quartz Claim	BCX	9	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86510	Quartz Claim	BCX	10	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86511	Quartz Claim	BCX	11	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86512	Quartz Claim	BCX	12	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86513	Quartz Claim	BCX	13	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86514	Quartz Claim	BCX	14	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86515	Quartz Claim	BCX	15	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86516	Quartz Claim	BCX	16	5/13/2017	0.2025	Golden Predator Canada Corp 100%

Grant Number	Mineral Claim Type	Claim Name	Claim Numbe r	Claim Expiratio n Date	Area (km2)	Claim Owner
YD86517	Quartz Claim	BCX	17	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86518	Quartz Claim	BCX	18	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86519	Quartz Claim	BCX	19	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86520	Quartz Claim	BCX	20	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86521	Quartz Claim	BCX	21	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86522	Quartz Claim	BCX	22	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86523	Quartz Claim	BCX	23	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86524	Quartz Claim	BCX	24	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86525	Quartz Claim	BCX	25	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86526	Quartz Claim	BCX	26	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86527	Quartz Claim	BCX	27	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86528	Quartz Claim	BCX	28	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86529	Quartz Claim	BCX	29	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86530	Quartz Claim	BCX	30	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86531	Quartz Claim	BCX	31	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86532	Quartz Claim	BCX	32	5/13/2017	0.1761	Golden Predator Canada Corp 100%
YD86533	Quartz Claim	BCX	33	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86534	Quartz Claim	BCX	34	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86535	Quartz Claim	BCX	35	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86536	Quartz Claim	BCX	36	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86537	Quartz Claim	BCX	37	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86538	Quartz Claim	BCX	38	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86539	Quartz Claim	BCX	39	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86540	Quartz Claim	BCX	40	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86541	Quartz Claim	BCX	41	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86542	Quartz Claim	BCX	42	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86543	Quartz Claim	BCX	43	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86544	Quartz Claim	BCX	44	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86545	Quartz Claim	BCX	45	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86546	Quartz Claim	BCX	46	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86547	Quartz Claim	BCX	47	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86548	Quartz Claim	BCX	48	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86549	Quartz Claim	BCX	49	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86550	Quartz Claim	BCX	50	5/13/2017	0.1632	Golden Predator Canada Corp 100%
YD86551	Quartz Claim	F/BCX	51	5/13/2017	0.0918	Golden Predator Canada Corp 100%
YD86552	Quartz Claim	F/BCX	52	5/13/2017	0.0746	Golden Predator Canada Corp 100%
YD86553	Quartz Claim	BCX	53	5/13/2017	0.2025	Golden Predator Canada Corp 100%

Grant Number	Mineral Claim Type	Claim Name	Claim Numbe r	Claim Expiratio n Date	Area (km2)	Claim Owner
YD86554	Quartz Claim	BCX	54	5/13/2017	0.1785	Golden Predator Canada Corp 100%
YD86555	Quartz Claim	BCX	55	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86556	Quartz Claim	BCX	56	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86557	Quartz Claim	BCX	57	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86558	Quartz Claim	BCX	58	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86559	Quartz Claim	BCX	59	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86560	Quartz Claim	BCX	60	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86561	Quartz Claim	BCX	61	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86562	Quartz Claim	BCX	62	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86563	Quartz Claim	BCX	63	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86564	Quartz Claim	BCX	64	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86565	Quartz Claim	BCX	65	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86566	Quartz Claim	BCX	66	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86567	Quartz Claim	BCX	67	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86568	Quartz Claim	BCX	68	5/13/2017	0.1598	Golden Predator Canada Corp 100%
YD86569	Quartz Claim	BCX	69	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86570	Quartz Claim	BCX	70	5/13/2017	0.1618	Golden Predator Canada Corp 100%
YD86571	Quartz Claim	BCX	71	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86572	Quartz Claim	BCX	72	5/13/2017	0.1638	Golden Predator Canada Corp 100%
YD86573	Quartz Claim	BCX	73	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86574	Quartz Claim	BCX	74	5/13/2017	0.1658	Golden Predator Canada Corp 100%
YD86575	Quartz Claim	BCX	75	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86576	Quartz Claim	BCX	76	5/13/2017	0.1677	Golden Predator Canada Corp 100%
YD86577	Quartz Claim	BCX	77	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86578	Quartz Claim	BCX	78	5/13/2017	0.1697	Golden Predator Canada Corp 100%
YD86579	Quartz Claim	BCX	79	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86580	Quartz Claim	BCX	80	5/13/2017	0.1717	Golden Predator Canada Corp 100%
YD86581	Quartz Claim	BCX	81	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86582	Quartz Claim	BCX	82	5/13/2017	0.1736	Golden Predator Canada Corp 100%
YD86583	Quartz Claim	BCX	83	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86584	Quartz Claim	BCX	84	5/13/2017	0.1756	Golden Predator Canada Corp 100%
YD86585	Quartz Claim	BCX	85	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86586	Quartz Claim	BCX	86	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86587	Quartz Claim	BCX	87	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86588	Quartz Claim	BCX	88	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86589	Quartz Claim	BCX	89	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86590	Quartz Claim	BCX	90	5/13/2017	0.2025	Golden Predator Canada Corp 100%

Grant Number	Mineral Claim Type	Claim Name	Claim Numbe r	Claim Expiratio n Date	Area (km2)	Claim Owner
YD86591	Quartz Claim	BCX	91	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86592	Quartz Claim	BCX	92	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86593	Quartz Claim	BCX	93	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86594	Quartz Claim	BCX	94	5/13/2017	0.1829	Golden Predator Canada Corp 100%
YD86595	Quartz Claim	BCX	95	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86596	Quartz Claim	BCX	96	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86597	Quartz Claim	BCX	97	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86598	Quartz Claim	BCX	98	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86599	Quartz Claim	BCX	99	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86600	Quartz Claim	BCX	100	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86601	Quartz Claim	BCX	101	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86602	Quartz Claim	BCX	102	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86603	Quartz Claim	BCX	103	5/13/2017	0.1431	Golden Predator Canada Corp 100%
YD86604	Quartz Claim	BCX	104	5/13/2017	0.1943	Golden Predator Canada Corp 100%
YD86605	Quartz Claim	BCX	105	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86606	Quartz Claim	BCX	106	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86607	Quartz Claim	BCX	107	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86608	Quartz Claim	BCX	108	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86609	Quartz Claim	BCX	109	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86610	Quartz Claim	BCX	110	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86611	Quartz Claim	BCX	111	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86612	Quartz Claim	BCX	112	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86613	Quartz Claim	BCX	113	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86614	Quartz Claim	BCX	114	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86615	Quartz Claim	BCX	115	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86616	Quartz Claim	BCX	116	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86617	Quartz Claim	BCX	117	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86618	Quartz Claim	BCX	118	5/13/2017	0.1647	Golden Predator Canada Corp 100%
YD86619	Quartz Claim	BCX	119	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86620	Quartz Claim	BCX	120	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86621	Quartz Claim	BCX	121	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86622	Quartz Claim	BCX	122	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86623	Quartz Claim	BCX	123	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86624	Quartz Claim	BCX	124	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86625	Quartz Claim	BCX	125	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86626	Quartz Claim	всх	126	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86627	Quartz Claim	BCX	127	5/13/2017	0.2025	Golden Predator Canada Corp 100%

Grant Number	Mineral Claim Type	Claim Name	Claim Numbe r	Claim Expiratio n Date	Area (km2)	Claim Owner
YD86628	Quartz Claim	BCX	128	5/13/2017	0.1596	Golden Predator Canada Corp 100%
YD86629	Quartz Claim	BCX	129	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86630	Quartz Claim	BCX	130	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86631	Quartz Claim	BCX	131	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86632	Quartz Claim	F/BCX	132	5/13/2017	0.0709	Golden Predator Canada Corp 100%
YD86633	Quartz Claim	F/BCX	133	5/13/2017	0.1442	Golden Predator Canada Corp 100%
YD86634	Quartz Claim	BCX	134	5/13/2017	0.102	Golden Predator Canada Corp 100%
YD86635	Quartz Claim	BCX	135	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86636	Quartz Claim	BCX	136	5/13/2017	0.1059	Golden Predator Canada Corp 100%
YD86637	Quartz Claim	BCX	137	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86638	Quartz Claim	BCX	138	5/13/2017	0.1098	Golden Predator Canada Corp 100%
YD86639	Quartz Claim	BCX	139	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86640	Quartz Claim	BCX	140	5/13/2017	0.1394	Golden Predator Canada Corp 100%
YD86641	Quartz Claim	BCX	141	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86642	Quartz Claim	BCX	142	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86643	Quartz Claim	BCX	143	5/13/2017	0.1963	Golden Predator Canada Corp 100%
YD86644	Quartz Claim	BCX	144	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86645	Quartz Claim	BCX	145	5/13/2017	0.2019	Golden Predator Canada Corp 100%
YD86646	Quartz Claim	BCX	146	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86647	Quartz Claim	BCX	147	5/13/2017	0.2024	Golden Predator Canada Corp 100%
YD86648	Quartz Claim	BCX	148	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86649	Quartz Claim	BCX	149	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86650	Quartz Claim	BCX	150	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86651	Quartz Claim	BCX	151	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86652	Quartz Claim	BCX	152	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86653	Quartz Claim	BCX	153	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86654	Quartz Claim	BCX	154	5/13/2017	0.1513	Golden Predator Canada Corp 100%
YD86655	Quartz Claim	BCX	155	5/13/2017	0.1541	Golden Predator Canada Corp 100%
YD86656	Quartz Claim	BCX	156	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86657	Quartz Claim	BCX	157	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86658	Quartz Claim	BCX	158	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86659	Quartz Claim	BCX	159	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86660	Quartz Claim	BCX	160	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86661	Quartz Claim	BCX	161	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86662	Quartz Claim	BCX	162	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86663	Quartz Claim	BCX	163	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86664	Quartz Claim	BCX	164	5/13/2017	0.2025	Golden Predator Canada Corp 100%

Grant Number	Mineral Claim Type	Claim Name	Claim Numbe r	Claim Expiratio n Date	Area (km2)	Claim Owner
YD86702	Quartz Claim	BCX	202	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86703	Quartz Claim	BCX	203	5/13/2017	0.2025	Golden Predator Canada Corp 100%
YD86704	Quartz Claim	BCX	204	5/13/2017	0.2025	Golden Predator Canada Corp 100%

Appendix C Drilling Data

Table C-1 Drillhole Data Used in KOGD, PABL, and LU Resource Areas

BHID	Easting	Northing	Elevation	Depth	Resource Area	Target	Year Drilled
BC04-118	633889.661	7105700.428	836.81	202.68	PABL	BL	2004
BC04-119	633827.135	7105639.674	842.17	197.82	PABL	BL	2004
BC06-123	633987.131	7105520.602	792.5	166.88	PABL	BL	2006
BC09-132	633391.501	7105317.341	824.668	140.21	PABL	PA	2009
BC09-133	633391.501	7105317.341	824.668	249.94	PABL	PA	2009
BC09-134	633392.231	7105314.9	824.781	328.88	PABL	PA	2009
BC09-135	633440.786	7105334.754	828.803	265.5	PABL	PA	2009
BC09-136	633443	7105333	831	236.03	PABL	PA	2009
BC09-142	634045	7105515	775	113.39	PABL	BL	2009
BC09-143	634045	7105515	775	164.59	PABL	BL	2009
BC09-144	634045	7105515	775	231.95	PABL	BL	2009
BC10-162	636239.226	7106407.494	1005.402	321.56	KOGD	КО	2010
BC10-163	636217.609	7106439.376	1025.461	240.79	KOGD	КО	2010
BC10-164	637285.765	7106993.52	942.98	249.94	KOGD	GD	2010
BC10-165	637185.06	7106876.5	940.95	249.94	KOGD	GD	2010
BC10-166	637454.846	7106858.903	860.581	182.27	KOGD	GD	2010
BC11-245	637462.923	7107269.277	870.787	175.8	KOGD	GD	2011
BC11-247	637284.483	7106996.514	943.067	300.23	KOGD	GD	2011
BC12-442	633788.501	7105637.228	855.286	149.35	PABL	PA	2012
BC12-443	633628.379	7105574.946	873.445	135.03	PABL	PA	2012
BC12-444	633529.73	7105592.763	877.338	96.01	PABL	PA	2012
BC12-445	633398.964	7105569.597	870.3228	87.48	PABL	PA	2012
BC12-446	633282.228	7105647.616	880.714	66.14	PABL	PA	2012
BC12-454	633626.195	7105458.819	843.958	172.82	PABL	PA	2012
BC12-455	633726.955	7105550.052	852.031	151.49	PABL	PA	2012
BC12-456	633569.075	7105237.678	817.0841	105.71	PABL	PA	2012
BC12-457	633710.555	7105454.323	838.259	139.29	PABL	PA	2012
DD90-0018	636235.201	7106550.496	1058.1	60.4	KOGD	КО	1990
DD90-0019	636159.183	7106550.71	1066.5	47.3	KOGD	КО	1990
DD90-0020	636159.183	7106550.71	1066.5	26.8	KOGD	КО	1990
DD90-0021	637068.172	7106764.611	967.2	40.2	KOGD	GD	1990
DD91-0026	633955.019	7105599.236	806.5	61	PABL	BL	1991
DD91-0027	633953.903	7105601.02	806.6	29.6	PABL	BL	1991
DD91-0028	633970.93	7105579.473	799.3	63.4	PABL	BL	1991
DD91-0029	633969.95	7105581.219	799.3	51.8	PABL	BL	1991
DD91-0030	633981.591	7105553.544	793.2	56.1	PABL	BL	1991

BHID	Easting	Northing	Elevation	Depth	Resource Area	Target	Year Drilled
DD91-0031	633980.807	7105554.94	793.2	50.3	PABL	BL	1991
DD91-0032	633917.424	7105554.908	811	39.6	PABL	BL	1991
DD91-0033	633925.972	7105531.925	807.3	56.4	PABL	BL	1991
DD91-0037	636119.533	7106400.389	1023.4	25.9	KOGD	КО	1991
DD91-0038	636120.268	7106399.08	1023.4	26.2	KOGD	КО	1991
DD91-0039	636135.586	7106375.883	1014.4	32.9	KOGD	КО	1991
DD91-0040	636136.321	7106374.574	1014.4	39.6	KOGD	КО	1991
DD91-0041	636430.7	7106481.029	1005.3	40.2	KOGD	КО	1991
DD91-0042	636457.037	7106664.86	1061.1	25.9	KOGD	КО	1991
DD91-0043	636475.812	7106628.563	1057	62.2	KOGD	КО	1991
DD91-0044	636472.279	7106641.39	1057.4	50.3	KOGD	КО	1991
DD91-0045	636504.4	7106686.89	1048.7	57.8	KOGD	КО	1991
DD91-0046	636505.086	7106685.668	1048.7	61	KOGD	КО	1991
DD91-0047	636515.927	7106667.993	1048.5	59.5	KOGD	КО	1991
DD91-0048	636523.245	7106650.059	1047.1	68.3	KOGD	КО	1991
DD91-0049	637204.834	7106627.392	917.5	31.1	KOGD	GD	1991
DD91-0050	637217.275	7106604.416	930.9	67.4	KOGD	GD	1991
DD91-0051	637229.767	7106586.865	939.2	76.2	KOGD	GD	1991
DD91-0052	636929.257	7106682.046	963.9	37	KOGD	GD	1991
DD91-0053	636939.941	7106666.693	958.9	44.8	KOGD	GD	1991
DD91-0054	637064.759	7106784.165	973.4	36.7	KOGD	GD	1991
DD91-0055	637056.897	7106798.577	979.4	41.8	KOGD	GD	1991
DD91-0056	637047.107	7106815.81	985.9	38.7	KOGD	GD	1991
DD91-0057	637938.066	7107423.655	870.3	56.4	LU	LU	1991
DD91-0058	637948.324	7107402.322	869.9	77.4	LU	LU	1991
DD91-0059	637958.647	7107379.647	869.8	80.8	LU	LU	1991
DD95-0066	634014.909	7105587.315	788.4	57.3	PABL	BL	1995
DD95-0067	633968.245	7105578.538	800	57.4	PABL	BL	1995
DD95-0068	633978.291	7105602.098	800.8	48.5	PABL	BL	1995
DD95-0069	633933.704	7105565.322	809.2	63.7	PABL	BL	1995
DD95-0070	633899.215	7105579.58	817.8	51.5	PABL	BL	1995
DD95-0071	633813.822	7105516.651	829.8	47.3	PABL	BL	1995
DD95-0072	633952.982	7105647.582	812	21.3	PABL	BL	1995
DD95-0073	633999.19	7105667.585	800.2	20.7	PABL	BL	1995
DD95-0076	636081.053	7106424.001	1024	68.9	KOGD	КО	1995
DD95-0077	636175.844	7106519.197	1061.5	57.7	KOGD	КО	1995
DD95-0078	636231.949	7106551.998	1062.3	47.7	KOGD	КО	1995
DD95-0079	636622.793	7106672.258	1016	56.1	KOGD	КО	1995
DD95-0080	636441.188	7106467.863	995.6	50.6	KOGD	КО	1995
DD96-0090	636556.083	7106585.039	1037.9	209	KOGD	КО	1996

BHID	Easting	Northing	Elevation	Depth	Resource Area	Target	Year Drilled
DD96-0091	636637.302	7106439.161	978	176.8	KOGD	KO	1996
DD96-0092	636686.253	7106354.835	976	230.4	KOGD	КО	1996
DD96-0093	636926.18	7106497.626	958.6	86.9	KOGD	GD	1996
DD96-0094	636663.119	7106455.051	983	84.1	KOGD	КО	1996
DD96-0095	636514.131	7106628.516	1050.7	89.8	KOGD	КО	1996
DD96-0096	636475.664	7106625.151	1055.2	74.8	KOGD	KO	1996
DD96-0097	636300.068	7106481.317	1018.7	57.3	KOGD	КО	1996
DD96-0098	637090.52	7106782.8	967.5	49.7	KOGD	GD	1996
DD96-0099	636981.351	7106733.835	977.1	55.2	KOGD	GD	1996
DD96-0100	637222.008	7107024.59	966.7	76.5	KOGD	GD	1996
DD96-0101	637048.539	7106912.497	996.7	47.5	KOGD	GD	1996
DD96-0102	633336.882	7105375.554	835.5	96	PABL	PA	1996
DD96-0104	634107.443	7105472.945	764.3	86.6	PABL	BL	1996
DD98-0108	636484.423	7106446.809	982	66.1	KOGD	KO	1998
DD98-0109	636444.628	7106407.215	971.2	61.6	KOGD	KO	1998
DD98-0110	634014.196	7105584.502	786.9	60	PABL	BL	1998
DD98-0111	633948.38	7105553.477	801.2	60	PABL	BL	1998
DD98-0112	633866.935	7105480.251	813.4	60	PABL	BL	1998
DD98-0113	633332.248	7105426.688	845	70	PABL	PA	1998
DD98-0114	633299.518	7105390.032	835.5	64	PABL	PA	1998
RC10-2311	636212.159	7106436.955	1025.404	166.13	KOGD	KO	2010
RC10-2312	636213.327	7106436.997	1025.424	190.5	KOGD	KO	2010
RC10-2313	636165.395	7106338.291	975.948	176.78	KOGD	KO	2010
RC10-2314	638187.258	7107145.703	809.727	172.21	LU	LU	2010
RC10-2315	638186.8	7107146.544	809.751	135.64	LU	LU	2010
RC10-2316	638186.237	7107147.343	809.73	115.82	LU	LU	2010
RC10-2317	638146.772	7107116.629	812.468	140.21	LU	LU	2010
RC10-2318	638146.384	7107117.313	812.492	120.4	LU	LU	2010
RC10-2323	637985	7107440	825	137.16	LU	LU	2010
RC10-2324	637241.01	7106925.4	938.977	190.5	KOGD	GD	2010
RC10-2325	637314.095	7107059.691	946.389	160.02	KOGD	GD	2010
RC10-2326	637510.574	7106881.088	851.325	48.77	KOGD	GD	2010
RC12-2462	633608.871	7105667.775	886.072	135.64	PABL	PA	2012
RC12-2463	633702.429	7105634.007	865.957	140.21	PABL	PA	2012
RC12-2464	633410.381	7105562.988	870.818	140.21	PABL	PA	2012
RC89-0009	636227.316	7106325.02	979.8	110	KOGD	КО	1989
RC89-0010	636183.119	7106415.578	1027.3	118	KOGD	КО	1989
RC89-0011	636139.494	7106498.994	1053.1	110	KOGD	КО	1989
RC89-0012	636131.207	7106606.866	1079.2	48	KOGD	КО	1989
RC90-0050	636215.135	7106584.803	1070.8	50	KOGD	КО	1990

BHID	Easting	Northing	Elevation	Depth	Resource Area	Target	Year Drilled
RC90-0051	636226.772	7106565.508	1065.3	50	KOGD	KO	1990
RC90-0052	636236.262	7106547.992	1058.2	30	KOGD	КО	1990
RC90-0053	636142.119	7106590.494	1075.4	50	KOGD	КО	1990
RC90-0054	636150.912	7106568.912	1073.1	50	KOGD	КО	1990
RC90-0055	636161.214	7106550.359	1066.4	50	KOGD	КО	1990
RC90-0056	636170.383	7106527.495	1060.1	50	KOGD	КО	1990
RC90-0057	636113.968	7106543.436	1062.3	50	KOGD	КО	1990
RC90-0058	636104.477	7106562.79	1063.3	50	KOGD	КО	1990
RC90-0059	636125.506	7106522.478	1058.5	50	KOGD	КО	1990
RC90-0060	636277.715	7106565.437	1054.6	50	KOGD	КО	1990
RC90-0061	636263.868	7106582.341	1062.8	50	KOGD	КО	1990
RC90-0062	636254.949	7106605.576	1071.8	50	KOGD	КО	1990
RC90-0063	636084.843	7106508.118	1044.2	50	KOGD	КО	1990
RC90-0064	636096.332	7106489.085	1044.2	50	KOGD	КО	1990
RC90-0065	636072.412	7106444.291	1025.1	50	KOGD	КО	1990
RC90-0066	636082.976	7106424.048	1024.3	50	KOGD	КО	1990
RC90-0067	636091.611	7106404.789	1021.8	50	KOGD	КО	1990
RC90-0068	636104.424	7106385.236	1017.5	50	KOGD	КО	1990
RC90-0069	636989.64	7106927.961	1015.7	58	KOGD	GD	1990
RC90-0070	636995.766	7106911.538	1012.1	62	KOGD	GD	1990
RC90-0071	637005.926	7106894.055	1006.9	64	KOGD	GD	1990
RC90-0072	637014.807	7106874.359	1002.9	64	KOGD	GD	1990
RC90-0073	637045.941	7106815.844	986.8	52	KOGD	GD	1990
RC90-0074	637056.347	7106797.924	979.7	52	KOGD	GD	1990
RC90-0075	637064.024	7106783.637	973.6	50	KOGD	GD	1990
RC90-0076	637072.84	7106767.12	966.5	50	KOGD	GD	1990
RC90-0077	636904.948	7106842.345	1018.2	50	KOGD	GD	1990
RC90-0078	636919.171	7106824.16	1011.6	50	KOGD	GD	1990
RC90-0079	636929.723	7106800.466	1004.6	50	KOGD	GD	1990
RC90-0080	636935.074	7106781.542	998.6	50	KOGD	GD	1990
RC90-0081	636943.503	7106761.017	991.8	50	KOGD	GD	1990
RC90-0082	636955.047	7106742.703	984.6	50	KOGD	GD	1990
RC90-0083	636967.374	7106722.993	977	50	KOGD	GD	1990
RC90-0084	636977.818	7106707.047	970.3	50	KOGD	GD	1990
RC90-0117	636183.533	7106506.524	1052.4	60	KOGD	КО	1990
RC90-0118	636196.519	7106483.395	1045.4	62	KOGD	КО	1990
RC90-0119	636205.836	7106463.944	1038.6	64	KOGD	КО	1990
RC90-0120	636218.098	7106443.738	1031.2	60	KOGD	КО	1990
RC90-0121	636110.805	7106462.083	1040.5	62	KOGD	КО	1990
RC90-0122	636123.001	7106435.868	1035.8	76	KOGD	КО	1990

BHID	Easting	Northing	Elevation	Depth	Resource Area	Target	Year Drilled
RC90-0123	636137.355	7106413.163	1030.4	64	KOGD	KO	1990
RC90-0124	636061.332	7106465.047	1022.3	40	KOGD	КО	1990
RC90-0125	636051.994	7106483.108	1023.2	54	KOGD	КО	1990
RC90-0126	636123.639	7106344.479	1006	70	KOGD	КО	1990
RC90-0127	636115.945	7106361.857	1010.9	70	KOGD	КО	1990
RC90-0128	636002.289	7106461.369	1002.3	46	KOGD	КО	1990
RC90-0129	636022.966	7106443.94	1002.4	44	KOGD	КО	1990
RC90-0130	636032.25	7106423.323	1001	50	KOGD	КО	1990
RC90-0131	636042.715	7106401.417	1003.4	50	KOGD	КО	1990
RC90-0132	636050.315	7106379.508	1003.7	50	KOGD	КО	1990
RC90-0133	636064.358	7106358.581	1003.8	52	KOGD	КО	1990
RC90-0134	636304.858	7106606.531	1067.9	46	KOGD	КО	1990
RC90-0135	636315.401	7106592.248	1062.2	50	KOGD	КО	1990
RC90-0136	636362.658	7106597.109	1058.2	50	KOGD	КО	1990
RC90-0137	636372.867	7106577.701	1052.3	52	KOGD	КО	1990
RC90-0138	636418.04	7106499.289	1014	50	KOGD	КО	1990
RC90-0139	636431.599	7106483.716	1006.1	50	KOGD	КО	1990
RC90-0140	636456.166	7106664.37	1061.3	52	KOGD	КО	1990
RC90-0141	636471.364	7106641.794	1057.4	52	KOGD	КО	1990
RC90-0142	636478.213	7106627.961	1056.5	50	KOGD	КО	1990
RC90-0143	637214.777	7107078.513	971.9	50	KOGD	GD	1990
RC90-0144	637201.746	7107100.699	969.7	50	KOGD	GD	1990
RC90-0145	637223.341	7107059.787	972	50	KOGD	GD	1990
RC90-0146	637086.66	7106746.181	956.4	48	KOGD	GD	1990
RC90-0147	637097.147	7106727.503	946.6	58	KOGD	GD	1990
RC90-0148	637071.331	7106859.856	985.1	50	KOGD	GD	1990
RC90-0149	637086.083	7106844.609	979.1	50	KOGD	GD	1990
RC90-0150	637096.804	7106823.881	972.7	52	KOGD	GD	1990
RC90-0151	637110.591	7106798.101	964.8	50	KOGD	GD	1990
RC90-0152	637122.771	7106774.978	956.2	50	KOGD	GD	1990
RC90-0153	637127.768	7106753.214	946.4	50	KOGD	GD	1990
RC90-0154	636872.059	7106802.5	1002.8	50	KOGD	GD	1990
RC90-0155	636881.364	7106779.597	992.7	28	KOGD	GD	1990
RC90-0156	636888.501	7106753.41	983.6	50	KOGD	GD	1990
RC90-0157	636900.834	7106730.831	977.3	50	KOGD	GD	1990
RC90-0158	636913.455	7106705.085	973	50	KOGD	GD	1990
RC90-0159	636927.057	7106683.106	964.8	50	KOGD	GD	1990
RC90-0160	636938.269	7106665.179	959.2	50	KOGD	GD	1990
RC90-0161	637030.402	7106851.892	996.6	52	KOGD	GD	1990
RC90-0162	637041.216	7106931.461	1004.1	50	KOGD	GD	1990

BHID	Easting	Northing	Elevation	Depth	Resource Area	Target	Year Drilled
RC90-0163	637052.504	7106908.295	996.1	40	KOGD	GD	1990
RC90-0164	637058.889	7106884.67	989.9	50	KOGD	GD	1990
RC90-0165	637136.261	7107054.588	993.6	48	KOGD	GD	1990
RC90-0166	637143.769	7107031.823	991.2	50	KOGD	GD	1990
RC90-0167	637147.9	7107006.701	983.1	50	KOGD	GD	1990
RC90-0168	637165.837	7106982.106	971.8	52	KOGD	GD	1990
RC90-0169	637167.343	7106959.413	964.4	50	KOGD	GD	1990
RC90-0170	637274.905	7107054.324	952.5	58	KOGD	GD	1990
RC90-0171	637264.821	7107075.755	957.5	58	KOGD	GD	1990
RC90-0172	637255.505	7107093.369	958	50	KOGD	GD	1990
RC90-0173	637243.319	7107112.011	952.2	40	KOGD	GD	1990
RC90-0178	633123.748	7105352.891	818	50	PABL	PA	1990
RC90-0179	637310.28	7106600.085	931.4	46	KOGD	GD	1990
RC90-0180	637280.374	7106638.851	927.3	50	KOGD	GD	1990
RC90-0181	637296.394	7106620.528	931.6	50	KOGD	GD	1990
RC90-0194	633146.133	7105309.553	811.5	50	PABL	PA	1990
RC90-0210	637938.055	7107427.553	868	58	LU	LU	1990
RC90-0211	637946.821	7107403.773	871.7	76	LU	LU	1990
RC90-0212	637958.904	7107382.662	870.1	76	LU	LU	1990
RC90-0213	637972.307	7107337.146	866.7	56	LU	LU	1990
RC90-0214	637872.898	7107344.307	893.5	58	LU	LU	1990
RC90-0215	637861.868	7107372.325	896.4	40	LU	LU	1990
RC90-0247	633918.121	7105555.3	811.3	40	PABL	BL	1990
RC90-0248	633927.056	7105532.649	808.4	40	PABL	BL	1990
RC90-0251	633908.986	7105583.005	815.2	40	PABL	BL	1990
RC90-0255	636118.21	7106399.071	1024.4	52	KOGD	KO	1990
RC90-0256	636084.227	7106463.679	1033.9	60	KOGD	KO	1990
RC90-0257	636094.448	7106445.884	1034.6	58	KOGD	KO	1990
RC90-0258	636106.753	7106419.271	1029.3	50	KOGD	KO	1990
RC90-0259	636070.909	7106490.87	1033.7	58	KOGD	KO	1990
RC90-0260	635980.945	7106410.559	978.3	52	KOGD	КО	1990
RC90-0261	635991.802	7106386.118	978.1	58	KOGD	KO	1990
RC90-0262	636003.944	7106364.696	982.4	58	KOGD	KO	1990
RC90-0263	636016.032	7106340.717	982.2	40	KOGD	КО	1990
RC90-0264	636028.077	7106321.307	981.6	14	KOGD	КО	1990
RC90-0265	636071.366	7106391.227	1013.7	54	KOGD	КО	1990
RC90-0266	636053.208	7106436.022	1012	56	KOGD	КО	1990
RC90-0267	636443.103	7106683.552	1065.2	40	KOGD	КО	1990
RC90-0268	636495.148	7106601.884	1050	50	KOGD	КО	1990
RC90-0269	636367.764	7106484.693	1012.8	52	KOGD	КО	1990

BHID	Easting	Northing	Elevation	Depth	Resource Area	Target	Year Drilled
RC90-0270	636380.337	7106462.709	1003.1	52	KOGD	KO	1990
RC90-0271	636392.844	7106440.228	989.4	52	KOGD	КО	1990
RC90-0272	636442.882	7106467.092	994.7	52	KOGD	КО	1990
RC90-0273	636455.988	7106445.179	978.8	52	KOGD	КО	1990
RC90-0274	636506.706	7106565.78	1032.2	50	KOGD	КО	1990
RC90-0275	636522.971	7106543.345	1023.1	52	KOGD	КО	1990
RC90-0276	636540.642	7106521.471	1016.4	52	KOGD	КО	1990
RC90-0277	636546.885	7106493.403	1000.8	50	KOGD	КО	1990
RC90-0278	636503.671	7106689.006	1048.7	40	KOGD	КО	1990
RC90-0279	636515.573	7106666.99	1048.6	52	KOGD	КО	1990
RC90-0280	636529.213	7106641.472	1046.4	64	KOGD	КО	1990
RC90-0281	636536.89	7106619.836	1045.6	42	KOGD	КО	1990
RC90-0282	637187.779	7106652.254	907.5	46	KOGD	GD	1990
RC90-0283	637204.447	7106627.06	918.5	50	KOGD	GD	1990
RC90-0284	637216.366	7106605.627	931.2	52	KOGD	GD	1990
RC90-0285	637231.014	7106582.398	939.9	50	KOGD	GD	1990
RC90-0286	637272.414	7106658.95	913.6	40	KOGD	GD	1990
RC90-0287	637335.324	7106669.625	926.5	52	KOGD	GD	1990
RC90-0288	637314.953	7106693.656	914.9	40	KOGD	GD	1990
RC90-0289	637347.602	7106642.652	923.6	52	KOGD	GD	1990
RC90-0290	636949.358	7106864.324	1017.4	46	KOGD	GD	1990
RC90-0291	636960.951	7106844.085	1013.2	52	KOGD	GD	1990
RC90-0292	636974.434	7106826.402	1005.8	52	KOGD	GD	1990
RC90-0293	636983.123	7106804.187	999.4	52	KOGD	GD	1990
RC90-0294	636997.924	7106783.341	992.7	50	KOGD	GD	1990
RC90-0295	637016.073	7106760.817	980.9	52	KOGD	GD	1990
RC90-0296	637023.015	7106744.165	972.8	50	KOGD	GD	1990
RC90-0297	637035.517	7106722.715	962.7	50	KOGD	GD	1990
RC90-0298	637096.54	7106989.544	997.3	58	KOGD	GD	1990
RC90-0299	637109.407	7106968.873	987.2	40	KOGD	GD	1990
RC90-0300	637126.054	7106947.801	974.7	52	KOGD	GD	1990
RC90-0301	637135.364	7106922.031	962	50	KOGD	GD	1990
RC90-0302	637150.061	7106902.389	954.1	52	KOGD	GD	1990
RC90-0303	637161.108	7106874.955	943.7	50	KOGD	GD	1990
RC90-0304	637173.931	7106851.504	939.4	52	KOGD	GD	1990
RC90-0305	637187.26	7106827.763	932.6	70	KOGD	GD	1990
RC90-0306	637200.753	7106806.182	923.1	62	KOGD	GD	1990
RC90-0307	637217.394	7106782.466	911.1	52	KOGD	GD	1990
RC90-0308	637886.56	7107322.016	888.8	66	LU	LU	1990
RC90-0309	637899.858	7107304.459	883.3	70	LU	LU	1990

BHID	Easting	Northing	Elevation	Depth	Resource Area	Target	Year Drilled
RC90-0310	637826.167	7107318.498	893.8	40	LU	LU	1990
RC90-0311	637838.658	7107299.109	887.8	72	LU	LU	1990
RC90-0312	637867.399	7107260.377	875.9	62	LU	LU	1990
RC90-0313	637854.564	7107280.377	882	58	LU	LU	1990
RC90-0314	637893.214	7107406.136	881.8	50	LU	LU	1990
RC90-0315	637907.437	7107378.764	886.6	76	LU	LU	1990
RC90-0316	637913.447	7107360.096	889.4	70	LU	LU	1990
RC90-0317	637926.995	7107341.071	884.5	68	LU	LU	1990
RC90-0318	637963.095	7107359.067	869.2	70	LU	LU	1990
RC90-0319	637927.813	7107447.632	862.7	42	LU	LU	1990
RC90-0320	637967.415	7107470.008	844.6	52	LU	LU	1990
RC90-0321	637976.922	7107451.238	849.6	62	LU	LU	1990
RC90-0322	637988.82	7107432.09	848.6	74	LU	LU	1990
RC90-0323	638002.922	7107401.664	845.8	76	LU	LU	1990
RC91-0324	633939.819	7105507.671	798.9	34	PABL	BL	1991
RC91-0325	633981.144	7105549.847	793.3	40	PABL	BL	1991
RC91-0326	633877.374	7105515.974	816.8	40	PABL	BL	1991
RC91-0327	633863.581	7105540.947	821.9	30	PABL	BL	1991
RC91-0328	633953.14	7105598.294	806.7	40	PABL	BL	1991
RC91-0329	633968.544	7105575.146	799.6	34	PABL	BL	1991
RC91-0330	633991.794	7105524.141	786.8	52	PABL	BL	1991
RC91-0331	633894.107	7105491.277	809	34	PABL	BL	1991
RC91-0332	633552.137	7105692.563	896.8	58	PABL	PA	1991
RC91-0333	633565.472	7105669.63	890.8	70	PABL	PA	1991
RC91-0334	633578.823	7105645.442	884	74	PABL	PA	1991
RC91-0379	635910.934	7106319.418	933.8	50	KOGD	KO	1991
RC91-0380	635922.913	7106295.837	934	28	KOGD	KO	1991
RC91-0381	635935.241	7106274.289	934.7	40	KOGD	KO	1991
RC91-0382	635943.364	7106250.837	934.2	50	KOGD	KO	1991
RC91-0383	635958.213	7106228.066	931.4	44	KOGD	KO	1991
RC91-0384	635969.419	7106203.82	927.8	58	KOGD	КО	1991
RC91-0385	636157.953	7106371.576	1015.1	66	KOGD	KO	1991
RC91-0386	636194.493	7106390.624	1016.5	58	KOGD	KO	1991
RC91-0387	636202.595	7106369.456	1009.1	58	KOGD	КО	1991
RC91-0388	636077.122	7106335.441	996.6	50	KOGD	КО	1991
RC91-0389	636087.521	7106314.876	988.6	56	KOGD	КО	1991
RC91-0390	636145.881	7106394.301	1023.1	58	KOGD	КО	1991
RC91-0391	636169.333	7106351.104	1006.2	62	KOGD	КО	1991
RC91-0392	636238.322	7106416.294	1015.2	58	KOGD	КО	1991
RC91-0393	636250.181	7106397.01	1004.3	54	KOGD	КО	1991

BHID	Easting	Northing	Elevation	Depth	Resource Area	Target	Year Drilled
RC91-0394	636304.491	7106493.449	1017.9	42	KOGD	KO	1991
RC91-0395	636435.228	7106589.56	1047.8	40	KOGD	КО	1991
RC91-0396	636424.381	7106610.103	1058.1	46	KOGD	КО	1991
RC91-0397	636316.705	7106471.493	1008.2	40	KOGD	КО	1991
RC91-0398	636410.12	7106631.827	1064.3	30	KOGD	КО	1991
RC91-0399	636327.14	7106569.91	1051.7	40	KOGD	КО	1991
RC91-0400	636330.786	7106447.027	996.8	64	KOGD	КО	1991
RC91-0401	636339.797	7106428.323	988.8	50	KOGD	КО	1991
RC91-0402	636403.565	7106415.825	974	70	KOGD	КО	1991
RC91-0403	636467.406	7106421.167	970.6	28	KOGD	КО	1991
RC91-0404	636501.99	7106473.104	984.8	40	KOGD	КО	1991
RC91-0405	636512.695	7106453.63	979.8	28	KOGD	КО	1991
RC91-0406	636561.857	7106685.429	1028.8	28	KOGD	КО	1991
RC91-0407	636577.899	7106662.983	1030.4	46	KOGD	КО	1991
RC91-0408	637441.255	7106738.242	905.1	42	KOGD	GD	1991
RC91-0409	636533.335	7106727.039	1026	38	KOGD	КО	1991
RC91-0410	636547.542	7106704.595	1025.9	28	KOGD	КО	1991
RC91-0411	637322.901	7106576.177	927.1	52	KOGD	GD	1991
RC91-0412	637372.311	7106596.602	913.7	40	KOGD	GD	1991
RC91-0413	637360.229	7106619.551	918.1	50	KOGD	GD	1991
RC91-0414	637455.013	7106699.241	896.6	28	KOGD	GD	1991
RC91-0415	637140.96	7106622.721	915.2	48	KOGD	GD	1991
RC91-0416	637152.002	7106601.829	923.2	58	KOGD	GD	1991
RC91-0417	636951.272	7106642.633	950.8	52	KOGD	GD	1991
RC91-0418	637048.569	7106700.082	951.9	52	KOGD	GD	1991
RC91-0419	636986.704	7106682.645	962.7	64	KOGD	GD	1991
RC91-0420	636964.1	7106619.989	943.8	50	KOGD	GD	1991
RC91-0421	637167.973	7106578.08	933.9	50	KOGD	GD	1991
RC91-0422	637125.545	7106651.604	914.6	44	KOGD	GD	1991
RC91-0423	637180.704	7106551.936	940.9	46	KOGD	GD	1991
RC91-0424	637243.112	7106554.521	938.1	62	KOGD	GD	1991
RC91-0425	636862.882	7106618.325	967	46	KOGD	GD	1991
RC91-0426	636983.267	7106588.507	944.6	30	KOGD	GD	1991
RC91-0427	636837.732	7106665.161	968	34	KOGD	GD	1991
RC91-0428	636850.539	7106641.127	967.7	34	KOGD	GD	1991
RC91-0429	636874.976	7106595.153	966.7	28	KOGD	GD	1991
RC91-0430	636889.873	7106568.62	966	70	KOGD	GD	1991
RC91-0431	637291.549	7107146.585	933.1	28	KOGD	GD	1991
RC91-0432	637305.182	7107114.748	939.7	28	KOGD	GD	1991
RC91-0433	637166.899	7107075.369	985.6	40	KOGD	GD	1991

BHID	Easting	Northing	Elevation	Depth	Resource Area	Target	Year Drilled
RC91-0434	637179.292	7107056.155	985	28	KOGD	GD	1991
RC91-0435	637273.444	7107090.822	953.3	40	KOGD	GD	1991
RC91-0436	637190.024	7107035.203	979.2	34	KOGD	GD	1991
RC91-0437	637787.522	7107280.124	887.9	28	LU	LU	1991
RC91-0438	637803.542	7107258.126	876.8	46	LU	LU	1991
RC91-0439	637815.598	7107238.492	865.9	52	LU	LU	1991
RC91-0440	637876.769	7107236.133	867.8	76	LU	LU	1991
RC91-0441	637913.716	7107283.657	875.7	76	LU	LU	1991
RC91-0442	637940.891	7107316.731	874.9	94	LU	LU	1991
RC91-0443	637829.204	7107211.808	854.5	90	LU	LU	1991
RC91-0444	637844.13	7107187.471	851.3	88	LU	LU	1991
RC91-0445	638016.992	7107375.584	843.7	86	LU	LU	1991
RC91-0446	637954.647	7107492.341	842.2	48	LU	LU	1991
RC91-0447	637988.253	7107519.27	826.6	40	LU	LU	1991
RC91-0448	637998.707	7107495.75	826.2	40	LU	LU	1991
RC91-0449	638011.013	7107474.65	826.2	46	LU	LU	1991
RC91-0450	638025.475	7107449.709	824.2	40	LU	LU	1991
RC91-0451	638035.613	7107427.16	823.5	52	LU	LU	1991
RC91-0452	638048.866	7107399.472	822.9	64	LU	LU	1991
RC91-0453	633894.373	7105486.719	808.7	58	PABL	BL	1991
RC91-0454	633928.384	7105531.099	807.3	56	PABL	BL	1991
RC91-0455	633876.862	7105517.294	816.3	30	PABL	BL	1991
RC91-0456	633952.905	7105596.67	806.7	109.2	PABL	BL	1991
RC91-0457	634002.832	7105611.07	793.5	50	PABL	BL	1991
RC91-0458	634014.12	7105587.904	788.2	62	PABL	BL	1991
RC91-0459	634025.842	7105563.146	780.4	52	PABL	BL	1991
RC91-0460	633991.103	7105629.51	796.9	100	PABL	BL	1991
RC91-0461	633967.401	7105580.245	799.6	64	PABL	BL	1991
RC91-0462	633979.173	7105555.4	793.5	88	PABL	BL	1991
RC91-0471	636219.252	7106348.161	989.5	76	KOGD	КО	1991
RC91-0472	636118.662	7106399.899	1024	94	KOGD	КО	1991
RC91-0473	636134.714	7106375.393	1014.7	70	KOGD	КО	1991
RC91-0474	636134.039	7106376.392	1014.7	100	KOGD	КО	1991
RC91-0475	636119.174	7106351.615	1006.2	52	KOGD	КО	1991
RC91-0476	636181.388	7106329.633	995.7	58	KOGD	КО	1991
RC91-0477	636436.006	7106589.194	1046.4	34	KOGD	КО	1991
RC91-0478	636424.147	7106612.153	1058.4	40	KOGD	КО	1991
RC91-0479	636476.656	7106628.693	1056.9	62	KOGD	КО	1991
RC91-0480	636524.808	7106650.134	1047	70	KOGD	КО	1991
RC91-0481	636428.239	7106487.454	1005.4	52	KOGD	КО	1991

BHID	Easting	Northing	Elevation	Depth	Resource Area	Target	Year Drilled
RC91-0482	636489.967	7106493.904	995.9	52	KOGD	КО	1991
RC91-0483	636479.339	7106521.001	1010.3	52	KOGD	КО	1991
RC91-0484	636464.67	7106542.839	1023.2	46	KOGD	КО	1991
RC91-0485	636502.108	7106688.931	1048.7	56	KOGD	КО	1991
RC91-0486	636596.354	7106641.55	1030.8	68	KOGD	КО	1991
RC91-0487	636562.44	7106685.412	1029.3	28	KOGD	KO	1991
RC91-0488	636609.632	7106695.289	1023.3	30	KOGD	KO	1991
RC91-0489	636610.368	7106693.98	1012.7	40	KOGD	КО	1991
	636623.066	7106672.181	1012.7	52	KOGD	KO	1991
RC91-0490	636632.741	7106650.865	1013.8	64	KOGD	KO	1991
RC91-0491							
RC91-0492	637457.584	7106656.478	890	40	KOGD	GD	1991
RC91-0493	637467.456	7106638.487	889.7	40	KOGD	GD	1991
RC91-0494	637482.01	7106612.565	886.2	40	KOGD	GD	1991
RC91-0495	637386.046	7106686.08	914.1	40	KOGD	GD	1991
RC91-0496	637395.7	7106663.374	909.8	52	KOGD	GD	1991
RC91-0497	637407.411	7106635.164	904.8	46	KOGD	GD	1991
RC91-0498	637418.824	7106619.533	900.6	58	KOGD	GD	1991
RC91-0499	637230.529	7106582.24	939.4	102	KOGD	GD	1991
RC91-0500	637096.837	7106595.737	925.5	52	KOGD	GD	1991
RC91-0501	637124.134	7106554.471	939.5	82	KOGD	GD	1991
RC91-0502	637108.321	7106575.896	936	76	KOGD	GD	1991
RC91-0503	636999.832	7106658.447	948.7	40	KOGD	GD	1991
RC91-0504	637175.907	7106747.317	927.7	58	KOGD	GD	1991
RC91-0505	637100.679	7106897.023	974.9	40	KOGD	GD	1991
RC91-0506	637110.344	7106874.093	966.2	40	KOGD	GD	1991
RC91-0507	637121.478	7106843.032	961.5	46	KOGD	GD	1991
RC91-0508	637138.772	7106820.602	953	40	KOGD	GD	1991
RC91-0509	637151.704	7106796.753	945.5	34	KOGD	GD	1991
RC91-0510	637166.531	7106770.754	936.1	46	KOGD	GD	1991
RC91-0511	637089.479	7106918.4	983.6	40	KOGD	GD	1991
RC91-0512	637066.398	7106966.859	1001.8	52	KOGD	GD	1991
RC91-0513	636946.216	7106865.428	1016.9	40	KOGD	GD	1991
RC91-0514	637041.429	7106931.695	1004.3	52	KOGD	GD	1991
RC91-0515	637080.278	7106941.935	992.6	58	KOGD	GD	1991
RC91-0516	637204.203	7107010.562	968.6	58	KOGD	GD	1991
RC91-0517	636992.752	7106564.672	942.5	100	KOGD	GD	1991
RC91-0518	637004.143	7106547.651	942.5	88	KOGD	GD	1991
RC91-0519	636793.604	7106637.37	982.7	48	KOGD	GD	1991
RC91-0520	636805.588	7106614.596	982.2	70	KOGD	GD	1991
RC91-0521	636815.939	7106594.119	982.1	82	KOGD	GD	1991

BHID	Easting	Northing	Elevation	Depth	Resource Area	Target	Year Drilled
RC91-0522	636830.967	7106568.578	978	88	KOGD	GD	1991
RC91-0523	637925.379	7107261.047	867.4	94	LU	LU	1991
RC91-0524	637756.136	7107242.502	869.9	52	LU	LU	1991
RC91-0525	637768.349	7107218.708	862.8	40	LU	LU	1991
RC91-0526	637774.484	7107192.876	859.3	118	LU	LU	1991
RC91-0527	637789.84	7107167.978	851.2	82	LU	LU	1991
RC91-0528	637808.485	7107145.388	839.1	112	LU	LU	1991
RC91-0529	637856.408	7107162.336	842.7	82	LU	LU	1991
RC91-0530	637820.623	7107130.508	832.1	82	LU	LU	1991
RC91-0531	637833.463	7107210.757	854.7	82	LU	LU	1991
RC91-0532	638010.579	7107256.118	852.4	74	LU	LU	1991
RC91-0533	638029.476	7107344.364	847.2	76	LU	LU	1991
RC91-0534	633827.414	7105498.57	824.4	40	PABL	BL	1991
RC91-0535	633838.641	7105475.715	819.9	30	PABL	BL	1991
RC91-0536	633850.119	7105453.23	814.1	60	PABL	BL	1991
RC91-0537	633865.153	7105428.496	808.1	70	PABL	BL	1991
RC91-0538	633909.146	7105465.512	802	70	PABL	BL	1991
RC91-0539	633910.126	7105463.766	802	88	PABL	BL	1991
RC91-0540	634076.234	7105589.175	772.5	70	PABL	BL	1991
RC91-0541	634064.075	7105610.014	775.5	70	PABL	BL	1991
RC91-0542	634023.988	7105677.735	793.4	50	PABL	BL	1991
RC91-0543	634035.956	7105654.378	788.5	50	PABL	BL	1991
RC91-0544	634049.645	7105634.284	782.1	50	PABL	BL	1991
RC91-0545	634002.87	7105611.207	793.4	70	PABL	BL	1991
RC91-0546	634037.358	7105538.96	775.4	106	PABL	BL	1991
RC91-0547	634002.139	7105499.183	783.9	70	PABL	BL	1991
RC91-0548	634052.661	7105712.225	787.1	46	PABL	BL	1991
RC91-0549	634062.114	7105700.085	783.9	50	PABL	BL	1991
RC91-0550	634100.011	7105631.363	766.9	50	PABL	BL	1991
RC91-0551	634091.414	7105648.922	770.2	70	PABL	BL	1991
RC91-0552	634076.826	7105671.84	776.3	52	PABL	BL	1991
RC91-0553	636449.455	7106561.157	1035.8	52	KOGD	KO	1991
RC91-0554	636483.496	7106720.037	1048.1	36	KOGD	KO	1991
RC91-0555	636692.984	7106628.923	1005.7	64	KOGD	КО	1991
RC91-0556	636681.876	7106647.482	1006	70	KOGD	КО	1991
RC91-0557	636666.096	7106670.074	1006	52	KOGD	КО	1991
RC91-0558	636665.115	7106671.819	1006	46	KOGD	КО	1991
RC91-0559	636487.767	7106500.476	996.5	46	KOGD	КО	1991
RC91-0560	636500.634	7106474.294	985.1	52	KOGD	КО	1991
RC91-0561	636949.49	7106543.914	953.5	64	KOGD	GD	1991

BHID	Easting	Northing	Elevation	Depth	Resource	Target	Year
DC01 0FC2	636939.493	7106561.719	953.9	46	Area KOGD	GD	Drilled 1991
RC91-0562	636731.156	7106361.719		34			
RC91-0563	+		991 991		KOGD	KO	1991
RC91-0564	636732.642	7106666.717		40	KOGD	KO	1991
RC91-0565	636715.974	7106688.236	989.6	40	KOGD	KO	1991
RC91-0566	636748.151	7106646.039	990.5	58	KOGD	KO	1991
RC91-0567	637067.47	7106537.776	947.7	76 - 3	KOGD	GD	1991
RC91-0568	637322.444	7106576.379	926	76	KOGD	GD	1991
RC91-0569	637245.035	7106556.405	938	94	KOGD	GD	1991
RC91-0570	637379.276	7106585.015	909.9	72	KOGD	GD	1991
RC91-0571	637468.294	7106637.81	889.7	76	KOGD	GD	1991
RC91-0572	637434.899	7106594.579	893.2	76	KOGD	GD	1991
RC91-0573	637055.911	7106564.693	939.8	76	KOGD	GD	1991
RC91-0574	637083.044	7106844.508	979	52	KOGD	GD	1991
RC91-0575	637094.174	7106829.177	972.2	50	KOGD	GD	1991
RC91-0579	633164.437	7105399.877	826.5	40	PABL	PA	1991
RC91-0580	633149.991	7105427.239	830.6	46	PABL	PA	1991
RC91-0581	633136.657	7105452.01	831.9	52	PABL	PA	1991
RC91-0582	633802.708	7105433.125	820.4	50	PABL	BL	1991
RC91-0583	633786.105	7105456.977	825.9	40	PABL	BL	1991
RC91-0584	633816.87	7105407.9	814.9	70	PABL	BL	1991
RC91-0587	636781.99	7106659.893	982.4	50	KOGD	GD	1991
RC91-0588	636843.61	7106544.222	972.7	40	KOGD	GD	1991
RC91-0589	636767.56	7106686.001	981.5	56	KOGD	GD	1991
RC91-0590	637257.524	7106612.572	933	60	KOGD	GD	1991
RC91-0591	637242.784	7106640.457	917.2	40	KOGD	GD	1991
RC91-0592	636922.689	7106633.915	951.1	50	KOGD	GD	1991
RC91-0593	636991.257	7106872.604	1005.6	50	KOGD	GD	1991
RC91-0594	636961.786	7106860.975	1014.3	50	KOGD	GD	1991
RC91-0595	636971.38	7106840.417	1007.1	50	KOGD	GD	1991
RC91-0596	637033.912	7106783.361	982.2	50	KOGD	GD	1991
RC91-0597	637003.225	7106845.572	1004.1	60	KOGD	GD	1991
RC91-0598	637019.564	7106525.086	944.4	50	KOGD	GD	1991
RC91-0599	636964.779	7106514.845	951.7	50	KOGD	GD	1991
RC91-0600	637271.055	7106587.452	937	46	KOGD	GD	1991
RC91-0601	637047.383	7106756.714	968.4	52	KOGD	GD	1991
RC91-0602	637044.597	7106591.174	931.9	50	KOGD	GD	1991
RC91-0603	636926.365	7106497.5	959.4	70	KOGD	GD	1991
RC91-0604	636913.597	7106521.67	960.4	58	KOGD	GD	1991
RC91-0605	636902.451	7106543.768	960.6	52	KOGD	GD	1991
RC91-0606	637137.778	7106984.706	978.6	40	KOGD	GD	1991
KC3T-000p	03/13/.//8	/ 100304./00	3/0.0	40	עטטא	עט	TOOT

BHID	Easting	Northing	Elevation	Depth	Resource	Target	Year
					Area		Drilled
RC91-0607	637154.266	7106958.608	965.7	40	KOGD	GD	1991
RC91-0608	637183.837	7106939.633	954.8	50	KOGD	GD	1991
RC91-0609	637198.413	7106913.264	942.7	52	KOGD	GD	1991
RC91-0610	637234.524	7106842.619	908.2	50	KOGD	GD	1991
RC91-0611	637209.69	7106892.159	931.3	50	KOGD	GD	1991
RC91-0612	637282.77	7107154.052	932.6	50	KOGD	GD	1991
RC91-0613	638035.314	7107428.714	823.1	50	LU	LU	1991
RC91-0614	638066.016	7107491.444	824.4	60	LU	LU	1991
RC91-0615	638084.06	7107455.426	816.2	60	LU	LU	1991
RC91-0616	638108.324	7107418.541	811.8	34	LU	LU	1991
RC91-0620	638226.963	7107083.908	775.3	64	LU	LU	1991
RC91-0629	633305.388	7105477.386	849.5	70	PABL	PA	1991
RC91-0630	633319.077	7105455.455	847	52	PABL	PA	1991
RC91-0631	633332.772	7105430.657	843.6	52	PABL	PA	1991
RC91-0647	636126.219	7106521.616	1058.4	28	KOGD	КО	1991
RC91-0651	636762.392	7106504.079	986.3	50	KOGD	КО	1991
RC91-0652	636749.885	7106528.397	992.1	50	KOGD	КО	1991
RC91-0653	636922.969	7106607.892	953.4	40	KOGD	GD	1991
RC91-0654	636734.938	7106553.18	998.2	46	KOGD	КО	1991
RC91-0655	636872.884	7106494.536	968.8	50	KOGD	GD	1991
RC91-0656	636858.911	7106518.604	971.9	50	KOGD	GD	1991
RC91-0657	636206.924	7106546.542	1064.1	40	KOGD	КО	1991
RC91-0658	636424.587	7106553.379	1037.3	50	KOGD	КО	1991
RC91-0659	636197.563	7106563.213	1064.9	30	KOGD	КО	1991
RC91-0660	636224.512	7106566.878	1064.8	30	KOGD	КО	1991
RC91-0661	636052.484	7106437.108	1012	30	KOGD	КО	1991
RC91-0662	636142.892	7106540.519	1064	30	KOGD	КО	1991
RC91-0663	636070.625	7106391.729	1013.4	40	KOGD	КО	1991
RC91-0664	636084.587	7106369.722	1010.6	50	KOGD	КО	1991
RC91-0665	636411.034	7106575.271	1047.5	40	KOGD	КО	1991
RC91-0670	637034.391	7106500.924	955.2	70	KOGD	GD	1991
RC92-0682	636585.525	7106435.203	971	62	KOGD	КО	1992
RC92-0683	636495.501	7106357.04	953.4	92	KOGD	КО	1992
RC92-0684	636257.792	7106279.111	955.5	56	KOGD	КО	1992
RC92-0685	636121.574	7106204.607	937.6	76.5	KOGD	КО	1992
RC93-0693	633286.243	7105204.667	837.1	44	PABL	PA	1993
RC93-0694	633298.576	7105391.914	837	56	PABL	PA	1993
RC93-0695	633346.978	7105351.514	841.7	52	PABL	PA	1993
RC93-0696	633369.07	7105470.352	852.1	56	PABL	PA	1993
 	633381.528	7105447.959	849	50	PABL	PA	1993
RC93-0697	033301.320	1103441.333	043	30	FADL	ГA	1333

BHID	Easting	Northing	Elevation	Depth	Resource Area	Target	Year Drilled
RC93-0698	633345.302	7105696.866	896.8	40	PABL	PA	1993
RC93-0699	633361.017	7105673.778	892.5	42	PABL	PA	1993
RC93-0705	633757.376	7105408.906	823.9	56	PABL	BL	1993
RC93-0706	634130.338	7105695.375	770.8	24	PABL	BL	1993
RC93-0707	634145.508	7105672.439	763.4	27	PABL	BL	1993
RC93-0726	635930.463	7106169.062	912.2	54	KOGD	КО	1993
RC93-0727	635943.782	7106141.871	903.8	54	KOGD	КО	1993
RC93-0728	635991.846	7106157.75	911.2	58	KOGD	КО	1993
RC93-0729	636056.269	7106204.528	935.4	80	KOGD	КО	1993
RC93-0730	636071.172	7106176.964	925	87	KOGD	КО	1993
RC93-0731	636102.271	7106232.453	949.9	56	KOGD	КО	1993
RC93-0732	636141.654	7106250.113	961.9	62	KOGD	КО	1993
RC93-0733	636162.026	7106227.92	952	62	KOGD	КО	1993
RC93-0734	636277.521	7106345.663	972.1	58	KOGD	КО	1993
RC93-0735	636354.275	7106398.453	974	54	KOGD	КО	1993
RC93-0741	636149.136	7106469.161	1044.6	68	KOGD	КО	1993
RC93-0742	636161.868	7106504.681	1052.5	48	KOGD	КО	1993
RC93-0743	636226.744	7106514.509	1049.6	62	KOGD	КО	1993
RC93-0744	636359.882	7106615.529	1064.7	54	KOGD	КО	1993
RC93-0745	636611.376	7106609.689	1028.2	50	KOGD	КО	1993
RC93-0746	636654.506	7106528.177	1009.1	50	KOGD	КО	1993
RC93-0747	636649.106	7106691.757	1004.5	36	KOGD	КО	1993
RC93-0748	636675.513	7106493.825	993.1	80	KOGD	КО	1993
RC93-0749	636696.7	7106456.703	985.4	42	KOGD	КО	1993
RC93-0750	636781.755	7106470.41	982.7	50	KOGD	КО	1993
RC93-0751	636908.586	7106660.666	956.1	50	KOGD	GD	1993
RC93-0752	637504.433	7106760.895	884	50	KOGD	GD	1993
RC93-0753	637490.233	7106791.495	884.9	76	KOGD	GD	1993
RC93-0754	636976.25	7106895.86	1014.2	36	KOGD	GD	1993
RC93-0755	637053.603	7106990.67	1009.5	50	KOGD	GD	1993
RC93-0756	637221.861	7106979.725	956.1	62	KOGD	GD	1993
RC93-0757	637239.105	7107034.774	961.2	68	KOGD	GD	1993
RC93-0758	637320.994	7107084.136	943.5	56	KOGD	GD	1993
RC93-0759	637941.175	7107235.363	852.2	60	LU	LU	1993
RC93-0760	638044.38	7107320.475	842.9	62	LU	LU	1993
RC93-0761	638122.345	7107392.549	813.3	50	LU	LU	1993
RC93-0762	638168.052	7107413.648	819.7	50	LU	LU	1993
RC93-0798	633248.649	7105375.676	829.6	62	PABL	PA	1993
RC93-0799	633263.002	7105349.296	826.9	86	PABL	PA	1993
RC93-0800	633423.723	7105479.601	855.2	86	PABL	PA	1993

BHID	Easting	Northing	Elevation	Depth	Resource	Target	Year Drilled
RC93-0801	633440.108	7105451.032	850.9	62	Area PABL	PA	1993
RC93-0801	633331.456	7105451.032	831.2	108	PABL	PA	1993
RC93-0802	633365.306	7105370.058	835.6	103	PABL	PA	1993
+	637946.195	7107404.684	870	76	LU	LU	1993
RC93-0809	637946.445	7107404.084	870.1	54	LU	LU	1993
RC93-0810	637938.213	7107403.033	869.4	68	LU	LU	1993
RC93-0811	633271.498					PA	
RC93-0828		7105539.174	859.9	74	PABL		1993
RC93-0840	633491.788	7105466.189	852.2	54	PABL	PA	1993
RC93-0841	633203.301	7105352.712	823.4	44	PABL	PA	1993
RC94-0849	633772.072	7105427.042	824.1	110	PABL	BL	1994
RC94-0850	633793.386	7105449.931	824.1	55.1	PABL	BL	1994
RC94-0851	633819.734	7105451.193	819.9	50	PABL	BL	1994
RC94-0852	633841.266	7105523.925	824.3	30	PABL	BL	1994
RC94-0853	633853.823	7105501.358	821.3	40	PABL	BL	1994
RC94-0854	633865.922	7105480.83	815.6	50	PABL	BL	1994
RC94-0855	633902.737	7105520.012	809.9	50	PABL	BL	1994
RC94-0856	633910.971	7105557.826	811.7	66	PABL	BL	1994
RC94-0857	633889.789	7105545.115	815.4	40	PABL	BL	1994
RC94-0858	633920.931	7105599.71	814.8	40	PABL	BL	1994
RC94-0859	633936.426	7105512.08	802.4	86	PABL	BL	1994
RC94-0860	633916.154	7105498.158	805.9	66	PABL	BL	1994
RC94-0861	633959.704	7105474.296	791	50	PABL	BL	1994
RC94-0862	633993.411	7105519.424	786.5	86	PABL	BL	1994
RC94-0863	633970.786	7105513.366	793.2	60	PABL	BL	1994
RC94-0864	633957.544	7105535.318	798.2	50	PABL	BL	1994
RC94-0865	633946.093	7105556.325	803.3	50	PABL	BL	1994
RC94-0866	633935.012	7105575.244	808.7	40	PABL	BL	1994
RC94-0867	633959.434	7105635.477	809.1	50	PABL	BL	1994
RC94-0868	633986.039	7105542.15	790.3	80	PABL	BL	1994
RC94-0869	633997.436	7105567.388	788.2	70	PABL	BL	1994
RC94-0870	634029.611	7105611.77	788	56	PABL	BL	1994
RC94-0871	634017.67	7105633.65	792	46	PABL	BL	1994
RC94-0872	634007.276	7105656.858	796	40	PABL	BL	1994
RC94-0873	633973.711	7105608.825	802.1	49	PABL	BL	1994
RC94-0874	633985.995	7105588.171	794.8	66	PABL	BL	1994
RC94-0875	634041.803	7105590.261	781.4	65	PABL	BL	1994
RC94-0876	634011.539	7105544.312	779.7	80	PABL	BL	1994
RC94-0877	634023.082	7105522.323	778.4	80	PABL	BL	1994
RC94-0878	634054.642	7105567.393	776.2	70	PABL	BL	1994
RC94-0879	634066.518	7105546.854	771.6	75	PABL	BL	1994

BHID	Easting	Northing	Elevation	Depth	Resource Area	Target	Year Drilled
RC94-0880	634058.029	7105509.701	773.2	39.9	PABL	BL	1994
RC94-0977	636153.673	7106517.643	1057.5	54	KOGD	КО	1994
RC94-0978	636271.089	7106582.956	1062.2	35	KOGD	КО	1994
RC94-0979	636398.876	7106601.622	1056.9	50	KOGD	КО	1994
RC94-0980	636364.417	7106594.998	1056.9	36	KOGD	КО	1994
RC94-0981	636380.034	7106570.246	1046.9	48	KOGD	КО	1994
RC94-0982	636286.28	7106550.387	1046.3	42	KOGD	КО	1994
RC94-0983	636096.071	7106349.881	1006.3	52	KOGD	КО	1994
RC94-0984	636161.558	7106327.787	997.1	60	KOGD	КО	1994
RC94-0985	636148.5	7106344.101	1003.4	55	KOGD	КО	1994
RC94-0986	636043.323	7106343.771	991.6	80	KOGD	КО	1994
RC94-0987	636003.144	7106365.509	982.1	35	KOGD	КО	1994
RC94-0988	635973.166	7106346.82	967.7	67.5	KOGD	КО	1994
RC94-0989	636271.03	7106357.631	977.9	44	KOGD	КО	1994
RC94-0990	636208.744	7106280.706	963	50	KOGD	КО	1994
RC94-0991	636331.637	7106372.408	968.8	80	KOGD	КО	1994
RC94-0992	636354.58	7106397.706	973	75	KOGD	КО	1994
RC94-0993	636373.35	7106369.789	962	60	KOGD	КО	1994
RC94-0994	636475.275	7106463.714	980.9	50	KOGD	КО	1994
RC94-0995	636454.529	7106449.411	978.4	48	KOGD	КО	1994
RC94-0996	636546.869	7106447.692	976.5	45	KOGD	КО	1994
RC94-0997	636570.958	7106455.837	977.1	45	KOGD	КО	1994
RC94-0998	636716.149	7106509.663	995	70	KOGD	КО	1994
RC94-0999	636800.473	7106557.752	984.8	45	KOGD	КО	1994
RC94-1000	636608.307	7106491.414	998	45	KOGD	КО	1994
RC94-1001	636622.633	7106466.511	988.6	65	KOGD	КО	1994
RC94-1002	636670.429	7106515.54	1000.5	43	KOGD	КО	1994
RC94-1003	636461.194	7106488.18	997.3	45	KOGD	КО	1994
RC94-1004	636697.913	7106535.812	1004	50	KOGD	КО	1994
RC94-1005	636330.905	7106446.405	996.8	30	KOGD	КО	1994
RC94-1006	636031.423	7106243.267	947	80	KOGD	КО	1994
RC94-1007	635925.979	7106288.948	934.2	40	KOGD	КО	1994
RC94-1008	636099.893	7106200.343	934.1	62	KOGD	КО	1994
RC94-1009	636423.775	7106552.578	1037.9	55	KOGD	КО	1994
RC94-1012	634078.187	7105525.051	771.6	80	PABL	BL	1994
RC94-1018	634014.86	7105491.636	781	90	PABL	BL	1994
RC94-1020	633938.427	7105626.54	815.7	30	PABL	BL	1994
RC94-1021	633983.596	7105654.111	803.9	30	PABL	BL	1994
RC94-1022	634114.598	7105604.77	762	46	PABL	BL	1994
RC94-1023	634122.43	7105649.017	762	50	PABL	BL	1994

BHID	Easting	Northing	Elevation	Depth	Resource Area	Target	Year Drilled
RC94-1024	634146.924	7105672.776	763.5	37	PABL	BL	1994
RC94-1026	634166.058	7105688.929	768.7	50	PABL	BL	1994
RC94-1029	634258.549	7105674.894	760.8	50	PABL	BL	1994
RC94-1031	633878.713	7105463.562	809.9	65	PABL	BL	1994
RC94-1036	634210.114	7105610.463	751.6	66	PABL	BL	1994
RC94-1038	634147.586	7105608.5	754.3	56	PABL	BL	1994
RC94-1040	634063.181	7105609.971	775.8	50	PABL	BL	1994
RC94-1063	634091.67	7105650.099	769.8	31	PABL	BL	1994
RC94-1064	633826.989	7105499.939	824.4	40	PABL	BL	1994
RC94-1065	633812.432	7105460.523	822.2	46	PABL	BL	1994
RC94-1066	633746.562	7105425.104	826.5	60	PABL	BL	1994
RC94-1067	633499.814	7105448.424	847.8	28	PABL	PA	1994
RC94-1068	633304.233	7105381.43	834.3	66	PABL	PA	1994
RC94-1069	633347.936	7105403.24	840.8	62	PABL	PA	1994
RC94-1070	633448.187	7105432.15	845.9	38	PABL	PA	1994
RC94-1071	633390.506	7105428.088	845	22	PABL	PA	1994
RC94-1072	633377.929	7105452.94	849	38	PABL	PA	1994
RC94-1073	633168.278	7105318.097	817.4	37	PABL	PA	1994
RC94-1074	633221.118	7105330.576	821.3	54	PABL	PA	1994
RC94-1075	633189.96	7105324.199	818.3	38	PABL	PA	1994
RC94-1076	633178.771	7105347.19	821.8	36	PABL	PA	1994
RC94-1077	633158.167	7105339.168	817.7	36	PABL	PA	1994
RC94-1078	633134.692	7105326.662	813.4	35	PABL	PA	1994
RC94-1079	633094.339	7105350.139	815.2	30	PABL	PA	1994
RC94-1080	633104.139	7105327.171	811.1	30	PABL	PA	1994
RC95-1184	635948.94	7106239.273	931.9	48	KOGD	KO	1995
RC95-1185	635960.859	7106217.84	928.1	56	KOGD	KO	1995
RC95-1186	635915.925	7106193.731	912.5	48	KOGD	KO	1995
RC95-1187	635956.965	7106172.706	914.2	66	KOGD	KO	1995
RC95-1188	635986.151	7106218.738	934.1	62	KOGD	KO	1995
RC95-1189	635996.389	7106254.003	945.9	68	KOGD	КО	1995
RC95-1190	636164.961	7106178.586	929	62	KOGD	KO	1995
RC95-1191	636124.084	7106192.583	934	74	KOGD	KO	1995
RC95-1192	636100.855	7106185.152	929.2	41	KOGD	КО	1995
RC95-1193	636041.202	7106226.258	940.7	41	KOGD	КО	1995
RC95-1194	636016.977	7106266.954	954	52	KOGD	КО	1995
RC95-1195	636068.702	7106245.276	953.7	46	KOGD	КО	1995
RC95-1196	636081.384	7106222.894	943.9	38	KOGD	КО	1995
RC95-1197	636111.174	7106219.66	947.5	53	KOGD	КО	1995
RC95-1198	636061.406	7106356.692	1002.5	50	KOGD	КО	1995

BHID	Easting	Northing	Elevation	Depth	Resource Area	Target	Year Drilled
RC95-1199	636049.128	7106378.152	1001.9	32	KOGD	КО	1995
RC95-1199	636042.18	7106392.16	1002.2	52	KOGD	КО	1995
RC95-1200	636071.427	7106332.10	1024.8	36	KOGD	КО	1995
RC95-1202	636084.26	7106464.845	1033.7	36	KOGD	КО	1995
RC95-1202	636110.799	7106461.276	1040.3	50	KOGD	КО	1995
RC95-1204	636112.813	7106496.282	1049.6	42	KOGD	КО	1995
RC95-1204	636145.342	7106485.516	1043.3	38	KOGD	КО	1995
RC95-1206	636173.536	7106483.310	1045.9	54	KOGD	КО	1995
1	636141.634	7100481.04	1043.9	62	KOGD	KO	1995
RC95-1207	636185.384	7106458.304	1040.2	56	KOGD	KO	1995
RC95-1208	636165.069	7106438.304	1039.3	64	KOGD	KO	1995
RC95-1209	636109.259	7106443.277	1036.9		KOGD		1995
RC95-1210	-	7106421.139		74		KO	
RC95-1211	636122.495		1035.7	78	KOGD	KO	1995
RC95-1212	636194.667	7106388.884	1014.7	72	KOGD	KO	1995
RC95-1213	636062.366	7106411.544	1013.5	64	KOGD	KO	1995
RC95-1214	636028.507	7106365.872	991.9	70	KOGD	KO	1995
RC95-1215	636012.956	7106392.956	989.8	48	KOGD	КО	1995
RC95-1216	636023.84	7106320.073	979.3	53	KOGD	КО	1995
RC95-1217	635986.163	7106321.63	966.9	54	KOGD	КО	1995
RC95-1218	636007.106	7106292.294	964.6	50	KOGD	КО	1995
RC95-1219	636090.108	7106404.403	1021.4	68	KOGD	КО	1995
RC95-1220	636183.382	7106329.145	994.8	38	KOGD	КО	1995
RC95-1221	636196.383	7106340.702	995.5	44	KOGD	KO	1995
RC95-1222	636116.408	7106317.335	994.1	46	KOGD	KO	1995
RC95-1223	636261.36	7106323.602	967.6	32	KOGD	KO	1995
RC95-1224	636222.026	7106266.24	956.8	36	KOGD	КО	1995
RC95-1225	636232.767	7106279.168	958	40	KOGD	KO	1995
RC95-1226	636290.377	7106323.378	963.6	43	KOGD	KO	1995
RC95-1227	636575.065	7106503.043	1004.8	53	KOGD	KO	1995
RC95-1228	636518.533	7106498.364	996.1	42	KOGD	KO	1995
RC95-1229	636419.347	7106451.222	989.5	52	KOGD	KO	1995
RC95-1230	636407.901	7106471.198	1001.2	40	KOGD	КО	1995
RC95-1231	636379.471	7106419.736	979.6	20	KOGD	КО	1995
RC95-1232	633734.382	7105450.064	833.3	44	PABL	BL	1995
RC95-1233	633758.868	7105450.968	830.6	40	PABL	BL	1995
RC95-1234	633777.529	7105475.926	831.3	52	PABL	BL	1995
RC95-1235	633803.693	7105480.988	826.8	46	PABL	BL	1995
RC95-1288	636473.466	7106686.036	1057.5	42	KOGD	КО	1995
RC95-1290	636487.552	7106660.54	1057.3	58	KOGD	КО	1995
RC95-1292	636501.943	7106636.133	1053.3	64	KOGD	КО	1995

					Resource		Year
BHID	Easting	Northing	Elevation	Depth	Area	Target	Drilled
RC95-1293	636292.009	7106586.333	1062.1	26	KOGD	КО	1995
RC95-1294	636492.49	7106601.309	1050.4	40	KOGD	КО	1995
RC95-1295	636215.511	7106532.882	1058.4	46	KOGD	КО	1995
RC95-1296	636515.715	7106711.049	1039.8	49	KOGD	КО	1995
RC95-1297	636348.681	7106582.593	1054.6	40	KOGD	КО	1995
RC95-1298	636548.081	7106660.346	1041.3	60	KOGD	КО	1995
RC95-1299	636341.308	7106541.818	1036.6	42	KOGD	КО	1995
RC95-1300	636236.577	7106494.545	1041.9	66	KOGD	КО	1995
RC95-1301	636254.754	7106513.833	1042.3	48	KOGD	КО	1995
RC95-1302	636590.079	7106585.546	1031.2	66	KOGD	КО	1995
RC95-1303	636462.552	7106599.293	1050.4	40	KOGD	КО	1995
RC95-1304	636585.842	7106683.754	1023	42	KOGD	КО	1995
RC95-1305	636686.261	7106558.199	1008.8	64	KOGD	КО	1995
RC95-1306	636648.346	7106667.79	1011.9	50	KOGD	КО	1995
RC95-1307	636766.765	7106550.402	991.8	42	KOGD	КО	1995
RC95-1308	636745.001	7106492.581	988.6	42	KOGD	КО	1995
RC95-1309	636832.728	7106675.094	967.8	30	KOGD	GD	1995
RC95-1310	636782.988	7106579.501	989.8	46	KOGD	КО	1995
RC95-1311	636806.009	7106581.992	984.8	42	KOGD	КО	1995
RC95-1312	636725.247	7106485.496	989.1	42	KOGD	КО	1995
RC95-1313	636650.192	7106476.032	989	50	KOGD	КО	1995
RC95-1314	636598.701	7106457.882	981.1	44	KOGD	КО	1995
RC95-1315	636559.981	7106424.748	968	36	KOGD	КО	1995
RC95-1316	636537.971	7106414.328	968.1	46	KOGD	КО	1995
RC95-1317	636489.154	7106438.79	973.8	50	KOGD	КО	1995
RC95-1318	636390.383	7106399.689	969.7	40	KOGD	КО	1995
RC95-1319	636346.252	7106348.012	962	54	KOGD	КО	1995
RC95-1320	636690.121	7106692.421	992.7	38	KOGD	КО	1995
RC95-1321	636757.117	7106664.169	987.6	36	KOGD	КО	1995
RC95-1322	636719.829	7106538.027	999.9	56	KOGD	КО	1995
RC95-1323	636878.421	7106672.532	959.8	26	KOGD	GD	1995
RC95-1324	636634.394	7106445.564	979.5	60	KOGD	КО	1995
RC95-1325	636431.517	7106431.997	976.4	50	KOGD	КО	1995
RC95-1326	636405.308	7106375.353	962.9	62	KOGD	КО	1995
RC95-1327	636378.353	7106356.181	960.3	78	KOGD	КО	1995
RC95-1328	636321.052	7106391.261	978	72	KOGD	КО	1995
RC95-1329	636339.192	7106426.949	988.5	56	KOGD	КО	1995
RC95-1330	636377.467	7106418.609	979.7	50	KOGD	КО	1995
RC95-1331	636243.69	7106305.862	963.6	50	KOGD	КО	1995
RC95-1332	636199.275	7106299.612	978.8	36	KOGD	КО	1995

BHID	Easting	Northing	Elevation	Depth	Resource Area	Target	Year Drilled
RC95-1333	636151.049	7106298.11	987.1	59	KOGD	КО	1995
RC95-1334	636181.269	7106286.964	978.9	42	KOGD	КО	1995
RC95-1375	634134.044	7105628.332	757.6	40	PABL	BL	1995
RC95-1376	634085.054	7105614.917	770.1	49.5	PABL	BL	1995
RC95-1377	634072.204	7105638.008	776.9	40	PABL	BL	1995
RC95-1378	634059.277	7105660.827	782.8	30	PABL	BL	1995
RC95-1379	634046.988	7105682.511	788.3	24	PABL	BL	1995
RC95-1380	634022.359	7105630.2	791.8	36	PABL	BL	1995
RC95-1381	634037.582	7105546.321	776.7	32	PABL	BL	1995
RC95-1382	634035.24	7105499.647	775.6	50	PABL	BL	1995
RC95-1383	634070.852	7105488.087	770.7	26	PABL	BL	1995
RC95-1384	633931.757	7105637.603	816.5	24	PABL	BL	1995
RC95-1385	633885.084	7105502.855	815.5	60	PABL	BL	1995
RC95-1386	633908.32	7105616.046	821.4	30	PABL	BL	1995
RC96-1401	635896.621	7106172.775	902.9	60	KOGD	КО	1996
RC96-1402	635943.711	7106194.882	918.6	56	KOGD	КО	1996
RC96-1403	635980.2	7106231.583	937.5	70	KOGD	КО	1996
RC96-1404	635958.932	7106320.102	958.8	60	KOGD	КО	1996
RC96-1405	636139.282	7106218.809	947.2	70	KOGD	КО	1996
RC96-1406	636211.129	7106322.811	982.2	46	KOGD	КО	1996
RC96-1407	636296.474	7106351.724	970.4	60	KOGD	КО	1996
RC96-1408	636313.996	7106364.214	970.8	60	KOGD	КО	1996
RC96-1409	636372.726	7106396.423	969.9	80	KOGD	КО	1996
RC96-1410	636232.42	7106244.869	946.3	56	KOGD	КО	1996
RC96-1411	636247.279	7106259.652	946.9	48	KOGD	КО	1996
RC96-1412	636357.353	7106456.679	997.5	54	KOGD	КО	1996
RC96-1413	636453.914	7106500.738	1005.4	42	KOGD	КО	1996
RC96-1414	636398.4	7106488.938	1011.1	44	KOGD	КО	1996
RC96-1415	636536.191	7106465.689	985	34	KOGD	КО	1996
RC96-1416	636611.492	7106435.102	973.5	56	KOGD	КО	1996
RC96-1417	636502.658	7106415.147	968.9	66	KOGD	КО	1996
RC96-1418	636442.63	7106408.733	967.5	72	KOGD	КО	1996
RC96-1419	636691.602	7106498.046	992.1	72	KOGD	КО	1996
RC96-1420	636732.755	7106515.208	994.1	56	KOGD	КО	1996
RC96-1421	636782.666	7106529.025	986.9	62	KOGD	КО	1996
RC96-1422	636840.747	7106510.116	974.8	56	KOGD	КО	1996
RC96-1423	636744.942	7106688.1	984.5	30	KOGD	КО	1996
RC96-1424	636679.171	7106712.332	993.3	40	KOGD	КО	1996
RC96-1425	636770.179	7106635.8	989.9	64	KOGD	КО	1996
RC96-1426	636793.692	7106599.641	987	40	KOGD	КО	1996

BHID	Easting	Northing	Elevation	Depth	Resource Area	Target	Year Drilled
RC96-1427	636817.154	7106558.057	980.5	60	KOGD	KO	1996
RC96-1428	636706.799	7106562.05	1005.1	56	KOGD	КО	1996
RC96-1429	636724.257	7106585.069	1003	46	KOGD	КО	1996
RC96-1430	636756.785	7106574.302	996.1	50	KOGD	КО	1996
RC96-1431	636707.873	7106662.439	999	58	KOGD	КО	1996
RC96-1432	636633.846	7106690.757	1008.7	44	KOGD	КО	1996
RC96-1433	636663.75	7106639.13	1013.8	86	KOGD	КО	1996
RC96-1434	636659.198	7106503.486	996.7	54	KOGD	КО	1996
RC96-1435	636641.115	7106494.24	996.2	58	KOGD	КО	1996
RC96-1436	636589.02	7106474.716	990.5	36	KOGD	КО	1996
RC96-1437	636561.299	7106474.061	990.3	34	KOGD	КО	1996
RC96-1438	636667.469	7106539.598	1010.1	50	KOGD	КО	1996
RC96-1439	636633.721	7106600.318	1023	60	KOGD	КО	1996
RC96-1440	636601.655	7106656.816	1028.3	56	KOGD	КО	1996
RC96-1441	636597.439	7106561.206	1026.9	50	KOGD	КО	1996
RC96-1442	636586.294	7106632.105	1033.9	66	KOGD	КО	1996
RC96-1443	636536.004	7106682.264	1038.7	56	KOGD	КО	1996
RC96-1444	636452.691	7106615.222	1056.3	40	KOGD	КО	1996
RC96-1445	636178.593	7106552.894	1063	40	KOGD	КО	1996
RC96-1446	636192.958	7106533.64	1062.6	56	KOGD	КО	1996
RC96-1447	636339.081	7106596.832	1061.4	44	KOGD	КО	1996
RC96-1448	636303.977	7106564.812	1051.3	50	KOGD	КО	1996
RC96-1449	636128.718	7106470.2	1044.1	50	KOGD	КО	1996
RC96-1450	636195.707	7106431.955	1031.1	62	KOGD	КО	1996
RC96-1451	636225.77	7106475.609	1037.1	64	KOGD	КО	1996
RC96-1452	636298.336	7106528.916	1035.3	56	KOGD	КО	1996
RC96-1453	636187.257	7106358.998	1003.9	44	KOGD	КО	1996
RC96-1454	635885.301	7106145.972	892.8	50	KOGD	КО	1996
RC96-1455	635907.343	7106153.884	902.5	38	KOGD	КО	1996
RC96-1456	635904.654	7106213.805	908.3	22	KOGD	КО	1996
RC96-1457	635931.172	7106218.032	920.4	56	KOGD	КО	1996
RC96-1458	635972.153	7106253.47	942.7	38	KOGD	КО	1996
RC96-1459	636018.92	7106214.078	935.7	58	KOGD	КО	1996
RC96-1460	635997.962	7106201.378	931.5	48	KOGD	КО	1996
RC96-1461	636081.463	7106153.123	912.1	58	KOGD	КО	1996
RC96-1462	635944.84	7106294.153	944.1	55	KOGD	КО	1996
RC96-1463	636006.756	7106235.947	944	62	KOGD	КО	1996
RC96-1464	635968.118	7106305.171	959.1	50	KOGD	КО	1996
RC96-1465	636089.873	7106256.373	961.3	70	KOGD	КО	1996
RC96-1466	636054.665	7106268.848	960.3	72	KOGD	КО	1996

BHID	Easting	Northing	Elevation	Depth	Resource Area	Target	Year Drilled
RC96-1467	636191.865	7106313.015	982.9	36	KOGD	КО	1996
RC96-1468	636219.133	7106307.33	972.1	36	KOGD	КО	1996
RC96-1469	636203.746	7106291.446	971.6	8	KOGD	КО	1996
RC96-1470	636246.744	7106342.486	976.8	60	KOGD	КО	1996
RC96-1471	636194.844	7106268.3	962.7	44	KOGD	КО	1996
RC96-1472	636228.471	7106291.106	962.6	37	KOGD	КО	1996
RC96-1473	636287.8	7106363.498	975.7	50	KOGD	КО	1996
RC96-1474	636572.787	7106402.551	965.4	60	KOGD	КО	1996
RC96-1475	636594.416	7106418.958	969.3	23	KOGD	КО	1996
RC96-1476	636625.388	7106410.761	969.1	64.3	KOGD	КО	1996
RC96-1477	636759.589	7106467.825	984.4	54	KOGD	КО	1996
RC96-1478	636795.26	7106504.757	981	76	KOGD	КО	1996
RC96-1479	636819.469	7106506.767	977.6	66	KOGD	КО	1996
RC96-1480	636888.099	7106575.66	964.7	62	KOGD	GD	1996
RC96-1481	636876.533	7106596.258	965.1	46	KOGD	GD	1996
RC96-1482	636677.635	7106470.444	987	40	KOGD	КО	1996
RC96-1483	636515.345	7106391.735	964.1	42	KOGD	КО	1996
RC96-1484	636455.861	7106385.167	959.9	90	KOGD	КО	1996
RC96-1485	636468.5	7106416.156	969.3	60	KOGD	КО	1996
RC96-1486	636598.864	7106355.087	957.9	100	KOGD	КО	1996
RC96-1487	636272.396	7106300.066	957.5	50	KOGD	КО	1996
RC96-1488	636454.635	7106287.908	937.7	44	KOGD	КО	1996
RC96-1489	636311.215	7106235.421	932.9	94	KOGD	КО	1996
RC96-1490	636783.699	7106424.883	981	90	KOGD	КО	1996
RC96-1491	636418.235	7106350.697	953.2	66	KOGD	КО	1996
RC96-1492	636387.421	7106405.373	970.6	44	KOGD	КО	1996
RC96-1493	636740.505	7106648.63	992	46	KOGD	КО	1996
RC96-1494	636620.957	7106715.549	1002.5	40	KOGD	КО	1996
RC96-1495	636619.455	7106624.909	1026.1	32	KOGD	КО	1996
RC96-1496	636599.482	7106609.434	1030.6	46	KOGD	КО	1996
RC96-1497	636506.774	7106729.218	1037.5	22	KOGD	КО	1996
RC96-1498	636477.039	7106735.009	1045.7	39	KOGD	КО	1996
RC96-1499	636462.227	7106703.603	1056.2	36	KOGD	КО	1996
RC96-1500	636515.447	7106610.653	1048.5	90	KOGD	КО	1996
RC96-1501	636570.063	7106666.731	1032.3	52	KOGD	КО	1996
RC96-1502	636573.809	7106706.615	1015.8	24	KOGD	КО	1996
RC96-1503	636644.006	7106716.563	998.6	40	KOGD	КО	1996
RC96-1504	636472.097	7106580.659	1038.8	54	KOGD	КО	1996
RC96-1505	636440.608	7106636.334	1061.8	40	KOGD	КО	1996
RC96-1506	636372.04	7106583.666	1054.3	42	KOGD	КО	1996

BHID	Easting	Northing	Elevation	Depth	Resource Area	Target	Year Drilled
RC96-1507	636313.794	7106546.102	1041.4	56	KOGD	KO	1996
RC96-1508	636320.828	7106573.596	1051.4	40	KOGD	КО	1996
RC96-1509	636263.902	7106545.73	1047.1	62	KOGD	КО	1996
RC96-1510	636281.625	7106603.806	1067.7	36	KOGD	КО	1996
RC96-1511	636243.711	7106581.69	1065.1	42	KOGD	КО	1996
RC96-1512	636297.997	7106615.076	1068.4	34	KOGD	КО	1996
RC96-1513	636278.189	7106567.656	1053.8	45	KOGD	КО	1996
RC96-1514	636253.567	7106563.116	1055.7	50	KOGD	КО	1996
RC96-1515	636240.961	7106536.969	1054.8	48	KOGD	КО	1996
RC96-1516	636197.565	7106483.983	1043.5	28	KOGD	КО	1996
RC96-1517	636103.382	7106513.487	1050.5	24	KOGD	КО	1996
RC96-1518	636153.553	7106424.335	1033.6	74	KOGD	КО	1996
RC96-1519	636064.974	7106500.624	1032.7	24	KOGD	КО	1996
RC96-1520	636155.388	7106377.369	1015.2	44	KOGD	КО	1996
RC96-1521	636178.753	7106379.249	1013.3	42	KOGD	КО	1996
RC96-1522	636105.796	7106384.629	1017.4	42	KOGD	КО	1996
RC96-1523	636044.224	7106451.411	1011	30	KOGD	КО	1996
RC96-1524	636355.868	7106563.667	1048	50	KOGD	КО	1996
RC96-1525	636679.388	7106651.709	1006	52	KOGD	КО	1996
RC96-1526	636562.701	7106634.919	1040.2	66	KOGD	КО	1996
RC96-1527	636574.885	7106552.777	1026.2	60	KOGD	КО	1996
RC96-1528	636649.452	7106626.615	1019.2	36	KOGD	КО	1996
RC96-1529	636676.312	7106574.08	1011.3	46	KOGD	КО	1996
RC96-1530	636695.838	7106580.347	1008.2	46	KOGD	КО	1996
RC96-1531	636654.058	7106560.421	1015.4	40	KOGD	КО	1996
RC96-1532	636638.626	7106539.92	1014.2	52	KOGD	КО	1996
RC96-1533	636595.762	7106513.758	1010.7	62	KOGD	КО	1996
RC96-1534	636633.939	7106507.43	1003.4	52	KOGD	КО	1996
RC96-1535	636512.985	7106515.8	1008.4	52	KOGD	КО	1996
RC96-1536	636529.096	7106479.959	988.6	52	KOGD	КО	1996
RC96-1537	636410.051	7106410.4	970.9	48	KOGD	КО	1996
RC96-1538	636392.643	7106441.608	988.2	46	KOGD	КО	1996
RC96-1539	636372.605	7106431.148	987.2	56	KOGD	КО	1996
RC96-1540	636350.473	7106438.917	988.6	66	KOGD	КО	1996
RC96-1541	636316.11	7106415.582	986.5	56	KOGD	КО	1996
RC96-1542	636381.551	7106462.587	998	40	KOGD	КО	1996
RC96-1543	636305.192	7106431.147	997.6	54	KOGD	КО	1996
RC96-1544	636304.756	7106378.426	975.6	66	KOGD	КО	1996
RC96-1545	635923.771	7106128.096	898.2	59	KOGD	КО	1996
RC96-1546	635899.61	7106118.649	891.6	64	KOGD	КО	1996

BHID	Easting	Northing	Elevation	Depth	Resource Area	Target	Year Drilled
RC96-1547	635871.818	7106118.528	885.7	56	KOGD	KO	1996
RC96-1548	636031.504	7106191.87	926.8	52	KOGD	КО	1996
RC96-1549	635973.354	7106417.545	978.1	32	KOGD	КО	1996
RC96-1550	635963.958	7106362.199	965.9	34	KOGD	КО	1996
RC96-1551	636387.673	7106369.803	961.7	91	KOGD	КО	1996
RC96-1552	636358.487	7106415.863	979	70	KOGD	КО	1996
RC96-1553	636316.34	7106470.713	1007.7	60	KOGD	КО	1996
RC96-1554	636349.153	7106474.346	1009	40	KOGD	КО	1996
RC96-1555	636363.491	7106499.859	1017.1	50	KOGD	КО	1996
RC96-1556	636288.291	7106460.229	1013.8	60	KOGD	КО	1996
RC96-1557	636271.437	7106434.909	1010.9	60	KOGD	КО	1996
RC96-1558	636166.093	7106401.184	1024.7	70	KOGD	КО	1996
RC96-1559	636238.413	7106453.09	1027.4	66	KOGD	КО	1996
RC96-1560	636215.985	7106491.811	1043.8	56	KOGD	КО	1996
RC96-1561	636202.726	7106516.854	1056.6	58	KOGD	КО	1996
RC96-1562	636721.627	7106637.33	998.8	70	KOGD	КО	1996
RC96-1563	636708.357	7106705.887	987.5	36	KOGD	КО	1996
RC96-1564	636669.038	7106730.175	997.3	18	KOGD	КО	1996
RC96-1584	636234.139	7106370.653	995.3	62	KOGD	КО	1996
RC96-1586	636807.283	7106529.083	980.2	42	KOGD	КО	1996
RC96-1587	636775.783	7106541.692	989.3	54	KOGD	КО	1996
RC96-1588	636763.81	7106562.405	991.8	54	KOGD	КО	1996
RC96-1589	636764.751	7106605.65	992.7	70	KOGD	КО	1996
RC96-1590	636765.627	7106500.156	986.2	44	KOGD	КО	1996
RC96-1591	636789.887	7106567.418	985.7	50	KOGD	КО	1996
RC96-1592	636659.912	7106602.065	1015.1	55	KOGD	КО	1996
RC96-1593	636611.548	7106732.307	1006.1	40	KOGD	КО	1996
RC96-1594	636597.43	7106717.022	1007.2	36	KOGD	КО	1996
RC96-1595	636652.293	7106516.599	1005	50	KOGD	КО	1996
RC96-1596	636727.713	7106526.842	995.5	30	KOGD	КО	1996
RC96-1597	636740.357	7106504.324	990.6	48	KOGD	КО	1996
RC96-1598	636472.09	7106471.224	985	49	KOGD	КО	1996
RC96-1599	636482.98	7106449.787	978	54	KOGD	КО	1996
RC96-1625	637347.349	7107091.716	934.9	50	KOGD	GD	1996
RC96-1626	637202.319	7106967.361	957.3	66	KOGD	GD	1996
RC96-1627	637160.891	7106931.902	956	72	KOGD	GD	1996
RC96-1628	637111.706	7106924.349	971.5	42	KOGD	GD	1996
RC96-1629	637177.751	7107008.668	975.8	48	KOGD	GD	1996
RC96-1630	637086.125	7106968.072	992.3	38	KOGD	GD	1996
RC96-1631	637064.466	7106929.258	994.6	44	KOGD	GD	1996

BHID	Easting	Northing	Elevation	Depth	Resource Area	Target	Year Drilled
RC96-1632	637037.186	7106879.015	998.3	65	KOGD	GD	1996
RC96-1633	637023.164	7106903.17	1004.8	62	KOGD	GD	1996
RC96-1634	637101.431	7106946.936	982.1	40	KOGD	GD	1996
RC96-1635	637071.946	7106902.459	985.6	37	KOGD	GD	1996
RC96-1636	636934.421	7106829.057	1011.8	37	KOGD	GD	1996
RC96-1637	636945.79	7106810.646	1004.9	44	KOGD	GD	1996
RC96-1638	636896.386	7106792.864	997.6	33	KOGD	GD	1996
RC96-1639	636910.064	7106771.157	990.6	39	KOGD	GD	1996
RC96-1640	636922.354	7106749.473	987.7	54	KOGD	GD	1996
RC96-1641	636873.156	7106729.282	971.5	37	KOGD	GD	1996
RC96-1642	636998.46	7106715.205	967	46	KOGD	GD	1996
RC96-1643	637071.952	7106816.686	978	36	KOGD	GD	1996
RC96-1644	637082.614	7106799.943	970.1	40	KOGD	GD	1996
RC96-1645	637129.321	7106802.314	955.6	30	KOGD	GD	1996
RC96-1646	637191.097	7106987.349	962.7	38	KOGD	GD	1996
RC96-1647	637144.85	7106777.514	944.9	40	KOGD	GD	1996
RC96-1648	637155.915	7106759.849	935.9	42	KOGD	GD	1996
RC96-1649	637190.503	7106987.589	962.6	60	KOGD	GD	1996
RC96-1650	637170.958	7106810.447	934.7	30	KOGD	GD	1996
RC96-1651	637184.304	7106789.127	926	36	KOGD	GD	1996
RC96-1652	637229.351	7106806.296	907.6	36	KOGD	GD	1996
RC96-1653	636968.669	7106664.125	954.2	55	KOGD	GD	1996
RC96-1654	636897.486	7106606.314	959	55	KOGD	GD	1996
RC96-1655	636864.608	7106660.174	961	40	KOGD	GD	1996
RC96-1656	636819.388	7106652.093	974.2	40	KOGD	GD	1996
RC96-1657	636854.497	7106587.316	970	54	KOGD	GD	1996
RC96-1658	637344.282	7106661.226	924.9	82	KOGD	GD	1996
RC96-1659	637446.2	7106694.517	899.3	94	KOGD	GD	1996
RC96-1660	636468.842	7106637.506	1056.8	40	KOGD	KO	1996
RC96-1661	636483.631	7106662.01	1056.6	44	KOGD	KO	1996
RC96-1662	636513.421	7106660.613	1048.3	44	KOGD	KO	1996
RC96-1663	636567.971	7106665.555	1031.5	49	KOGD	KO	1996
RC96-1664	636622.33	7106671.653	1014	40	KOGD	KO	1996
RC97-1685	637473.136	7106820.926	880.6	50	KOGD	GD	1997
RC97-1686	637459.077	7106713.238	896.1	46	KOGD	GD	1997
RC97-1687	637439.655	7106747.218	904.3	77	KOGD	GD	1997
RC97-1688	637426.793	7106718.056	907.1	50	KOGD	GD	1997
RC97-1689	637443.237	7106638.537	895.5	56	KOGD	GD	1997
RC97-1690	637427.304	7106666.097	902.3	40	KOGD	GD	1997
RC97-1691	637404.488	7106603.207	906.5	72	KOGD	GD	1997

BHID	Easting	Northing	Elevation	Depth	Resource Area	Target	Year Drilled
RC97-1692	637390.707	7106629.793	907.6	50	KOGD	GD	1997
RC97-1693	637379.524	7106655.429	911.6	40	KOGD	GD	1997
RC97-1694	637350.14	7106600.56	921.7	60	KOGD	GD	1997
RC97-1695	637335.635	7106626.395	922.4	50	KOGD	GD	1997
RC97-1696	637303.546	7106630.864	929.9	76	KOGD	GD	1997
RC97-1697	637293.549	7106599.867	933.3	70	KOGD	GD	1997
RC97-1698	637264.172	7106600.118	936.4	76	KOGD	GD	1997
RC97-1699	637244.718	7106595.154	938.4	80	KOGD	GD	1997
RC97-1700	637217.674	7106564.91	939.6	92	KOGD	GD	1997
RC97-1701	637154.177	7106566.306	938.4	70	KOGD	GD	1997
RC97-1702	637133.952	7106588.237	929.9	60	KOGD	GD	1997
RC97-1703	637196.318	7106599.066	931.2	60	KOGD	GD	1997
RC97-1704	637230.773	7106621.419	928.1	50	KOGD	GD	1997
RC97-1705	637049.354	7106521.851	951.7	70	KOGD	GD	1997
RC97-1706	637089.926	7106551.892	941.4	62	KOGD	GD	1997
RC97-1707	637090.754	7106551.439	941.3	70	KOGD	GD	1997
RC97-1708	637075.236	7106577.853	936.6	40	KOGD	GD	1997
RC97-1709	637226.939	7106669.903	902.8	50	KOGD	GD	1997
RC97-1710	637208.311	7106698.588	903.8	50	KOGD	GD	1997
RC97-1711	637176.557	7106677.753	907.4	50	KOGD	GD	1997
RC97-1712	637076.195	7106629.031	923.7	45	KOGD	GD	1997
RC97-1713	637021.95	7106623.342	931.4	50	KOGD	GD	1997
RC97-1714	637002.984	7106606.48	938.4	50	KOGD	GD	1997
RC97-1715	637014.724	7106584.142	938.4	40	KOGD	GD	1997
RC97-1716	637120.851	7106610.958	921	38	KOGD	GD	1997
RC97-1717	637054.86	7106563.299	939.7	60	KOGD	GD	1997
RC97-1718	637031.19	7106554.816	941.3	50	KOGD	GD	1997
RC97-1719	636996.901	7106515.217	947.7	70	KOGD	GD	1997
RC97-1720	636979.205	7106545.919	947.9	70	KOGD	GD	1997
RC97-1721	636964.655	7106572.648	948.4	60	KOGD	GD	1997
RC97-1722	636915.122	7106572.248	959.8	60	KOGD	GD	1997
RC97-1723	636930.336	7106542.907	957.3	45	KOGD	GD	1997
RC97-1724	636949.393	7106509.985	954.3	60	KOGD	GD	1997
RC97-1725	637019.003	7106524.656	944.4	70	KOGD	GD	1997
RC97-1726	636983.256	7106590.568	943	54	KOGD	GD	1997
RC97-1727	636946.223	7106600.984	951.4	54	KOGD	GD	1997
RC97-1728	636934.418	7106619.151	951.6	60	KOGD	GD	1997
RC97-1729	636895.187	7106643.488	957.5	48	KOGD	GD	1997
RC97-1730	636910.39	7106618.045	953.3	66	KOGD	GD	1997
RC97-1731	636890.353	7106521.006	965.4	70	KOGD	GD	1997

BHID	Easting	Northing	Elevation	Depth	Resource Area	Target	Year Drilled
RC97-1732	636838.411	7106560.016	976.4	67	KOGD	GD	1997
RC97-1732	636874.332	7106633.258	964.8	56	KOGD	GD	1997
RC97-1734	633406.129	7105404.144	843.2	108	PABL	PA	1997
RC97-1734	633268.159	7105345.42	826.8	80	PABL	PA	1997
RC97-1733	636866.65	7106563.833	969.7	70	KOGD	GD	1997
RC97-1740	636841.118	7106609.306	973.2	40	KOGD	GD	1997
RC97-1741	636828.268	7106630.56	973.6	40	KOGD	GD	1997
RC97-1742	636807.065	7106668.936	974.2	30	KOGD	GD	1997
RC97-1744	636855.448	7106660.766	967.9	50	KOGD	GD	1997
†	636858.155	7106000.766	967.3	40	KOGD	GD	1997
RC97-1745	636895.269	7106711.893	964.2	40	KOGD	GD	1997
RC97-1746		7106595.207	951	65	KOGD	GD	1997
RC97-1747	636971.647 637020.277	7106516.294		70	KOGD	GD	1997
RC97-1748			944.2				
RC97-1749	636982.32	7106642.058	945	50	KOGD	GD	1997
RC97-1750	636950.657	7106697.635	968.9	60	KOGD	GD	1997
RC97-1751	637015.444	7106687.203	956.1	60	KOGD	GD	1997
RC97-1752	637025.953	7106718.717	962.6	60	KOGD	GD	1997
RC97-1753	637058.061	7106744.23	965.3	64	KOGD	GD	1997
RC97-1754	637006.286	7106754.971	976.5	70	KOGD	GD	1997
RC97-1755	636984.995	7106740.821	977.2	50	KOGD	GD	1997
RC97-1756	636973.37	7106761.73	987.8	60	KOGD	GD	1997
RC97-1757	636958.129	7106788.874	997.4	52	KOGD	GD	1997
RC97-1758	637013.651	7106821.692	998.7	66	KOGD	GD	1997
RC97-1759	637057.099	7106849.675	990.6	60	KOGD	GD	1997
RC97-1760	637047.902	7106819.702	987.8	66	KOGD	GD	1997
RC97-1761	637025.821	7106798.793	988.1	70	KOGD	GD	1997
RC97-1762	636862.13	7106754.432	982.4	30	KOGD	GD	1997
RC97-1763	637107.313	7106761.466	954.4	50	KOGD	GD	1997
RC97-1764	637122.924	7106734.07	939.8	56	KOGD	GD	1997
RC97-1765	637065.911	7106664.703	936.1	70	KOGD	GD	1997
RC97-1766	637104.005	7106642.596	919.3	30	KOGD	GD	1997
RC97-1767	637168.374	7107024.756	983.1	48	KOGD	GD	1997
RC97-1768	637047.503	7106947.626	1004.9	46	KOGD	GD	1997
RC97-1775	637210.885	7107051.752	975.2	54	KOGD	GD	1997
RC97-1776	637162.695	7106986.885	972.4	42	KOGD	GD	1997
RC97-1777	637119.171	7106909.828	966.6	54	KOGD	GD	1997
RC97-1778	637109.441	7106838.333	967.1	46	KOGD	GD	1997
RC97-1779	637119.765	7106819.334	962.4	52	KOGD	GD	1997
RC97-1780	637094.771	7106858.335	974	50	KOGD	GD	1997
RC97-1781	637082.787	7106884.783	980.7	40	KOGD	GD	1997

BHID	Easting	Northing	Elevation	Depth	Resource Area	Target	Year Drilled
RC97-1782	637128.324	7106893.73	959	60	KOGD	GD	1997
RC97-1783	637159.737	7106841.458	941.9	62	KOGD	GD	1997
RC97-1784	637147.485	7106863.278	946	60	KOGD	GD	1997
RC97-1785	637173.241	7106911.745	948	60	KOGD	GD	1997
RC97-1786	637217.206	7106941.052	946	70	KOGD	GD	1997
RC97-1787	637234.575	7106954.834	945.2	56	KOGD	GD	1997
RC97-1788	637300.473	7107088.217	948.7	65	KOGD	GD	1997
RC97-1789	637291.539	7107062.067	950.8	70	KOGD	GD	1997
RC97-1790	637266.976	7107106.018	951.7	40	KOGD	GD	1997
RC97-1791	637259.515	7107016.392	952.6	86	KOGD	GD	1997
RC97-1792	637235.823	7107002.845	958	80	KOGD	GD	1997
RC97-1793	637191.305	7106768.49	924	40	KOGD	GD	1997
RC97-1794	637166.222	7106734.754	926.3	45	KOGD	GD	1997
RC97-1795	637076.085	7106712.334	949.8	64	KOGD	GD	1997
RC97-1796	636938.319	7106723.081	980.8	60	KOGD	GD	1997
RC97-1797	637065.108	7106598.341	928.4	40	KOGD	GD	1997
RC97-1798	637305.865	7106574.868	932.4	70	KOGD	GD	1997
RC97-1799	637325.937	7106646.321	926.2	46	KOGD	GD	1997
RC97-1800	637219.038	7106633.539	918.9	40	KOGD	GD	1997
RC97-1801	637182.939	7106622.893	918.6	35	KOGD	GD	1997
RC97-1802	637289.082	7107107.076	949.1	50	KOGD	GD	1997
RC97-1803	637182.454	7106707.478	912.5	55	KOGD	GD	1997
RC97-1804	636320.617	7106486.782	1024.2	150	KOGD	КО	1997
RC97-1805	636396.751	7106458.386	998.9	150	KOGD	KO	1997
RC97-1806	637863.871	7107319.138	887.4	46	LU	LU	1997
RC97-1807	637822.236	7107280.576	883.1	34	LU	LU	1997
RC97-1808	637781.124	7107247.821	874	30	LU	LU	1997
RC97-1809	637881.628	7107291.8	883.7	66	LU	LU	1997
RC97-1810	637933.502	7107284.559	872.4	66	LU	LU	1997
RC97-1811	637893.519	7107264.495	872.9	66	LU	LU	1997
RC97-1812	638152.206	7107390.617	812.5	44	LU	LU	1997
RC97-1813	638130.012	7107429.125	820.2	40	LU	LU	1997
RC97-1814	638006.09	7107433.185	837.9	60	LU	LU	1997
RC97-1815	637991.095	7107465.405	837.5	40	LU	LU	1997
RC97-1816	638024.228	7107405.373	835.1	74	LU	LU	1997
RC97-1817	638043.852	7107371.851	833.2	74	LU	LU	1997
RC97-1818	638058.32	7107298.915	842.1	60	LU	LU	1997
RC97-1819	638002.944	7107356.09	852.1	80	LU	LU	1997
RC97-1820	637996.84	7107317.751	854.3	70	LU	LU	1997
RC97-1821	638022.997	7107310.982	851.8	80	LU	LU	1997

BHID	Easting	Northing	Elevation	Depth	Resource	Target	Year Drilled
RC97-1822	638014.421	7107232.327	851.3	76	Area LU	LU	1997
RC97-1823	637977.939	7107292.527	861.9	64	LU	LU	1997
RC97-1823	637962.742	7107327.636	869.7	70	LU	LU	1997
RC97-1825	637946.941	7107354.35	876.5	70	LU	LU	1997
RC97-1825	637930.567	7107334.33	882	66	LU	LU	1997
RC97-1827	637915.583	7107411.016	880	58	LU	LU	1997
RC97-1828	637906.157	7107411.010	887.8	70	LU	LU	1997
RC97-1829	637890.04	7107353.099	891.6	46	LU	LU	1997
†	637836.698	7107304.021	870	50	LU	LU	1997
RC97-1830	637851.841	7107233.030	863.6	50	LU	LU	1997
RC97-1831	637905.781	7107230.303	859.1		LU		1997
RC97-1832	+			64		LU	
RC97-1833	637954.679	7107258.685	857.7	64	LU	LU	1997
RC97-1834	637993.441	7107270.713	857.1	70	LU	LU	1997
RC97-1835	637970.6	7107229.512	845.9	60	LU	LU	1997
RC97-1836	637953.655	7107212.523	844.4	70	LU	LU	1997
RC97-1837	637909.169	7107192.109	842.4	70	LU	LU	1997
RC97-1838	637917.782	7107214.749	852.2	60	LU	LU	1997
RC97-1839	637865.66	7107204.053	853.5	50	LU	LU	1997
RC97-1840	637812.347	7107196.705	853.2	54	LU	LU	1997
RC97-1841	637826.493	7107170.898	843.2	60	LU	LU	1997
RC97-1842	637844.005	7107142.159	833.3	66	LU	LU	1997
RC97-1843	637872.499	7107143.478	837.4	66	LU	LU	1997
RC97-1844	637797.803	7107220.567	861.2	44	LU	LU	1997
RC97-1845	637937.837	7107426.512	868.8	40	LU	LU	1997
RC97-1846	637951.886	7107447.843	861	36	LU	LU	1997
RC97-1847	637968.874	7107415.136	862.5	66	LU	LU	1997
RC97-1848	637982.503	7107389.842	859.5	86	LU	LU	1997
RC97-1849	638044.963	7107465.027	818.4	30	LU	LU	1997
RC97-1850	638056.969	7107441.806	816	42	LU	LU	1997
RC97-1851	638071.922	7107417.829	814.9	44	LU	LU	1997
RC97-1852	638086.901	7107392.375	812.4	50	LU	LU	1997
RC97-1853	638104.62	7107363.064	809.3	58	LU	LU	1997
RC97-1854	638134.683	7107365.265	808.3	54	LU	LU	1997
RC97-1855	638102.405	7107425.204	812.3	26	LU	LU	1997
RC97-1856	637877.878	7107177.391	851.1	60	LU	LU	1997
RC97-1857	637920.429	7107309.477	880.9	70	LU	LU	1997
RC97-1906	636405.202	7106442.926	992.1	60	KOGD	КО	1997
RC97-1907	636425.632	7106407.561	971.5	78	KOGD	КО	1997
RC97-1908	636431.976	7106397.692	970.7	92	KOGD	КО	1997
RC97-1909	636450.44	7106365.01	957.6	92	KOGD	КО	1997

BHID	Easting	Northing	Elevation	Depth	Resource Area	Target	Year Drilled
RC97-1918	636985.48	7106842.257	1003.7	52	KOGD	GD	1997
RC97-1919	636952.451	7106765.703	992.4	40	KOGD	GD	1997
RC97-1920	636845.577	7106594.014	975.5	54	KOGD	GD	1997
RC97-1921	637137.984	7106927.982	960.6	38	KOGD	GD	1997
RC97-1922	637129.185	7106943.246	970.8	56	KOGD	GD	1997
RC97-1923	637169.951	7106999.691	976	50	KOGD	GD	1997
RC97-1924	637233.378	7107006.178	958.4	45	KOGD	GD	1997
RC97-1925	637147.362	7106783.863	944.2	30	KOGD	GD	1997
RC97-1926	637070.97	7106800.058	974.9	76	KOGD	GD	1997
RC97-1927	637237.169	7107009.228	958.5	70	KOGD	GD	1997
RC97-1928	636975.436	7106686.99	963.3	40	KOGD	GD	1997
RC97-1929	637001.874	7106659.71	948.5	50	KOGD	GD	1997
RC97-1973	638183.499	7107239.526	810.6	50	LU	LU	1997
RC97-1974	638194.819	7107217.526	809.9	56	LU	LU	1997
RC97-1975	638217.604	7107198.182	802	56	LU	LU	1997
RC97-1976	638149.822	7107216.806	825	64	LU	LU	1997
RC97-1977	638138.263	7107243.723	824.7	52	LU	LU	1997
RC97-1978	638089.447	7107223.057	843	74	LU	LU	1997
RC97-1979	638075.774	7107249.246	842.2	70	LU	LU	1997
RC97-1980	638059.945	7107275.6	839.1	70	LU	LU	1997
RC97-1981	638027.871	7107211.64	847.4	72	LU	LU	1997
RC97-1982	638074.598	7107339.758	828.2	76	LU	LU	1997
RC97-1983	638086.13	7107321.668	826.8	70	LU	LU	1997
RC97-1984	638105.222	7107297.262	824.2	60	LU	LU	1997
RC97-1985	638105.222	7107297.262	824.2	60	LU	LU	1997
RC97-1986	638092.334	7107374.531	812.3	60	LU	LU	1997
RC97-1987	638127.808	7107393.438	812.7	64	LU	LU	1997
RC97-1988	638168.34	7107358.004	809.6	60	LU	LU	1997
RC97-1989	638163.658	7107328.158	806.4	54	LU	LU	1997
RC97-1990	638178.38	7107337.467	806.2	52	LU	LU	1997
RC97-1991	638232.476	7107325.044	790.3	50	LU	LU	1997
RC97-1992	638223.628	7107349.582	794.8	50	LU	LU	1997
RC97-2006	638121.171	7107270.286	819.9	60	LU	LU	1997
RC97-2007	638216.786	7107239.865	801.1	50	LU	LU	1997
RC97-2008	638229.996	7107216.746	798.3	50	LU	LU	1997
RC97-2009	638227.966	7107179.319	794.9	54	LU	LU	1997
RC97-2020	638116.678	7107179.458	842.7	100	LU	LU	1997
RC97-2021	638043.662	7107186.986	837.5	112	LU	LU	1997
RC97-2022	637982.211	7107172.079	830.7	106	LU	LU	1997
RC97-2023	638008.784	7107133.736	819.3	130	LU	LU	1997

BHID	Easting	Northing	Elevation	Depth	Resource Area	Target	Year Drilled
RC97-2024	638289.519	7107228.962	767.9	66	LU	LU	1997
RC97-2025	637257.22	7106714.598	952.5	22	KOGD	GD	1997
RC98-2039	637518.371	7106813.053	874.9	66	KOGD	GD	1998
RC98-2040	637419.132	7106781.728	900.5	50	KOGD	GD	1998
RC98-2041	637269.65	7106639.368	924	76	KOGD	GD	1998
RC98-2042	637282.636	7106565.6	933.5	84	KOGD	GD	1998
RC98-2043	637199.995	7106560.254	940.3	80	KOGD	GD	1998
RC98-2044	637178.574	7106597.589	929	70	KOGD	GD	1998
RC98-2045	636957.19	7106532.855	953.1	56	KOGD	GD	1998
RC98-2046	635896.455	7106381.553	949.7	60	KOGD	KO	1998
RC98-2047	635972.823	7106304.142	959.8	60	KOGD	КО	1998
RC98-2048	636044.654	7106311.793	978.2	86	KOGD	КО	1998
RC98-2049	636376.38	7106533.056	1038.5	54	KOGD	KO	1998
RC98-2050	636429.346	7106545.719	1036.3	50	KOGD	KO	1998
RC98-2051	636001.882	7106331.614	974.6	64	KOGD	KO	1998
RC98-2052	636546.527	7106551.419	1027	56	KOGD	KO	1998
RC98-2053	636618.534	7106525.066	1013.8	50	KOGD	KO	1998
RC98-2054	636708.166	7106521.022	995	50	KOGD	KO	1998
RC98-2055	636322.293	7106339.023	962.4	80	KOGD	KO	1998
RC98-2056	636431.583	7106398.39	968.5	70	KOGD	KO	1998
RC98-2057	637063.699	7106701.927	945.6	56	KOGD	GD	1998
RC98-2058	637033.375	7106755.73	972.5	56	KOGD	GD	1998
RC98-2059	637142.164	7106716.752	929.6	50	KOGD	GD	1998
RC98-2060	637201.227	7106757.761	921.3	30	KOGD	GD	1998
RC98-2061	637230.497	7106915.338	931.9	60	KOGD	GD	1998
RC98-2062	637240.278	7107050.246	963.6	60	KOGD	GD	1998
RC98-2063	637385.13	7107099.978	919.8	30	KOGD	GD	1998
RC98-2064	637040.936	7106722.661	958.7	60	KOGD	GD	1998
RC98-2065	636304.454	7106269.514	950.4	80	KOGD	KO	1998
RC98-2124	633561.213	7105435.858	843.5	64	PABL	PA	1998
RC98-2125	638184.428	7107313.423	801	100	LU	LU	1998
RC98-2126	638184.428	7107313.423	801	52	LU	LU	1998
RC98-2127	638206.9	7107367.737	803.6	40	LU	LU	1998
RC98-2128	638258.94	7107381.029	797	43	LU	LU	1998
RC98-2129	638225.387	7107347.47	794.1	40	LU	LU	1998
RC98-2130	638271.322	7107358.363	784.9	30	LU	LU	1998
RC98-2131	638152.704	7107408.925	818.3	140	LU	LU	1998
RC98-2132	638117.18	7107230.838	833	54	LU	LU	1998
RC98-2133	638072.625	7107187.88	841.3	50	LU	LU	1998
RC98-2134	637960.009	7107146.279	823.8	80	LU	LU	1998

BHID	Easting	Northing	Elevation	Depth	Resource Area	Target	Year Drilled
RC98-2135	637999.948	7107167.237	827.8	110	LU	LU	1998
RC98-2136	638033.223	7107154.938	823.4	70	LU	LU	1998
RC98-2137	638011.491	7107188.538	833	66	LU	LU	1998
RC98-2138	638041.098	7107243.418	848.3	60	LU	LU	1998
RC98-2139	638058.25	7107212.87	847.5	60	LU	LU	1998
RC98-2140	637993.801	7107227.396	847.3	70	LU	LU	1998
RC98-2141	638024.115	7107275.095	852.3	56	LU	LU	1998
RC98-2161	636008.776	7106374.876	987.1	60	KOGD	КО	1998
RC98-2164	634133.765	7105434.231	745.2	60	PABL	BL	1998
RC98-2165	634159.26	7105394.134	732.3	60	PABL	BL	1998
RC98-2251	638101.944	7107256.952	829.5	50	LU	LU	1998
RC98-2252	638088.762	7107280.431	829.7	54	LU	LU	1998
RC98-2253	638097.601	7107373.932	811.5	50	LU	LU	1998
RC98-2254	638116.752	7107347.378	808.3	50	LU	LU	1998
RC98-2255	637533.784	7106859.725	857.7	50	KOGD	GD	1998
RC98-2256	637558.884	7106850.754	857.1	32	KOGD	GD	1998
RC98-2257	637496.111	7106845.553	867.7	20	KOGD	GD	1998
RC99-2276	636042.555	7106365.228	965.575	120	KOGD	КО	1999
RC99-2277	633460.854	7105409.838	843.575	70	PABL	PA	1999
RC99-2278	633523.402	7105452.224	848.369	34	PABL	PA	1999
RC99-2279	633511.16	7105473.684	852.678	40	PABL	PA	1999
RC99-2280	633479.05	7105479.756	854.944	30	PABL	PA	1999
RC99-2281	633477.416	7105431.693	846.607	50	PABL	PA	1999
RC99-2282	633465.708	7105453.586	850.234	40	PABL	PA	1999
RC99-2283	633453.262	7105474.911	854.601	30	PABL	PA	1999
RC99-2284	633429.267	7105469.852	854.343	40	PABL	PA	1999
RC99-2285	633409.931	7105501.47	859.146	30	PABL	PA	1999
RC99-2286	633428.833	7105416.577	845.999	60	PABL	PA	1999
RC99-2287	633418.203	7105436.347	847.58	50	PABL	PA	1999
RC99-2288	633405.569	7105457.923	850.456	40	PABL	PA	1999
RC99-2289	633393.777	7105479.475	853.82	36	PABL	PA	1999
RC99-2290	633351.597	7105502.201	856.624	30	PABL	PA	1999
RC99-2291	633370.395	7105419.235	844.368	70	PABL	PA	1999
RC99-2292	633358.48	7105440.571	846.993	70	PABL	PA	1999
RC99-2293	633343.182	7105468.268	850.443	70	PABL	PA	1999
RC99-2294	633328.141	7105493.187	852.45	30	PABL	PA	1999
RC99-2295	633324.588	7105397.406	837.37	70	PABL	PA	1999
RC99-2296	633308.018	7105426.697	842.372	60	PABL	PA	1999
RC99-2297	633290.42	7105459.208	847.115	40	PABL	PA	1999
RC99-2298	633277.843	7105430.195	840.005	40	PABL	PA	1999

BHID	Easting	Northing	Elevation	Depth	Resource Area	Target	Year Drilled
RC99-2299	633295.356	7105348.015	828.564	70	PABL	PA	1999
RC99-2300	633283.519	7105370.061	831.376	82	PABL	PA	1999
RC99-2301	633268.375	7105395.565	834.128	46	PABL	PA	1999
RC99-2302	633256.416	7105416.872	836.423	30	PABL	PA	1999
RC99-2303	633237.721	7105400.625	832.399	40	PABL	PA	1999
RC99-2304	633240.459	7105346.163	824.526	54	PABL	PA	1999
RC99-2305	633232.42	7105358.473	825.221	44	PABL	PA	1999
RC99-2306	633219.234	7105381.652	828.198	30	PABL	PA	1999
RC99-2307	633193.77	7105375.144	825.192	40	PABL	PA	1999
RC99-2308	633197.762	7105316.651	819.206	50	PABL	PA	1999
RC99-2309	633176.864	7105306.572	815.456	46	PABL	PA	1999